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Abstract

Lih, Wang and Zhu [Discrete Math. 269 (2003), 303–309] proved
that the chromatic number of the square of a K4-minor free graph
with maximum degree ∆ is bounded by ⌊3∆/2⌋+1 if ∆ ≥ 4, and is at
most ∆+3 for ∆ ∈ {2, 3}. We show that the same bounds hold for the
list chromatic number of squares of K4-minor free graphs. The same
result was also proved independently by Hetherington and Woodall.

1 Introduction

Graph coloring is a very active area of graph theory. A particular attention
is focused on colorings of planar graphs. Wegner’s conjecture asserts that the
square of every planar graph with maximum degree ∆ has a coloring with
approximately 3∆/2 colors. Recall that the square G2 of a graph G is the
graph on the same vertex set with any two vertices at distance at most two
joined by an edge.

Conjecture 1 (Wegner 1977, [17]). Let G be a planar graph with maximum
degree ∆. The chromatic number of G2 is at most 7, if ∆ = 3, at most ∆+5,
if 4 ≤ ∆ ≤ 7, and at most

⌊

3∆

2

⌋

+ 1, otherwise.
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Charles University, Malostranské náměst́ı 25, Prague, Czech Republic. E-mail:
bim@kam.mff.cuni.cz.

‡Department of Applied Mathematics, National Sun Yat-sen University, Kaohsi-
ung, Taiwan 80424, and National Center for Theoretical Sciences, Taiwan. E-mail:
zhu@math.nsysu.edu.tw.

1



Conjecture 1 has been recently verified by Thomassen [15] for graphs with
maximum degree three and it remains open for ∆ ≥ 4. For larger values of
∆, there is a series [9, 18, 8, 7, 1, 2, 3] of improvements of the upper bound
with the currently best known upper bound ⌊5∆/3⌋ + 78 due to Molloy
and Salavatipour [13, 14]. A significant progress on the conjecture has been
recently achieved by by Havet, van den Heuvel, McDiarmid and Reed [5] who
established the upper bound (3/2+ o(1))∆, i.e., verified the conjecture to be
asymptotically true.

Planar graphs are known to be precisely the graphs that do not contain
the graphs K5 and K3,3 as minors. Recall that a graph H is a minor of a graph
G if H can be obtained from G by deleting vertices and edges and contracting
edges. Conjecture 1 is known to be true for outerplanar graphs [11], the class
of graphs that do not contain K2,3 or K4 as a minor. The validity of the
conjectured bound was later extended to K4-minor free graphs:

Theorem 1 (Lih, Wang and Zhu 2003, [12]). The chromatic number of
the square of a K4-minor free graph G of maximum degree ∆ is at most
⌊3∆/2⌋ + 1 if ∆ ≥ 4 and at most ∆ + 3 if 2 ≤ ∆ ≤ 3.

In this paper, we consider a list variant of the problem. Recall that the
list chromatic number of a graph G is the smallest integer k such that the
vertices of G can be colored for an arbitrary assignment of lists of k colors
to each vertex in such a way that every vertex receives a color from its list.
Clearly, the list chromatic number is always at least the chromatic number of
G. The notion of list colorings was introduced by Erdős, Rubin and Taylor [4]
and Vizing [16] and it forms a very rich area of graph colorings nowadays. It
is well-known that the list chromatic number of a complete bipartite graph
Kn,n is Θ(log n) and thus the difference between the chromatic number and
the list chromatic number of a graph can be arbitrarily large.

We show that the bounds established in [12] for the chromatic number
of a K4-minor free graph also hold for list coloring (see Theorem 16). Since
the bounds are the best possible for the ordinary coloring, they are also
the best possible for list colorings. We build on a technique used in [10]
to establish tight upper bounds of L(p, q)-labelings of K4-minor free graphs
which exploits a close relation of K4-minor free graphs and series-parallel
graphs. More details are given in the next section.

After finishing our work on this manuscript, we have learnt that the same
bounds on the list chromatic number of K4-minor free graphs were earlier
established by Hetherington and Woodall [6]. In addition to the results
on list coloring, the paper [6] also contains optimal bounds on the coloring
number (degeneracy of K4-minor free graphs). In particular, it is shown
that a K4-minor free graph with maximum degree ∆ is (∆ + 2)-degenerate
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if ∆ ∈ {2, 3} and it is ⌈3∆/2⌉-degenerate, otherwise. Both the bounds are
the best possible.

2 Series-Parallel Graphs

In this section, we introduce notation related to K4-minor free graphs and
series-parallel graphs in particular. Before introducing the notion of series-
parallel graphs, let us remark that the definition of series-parallel graphs
slightly varies throughout the literature. Series-parallel graphs can be ob-
tained by the following recursive construction based on graphs with two dis-
tinguished vertices called poles. The simplest series-parallel graph is an edge
uv with the two poles being its end-vertices. If G1 and G2 are series-parallel
graphs with poles u1 and v1, and u2 and v2, respectively, then the graph G
obtained by identifying the vertices v1 and u2 is also a series-parallel graph
and its two poles are the vertices u1 and v2. The graph G obtained in this
way is called the serial join of G1 and G2. The parallel join of G1 and G2

is the graph obtained by identifying the pairs of vertices u1 and u2 and v1

and v2 with the poles being the identified vertices. The series-parallel graphs
are precisely those that can be obtained from edges by a series of serial and
parallel joins.

It is well-known that every 2-edge-connected K4-minor free graph is a
series-parallel graph (but the converse is not true).

