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Abstract

Let K be a class of graphs. Then, K is said to have a finite duality
if there exists a pair (F , U), where U ∈ K and F is a finite set of
graphs, such that for any graph G in K we have G ≤ U if and only
if F 6≤ G for all F ∈ F (“ ≤ ” is the homomorphism order). We
prove that the class of planar graphs has no finite duality except for
two trivial cases. We also prove that a 5-colorable toroidal graph U

obtains a finite duality on a given fixed surface if and only if the core of
U is K5. In a sharp contrast, for a higher genus orientble surface S we
show that Thomassen’s result [15] implies that the class, G(S), of all
graphs embeddable in S has a number of finite dualities. Equivalently,
our first result shows that for every planar core graph H (except K1

and K4) there are infinitely many minimal planar obstructions for
H-coloring, whereas our later result gives a converse of Thomassen’s
theorem [15] for 5-colorable graphs on the torus.
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1 Introduction

Finite dualities relate descriptive complexity of constrained satisfaction prob-
lems (or H-coloring problems) to properties of the induced homomorphism
quasi-order. This appears as an interesting question in the context of various
areas of mathematics, such as graph theory, logic and algorithms. Note that
the existence of a non-trivial finite duality in a class of graphs K implies the
existence of a polynomial time algorithm for the H-coloring problem in K.
We present this paper in light of this growing interest, by showing that cer-
tain minor closed classes of graphs have dualities while we prove that some
others, such as the set of planar graphs have none.

To be precise, let K be a class of graphs. Then, K has a finite duality if
there exists a pair (F , U), where U ∈ K and F is a finite set of graphs, such
that for any graph G in K one and only one of the following holds: either G
is below U (by the homomorphism order) or F is below G for some F ∈ F
(A schematic description of the concept is given in Figure 1). We also say
(F , U) is a dual pair of K. A finite duality is trivial if F = ∅ or U = K1.

A widely studied notion in graph theory is the notion of a k-color-critical
graph: A graph G is k-color-critical if G is not (k−1)-colorable but its every
proper subgraph is. This is generalized by what we call ‘map-critical’ or more
specific ‘H-critical’ graph: For any graph H , if a graph G is not homomorphic
to H but its every proper subgraph is, then G is called H-critical. Thus, k-
color-critical graphs are exactly the Kk−1-critical graphs, where Kn denotes
the complete graph on n vertices. The problem of deciding if G ≤ H is
known as the H-coloring problem.

An easy observation (Proposition 6) shows that the existence a dual-
pair (F , U) in K is equivalent to non-existence of infinite U -critical graphs
in K. The interesting case is, however, when the duality is not trivial. For
example, by the Four-color-theorem, we know (∅, K4) is a dual-pair for planar
graphs. Of course, we do not have a finite list of planar graphs in F listed as
obstructions for K4-coloring. In fact, in the class of toroidal graphs we shall
see that K4 attains no finite duality.

We start by reviewing the basic definitions. We assume graphs are fi-
nite, undirected and simple (with no loops and parallel edges). Let G, G′

be graphs. A homomorphism from G to G′ is a mapping f :V (G) → V (G′)
which preserves adjacency. That is, if uv ∈ E(G) then f(u)f(v) ∈ E(G′) .

We write G ≤ G′ if there is a homomorphism from G to G′. The notation
G < G′ means G ≤ G′ 6≤ G, whereas G ∼ G′ means G ≤ G′ ≤ G. The
notation G ‖ G′ means G 6≤ G′ 6≤ G and we say G and G′ are incomparable.
If S = G1, G2, . . . is a sequence of pairwise incomparable graphs, we say S is
an anti-chain. If G ∼ G′, we say G and G′ are hom-equivalent. The smallest
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graph H for which G ∼ H is called the core of G. For finite graphs, the core
is uniquely determined up to an isomorphism. It can also be seen that H
is an induced subgraph of G. See [4] for introduction to graphs and their
homomorphisms.

We say a graph G is a minor of G′, written G � G′, if G can be obtained
from G′ by deleting and contracting edges of G′. The class of graphs that is
closed under the minor relation is called a minor closed class. A celebrated
theorem of Robertson and Seymour [14] states that graphs are well-quasi-
ordered (wqo) under the minor relation �. However, this is not true for the
homomorphism relation ≤: it has been shown [4] that even simple classes
such as the class of all directed paths, or for the undirected case, a proper
subclass of K4-minor-free graphs [5],[13] (series-parallel graphs) can be used
to represent any countable partial order. It is interesting to consider prob-
lems relating the minor and homomorphism relations on graphs. One such
question is finite duality which we defined above.

