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A family 7 of digraphs is a complete set of obstructions for a digraph H if
for an arbitrary digraph G the existence of a homomorphism from G to H is
equivalent to the non-existence of a homomorphism from any member of 7°
to G. A digraph H is said to have tree duality if there exists a complete set
of obstructions 7 consisting of orientations of trees. We show that if H has
tree duality, then its arc graph 0H also has tree duality, and we derive a
family of tree obstructions for § H from the obstructions for H.

Furthermore we generalise our result to right adjoint functors on categories
of relational structures. We show that these functors always preserve tree
duality, as well as polynomial CSPs and the existence of near-unanimity
functions.

1 Introduction

Our primary motivation is the H-colouring problem (which has become popular under
the name Constraint Satisfaction Problem—CSP): for a fixed digraph H (a template)
decide whether an input digraph G admits a homomorphism to H. The computational
complexity of H-colouring depends on the template H. For some templates the problem
is known to be NP-complete, for others it is tractable (a polynomial-time algorithm
exists). Assuming that P # NP, infinitely many complexity classes lie strictly between P
and NP [8], but it has been conjectured that H-colouring belongs to no such intermediate
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Figure 1: The structure of tractable templates

class for any template H [2]. This conjecture has indeed been proved for symmetric
templates H [4].

In this paper the focus is on tractable cases. Several conditions are known to imply
the existence of a polynomial-time algorithm for H-colouring: it is the case if H has
bounded-treewidth duality, if H has tree duality, if H has a Mal'tsev function or a near-
unanimity function (nuf)*, if H has finite duality (see [1, 5]). Some of the conditions
are depicted in the diagram (Fig. 1).

A set F of digraphs is a complete set of obstructions for H if for an arbitrary di-
graph G there exists a homomorphism from G to H if and only if no F' € F admits a
homomorphism to G. A template has tree duality if it has a complete set of obstructions
consisting of trees; and it has finite duality if it has a finite complete set of obstructions.

There is a fairly straightforward way to generate templates with finite duality. For an
arbitrary tree T there exists a (unique up to homomorphic equivalence) digraph D(T")
such that {T'} is a complete set of obstructions for D(T'). The digraph D(T) is called
the dual of T'. Several explicit constructions are known (see [3, 7, 12, 13]). If F is a finite
set of oriented trees, then the product D = [, D(T) is a template with finite duality
and F is a complete set of obstructions for D. This construction yields all digraphs with
finite duality [12], thus also proving that finite duality implies tree duality.

Encouraged by the full description of finite dualities, we aim to provide a construction
for some more digraphs with tree duality. To this end we use the arc-graph construction

* See Section 3 for the definition.



and consider the class of digraphs (denoted by ¢,C in Fig. 1) generated from finite duals
by taking iterated arc graphs and finite Cartesian products. We show that all templates
in this class have tree duality. We provide an explicit construction of the resulting tree
obstructions, which allows to show that all the digraphs in 0,C have in fact bounded-
height tree duality, that is, they have a complete set of obstructions consisting of trees
of bounded algebraic height (these are tree obstructions that allow a homomorphism
to a fixed directed path). In this context we also prove that the problem of existence
of a complete set of obstructions consisting of trees with bounded algebraic height is
decidable.

The arc-graph construction is a special case of a more general phenomenon: it is a
right adjoint in the category of digraphs and homomorphisms. We show in the more
general setting of the category of relational structures that right adjoints (characterised
by Pultr [14] for all locally presentable categories) preserve tractability of templates and
moreover they preserve tree duality and existence of a near-unanimity function. In this
case, nevertheless, it remains open to provide a nice general description of complete sets
of obstructions.

2 Arc graphs and tree duality
Let G = (V, A) be a digraph. The arc graph of G is the digraph 6G = (A,0A), where
0A = {((u,v), (v,w)) : (u,v), (v,w) € A}.

Notice that  is an endofunctor in the category of digraphs and homomorphisms. This
implies in particular that if G — H, then G — 0H. (The notation G — H means that
there exists a homomorphism from G to H.)