Lemma 2. Every block of a K4-minor free graph is a series-parallel graph.

The construction of a particular series-parallel graph G can be encoded
by a rooted tree referred to as an SP-decomposition tree of G. Each node of
the tree corresponds to a subgraph of G obtained at a step of the recursive
construction of G. The leaves correspond to simple paths with their end-
vertices being poles (such graphs are obtained by successive serial joins of
edges) and each inner node of the tree corresponds to either a serial or a
parallel join, i.e., there are two types of inner nodes: S-nodes and P-nodes.
The inner nodes have at least two children and the subgraphs corresponding
to their children were joined together by a sequence of serial or parallel joins
depending on the type of the node. Since the result of a sequence of serial
joins depends on the order in which the serial joins are applied, the children
of each inner node have a fixed order. Without loss of generality, we can
assume that the children of a P-node are S-nodes and leaves only, and the
children of an S-node are P-nodes and leaves only (otherwise, the nodes can
be merged together). We can also assume that no two consecutive children
of an S-node are leaves.
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Figure 1: A S(P, ℓ)-subgraph and the corresponding subtree. The subgraph
is obtained by a serial join (using the vertex v) of an edge vw and a P -
subgraph A with poles u and v. The P -subgraph A itself is a parallel join of
several paths with endvertices u and v.

An SP-decomposition tree corresponding to a series-parallel graph G is
not unique and there is quite a lof of freedom in its choice [10]:

Lemma 3. Let G be a series-parallel graph and v a vertex of G. There
exists an SP-decomposition tree such that v is one of the poles of the graph
corresponding to the root of the SP-decomposition tree.

We now adopt the notation for describing series-parallel subgraphs based
on their SP -decomposition, which was used in [10]. A subgraph of G corre-
sponding to a leaf of the tree, i.e., a path consisting of 2-vertices, is called
an ℓ-subgraph of G (ℓ stands for leaf). A subgraph obtained by a parallel
join of A1-subgraph, A2-subgraph, . . . , Ak-subgraph, is a P (A1, . . . , Ak)-
subgraph and a subgraph obtained by a serial join of such subgraphs is an
S(A1, . . . , Ak)-subgraph. For instance, a P (ℓ, ℓ, ℓ)-subgraph is a subgraph of
G that corresponds to a P-node with three leaves. Since the result of a serial
join depends on the order in which the subgraphs are joined, we require the
sequence A1, . . . , Ak to respect this order. Subgraphs obtained by a parallel
join of several A-subgraphs are called P (A∗)-subgraphs and those obtained
by a serial join S(A∗)-subgraphs. P (ℓ∗)-subgraphs are called P -subgraphs
for short. An example of this notation can be found in Figure 1.

Finally, we introduce a special name for particular P -subgraphs of a
series-parallel graph G. A P -subgraph of G obtained by a parallel join of
several two-edge paths and possibly an edge is called a crystal. Its vertices
distinct from its poles are said to be its inner vertices. A crystal whose poles
are not adjacent is a diamond. The size of a crystal is the number of edges
incident with each of its poles, i.e., for diamonds, it is the number of the
inner vertices, and it is the number of the inner vertices increased by one
otherwise. Notice that size of any crystal is at least 2.
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3 The Result

In this section, we state and prove the list coloring counterpart of Theorem 1.
The main part of the proof consists in examining properties of a possible
counterexample. For an integer D ≥ 1, a graph is said to be D-bad if it
is K4-minor free, its maximum degree is at most D, and its list chromatic
number is greater than ⌊3D/2⌋+1. Further, a graph is said to be D-minimal
if it is D-bad and there is no D-bad graph of smaller order.

Clearly, our main result (see Theorem 16) for D ≥ 4 is equivalent to stat-
ing that there are no D-bad graphs and no D-minimal graphs in particular
for D ≥ 4. In what follows, we exhibit a (long) series of lemmas that yield
the proof of the statement.

3.1 Even Maximum Degree

Let us start with observations on the structure of D-minimal graphs which
lead straightforwardly to a proof of the desired bound for graphs with maxi-
mum degree that is even (but they are also useful for graphs with odd max-
imum degree). Clearly, every D-minimal graph is connected. In the next
lemma, we show that D-minimal graphs do not contain vertices of degree
one and neighboring vertices of degree two.

Lemma 4. No D-minimal graph G, for D ≥ 4, contains a vertex of degree
one or two adjacent vertices of degree two.

Since proofs of most of the lemmas use the same technique, we explain the
notation and principle in more detail here. This will allow us to make the
other proofs more compact and to concentrate on their main aspects.

Proof. Fix a list assignment L giving each vertex of G a list of at least
⌊3D/2⌋ + 1 colors.

We first consider the case that G contains a vertex v of degree one. Re-
move the vertex v, and find a proper list-coloring c of the square of the
resulting graph using the lists given by L which exists by the D-minimality
of G. We now aim to extend c to v. To show that this is always possible, we
count the number of colors in L(v) that cannot be used to color the vertex
v since the color is already used to color a vertex at distance at most two
from v. We say that the colors that cannot be used to color v because of the
above reason are forbidden for v; the remaining colors in L(v) are said to be
available for v. In particular, if we show that the number of available colors
for v is at least one (i.e., the number of forbidden colors is at most ⌊3D/2⌋),
we can conclude that the coloring c can be extended to v. Let us proceed
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with counting. The only neighbor of v forbids at most one color, and its
neighbors excluding v forbid at most additional D − 1 colors. In total, there
are at most D ≤ ⌊3D/2⌋ forbidden colors. Hence, c can be extended to v.