If (F , U) is a dual-pair in K, we observe that we do not require the
elements of F to be in K, in our definition of duality. For each F ∈ F the
number of distinct homomorphic images of F in K is finite, since F is a finite
graph. Hence, we could replace F by a finite number of its images from K.
On the other hand, if F maps to no graph in K then we might as well delete
F from F . Therefore, without loss of generality, we may assume that F ⊆ K.

It should be explicitly mentioned that our concept of dualities for a class
K is different from the concept of restricted dualities as defined in [10], [11]:
the dual graph U is supposed to be in the class K while for the restricted
dualities we accept arbitrary U . It has been proved in [10] that the class of
all planar graphs has all restricted dualities (for any finite set F of connected
graphs).

A natural question is which classes of undirected graphs have duality. Of
course some dualities exist for every class of graphs. For example, one can
clearly see that ({K2}, K1) is a dual-pair to any class of graphs. Another
similar example is if the class K contains a maximum U , then (∅, U) is a dual
pair. Recall that these two types of dualities are called trivial (See Figure 1).
Henceforth, we say K has a finite duality property (or K has a duality, for
short) only if K has a non-trivial finite duality. In this paper we address the
question whether a minor closed class of graphs has a duality.

Remark. It is interesting to note that it may well happen that every
minor closed class contains a maximum graph (in the homomorphism order).
In fact this question is equivalent to the Hadwiger Conjecture as shown in-
dependently in [6] and [9], see also [3].

If a class K is linearly ordered by homomorphism then clearly it has
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Figure 1: Schematic diagram of trivial (left and middle) versus non-trivial
(right) finite dualities for a class K. The arrows show the homomorphism
hierarchy. Trivial dualities of a class K partition K trivially.

U

∅ F1 = K2 U

U

F1 F2
. . . Ft

U

U

dualities. Of course then if the elements of K can be listed as {G1 < G2 <
. . . } or as {G1 > G2 > . . . }, then trivially ({Gi+1}, Gi) or ({Gi}, Gi+1)
respectively, obtains a dual pair. Note, however, that in this case one of
the two partitioning of the class is finite. The set of cycles is an obvious
example. A bit more non-trivial example, but which turns out to be totally
ordered, can be found in [12]. In [7], Nešetřil asked if minor closed classes
with non-trivial dualities can be characterized. Our paper is motivated by
this problem. The following are the main results of this paper:

Theorem 1. The class of planar graphs has no non-trivial dualities on any
surface. In other words, for every planar graph H (except K1 and K4) there
exist infinitely many minimal planar obstructions for H-coloring.

Theorem 2. Let G(S) be the class of all graphs embeddable in an orientable
surface S of positive genus such that the clique KN embeds in S, for some
positive integer N ≥ 5. Then, there exists is a dual pair (F , Kk) in G(S) for
each k, 5 ≤ k ≤ N .

Theorem 3. Let U be a 5-colorable toroidal graph. Then (F , U) is a dual-
pair in G(S) for a fixed orientable surface S if and only if the core of U is K5.
In other words, for every 5-colorable toroidal graph U there exist infinitely
many minimal obstructions for U-coloring on a fixed surface if and only if U
is K5-free.
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The next proposition shows that Theorem 3 can not be extended for
k-colorable graphs when k ≥ 7, leaving the case k = 6 as the only open case.

Proposition 4. For each integer k ≥ 7, there exists a k-colorable core graph
U which is not a clique and (F , U) is a dual-pair in G(S) for some fixed
surface S.

The dualities may be abundant for other types of minor closed classes.
For example we have:

Theorem 5. For every integer k, k ≥ 4, the class G/Kk of all graphs with no
Kk minor, contains a proper minor closed subclass Kk−1 containing (k − 1)-
chromatic graphs and that Kk−1 has infinitely many finite dualities.

In the next three sections we prove Theorem 1 through Theorem 5. In
proving Theorem 2, 3 and 5, we use a result of Thomassen [15], and also of
our earlier papers [12], [13]. In the last section we offer some open problems.