If G is a digraph and ~ is an equivalence relation on its vertex set V(G), the quo-
tient G/~ is the digraph (V(G)/~, A), where V(G)/~ is the set of all equivalence classes
of ~ on V(G), and for X,Y € V(G)/~ we have (X,Y) € A if and only if there exist
x € X and y € Y such that (z,y) € A(G).

Suppose still that G = (V, A) is a digraph. Let V' = {o,,t, : u € V} and let
A" = {(0y,t,) : u € V'}. Define the relation ~q such that t, ~q o, if and only if (u,v) € A.
Let ~ be the minimal equivalence relation on V' containing ~q. Set 6 'G = (V', A’)/~.
In the following, we use the notation V'(G) = V', A(G) = A" and ~y and ~ for the
sets and relations appearing in the definition of =!; the precise meaning will be clear
from the context. Now 67! is also an endofunctor in the category of digraphs. Strictly
speaking, it is not an inverse of J; its name is chosen because of the following property.

Proposition 1. For any digraphs G and H,
G — 6H if and only if o 'G — H.

Proof. Let f : G — dH be a homomorphism. Then there exist two homomorphisms
o,t : G — H such that f(u) = (o(u),t(u)) for all w € V(G). Define the mapping
g :V'(G) — V(H) by g(o,) = o(u) and g(t,) = t(u). If t, ~¢ 0,, then (u,v) € A(G),



whence (f(u), f(v)) € A(0H) and thus t(u) = o(v). Therefore ¢ is constant on the
equivalence classes of ~, and it induces a homomorphism from A'(G)/~ = §~'G to H.

Conversely, let g : 'G — H be a homomorphism. We define f : V(G) — V(6H) by
fu) = (g(ou/~),g(ty/~)). If (u,v) € A(G), then t,/~ = o0,/~, whence (f(u), f(v)) €
A(6H). Therefore f is a homomorphism. O

Thus ¢ and §~! are Galois adjoints with respect to the ordering by existence of ho-
momorphisms. They are in fact adjoint functors in the category of digraphs and homo-
morphisms. We return to this topic in Section 4. For the moment we aim to prove that
0 preserves tree duality. More precisely, from the family 7 of tree obstructions of H, we
will derive the family Sproink(7") of tree obstructions of §H.

The algebraic height of an oriented tree 7' is the minimum number of arcs of a directed
path to which 7" maps homomorphically. The algebraic height of every oriented tree is
well-defined and finite, since every tree admits a homomorphism to some directed path.
Thus a tree T' is of height at most one if its vertex set can be split into two parts Or, 11
in such a way that for every arc (z,y) of T" we have x € Or and y € 1. Note that if T’
has no arcs, then one of the sets Or, 17 is empty and the other one is a singleton.

Let T be a tree. For every vertex u of T', let F'(u) be a tree of height at most one. For
each arc e of T incident with w, let there be a fixed vertex v(e, F(u)) in F(u) such that
if u is the initial vertex of e, then v(e, F(u)) € 1p(,), and if u is the terminal vertex of e,
then v(e, Fl(u)) € Op).™ A tree S is now constructed by taking all the trees F'(u) for
all vertices u of T, and by identifying the vertex v(e, F'(u)) with v(e, F'(u')) whenever
e = (u,u’) is an arc of T.

Any such tree S constructed from T by the above procedure is called a sproink of T.
The set of all sproinks of a tree T' is denoted by Sproink(7"). The following lemma
asserts that sproinks of obstructions for a template H are indeed obstructions for its arc
graph 0H.

Lemma 2. Let T be a tree and H a digraph such that T - H. If S € Sproink(T), then
S —» 0H.

Proof. We prove that T — 6-1S. Consequently 6-1S - H because T —» H, and
therefore S - dH by Proposition 1.

Thus let S € Sproink(7T"). For a vertex uw of T', consider the tree F'(u), which is a
subgraph of S. Since F'(u) has height at most one, its vertices are partitioned into the sets
0y and 1p(,). The set V/(S), which appears in the definition of §~1S, contains V’(F'(u))
as a subset. If (z,y) is an arc of F(u), then t, ~¢ 0,. Thus whenever z € Op(,) and
y € lp(), then t, ~ o,. Hence for any vertex u of T' there exists a unique vertex f(u)
of 6715 that is equal to t,/~ for all z € Op(,) and to o/~ for all y € 1p(,).