Next, we show that there are no two vertices u and v of degree two joined
by an edge, i.e., there is no path xuvy where u and v have degre two. As
before, we find a list-coloring c of the square of G \ {u, v}. Now, we find a
color for u: the neighbors of x forbid at most D − 1 colors, and two more
colors can be forbidden by x a y. Hence, there are at most D + 1 forbidden
colors for the vertex u and therefore, u can be properly colored. The case
of the vertex v is similar: the number of forbidden colors will be at most
D + 2, since the vertex u has already been colored. We conclude that the
coloring c can be extended to a proper list-coloring of the square of G, which
contradicts the D-minimality of G.

For the rest of the section, we consider a block-decomposition of a D-
minimal graph G, and focus on one of its endblocks (we consider the entire
graph G if it is itself 2-connected). The chosen block will be referred to as
to the final block of G, and will be denoted by G⋆.

By Lemma 2, G⋆ is a series-parallel graph. If G 6= G⋆, G⋆ is connected
to the rest of G through a vertex v⋆. If G = G⋆ (i.e., G itself is already 2-
connected), v⋆ will be an arbitrarily chosen vertex of G⋆. By Lemma 3, there
is an SP-decomposition T ⋆ of G⋆ such that v⋆ is one of the poles corresponding
to the root of of the decomposition T ⋆. Note that the root of T ⋆ always
corresponds to a P -node since G⋆ is 2-connected.

We adopt the notation of A-subgraphs introduced in Section 2, and we
say that an A-subgraph is contained in G⋆, if there is a subtree TA of the
form described by A with root r in T ⋆ such that there is no descendant w
of r in T ⋆ whose depth is greater than the maximum depth of a descendant
of r in TA (in other words, we allow the subtree of the node r to be more
complex than just a subtree corresponding to an A-subgraph, but we do not
want it to be higher).

An immediate consequence of Lemma 4 is that all P -subgraphs contained
in the final block are crystals. The following lemma shows that sizes and
types of crystals in D-minimal graphs are quite restricted.

Lemma 5. In a D-minimal graph, D ≥ 2, the size of each crystal is at most
⌈D/2⌉, with the equality holding only for diamonds.

Proof. Fix a D-minimal graph G, D ≥ 2, that contains a crystal C with
poles u and v whose size is S, and a list-assignment L of G giving each
vertex a list of at least ⌊3D/2⌋ + 1 colors. Further, let w be an arbitrary
inner vertex of C. Let G′ be a graph obtained from G by deleting w. Since
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Figure 2: The proof of Lemma 6.

G is D-minimal, there exists a proper list-coloring c of the square of G′ using
the list-assignment L. We now show that if the statement of the lemma is
violated, then c can be extended to the entire graph G.

First assume that C is a diamond and S ≥ ⌈D/2⌉+1. As in Lemma 4, we
count the number of forbidden colors for w. The neighbors of u and v outside
C forbid at most 2(D − S) colors, the inner vertices of C \w forbid at most
another S − 1 colors, and 2 more colors may be forbidden by the vertices u
and v themselves. Summing up, there are at most 2D − S + 1 ≤ ⌊3D/2⌋
forbidden colors. Hence, the list L(w) contains at least one available color.

Next, assume that C is not a diamond and S ≥ ⌈D/2⌉. This time, the
number of forbidden colors for w is at most 2D − S: the neighbors of u and
v outside C forbid at most 2(D − S) and the inner vertices of C \ w forbid
at most another S − 2 colors (recall that there are only S − 1 inner vertices
if C is not a diamond). In particular, there are at most ⌊3D/2⌋ forbidden
colors, and therefore there exists a color that can be used to color w.

The next lemma complements Lemma 5 by showing that the size of cer-
tain crystals can be bounded from below as well.

Lemma 6. Let C1 and C2 be two crystals in a D-minimal graph G sharing
a common pole v and v has no other neighbors in G except for the vertices
in C1 and C2. If D ≥ 4, then the sizes of C1 and C2 belong to the set
{⌊D/2⌋, ⌈D/2⌉}. Moreover, one of the following properties must hold:

• both C1 and C2 are diamonds, or

• D is odd, one crystal is a diamond of size ⌈D/2⌉, and the other crystal
is of size ⌊D/2⌋ and is not a diamond.

Proof. First, we fix a D-minimal graph G and crystals C1 and C2 as specified
above. By Lemma 5, the size of each of the crystals is bounded by ⌈D/2⌉ from
above. Hence, it suffices to show that the size is also bounded by ⌊D/2⌋ from
below and to discuss the possibilities whether a certain crystal is a diamond
or not. In particular, we show that C2 has the required property, depending
on properties of C1; the rest will follow by symmetry.
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Before we start distinguishing the cases, let S1 and S2 be the sizes of
crystals C1 and C2, respectively, u and v the poles of C1, v and w the poles
of C2, and x an arbitrary inner vertex of C1 (see Figure 2). We now fix an
arbitrary list-assignment L giving each vertex at least ⌊3D/2⌋+1 colors and
find a proper list-coloring c of the square G \ x using those lists. Next, the
coloring c is extended to the square of the entire graph G as follows.

Case 1. C1 is not a diamond and S2 is at most ⌊D/2⌋. Let us calculate
the number of forbidden colors of x. At most S2 colors are forbidden by the
inner vertices of C2 and possibly by w, S1 − 2 by the inner vertices of C1

except for x, D − S1 by neighbors of u outside of C1, and finally 2 more
colors may be forbidden by the vertices u and v. Altogether, there are at
most D + S2 ≤ ⌊3D/2⌋ forbidden colors. Hence, there is at least one color
available for x.