2 No dualities for planar graphs

In this section we prove that planar graphs have no dualities. The reader
will notice below that we have propositions that apply not only to planar
but to all graphs. These will be very useful in the next section where non-
planar graphs are studied. Recall that the concept of k-color-critical graphs
is generalized by H-critical graphs for any graph H . We use the following
observation throughout this paper:

Proposition 6. Let K be a class of graphs and let H ∈ K. Then K has a
dual-pair (F , H) for some finite set F if and only if the number of H-critical
graphs in K is finite.

Proof. Suppose H has only finitely many critical graphs {F1, F2, . . . , Ft} =
F . Note that Fi is a subgraph of G implies Fi ≤ G for any i. Then obviously
(F , H) is a dual-pair in K.

Conversely, assume that K has a dual-pair (F , H), for some finite set F .
By definition, for every F ∈ F we have F 6≤ H . Suppose ( for a contradiction)
that X = {Hi}

∞

i=1 is an infinite sequence of distinct H-critical graphs in K.
As Hi 6≤ H , for all i, we deduce that there exist fi : F → Hi for some F ∈ F
and for infinitely many Hi. For some large i, we know that fi(F ) is a proper
subgraph of Hi, as |fi(F )| is bounded by a constant |F | for all i whereas
{|Hi|}

∞

i=1 is an unbounded sequence. But then Hi is H-critical, and so we
have F ≤ fi(F ) ≤ H , a contradiction.
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We use the notation Wn to denote the wheel on n + 1 vertices, where a
hub is a vertex v connected to all other n vertices that induce an n-cycle. We
call the n vertices the rims of v. The edge between two consecutive rims is
called a rim-edge. An edge connecting a hub to its rim is called a spoke. We
also use a term generalized-wheel and denote it by Wn,h by allowing the hub
to be a clique Kh, 1 ≤ h such that each vertex of the hub is connected to all
n rims.) Applying Proposition 6 obtains some partial results immediately:

Corollary 7. Let (F , U) be a non-trivial dual-pair of planar graphs. Then
U is not a clique.

Proof. By non-triviality, either k = 2 or k = 3. The odd cycles {C2i+1}
∞

i=1

form a K2-critical sequence and the odd wheels {W2i+1}
∞

i=1 form a K3-critical
sequence of planar graphs and hence refute these possibilities, respectively.

We use a notation W j
2i+1 for a graph called a subdivided-wheel, where

W j
2i+1 is obtained from W2i+1 by subdividing each spoke of W2i+1 into a path

Pj of length j, j ≥ 1.

Corollary 8. Let (F , U) be a non-trivial dual-pair in G(S) for any orientable
surface S. Then (i) If U = Kk then k ≥ 5, (ii) U is not a cycle, (iii) U is
not a wheel.

Proof. (i) Suppose U is a clique Kk and that k < 5. By Corollary 7 and
non-triviality, we only need to consider the case k = 4 and a surface S with
a positive genus. Then {W2i+1,2}

∞

i=1 is a K4-critical sequence in G(S). (Note
that W2i+1,2 embeds for all i ≥ 1 in any given positive genus surface S.) One
may also use Fisk’s construction [1] as another set of K4-critical sequence.
To prove (ii), suppose that U is a cycle. Since U is a core, by (i), we deduce
that U is an odd cycle. The subdivided odd wheels {W j

2i+1}
∞

i=j, form a C2j+1-
critical sequence of planar graphs. To prove (iii), suppose that U is a wheel
W2k+1, k ≥ 1. By (i), U 6= K4 and so we have k ≥ 2. But if k ≥ 2, then for
i ≥ k, one can see that any homomorphism from W2i+1 to W2k+1 must map
the hub of W2i+1 i to the hub of W2k+1. With this in mind, we glue the hub
of W2i+1 to a rim of W2k+1 to obtain Hi, and we deduce that Hi 6≤ W2k+1

and that {Hi}
∞

i=k is a W2k+1-critical sequence.

The method of proof in Proposition 8 (iii) is a key idea that allows us to
prove the main results of this paper, and so we have the following:

Proposition 9. Let G be a graph and suppose f : W2k+1,h → G, where
h, k ≥ 1, for some homomorphism f . Then f(W2k+1,h) contains an odd
wheel subgraph W2k′+1,h of G such that the hub isomorphic to Kh of W2k+1,h

is mapped to the hub isomorphic to Kh of W2k′+1,h, k
′ ≤ k.
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Proof. If k = 1, then we have W3,h = K3+h, a complete graph and we know
f(K3+h) is isomorphic to K3+h. Since any subgraph Kh of K3+h is a hub
to the other three vertices of the clique, the proposition holds for k = 1.
The case k > 2 easily follows by induction. One only needs to note that if
f(x) = f(y), then both x and y are rims.