In this way, we have defined a mapping f : V(T) — V(6719).

Now assume that e = (u, v) is an arbitrary arc of 7. Then the vertex v(e, F'(u)), which
belongs to 1p(,, has been identified with v(e, F'(v)), which belongs to Op(,. Let this

* Tt follows that if u is neither a source nor a sink of 7', then both 0p(,) and 1g(,) are non-empty,
and so in this case F'(u) is not a single vertex. If u is a source or a sink of 7', then F'(u) may be an
arbitrary tree of height at most one.



identified vertex be z; it is a vertex of S. By definition, f(u) = 0y/~ because x € 1p(,),
and f(v) = t,/~ because © € Op(,). Of course (0,/~,t,/~) € A(6~*S). Therefore
f:T — 61S is a homomorphism, as we have promised to prove. O

For a set F of trees, let Sproink(F) = (Jyc Sproink(T).

Theorem 3. Let F be a set of trees which is a complete set of obstructions for a
template H. Then Sproink(F) is a complete set of obstructions for 6H.

Proof. Lemma 2 implies that Sproink(F) is a set of obstructions for 6 H. It remains
to prove that it is complete, that is whenever G - §H, then there exists some S €
Sproink(F) such that S — G.

So let G - dH. Thus by Proposition 1 we have 6 'G - H. Hence there exists a
tree T' € F such that T — 0!G, because F is a complete set of obstructions for H.
Consequently it suffices to prove that if T — §~'G then there exists S € Sproink(7')
such that S — G.

Thus assume that f : T — §'G is a homomorphism. For every u € V(T), the
image f(u) is a ~-equivalence class; put

lu={y e V(G): 0y € f(u)},
0, ={z € V(G):t, € f(u)}.

Then f(u) = 1,U0,, and by the definition of ~ as the least equivalence containing ~q,
there exists a tree F'(u) of height at most one and a homomorphism ¢, : F'(u) — G such
that gu(0r@) = 0, and g,(1p@)) = Lu. For every arc (u,v) of T', we have (f(u), f(v)) €
A(67'G) so there exists x € V(@) such that o, € f(u) and t, € f(v).

We then select y € 1p(,) and 2z € Op(,) such that g,(y) = g,(2) = x, and identify them.
Proceeding with all such identifications, we construct a tree S € Sproink(T") such that
g= UuEV(T) gu : S — G is a well-defined homomorphism. O

Corollary 4. If a digraph H has tree duality, then its arc graph 6 H also has tree duality.
O

Example. Consider T = 134, the directed path with four arcs, and its dual D = ﬁ,
the transitive tournament on four vertices. Here §D has six vertices, but its core* is
the directed path P, with two arcs. It is well known that a directed graph G admits a
homomorphism to P, if and only if it does not admit a homomorphism from a “thunder-
bolt”, that is, an oriented path with two forward arcs at the beginning and at the end,
and with an odd-length alternating path between them (see Fig. 2). Thus the family of
all thunderbolts is a complete set of tree obstructions for B,.

Our construction Sproink(7") gives all obstructions obtained by stacking five trees Ly,
Ly, Lo, L3, Ly of height at most one, with one top vertex of L; identified with one bottom
vertex of L; 1 for 1 = 0, 1,2, 3. The example of thunderbolts shows that in fact Ly can be
restricted to a single (top) vertex, and L, can be restricted to a single (bottom) vertex.

* The core of a digraph is any of its smallest subgraphs to which it admits a homomorphism.



Figure 2: A thunderbolt

The same holds for leaves of general trees. Also, Ly, Lo, L3 can be restricted to paths of
height one, and it is also true in general that it is sufficient to consider sproinks obtained
by replacing vertices by paths of height at most one. In fact the name “sproink” is
inspired by picturing such a path springing out of every non-leaf of T'.

The results of this section show that we can construct an interesting class of templates
with tree duality by repeatedly applying the arc-graph construction to digraphs with
finite duality. Moreover, if templates Hy, Hs, ..., Hj all have tree duality, then also
their product H; x Hy X - - - X H}, has tree duality as the union of the respective complete
sets of obstructions of the factors is a complete set of obstructions for the product. The
resulting class of templates is subject to examination in the next section.