Case 2. C1 is a diamond and S2 is at most ⌊D/2⌋ - 1. The number of
forbidden colors for x is again bounded by ⌊3D/2⌋: at most S2 colors are
forbidden by the inner vertices of C2 and possibly by w, S1 − 1 by the inner
vertices of C1 except for x, D−S1 by neighbors of u outside of C1, and finally
2 more colors may be forbidden by the vertices u and v. Therefore, there is
always at least one color available for x, i.e., the coloring can be extended to
the entire graph G.

Finally, let us show the two possibilities mentioned at the end of the
statement of the lemma are the only possible cases. First assume that both
C1 and C2 are not diamonds. Case 1 immediately yields that the sizes of
both C1 and C2 are at least ⌊D/2⌋+1, hence the degree of v is at least D+1
which is not possible. Next assume that D is even, C1 is a diamond, and
C2 is not. By Case 1, S1 ≥ ⌊D/2⌋ + 1, and by Case 2, S2 ≥ ⌊D/2⌋. In
particular, this yields that the degree of the vertex v exceeds D, which is,
again, not possible.

While the preceding two lemmas focused on the interior of the crystals,
the next lemma describes something about their neighborhood.

Lemma 7. If D ≥ 4, then each pole of a crystal C in a D-minimal graph
has at least 2 neighbors outside of C.

Proof. Fix a D-minimal graph G, D ≥ 4, and a crystal C with a pole v that
has at most one neighbor outside of C. Further fix a list-assignment L giving
each vertex a list of at least ⌊3D/2⌋ + 1 colors. Next, remove an arbitrary
inner vertex w from the crystal C and find a list-coloring c of the square of
the new graph with respect to the list-assignment L. To show that c can be
extended to w, we again calculate the number of forbidden colors for w: at
most D − 1 colors are forbidden by the neighbors of the pole of C different
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Figure 3: The proof of Lemma 8.

from v, at most two colors are forbidden by the two poles, and at most one
more color are forbidden by the neighbor (if any) of the vertex v outside of
C. Again, this gives at most D + 2 ≤ ⌊3D/2⌋, hence a suitable color for w
exists.

We now turn our attention back to the final block G⋆ and its SP-decompo-
sition T ⋆. A corollary of Lemma 7 is that G⋆ cannot be just a crystal (i.e.,
just a P -subgraph) since at least one of the poles of the crystal would have
no neighbors outside of the crystal.

Let us further examine the properties of the deepest P -nodes in T ⋆. Since
they do not form the entire T ⋆, they must have an S-node parent. By
Lemma 7, this S-node can only have P -subgraphs as its children. In the
next lemma, we further examine properties of such P -subgraphs.

Lemma 8. If D ≥ 4, then no final block of a D-minimal graph contains an
S(P, P )-subgraph whose both P -subgraphs are diamonds.

Proof. Fix a D-minimal graph G, D ≥ 4, its final block G⋆ containing
an S(P, P )-subgraph whose both P -subgraphs are diamonds, and a list-
assignment L giving each vertex at least ⌊3D/2⌋ + 1 colors. Let the two
diamonds be C1 and C2, their sizes S1 and S2, and their poles u and v, and
v and w, respectively (see Figure 3). Without loss of generality, we may
assume that S2 ≤ ⌊D/2⌋.

Choose x arbitrarily among the inner vertices of C1 and find a proper
list-coloring c of the square of the graph G \ x with respect to L. Next,
uncolor the vertex v, obtaining a partial coloring c′ of G. We claim that c′

can be extended to the entire graph G. The number of forbidden colors for
x is bounded by D + S2 − 1 ≤ ⌊3D/2⌋: there are S1 − 1 colors forbidden by
other inner vertices of C1, at most D − S1 forbidden by the neighbors of u
outside of S1, at most S2 forbidden by the inner vertices of C2, and at most
one more color forbidden by the vertex u.

Next, we find a suitable color for the vertex v. The number of forbidden
colors is bounded by D+2 ≤ ⌊3D/2⌋: at most D colors are forbidden by the
inner vertices of the two crystals, and additional two colors may be forbidden
by the vertices u and w.
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Figure 4: An S(P, P, P )-subgraph and the subtree corresponding to it.

Lemmas 6 and 8 imply that there there is no D-minimal graph for even
D. The case when D is odd, requires additional work, and is dealt with in
the following subsection.

3.2 Odd Maximum Degree

In this subsection, we state and prove the lemmas necessary for proving that
there are no D-minimal graphs for odd D ≥ 5.

The first lemma excludes a possibility that the deepest S-node in T ⋆

corresponds to an S(P, P, P )-subgraph.

Lemma 9. If D ≥ 5, then no final block of a D-minimal graph contains an
S(P, P, P )-subgraph.

Proof. Let G be a D-minimal graph for D ≥ 5 whose final block contains an
S(P, P, P )-subgraph. In particular, there exist three crystals C1, C2, and C3

with poles u, v, w, and x, as depicted in Figure 4. Further, choose vertices a,
b, and c among the inner vertices of C1, C2, and C3, respectively. Next, fix an
arbitrary list-assignment L assigning each vertex a list of at least ⌊3D/2⌋+1
colors. We show that G can be properly list-colored with respect to L.