Remark. Proposition 9 holds for a plane graph G of any odd-girth
2j + 1, j ≥ 1, if we allow the odd wheel to be a subdivided wheel W j

2i+1 for
all j ≥ 1, for if we have f(x) = f(y), and not both x and y are rims, then
either a smaller odd cycle or a K3,3-minor is obtained in f(W j

2i+1), contrary
to the hypothesis on G.

Proof of Theorem 1. Suppose we have a non-trivial dual-pair (F , U) of the
class of all planar graphs. Then, by Corollary 7, U is not a clique. Let the
odd girth of U be 2j +1, j ≥ 1. We construct a U -critical sequence, contrary
to Proposition 6.

Assume first that j = 1 and that U has no triangle-separation. Let v be
a vertex on a triangle of U . We claim v is a hub of an odd wheel in U . If not,
we glue the hub of W2i+1 to v on U and let the resulting graph be Hi. Since
U ⊆ Hi and that U is a core, the inequality Hi ≤ U implies the restriction of
the map on the subgraph that is isomorphic to U in Hi is an automorphism
of U . But then Proposition 9 implies that Hi 6≤ U , since v is not a hub of a
wheel. Hence Hi 6≤ U for all i. It follows that each Hi contains a U -critical
subgraph H ′

i containing W2i+1 for all i, a contradiction. As claimed v is a
hub of an odd wheel.

Moreover, we claim that every vertex v of U is a hub of some odd wheel
W2k+1(v), k ≥ 2 and the degree of v in U is exactly 2k + 1. To see the first
part of the claim, take any connected component K of U . (In fact it is easy
to see that U is connected, for otherwise connecting the components of U
by arbitrary long paths obtains a U -critical sequence.) Then, we claim the
previous claim holds for each vertex in U . That is, starting from v contained
in a triangle we observe that every neighbor of v is a rim of W2k+1(v) (because
U has no separating triangle), and so contained in a triangle. Recursively
this holds for each vertex of U . The second part of the claim is also clear
form this.

Let a plane embedding of U be given and let v∗ be a minimal degree
vertex. Since U is a core we may assume that U is K4-free, and so we note
that degU(v∗) = δ = 5.

We may assume that v∗ is not on the outerface of U and that v1, v2,
v3, v4, v5 are the rims of v∗ forming a 5-cycle C and separating v∗ from the
exterior, ext(C). Let C ′ = {v∗, v1, v2} be one of the five faces. Take new
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Figure 2: Construction of Hi, by adding vertices u, u′ and uj, j = 1, 2, . . . 2i−1
in a face of U , for each i ≥ 1

v4

v∗

v3v5

v1 v2

u1

u2

u3

u2i−3

u2i−2

u2i−1

u

u′

Figure 3: Any graph mapping to infinitely many Hi maps to U ′ depicted
below and U ′ ≤ U .
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v∗
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vertices u, u′, u1, u2, . . . u2i−1, i ≥ 1. Then add edges uv∗ and v1ur, 1 ≤ r ≤
2i − 1, uur, 1 ≤ r ≤ 2i − 3. Also add edges u′u, u′v∗, u′v2, u

′u2i−3, u
′u2i−2

and u′u2i−1. This procedure embeds in the interior, Int(C ′), three new odd
wheels W (v1) = W2i+1 with a hub at v1, W (u) = W2i−1 with a hub at u and
W (u2i−3) = Wδ with hub at u2i−3. (See Figure 2).

First, we show that Hi 6≤ U for all i. Since U is a core any homomorphism
f from Hi to U is an automorphism when restricted to the copy of U in Hi.
Hence the new edges of Hi are retracted to the edges of U . Since v∗u ∈ E(Hi),
it follows that f(u) = vi, for some i, 1 ≤ i ≤ 5.

If i = 2 or 5, then {v1, u1, v
∗, vi = f(u)} induces a K4 subgraph in f(Hi),

a contradiction, as U is K4-free. If i = 3 or 4, then v2, v∗, and v5 are common
rims for W (v1) and W (u) (with its hub now at vi). This induces an edge from
vi to vj, |i − j| > 1, which clearly induces a K4 subgraph, a contradiction.
Alternatively, we can also deduce that the edges vivj , v

∗vi, and v∗vj induce
a separating triangle, also leading to a contradiction. (We prefer the later
alternative as it will remain useful in proving the non-planar case, in the next
section.) It follows that f(u) = v1. But then, this reduces the W (u2i−3) to a
Wδ−2 = K4, a contradiction. Hence Hi 6≤ U for all i.