3 Finite duality

Following [12], every tree T admits a dual D(T") such that for every digraph G, we have
G — D(T) if and only if T - G. A digraph H has finite duality if and only if it is
homomorphically equivalent to a finite product of duals of trees.

In this section, we consider the class §,,C, the smallest class of digraphs that contains all
duals of trees and is closed under taking arc graphs, finite products and homomorphically
equivalent digraphs. It follows from Corollary 4 that all elements of §,.C have tree duality.
Moreover we know how to construct a complete set of obstructions for each of these
templates, using iterated Sproink constructions and unions. The question then arises as
to how significant the class 0,C is within the class of digraphs with tree duality. It turns
out that the digraphs in 0,C have properties that are not shared by all digraphs with
tree duality.

A near-unanimity function is a homomorphism f from H* to H with k > 3 such that
for all z,y € V(H) we have f(x,z,z,...,x) = f(y,z,x,...,2) = f(x,y,x,...,2) =
coo= floyx,z, .. y) =

A digraph H has bounded-height tree duality provided there exists a constant m such
that H admits a complete set of obstructions consisting of trees of algebraic height at
most m.

Proposition 5. (i) Every core in 6,C admits a near-unanimity function.



(ii) Every member of 6,C has bounded-height tree duality.

Proof. (i): By Corollary 4.5 of [9], every structure with finite duality admits a near-
unanimity function. Therefore it suffices to show that the class of structures admitting
a near-unanimity function is closed under taking cores, finite products and the arc-graph
construction.

Let C be the core of H, p : H — C a retraction and f : H* — H a near-unanimity
function. Since C' is an induced subgraph of H, the restriction po f | C* is a near-
unanimity function on C.

Suppose f; : szz — H;,i=1,...,m are near-unanimity functions. For k = max{k; :
i=1,...,m}, we define k-ary near-unanimity functions g; : H* — H; by g;(z1,...,7%) =
fi(zy,...,mp,). For H = 11", H; we then define a near-unanimity function g : H* — H

coordinate-wise, by putting

g((‘rl,la s wrm,l)a ceey (‘rl,kn s 7l‘m,k)) = (gl(xl,h s 7x1,k)7 s 7gm('rm,17 s 7xm,k))‘

Now suppose that f : H* — H is a near-unanimity function. Then (§ H )k is naturally
isomorphic to §(H*), and we define g : (§H)" — 6H by

g((ug,v1), .oy (ug, o)) = (f(ug, ..o ug), flor, ... o).

The fact that f is a homomorphism implies that ¢ is well defined, and ¢ is a homomor-
phism by the definition of adjacency in 0 H. Also, g clearly satisfies the near-unanimity
identities, so it is a near-unanimity function on dH.

(ii): The class of digraphs with bounded-height tree duality is obviously preserved by
taking cores and finite products. By Theorem 3, if H has a complete set of obstructions
consisting of trees of algebraic height at most k, then d H has a complete set of obstruc-
tions consisting of trees of algebraic height at most k£ + 1, so the class of digraphs with
bounded-height tree duality is also preserved by the arc-graph construction. O

There are core digraphs with tree duality that do not admit a near-unanimity function,
and that do not have bounded-height tree duality. Thus the class §,C does not capture
all core digraphs with tree duality. However the problem of generating all structures
with tree duality by means of suitable functors applied to structures with finite duality
remains interesting. In particular, the problem of characterising digraphs with tree
duality is decidable (see [2]), and the problem of characterising digraphs with finite
duality is even in NP (see [9]). It is not known whether there exists a NP-procedure or
even a procedure in polynomial space to decide whether an input digraph H has tree
duality, but sometimes finding a homomorphic equivalence between H, and a member
of 0,C can be efficient, since the cores of products of (iterated) arc graphs tend to be
larger than the initial graphs.

Membership in §,C is not known to be decidable. In the remainder of this section, we
show that bounded-height tree duality is decidable.