First, by Lemma 8, we know that crystals and non-crystals must alternate
among Cis, i.e., both C1 and C3 have the same properties (size and being
diamond) which differ from those of C2. We now delete all the three crystals
except for the vertices u and x from G and find a list-coloring c′ of the square
of the new graph using the lists given by L. We aim to extend c′ to the entire
graph G.

Two cases have to be distinguished, based on which crystals are diamonds.

Case 1. C1 and C3 are diamonds, C2 is not. By Lemma 6, the sizes of C1

and C2 are ⌈D/2⌉, and the size of C2 is ⌊D/2⌋. Consequently, each of the
vertices u and x has at most ⌊D/2⌋ neighbors outside the three crystals.

First, we aim to find colors for a and c in such a way that the number
of colors available for b will remain at least ⌊3D/2⌋. There are at least
⌊3D/2⌋+1−1−⌊D/2⌋ = D colors available for a (and, by symmetry, for c),
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as the are at most ⌊D/2⌋ colors forbidden by the neighbors of the vertex u
and one more color may be forbidden by the vertex u itself. As there are no
colors forbidden for the vertex b so far, there are ⌊3D/2⌋+ 1 colors available
for it. If there is a color α available for both a and c, we color both the
vertices by such a color α. Otherwise, as 2D > ⌊3D/2⌋ + 1, there is a color
β available for one of those vertices, say a, which is not available for b. In
that case, color a by β and color c using any color available for it. Let this
partial coloring be c⋆.

Next, we color the vertices v and w—the number of colors forbidden for
each of them, say w, is at most 4: those forbidden by the vertices v, a, c,
and x. We continue by coloring of the remaining inner vertices of C1. The
number of forbidden colors for those vertices is at most D + 2 ≤ ⌊3D/2⌋: at
most D − 1 colors are forbidden by the neighbors of u and additional three
colors may be forbidden by the vertices u, v, and w. Next, we color the inner
vertices of C2 except for b. The number of forbidden colors is bounded by
D ≤ ⌊3D/2⌋: there are at most ⌊D/2⌋ − 3 colors forbidden by the inner
vertices of C2, at most ⌈D/2⌉ by the inner vertices of C1, and three more
colors may be forbidden by the vertices c, v, and w. Then, we color the
remaining inner vertices of C3. The number of forbidden colors is bounded
by ⌊3D/2⌋: at most D − 1 colors are forbidden by the neighbors of x, at
most ⌊D/2⌋ − 2 by the inner vertices of C2 and at most three other colors
are forbidden by the vertices v, w, and x.

As the last step, we have to find the color for b. To show that we can
color the vertex b, we calculate the number of vertices we colored since the
coloring c⋆ was made; each of those vertices can forbid at most one color
that was available for vertex b at the time c⋆ was made. In particular, we
show that number of such vertices is less than the number of available colors,
hence it follows that there must be at least one color that can be used for
coloring the vertex b. Let us calculate the vertices that were colored since
c⋆ was made: there are ⌈D/2⌉ − 1 such inner vertices in both C1 and C3,
⌊D/2⌋ − 2 inner vertices in D2, and the remaining two colored vertices are
v and w; we conclude that exactly ⌊3D/2⌋ − 1 vertices have been colored.
Since the number of colors available for b in c⋆ was at least ⌊3D/2⌋, we infer
that b can be properly colored.

Case 2. C2 is a diamond, C1 and C3 are not. By Lemma 6, the sizes of C1

and C2 are ⌊D/2⌋, the size of C2 is ⌈D/2⌉, and each of the vertices u and x
has at most ⌈D/2⌉ neighbors outside the three crystals.

As in the previous case, we calculate the numbers of colors available to
the vertices a, b, and c. In particular, there are at least D−1 colors available
for a (the same holds for c), as the only colors forbidden for a could be those
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assigned to at most ⌈D/2⌉ neighbors of the vertex u and the color of the
vertex u itself. Similarly, the vertex b has at least ⌊3D/2⌋−1 available colors
since at most two colors can be forbidden—the colors of the vertices u and
x. Hence, we can use the same approach to color the vertices a and c in such
a way that the vertex b has at least ⌊3D/2⌋ − 2 available colors after the
coloring. This partial coloring will be denoted by c⋆.

Continue by choosing the colors for the vertices v and w. The number of
forbidden colors for each of them, say w, will be at most ⌈D/2⌉+ 3: at most
⌈D/2⌉ colors are forbidden by the neighbors of the vertex x outside C3, and
at most three other colors may be forbidden by the vertices c, v, and x.

The remaining inner vertices of C1 are colored next; the number of for-
bidden colors is bounded by D: at most ⌊D/2⌋ − 2 colors are forbidden by
the inner vertices of C1, at most ⌈D/2⌉ colors are forbidden by the neighbors
of the vertex u outside C1, and at most two more colors are forbidden by
the vertices u and v. Next, color the remaining inner vertices of C3, the
situation is symmetrical. Then, color the inner vertices of C2 except for b.
The number of forbidden colors is at most ⌊3D/2⌋: at most ⌈D/2⌉−2 colors
are forbidden by the inner vertices of C2, at most 2(⌊D/2⌋ − 1) colors are
forbidden by the inner vertices of C1 and C4, and at most four colors are
forbidden by the vertices u, v, w, and x. Now, the only vertex missing a
color is b. Let us calculate the number of vertices that are now colored now
did not have a color in c⋆. There are ⌊3D/2⌋ − 3 such vertices: ⌊D/2⌋ − 2
vertices in both C1 and C3, ⌈D/2⌉ − 1 vertices in C2, and the vertices v and
w. Since the vertex b had at least ⌊3D/2⌋ − 2 available colors in c⋆, there is
still at least one available color which can be used to color it.