Next we show a U -critical subgraph H ′

i of Hi must contain all of the new
vertices we added. If not, then a subgraph of Hi missing any edge ujuj+1

maps to the graph U ′ depicted in Figure 3. But then it can be seen easily
that U ′ ≤ U , if one identifies u2i−1, u2i−3 and v∗. Also, deleting uu′ allows us
to map the resulting graph to U . We have the desired U -critical sequence.

Suppose now that U has a separating triangle C. We may assume that
the interior of C has no more separating triangles. Since U is K4-free, int(C)
contains more than one vertex. In fact, int(C) contains an odd wheel of
degree five that is disjoint from C, and the previous argument (for the case
of no separating-triangle) holds for Int(C). Note that our argument for
Hi 6≤ U is based on only local conditions: v∗ and its neighbors and so, we
find a U -critical sequence for any U of girth three.

The remaining case is the case j > 1. By the remark below Proposition 9,
for j > 1, we deduce that each vertex of U is a hub of some subdivided odd
wheel, and so δ(U) ≥ 5. But then, from Euler’s formula we know that
triangle-free planar graphs have at most 2n− 4 edges and this implies δ ≤ 3,
a contradiction. We must have j = 1 and so this case does not occur. Hence,
no non-trivial duality exist for planar graphs.
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3 Dualities for other surfaces

In this section, we consider graphs on surfaces other than the sphere. For
the torus, in particular, Thomassen’s result [15] implies that for a 5-colorable
graph U having a K5 subgraph is a sufficient condition for finite duality. In
this section we prove it is also necessary.

The theorem in [15] stated in terms of map-critical graphs terminology is
as follows:

Theorem 10 (Thomassen [15]). Let S be an orientable surface other than
the sphere and let k be a natural number. Then there are only finitely many
Kk-color critical graphs on S if and only if k ≥ 5.

Proof of Theorem 2. A direct consequence of Theorem 10 and Proposition 6.

Proof of Theorem 3. Let U be a core graph on the torus and 5-colorable. If
U = K5, the result follows from Theorem 10.

Conversely, assume U 6= K5. By Theorem 1, U is not planar unless
U = K4. But by Corollary 8, U can not be K4. Since U is 5-colorable and a
core, it is K5-free. We construct a U -critical sequence on a the double torus.

We claim U is K4-free. Suppose, for a contradiction, U has a subgraph K
isomorphic to K4. Then each edge of K is a hub of some double-wheel, for
otherwise we glue the hub of W2i+1,2 to the edge of K and by Proposition 9,
we have {Hi}

∞

i=1 a U -critical sequence on the double torus. Hence assume
each edge of K is a hub to some double-wheel. Then, for every pair of edges
ei, ej of K, their respective set of rim-edges Ri, Rj are disjoint, for otherwise
their common rim-edge together with a triangle in K containing both ei

and ej induces a K5-subgraph, a contradiction. Recursively, we may apply
the same argument to each edge we find in a K4-subgraph and arrive at a
subgraph U ′ of U such that every edge of U ′ is a hub of some double-wheel
W2k+1,2. Since U is K5-free, we have k ≥ 2. Take a vertex, v ∈ V (U ′). Since
it is an end vertex of a hub-edge e, it has degree at least six. It is also an
end vertex of a spoke-edge e′. Since e′ itself is a hub of another double-wheel
whose rim-edges are disjoint form that of e, we deduce that v has at least two
more neighbors. Hence, δ(U ′) ≥ 8. This contradicts, the fact that toroidal
graphs have minimal degree at most six.

Assume now U is K4-free. In addition, note that in this case, a vertex
v∗ of U can be chosen such that v∗ is contained in neither a non-contactible
nor a separating triangle of U . Then, the U -critical sequence construction
mimics the construction in Theorem 1 as follows: the difference here is that
degU(v∗) can be greater than five for positive genus surfaces. However, since
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v∗ is contained in a triangle, by the same argument as in Theorem 1 we
deduce that v∗ is a hub of some odd-wheel W (v∗) = W2d+1. Since v∗ is not
in a separating nor in a non-contractible triangle, it has degree 2d + 1 with
all neighbors v1, v2, . . . , v2d+1 as rims of W (v∗).