Given a digraph H, the n-th crushed cylinder H} is the quotient (H? X P,)/~,,
where P, is the path with arcs (0,0),(0,1),(1,2),---,(n — 1,n),(n,n), and ~, is the
equivalence defined by

i=j=0and u=1,
(u,v,4) ~, (W ,v',j) = Cori=j=nand v =1,

or (u,v,i) = (u,v', 7).
Theorem 6. For a core digraph H with tree duality, the following are equivalent:
(1) H has bounded-height tree duality,
(2) For some n we have HY — H.

(3) There exists a directed (upward) path from the first projection to the second in
HT.

Proof. (1) = (2): The two subgraphs obtained from H; by removing the two ends both
admit homomorphisms to H. Therefore, if a tree obstruction of H admits a homomor-
phism to H, its image must intersect the two ends hence its algebraic length must be
at least n.

—(1) = —(2): Let T be a critical obstruction of H of algebraic length n + 2. Let
Ty, T, be the subgraphs of T obtained by removing the vertices of height 0 and n + 2
respectively. Then there exists homomorphisms ¢ : 1o — H and ¢, : T, — H. Let
h:T — P,is be the height function of 7. We define a map ¢ : " — H,: by

(¢n(u)7¢0(u)7h(u) - 1)/271 if h(u) g {0,71—}-2},
B(1) = { (Ga(u), du(u),0)/, i h(u) = 0,
(Po(u), po(u),n) />, if h(u) =n+ 2.

Let (u,v) be an arc of T. Then h(v) = h(u) + 1. If {h(u),h(v)} N{0,n + 2} = 0, we
clearly have (¢(u), ¢(v)) € A(H;). If h(u) = 0, then ¢(u) = (dn(u), Ppn(u),0)/~, is an
in-neighbour of (¢, (v), dn(v),0)/2~, = (¢n(v), Po(v),0)/~, = ¢(v), and if h(v) =n + 2,
d(v) = (¢o(v), po(v),n)/~, is an out-neighbour of ¢(u) because

(do(u), Po(u), n) /2= = (dn(w), do(u),n)/~n = (u).

Therefore ¢ is a homomorphism.
(2) & (3): This equivalence follows easily from the definition. O

Corollary 7. The problem whether an input o-structure has bounded-height tree duality
1s decidable.

Proof. The condition (3) of the previous theorem involves directed reachability in a
finite graph. By the equivalence with condition (1), bounded-height tree duality is
decidable. O



4 Adjoint functors and generation of tractable templates

The correspondence of Proposition 1 can be extended to a wide class of functors pre-
sented in this section. To illustrate this extension, we first redefine ¢ in terms of tem-
plates. Let P be the digraph with vertices 0,1 and arc (0,1), and @ the digraph with
vertices 0, 1,2 and arcs (0,1),(1,2). Furthermore let ¢;,¢2 : P — @ be the homomor-
phisms mapping the arc (0,1) to (0,1) and (1, 2) respectively. For an arbitrary digraph
G, its arc graph 0G can be described as follows: The vertices of dG are the arcs of G,
that is, the homomorphisms f : P — G. The arcs of dG are the couples of consecutive
arcs in G, that is, the couples (f1, f2) such that there exists a homomorphism g : Q — G
satisfying g o g1 = f1 and g o ¢o = fo. Thus the functor § is generated by the template
{P,(Q,q1,q))} in a way that generalises quite naturally.

The rest of this section deals with relational structures. We follow the terminology
of [9, 10], see also [6].

Let o and 7 be two vocabularies (signatures). Let P be a o-structure, and for every
relation R of 7 of arity r = a(R), let Qg be a o-structure with r fixed homomorphisms
qr; : P — Qg for i =1,...,r. Then the family {P} U {(Qr,qr1,- -,qrar) : R € T}
allows to define a functor ¥ from the category A of o-structures to the category B of
T-structures as follows.

e For a o-structure A, let B = WA be a 7-structure whose universe is the set of all
homomorphisms f: P — A.

e For every relation R of 7 of arity » = a(R), let R(B) be the set of r-tuples
(f1,..., fr) such that there exists a homomorphism g : Qr — A such that for
t=1,...,r we have goqr; = fi.