In both cases, we proved that c′ can be extended to the entire graph G,
hence the statement of lemma follows.

Lemmas 7 and 9 imply that the deepest S-nodes in T ⋆ must correspond to
roots of S(P, P )-subgraphs having exactly two P -subgraphs as their children.
Since the root of T ⋆ is a P -node, those S-nodes must have a P -node parent.
This node corresponds either to a P (S(P, P ), S(P, P ))-subgraph (Figure 5)
or to a P (S(P, P ), ℓ∗)-subgraph (Figure 6). The next lemma excludes the
former case.

Lemma 10. If D ≥ 5, then no final block of a D-minimal graph contains an
P (S(P, P )S(P, P ))-subgraph.

Proof. Consider four vertices x, y, u, and v and four crystals CUL, CUR,
CLL, and CLR as depicted in Figure 5. Finally, the entire structure may be
connected to the rest of the graph through the vertices u and v.
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Figure 5: A P (S(P, P ), S(P, P ))-subgraph and the subtree corresponding to
it.

P

S

PP

Figure 6: A P (S(P, P ), ℓ∗)-subgraph and the subtree corresponding to it.

Applying Lemma 8 to CUL and CLL, we get that one of the crystals is of
size ⌊D/2⌋ and the size of other one is ⌈D/2⌉; the same holds for CUR and
CLR. Since both CUL and CUR cannot be of size ⌈D/2⌉ at the same time, we
infer that one of CLL and CLR must be of size ⌈D/2⌉; the same again for CUL

and CUR. Hence, the four crystals comprise the entire graph G as degrees
of the vertices u and v cannot exceed D. However, we may find another
decomposition of G as a parallel join of an S(P, P, P )-subgraph (correspond-
ing to the crystals CUL, CUR, and CLR) with several paths (corresponding to
the crystal CLL). Since the existence of an S(P, P, P )-subgraph was already
excluded in Lemma 9, the statement of the lemma follow.

We now consider P (S(P, P ), ℓ∗)-subgraphs.

Lemma 11. If D ≥ 5, then no final block of a D-minimal graph is a
P (S(P, P ), ℓ∗)-subgraph.

Proof. Let G be a D-minimal graph for D ≥ 5 whose final block G⋆ consists
of three vertices u, v, and w joined by three crystals C1, C2, and C3 as in
Figure 7. G⋆ may be connected to the rest of G through the vertex u. As in
Lemma 10, one can quickly infer that C2 is a diamond of size ⌈D/2⌉, while
C1 and C3 are not, and their sizes are ⌊D/2⌋. In particular, u may have at
most one neighbor outside of G⋆.

In the rest of the proof, we show that G2 can be properly colored using
lists containing at least ⌊3D/2⌋ + 1 colors. First, fix a list-assignment L
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u

w

vC3

C1

C2

P

S

PP

Figure 7: A P (S(P, P ), ℓ∗)-subgraph with one of the poles being the cut-
vertex in G.

Figure 8: An S(P (S(P, P ), ℓ∗), ℓ∗)-subgraph, an S(P (S(P, P ), ℓ∗), P )-sub-
graph, and an S(P (S(P, P ), ℓ∗), P (S(P, P ), ℓ∗))-subgraph.

assigning each vertex a list of ⌊3D/2⌋+1 colors. Next, remove all the vertices
of G⋆ except for u and find a proper list-coloring c of the square of the
new graph with respect to L. We extend the coloring c to the rest of the
graph G. First, color the vertices v and w, which have at most 3 forbidden
colors. Next, we color the inner vertices of C1 and C3. These vertices have
at most D − 1 + 2 ≤ ⌊3D/2⌋ forbidden colors: at most D − 1 because of
the colors of the neighbors of the vertex u and at most 2 because of the two
poles of the crystal they belong to. Finally, we finish with coloring of the
inner vertices of C2. The number of forbidden color in this case is at most
D − 1 + ⌊D/2⌋ − 1 + 2 = ⌊3D/2⌋: at most D − 1 colors are forbidden by
the neighbors of the vertex v, at most ⌊D/2⌋− 1 colors are forbidden by the
inner vertices of the crystal C3, and additional 2 colors can be forbidden by
the vertices v and w. Hence, c can be extended to the entire G, contradicting
the minimality of G.

Since the P (S(P, P ), ℓ∗)-subgraph is not the entire final block G⋆, the
P -node corresponding to it must have an S-node parent in T ⋆. In particular,
any P (S(P, P ), ℓ∗)-subgraph of the maximum depth must be contained either
in an S(P (S(P, P ), ℓ∗), ℓ∗)-subgraph, an S(P (S(P, P ), ℓ∗), P )-subgraph, or
an S(P (S(P, P ), ℓ∗), P (S(P, P ), ℓ∗))-subgraph. The structures are depicted

14



u v w
C1 C2

x

Figure 9: The proof of Lemma 12.

in Figure 8.
It is not hard to see that the final block of a D-minimal graph cannot

contain an S(P (S(P, P ), ℓ∗), P (S(P, P ), ℓ∗))-subgraph, as the degree of the
pole connecting the two P (S(P, P ), ℓ∗)-subgraphs would have degree at least
D + 1. In the following two lemmas, we consider the remaining two possibil-
ities.

Lemma 12. If D ≥ 5, then no final block of a D-minimal graph contains an
S(P, P )-subgraph whose poles are joined by an edge.