In Figure 2, we replace the edge uu′ by a path P of length 2d−3 and add
edges from u2i−3 and from v∗ to each new vertex of P to obtain three odd
wheels: W2d+1, with hub at u2i−3, W2i+1 at v1 and W2i−1 at u. The rest of the
proof that obtains a U -critical sequence for a K4-free graph is the same as the
proof of Theorem1. The additional assumption that v∗ is not contained in a
non-contractible triangle may be necessary to deduce that f(u) = v1 (as in
the proof of Theorem 1), for otherwise there could be a vertex different from
v1 that is adjacent to the rims of W (v1). The desired U -critical sequence is
obtained in each case and so the result follows for girth three U .

Finally assume U is triangle-free. Similar to the case of planar graphs
we show that most of the vertices of U must have degree at least five and
this will lead to a contradiction as follows: For an arbitrary vertex v of U ,
let C2j+1 be the smallest odd cycle of U containing v. Now we glue the hub
of a subdivided wheel W j

2i+1 with v, for i ≥ j and obtain Hi. If Hi 6≤ U
for all i, we have found the desired U -critical sequence. If not, then either
v itself is a hub of a subdivided wheel and hence degU(v) ≥ 5 for U is
triangle-free, or 3 ≤ degU(v) ≤ 4 and there is an odd cycle C such that
|C| ≥ 5 and each vertex of C is at distance j from v, and C together with
the j-paths to v contain a K3,3 or a K5 subdivision. This non-planarity
condition does not occur at many vertices of U , since otherwise U will not
be toroidal. By allowing p vertices, p ≥ 1 to have degree at most 4, (so that
each of the p vertices are contained in a K3,3 or K5 subdivision), from degree
sum inequality we have 2e ≥ 5(n − p) + 3p. From Euler’s formula we have
n − e + f = 2 − 2g, and from face sum, 2e ≥ 4f , for triangle-free graphs.
We arrive at the inequality n ≤ 2p. One may generously allow p to be some
small integer and we see that no such triangle-free toroidal counterexample
exists. This completes the remaining case and the result follows.

One can not generalize the above theorem for all k-colorable graphs, k ≥ 7
due to the following lemma. It is, however, interesting to determine the
missing case k = 6.

Lemma 11. Let W = W2k+1,h and let S be any fixed surface where W is
embeddable. If h ≥ 4, then there are only finitely many W -critical graphs in
G(S). If h = 2, then W has only finitely many critical graphs in a any higher
genus surface if and only if k = 1.

Proof. Let W = W2k+1,h be the generalized odd wheel with a clique-hub Kh.
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Assume first that h ≥ 5. Then, if G is W -critical, we deduce that δ(G) ≥ 7,
because for any set of six vertices we can find a vertex adjacent to all six in
W . From Eüler’s equation for surfaces of genus g and from the degree sum
equation, we have (δ − 6)|G| ≤ 12(g − 1).

If h = 4, we use Gallai’s inequality for k-critical graphs [2]: 2e ≥ δn +
δ−2

(δ+1)2−3
n + 2 δ

(δ+1)2−3
for δ = 6 and obtain |G| ≤ 139(g − 1) (a better upper

bound of 96(g − 1) is given in [16] using simple arguments). Nevertheless, g
is fixed and so we have only finitely many W -critical graphs for h ≥ 4.

To prove the second part of the statement, note that W2k+1,2 for all k ≥ 1
can be embedded in a surface of genus one. However, we observe that W2k+1,2

is not edge-transitive unless k = 1. Take two double wheels W2k+1,2 and
W2k′+1,2. Glue the hub edge of one with a rim-edge of the other to obtain
a graph embeddable in the double-torus. Now by letting k′ be arbitrary,
we find a W2k+1,2-critical sequence in G(S). Therefore, by this fact and
by Thomassen’s theorem [15], we know that W2k+1,2 has only finitely many
critical graphs if and only if k = 1.

Proof of Proposition 4. A direct consequence of Lemma 11.

Remark. Note that double-wheel-critical graphs exist infinitely many
on the double-torus. There remains a question if these double-wheels obtain
finite duality on the torus. If they do, then perhaps these are the only
examples that would be known as giving infinitely many distinct dual-pairs
in a fixed surface.