It was shown by Pultr [14] that functors ¥ defined by means of templates are right
adjoints into a category of relational structures characterised by axioms of a specific type.
We exhibit their corresponding left adjoints U~! in the case when both the domain and
the range of W is the category of all relational structures with a given signature.

For every 7-structure B, we define a o-structure W"!B = A/~ where

e A is a disjoint union of o-structures; for every element x of the universe of B, A
contains a copy P, of P, and for every R € 7 and (x1,...,2,) € R(B), A contains

a copy QR (z1,..0) Of Qr.

e ~ is the least equivalence which identifies every element u of P,, with its image
qri(u) in Qp 2y, .,), for every R € 7, every (x1,...,2,) € R(B) and every i €

{1,...,r}.

Proposition 8 ([14]). For any 7-structure B and o-structure A,

B— VA if and only if U'B - A.



Proof. Let h : B — WA be a homomorphism, and put h(b) = f, : P — A. Then for every
b € B, the mapping f;, corresponds to a well-defined homomorphism to A from a copy B,
of P. Also, for every R € T and (by,...,b.) € R(B), we have (h(by),...,h(b.)) € R(VA),

----------

.....

then h(x) = h(y). Therefore h induces a homomorphism from the quotient structure
U8 to A.

Conversely, if h : U7!'B — A is a homomorphism, we define a homomorphism h
B — VA by iz(b) = f3, where f, corresponds to the restriction of A to the quotient of P,
in U~!'B. Indeed, if R € 7 and (by,...,b,) € R(B), then the restriction of h to the
quotient of Qg (s,,.4,) in U1 B corresponds to a homomorphism ¢ : Qr — A such that

fo, = goqr fori=1,...,r, whence (h(by),...,h(b,)) € R(TA). O
Corollary 9. If a o-structure A has polynomial CSP, then the T-structure WA also has
polynomaial CSP. L

In fact, Corollary 4 generalises as follows.

Theorem 10. If a o-structure A has tree duality, then the T-structure VA also has tree
duality.

We use Feder and Vardi’s characterisation of structures with finite duality. For a
o-structure A, let YA be the o-structure defined as follows. The universe of UA is
the set of all nonempty subsets of A, and for R € o of arity r, R(UA) is the set
of all r-tuples (Xj,...,X,) such that for all j € {1,...,7} and z; € X there exist
xp € Xg, k€ {1,...,r} \ {j} such that (z1,...,z,) € R(A).

Theorem 11 ([2]). A structure A has tree duality if and only if there exists a homo-
morphism from UA to A.

Proof of Theorem 10. Suppose A has tree duality. Then there is a homomorphism
f:UA — A Let U = P(VA) \ {0} be the universe of UPTA and let S € U.
For p € P, define S, = {f(p): f €S} € UA, and fs(p) = f(5,). We claim that
fs : P — A is a homomorphism. Indeed, for R € o and (p1,...,p,) € R(P), the
r-tuples (f(p1),...,f(p;)) € R(A) for all f € S prove that (S,,,...,S,,) € R(UA),
whence (fo(p1).- .+ fs(pr) = (F(Sp)s- - F(Sp)) € RA)

Thus we define a map f: UVA — WA by f(S) = fs. We show that it is a homomor-
phism. For R € 7 and (S,...,5,) € RIUTVA), every f; € S;, 1 < i <r is contained in
an r-tuple (hq,...,h,) € R(VA) with f; € S; for 1 < j <r and h; = f;, whence there
exists a homomorphism g, . 5,) : @r — Asuchthat h; = g4, nooqr forj=1,...,r.
For z € Q, let T, be the set of all images g, ,.5,)(z) € A (with (Si,...,S,) fixed), and
9si,...s(x) = f(T;). Then g, ...s.): Qr — A is a homomorphism, and for « € ¢p ;(P)
we have T, = S, (because they are images of x under restrictions of the same homo-

..........
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Consequently (fs,,...,fs,) = (f(S1),...,f(S,)) € R(WA). This shows that f is a
homomorphism. O

Unlike the case of the arc-graph construction, we are unable to provide an explicit
description of the tree obstructions of WA in terms of those of A for a general right
adjoint W. However, in isolated cases we can do it, as the following example shows.