Proof. Fix a D-minimal graph G, D ≥ 5, its final block G⋆ containing an
S(P, P )-subgraph whose poles are joined by an edge, and a list-assignment
L giving each vertex at least ⌊3D/2⌋ + 1 colors. Let the two P -subgraphs
(crystals) of the S(P, P )-subgraph mentioned above be C1 and C2, and their
poles u and v, and w, as depicted in Figure 9. By Lemma 6, we can assume
that C1 is a diamond of size ⌈D/2⌉ and C2 is a crystal of size ⌊D/2⌋ that is
not a diamond.

We pick an arbitrary inner vertex x in diamond C1. By minimality, there
exists a proper list-coloring c of the square of the graph G\x with respect to
L; we fix one such coloring and extend it to x. The number of forbidden colors
for x can be bounded as follows: there are at most D−1 colors forbidden by
neighbors of u, additional ⌊D/2⌋ − 1 colors may be forbidden by the inner
vertices of C2, and two more colors may be forbidden by the vertices u and v.
This gives at most ⌊3D/2⌋ colors forbidden altogether, i.e., c can be extended
to vertex x.

Having established Lemma 12, we are ready to prove the final lemma of
this subsection.

Lemma 13. If D ≥ 5, then the final block of a D-minimal graph con-
tains neither an S(P (S(P, P ), ℓ∗), ℓ∗)-subgraph nor an S(P (S(P, P ), ℓ∗), P )-
subgraph.
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Figure 10: The proof of Lemma 13.

Proof. Fix a D-minimal graph G, D ≥ 5, its final block G⋆ containing one
of the subgraphs from the statement of the lemma, and a list-assignment L
giving each vertex at least ⌊3D/2⌋+1 colors. In particular, G⋆ contains four
vertices u, v, w, and x; a crystal C1 with poles u and v, a crystal C2 with
poles v and w, S3 vertex-disjoint paths of length at most 2 connecting the
vertices u and w, and S4 vertex-disjoint paths of length at most 2 connecting
the vertices w and x (see Figure 10). The described subgraph is connected to
the rest of G through the vertices u and x. By Lemma 12, none of the S3 paths
connecting u and w is an edge. On the other hand, the S4 paths between w
and x may or may not be crystals. In order to simplify the notation used
in the proof, P3 and P4 denote the two sets of the paths between u and w
and the paths between w and x, respectively. Finally, let S be the number
of neighbors of u except for the vertices in C1 and the paths in P3.

We now choose an arbitrary inner vertex a of the crystal C1, an arbitrary
inner vertex b of the crystal C2, and an arbitrary internal vertex c of one of
the paths in P3. We find a list-coloring c′ of the square of G \ b with respect
to L. In each of the following three cases, we show how to use c′ to obtain a
proper list-coloring of the square of the entire graph G.

Case 1. C2 is a diamond, C1 is not. In this case, S + S3 ≤ ⌈D/2⌉ and
S4 ≤ ⌊D/2⌋ − 1. First, we uncolor the inner vertices of both C1 and C2,
together with the vertices v, w, and c. At this point, vertex a has at least
⌊3D/2⌋+1−S−(S3−1)−1 = D available colors, as the only colors forbidden
for it are the colors used on the S neighbors of the vertex u outside the
structure, on the S3 − 1 colored internal vertices of the paths in P3, and on
the vertex u. Similarly, the vertex b has at least ⌊3D/2⌋+1−(⌊D/2⌋−1)−1 =
D +1 available colors as the only forbidden colors are used on the ⌊D/2⌋−1
neighbors of the vertex w in P3 and P4 and one more color can be forbidden
by the vertex u. Finally, the vertex w has at most ⌊3D/2⌋ − 1 forbidden
colors (and thus at least 2 available colors): at most D colors are forbidden
by the vertex x and its neighbors (notice that if there is no edge wx then at
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most ⌊D/2⌋− 1 neighbors of x are at distance at most 2 from the vertex w),
at most S3 − 1 colors are forbidden by the internal vertices of the paths in
P3, and one more color can be forbidden by the vertex u. In particular, we
can choose the colors for w and a in such a way that there will remain at
least D colors available for b: either the previously stated bound on available
colors for b is not sharp, or there is a color α available for both a and w, or,
as D+2 > D+1, there is a color α available for a or w which is not available
for b.

We now choose suitable colors for the vertices c and v. The number of
colors forbidden for the vertex c is bounded by ⌈D/2⌉− 1 + ⌊D/2⌋− 1+ 3 =
D + 1: there are at most S + S3 − 1 colors forbidden by the neighbors of
the vertex u, at most S4 colors forbidden by the remaining neighbors of the
vertex w, and three more colors may be forbidden by the vertices u, w and
a. Similarly, the number of colors forbidden for the vertex v is bounded
by ⌈D/2⌉ + 3 ≤ ⌊3D/2⌋: there are at most S + S3 colors forbidden by the
neighbors of the vertex u and at most three other colors are forbidden by the
vertices u, w and a.