4 Other minor closed classes with dualities

We show now existence of dual pairs in other types of minor closed classes.
Although the main focus of this paper is graphs that are embedded in a
fixed surface, we add this short section to show that without the topological
constraint of embeddings, one can find infinitely many finite dualities in a
fixed minor closed class. We shall define a specific minor closed class and
construct the dual pairs explicitly.

Let C2,k denote the dual graph of the complete-bipartite graph K2,k. We
say that a graph G is a k-ear-face if G can be obtained from C2,k by subdi-
viding some of the edges of C2,k a finite number of times. We say G is an
ear-face when the integer k is irrelevant. An ear of an ear-face consists of
one or two threads. Hence a cycle is not an ear-face. Recall that a thread has
exactly two vertices of degree at least three and all other internal vertices
are of degree two. Any connected proper subgraph of a thread is said to be
sub-thread. An example of a 3-ear-face is the 3-Pentagon depicted in Fig-
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Figure 4: The 3-Pentagon, 3P

ure 4. We can represent the graph by a vector ([2, 3], [2, 3], [2, 3]), indicating
the even and odd lengths of the three ears of 3P. In general, for any k ≥ 2
we may represent an ear-face G by (E1, E2, . . . , Ek), where each Ei = [εi, δi]
is an ear of G consisting two threads of length εi and δi, with εi even and
δi odd. If both threads are of same parity, then we take the smaller length
and disregard the longer thread, since a longer thread of same parity is re-
dundant under homomorphism retraction. We let δi = ∞ if Ei has only a
thread of even length, and let εi = ∞ if Ei has only a thread of odd length.
If either δi or εi are set to be ∞ then Ei is called a diminished-ear. For
example, if we delete a thread of length 3 from 3P to obtain a 3-ear-face
G′ = ([2,∞], [2, 3], [2, 3]), then G′ has one diminished-ear.

Let EF denote the set of all ear-faces including all of their minors and
any of their finite disjoint union. We can see by the next two lemmas that
EF contains arbitrary long anti-chain and that it has finite duality.

Lemma 12. [12] For any integer N ≥ 2, and odd composite g, g 6= 9, there
exists an anti-chain of length 2N , consisting of odd-girth g ear-faces of size
O(N).

To establish the finite-duality property the following lemma is useful.

Lemma 13 (Ear-folding lemma). [12] Let G be an ear-face of odd-girth
g > 3 with k ears, k > 3. Then there exists an ear-face G′ of same odd-girth
and k − 1 ears such that G ≤ G′.

Existence of a finite duality in EF is now an easy consequence of the
above lemma:

Corollary 14. ({K3}, 3P) is a dual pair in EF .

Proof. Let F = {K3}. Then, by the Ear-folding lemma, every triangle-free
k-ear-face of odd girth g is homomorphic to a 3-ear-face of same odd girth.
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Any 3-ear-face G that has a thread length one maps to its smallest odd cycle,
and so G ≤ C5 ≤ 3P. Otherwise each thread has either even length of at
least 2 or odd length of at least 3 and so maps to the 3-pentagon, 3P. It
follows, G ≤ 3P if and only if K3 6≤ 3P, for any G ∈ EF .

In fact, it is easy to obtain the following:

Lemma 15. EF contains infinitely many dual pairs.

Proof. For any odd integer g > 1, let F = {Cg}. Now the set X of core
3-ear-faces of odd girth g + 2 that are not homomorphic to any other 3-ear-
face of same odd girth is a finite set. This is true because if G is a 3-ear-face
of odd girth g + 2 and not homomorphic to another 3-ear-face of same odd
girth, then each of its 3 ears must be of length exactly g + 2. There are only
finitely many positive pairs of integers ε, δ such that ε + δ = g + 2 and so X
is a finite set.

Next, let U be the graph obtained by taking a disjoint union of all 3-ear-
faces in X. Take any G ∈ EF . If G has odd girth g′ ≤ g, then Cg ≤ G.
Otherwise, Cg 6≤ G and each component of G maps, by the Ear-folding
lemma, to some 3-ear-face H of odd girth g + 2. In turn, H maps to some
H ′ in X. Hence, by transitivity of ≤, we have G ≤ U . Since g is arbitrary
we have infinitely many cases.

It is interesting to find other types of dual pairs in EF . For instance, one
can easily see that ({3P}, C5) is a dual pair in EF , because 3P is the only
ear-face of odd girth five that does not map to C5, and we know any graph of
odd girth at least seven in G/K4 maps to C5. Are there any more dual-pairs?
We present this problem in the last section.