Example. The endofunctor ¥ on the category of digraphs is defined via the template
{P,(Q,q1,q)}, where P = P, is the one-arc path u — v, Q = P is the directed path
0 —1— 2 — 3, the homomorphism ¢, : u +— 0, v+ 1, and finally ¢ : ©u — 2, v — 3.

Let T be a tree of algebraic height h and consider the unique homomorphism ¢ from T
to the directed path P,. The arcs of T' are of two kinds: blue arcs Ay(T) = {(z,y) :
t(x) = 2k, t(y) = 2k + 1 for some integer k} and red arcs A.(T) = {(z,y) : t(z) =
2k + 1, t(y) = 2k + 2 for some integer k}. We define two equivalence relations on the
vertices of T: x ~j; y if the (not necessarily directed) path from x to y in 7" has only
blue arcs, and x ~, y if the path from x to y in T has only red arcs. Then T has two
W-Sproinks, namely 7'/~ and T'/~, with loops removed.

For a collection 7 of trees, let W-Sproink(7") be the set of all W-Sproinks of the trees
contained in 7. We claim that if 7 is a complete set of obstructions for a template H,
then W-Sproink(7) is a complete set of obstructions for WH. To prove it, we follow the
idea of the proofs of Lemma 2 and Theorem 3.

First we prove that T — W™!(T/~;). This is not difficult: every blue arc of T
was contracted to a vertex of T'/~;, and this vertex was blown up to an arc in T —
U~1(T/~y). Thus we can map blue arcs to the corresponding blown-up arcs. Red arcs
of T are also arcs of T'/~y, and hence we can map each red arc to the arc (1,2) of the
corresponding copy of Q in W=1(T'/~y). Clearly such a mapping is a homomorphism.

Analogously we show that T — U=1T /~,.

Finally we want to prove that if T — WG, then either T/~, — G or T/~, —
G. Suppose that f : T — U~'G. Then some arcs of T are mapped by f to arcs
corresponding to vertices of G (arcs of copies of P), and others are mapped to arcs
corresponding to arcs of G (arcs (1,2) of copies of Q). Let us call the former v-arcs and
the latter a-arcs. It follows from the definition of ! that either all blue arcs of T are
v-arcs and all red arcs of T" are a-arcs, or all blue arcs of T" are a-arcs and all red arcs
of T" are v-arcs. In the former case T'/~, — G, while in the latter case T'/~, — G.

It is notable that in the above example each tree obstruction for H generates finitely
many obstructions for WH. This is no accident.

Theorem 12. Let U be a functor generated by a template {P} U{(Qr,qr1,---,qRaR))
R € 7}, where for every R € T and 1 < i < j < a(R), the image qr;(P) is vertez-disjoint
from qr ;(P). If a o-structure A has finite duality, then the T-structure VA also has finite
duality.

The proof uses the characterisation of structures with finite duality of [9]. The square
of a o-structure B is the structure B x B. It contains the diagonal Agy.p = {(b,b) :
b € B}. An element a of B is dominated by an element b of B if for every R € o,
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for every i and every (z1,...,%4r) € R(B) with 2; = a, we have (y1,...,% &) €
R(B) with y; = b and y; = x; for j # i. A structure B dismantles to its induced

substructure C' if there exists a sequence x1, ..., x; of distinct elements of B such that
B\C = {xz1,...,x;} and for each 1 < i < k the element z; is dominated in the structure
induced by CU{z;, ..., zx}. The sequence x1, ...,y is then called a dismantling sequence
of BonC.

Theorem 13 ([9]). A structure has finite duality if and only if it has a retract whose
square dismantles to its diagonal.

Proof of Theorem 12. Let A be a o-structure with finite duality. Without loss of gen-
erality, we assume that A is a core, so that A has no proper retracts; thus the square
of A dismantles to its diagonal. Let (x1,41),..., (2, yr) be a dismantling sequence of
Ax Aon Ayxa. Then W(A x A) 2 WA x WA; we want to prove that it dismantles to
Agaxwa = VA 4.