The remaining inner vertices of C1 are colored next—there are at most
D − 2 + 2 forbidden colors: at most S + S3 + ⌊D/2⌋ − 2 colors are forbidden
by the neighbors of the vertex u and two more colors may be forbidden by
the vertices u and v. We continue with the inner vertices of C2 except for b.
This time, the number of forbidden colors is at most D−2+⌊D/2⌋−1+3 =
⌊3D/2⌋: at most ⌈D/2⌉ − 2 colors are forbidden by the inner vertices of C2,
at most additional S3 + S4 ≤ ⌊D/2⌋ colors are forbidden by the remaining
neighbors of the vertex w, at most ⌊D/2⌋ − 1 colors are forbidden by the
inner vertices of C1, and three more colors may be forbidden by the vertices
u, v, and w. Let us now calculate the number of vertices we have colored
after coloring the vertices a and w: ⌊D/2⌋−2 inner vertices of C1, ⌈D/2⌉−1
inner vertices of C2, and the vertices c and v. In particular, at most D − 1
additional colors might have been forbidden for b. Since b had at least D
available colors after coloring the vertices a and w, there is still an available
color for b.

Case 2a. C1 is a diamond, C2 is not, and there is at least one path of length
two in P4. In this case, S + S3 ≤ ⌊D/2⌋. In particular, S3 ≤ ⌊D/2⌋ − 1 as
S ≥ 1. Further, we choose an arbitrary vertex d among the inner vertices of
the paths of length 2 in P4.

We proceed similarly to the previous case. We uncolor v, w, c, d, and all
the inner vertices of C1 and C2. Next, we would like to choose colors for the
vertices a and d such that there will remain at least D + 1 colors available
for b. We proceed as in Case 1: there are at least D + 2 colors available of
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the vertex b (the only forbidden colors are those used to color the ⌈D/2⌉− 2
neighbors of w in P3 and P4, excluding the vertices c and d), at least D + 1
colors are available for a (there are at most S + S3 − 1 colors forbidden by
the neighbors of the vertex u and one more color can be forbidden by the
vertex u itself), and at least 3 colors are available for d (there are at most
D − 1 colors forbidden by the neighbors of the vertex x, at most S3 − 1
colors are forbidden by the internal vertices of the paths in P3, and one more
color can be forbidden by the vertex x). We follow the discussion in Case 1
and conclude that either we can color a and d with the same color, or, as
(D + 1) + 3 > D + 2, there exists a color β that is not available for b, but is
available for one of the vertices a and d.

Vertex w is colored next—there are at most D−1+⌊D/2⌋−2+3 = ⌊3D/2⌋
colors forbidden for it: at most D − 1 colors are forbidden by the neighbors
of the vertex x (if vx is an edge) or the internal vertices of the paths in P4,
at most ⌊D/2⌋−2 colors are forbidden the remaining neighbors of the vertex
w, and three more colors may be forbidden by the vertices a, u, and x.

Then, we continue exactly as in Case 1: we start with c and v, continue
with the rest of the inner vertices of C1, and the inner vertices of C2 except
for b. In particular, we color 3+⌈D/2⌉−1+⌊D/2⌋−2 = D vertices (including
the vertex w discussed above). The only vertex without a color is the vertex
b, and because it had at least D+1 available colors after coloring the vertices
a and d, there must be at least one color that is still available for b.

Case 2b. C1 is a diamond, C2 is not, and there is no path of length two in
P4 (i.e., P4 consists of just a single path of length one). As in the previous
case, we observe that S3 ≤ ⌊D/2⌋ − 1.

In this case, the coloring c′ can directly be extended to the vertex b. Let
us count the forbidden colors for b: there at most D − 1 colors forbidden by
the neighbors of v, at most two more colors are forbidden by the vertices v
and x, and at most ⌊D/2⌋ colors are forbidden by the inner vertices of the
paths of length two connecting u and w. In particular, there is at least one
color available for b.

3.3 The Final Step

Lemmas 4–13 exclude the existence of a D-minimal graph for D ≥ 4 (see the
discussion before Lemma 12). In order to complete the proof of Theorem 16,
it is necessary to consider K4-minor free graphs with maximum degree two
and three. Such graphs are considered in the next two propositions.

Proposition 14. The list chromatic number of the square of a graph of
maximum degree 2 is at most 5.
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Proof. The statement follows easily from the fact that if G has maximum
degree 2, then G2 has maximum degree at most 4.

Proposition 15. The list chromatic number of the square of a K4-minor
free graph of maximum degree 3 is at most 6.

Proof. Fix a vertex-minimal K4-minor free graph G with maximum degree
three for that there exists a list-assignment L giving each vertex a list of 6
colors such that G2 cannot be properly colored.

By considering the last level of an SP-decomposition tree of a final block
of G, we obtain that G contains a vertex of degree one, two adjacent vertices
of degree two or a crystal. If G contains a vertex v of degree one or a
vertex v of degree two adjacent to another vertex of degree two, contract an
edge incident with v and find a proper list-coloring c of the square of the
resulting graph. The vertices of G preserve their colors and the vertex v can
be assigned a color from its list since there are at most 3 + 2 = 5 ≤ 6 colors
forbidden for the vertex v.

If G contains a crystal C of size S ≥ 2, remove an arbitrarily chosen inner
vertex w of the crystal C and find a list-coloring c of the square of G \ w.
Let us calculate the number of colors forbidden for w: there are at most
S − 1 colors forbidden by the inner vertices of C, at most 2 · (3 − S) colors
are forbidden by the neighbors of the poles of C that are outside the crystal,
and two more colors may be forbidden by the poles. In particular, there are
7 − S ≤ 5 forbidden colors, therefore c can be extended to the entire graph
G.

Lemmas 4–13 and Propositions 14 and 15 yield our main result:

Theorem 16. The list chromatic umber of the square of a K4-minor free
graph G of maximum degree ∆ is at most ⌊3∆/2⌋ + 1 if ∆ ≥ 4 and at most
∆ + 3 if ∆ ∈ {2, 3}.
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