We observe that EF ⊂ G/K4. It is easy to deduce now that for all k ≥ 4,
there exists a minor closed class Kk ⊂ G/Kk that has infinitely many dual
pairs, by attaching a universal clique of size k − 4 to every graph in EF . A
bit less trivial construction also can be given as follows: Suppose G ∈ EF
is an-ear face. For k ≥ 1, let wk(G) denote the graph we obtain from G by
replacing each odd-ear of G by an odd-wheel of same odd length with a hub
size k. Call wk(G), a wheel-face and denote the class of the graphs obtain
by WFk. Note that wk(G) ∈ G/Kk+4. It is easy to generalize the above two
theorems as follows:

Theorem 16. ({Kk+3}, wk(3P)) is a dual pair in WFk ⊂ G/Kk+4, k ≥ 0.

Theorem 17. WFk contains infinitely many dual pairs, for all k ≥ 0.

14



5 Conclusion

Several problems seem to arise that are related to our results in this paper. Of
course the most interesting problem in this subject would be to characterize
all of the dualities in any fixed orientable surface. We offer a specific problem
that seems quite accessible. It also is a problem that covers the missing case
in Proposition 4:

Problem 18. Are there only finitely many W2k+1,3-critical graphs on some
fixed surface S, and some k ≥ 2? Are there only finitely many W2k+1,2-critical
graphs on the torus for all k ≥ 2?

So far, for a fixed surface S the number of dualities obtained is finite.
We have shown large wheels are good sources of finite dualities. A potential
source of infinitely many distinct dualities on a fixed surface would be the
double wheels. However, by Lemma 11 this case is excluded, except possibly
for the torus.

Perhaps Thomassen’s theorem [15] can be strengthened for core and ho-
momorphism anti-chains. For example, we do not know the answer to the
following:

Problem 19. Is it true that for any surface S of genus g ≥ 2, the number
of distinct dualities in G(S) is finite?

Recall that, there are only finitely many k-color-critical graphs on any
fixed orientable surface S, if k ≥ 6. However, we can find an infinite anti-
chain (by homomorphism) of say, 7-chromatic graphs on that surface. To see
this, take any 7-chromatic graph G of girth at least six and consider a surface
S where G embeds. Now take any 3-chromatic core non-vertex-transitive
graph H of girth at most five (for example the 3-pentagon in Figure 4). Note
that the disjoint union G ∪ H is a core. In fact, if H ′ is constructed by
concatenating several copies H1, H2, . . . , Ht of H (by attaching a vertex of
Hi to a vertex of Hi+1) in a path-like structure such that H ′ is a core then
G ∪H ′ is a core as well (see [4],[5] for detail). Let a and b be two vertices of
H for which no automorphism of H sends a to b. Using a and b as vertices
of attachment, it is shown in [4],[5] that any partial order can be embedded
in a class K of planar graphs constructed by concatenating finite number of
copies of H that mimic arcs of directed paths. Now taking disjoint union
of G with each element of an infinite anti-chain of K gives us an infinite
anti-chain of 7-chromatic graphs in G(S). However, we note that the clique
number ω of these graphs is quite small. We don’t know if similar anti-chain
can be formed using graph with large cliques.

This leads to the following question:
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Problem 20. Is it true that every anti-chain of the class K ⊂ G(S) of all
graphs containing K7 subgraph is finite? Does K have only finitely many
cores?

Remark. Let us remark that one can construct infinitely many k-critical
graphs in G/Kn, 3 ≤ k ≤ n − 1 and so, unlike the result we obtain from
Thomassen’s theorem, there are no dualities of the form (F , Kk−1) in G/Kn,
for all k ≤ n − 1. This can be seen easily by considering odd wheels of
appropriate hub-size. The remaining case (F , Kn−1) is a dual-pair (trivially)
if Hadwiger’s conjecture holds for n, by setting F = ∅.

The question of existence of a non-trivial dual-pair in G/Kn remains open
for n > 6. We can prove the case n = 4, 5, and 6. The following is a question
that considers the general case:

Problem 21. Does a non-trivial dual-pair exist in G/Kk for k > 6?
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[9] J. Nešetřil, P. Ossona de Mendez, Folding, Journal of Combinatorial The-
ory, Series B 96(2006), 730-739.
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