For i € {1,...,k}, define X; to be the substructure of A x A induced by the set
Aaxa U{(ziyi), -, (xp,yk)}, and let X1 = Auxa. We will show that UX; can be
dismantled to V.X;,q,i=1,... k.

Let b = (b1, by) be an element dominating a = (x;,y;) in X;. Let f € ¥X;\¥X;,,, and
assume that f = (f1, f2) : P — A x A. Then there exists (at least one) py € P such that
f(po) = a. We define g = (g1,92) : P — Ax A by g(po) = b and g(p) = f(p) if p # po.
Since b dominates a, g is a homomorphism, and obviously ¢ € V.X,;. We claim that ¢
dominates f. Indeed, for R € 7 and (fi,..., far)) € R(VX;) such that f = f;, there
exists a homomorphism h : Qr — X; such that f = hoqg;. Define b’ : Qr — X; by
P (qr;(po)) = b and h'(z) = h(z) for z # qg;(po). Since b dominates a = h(qr,;(po)), the
mapping ' is a homomorphism. By hypothesis, for ¢ # j, the image ggr(P) is disjoint
from gqg ;(P), whence f; = h' o qpy, while i/ o g ; = g. Therefore R(VX;) contains all
the a(R)-tuples needed to establish the domination of f by g.

Let p1, po, . . ., pm be an enumeration of the elements of P. We dismantle ¥.X; to VX, 4
by successively removing the functions f such that f(p;) = (x;, ;) for j = 1,...,m.
Proceeding in this way for ¢ = 1,...,k, we get a dismantling of VA x VA = VX, to
VX1 = Agaxwa. Therefore WA has finite duality. ]

Perhaps the lack of knowledge of a general construction is natural since there is no
restriction on the template {P} U {(Qr,qr1;---,qrar)) : B € 7}. On the other hand,
there are many possible transformations 7' on a family 7 of tree obstructions, in the style
of Sproink(7’). Any such transformation gives rise to the a complete set of obstructions
to homomorphisms into a structure H' = IlpezDp; however in general there is no
way of guaranteeing that such structure H' is finite, even when 7 is a complete set of
obstructions for a finite structure H.

5 Concluding comments

In this paper we tried to shed more light on the structure of tractable templates with
tree duality. Let us turn our attention one more time to Fig. 1. The grey areas in the
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diagram are areas that need a closer look in future research.

Currently we do not know any digraph with a near-unanimity function and with
bounded-height tree duality that could not be generated using right adjoints and prod-
ucts, starting from digraphs with finite duality; it is not clear whether any such “reason-
able” class of structures with tree duality can be generated from structures with finite
duality with a “reasonable” set of adjoint functors.

We have shown here that possession of bounded-height tree duality is decidable. Our
decision procedure shows that the problem belongs to PSPACE. It is natural to ask what
its complexity really is; in particular, whether it is complete for some class of problems.

Equally interesting is the decidability of membership in other classes depicted in Fig. 1.
Tree duality is known to be decidable [2]; finite duality is NP-complete [9]. The decid-
ability of bounded-treewidth duality is unknown, and so is the decidability of a near-
unanimity function (see [11] for a related result).

The properties of near-unanimity functions proved in the proof of Proposition 5 (i)
in the context of digraphs and the arc-graph construction, also hold in the context of
general structures and right adjoints. The proofs carry over naturally.

References

[1] D. Cohen and P. Jeavons. The complexity of constraint languages. In F. Rossi,
P. van Beek, and T. Walsh, editors, Handbook of Constraint Programming, volume 2
of Foundations of Artificial Intelligence, chapter 8. Elsevier, 2006.

[2] T. Feder and M. Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through Datalog and group theory. SIAM J.
Comput., 28(1):57-104, 1999.

[3] J. Foniok. Homomorphisms and Structural Properties of Relational Systems. PhD
thesis, Charles University, Prague, 2007.

[4] P. Hell and J. Negetiil. On the complexity of H-coloring. J. Combin. Theory Ser.
B, 48(1):92-110, 1990.

[5] P. Hell, J. Nesetiil, and X. Zhu. Duality and polynomial testing of tree homomor-
phisms. Trans. Amer. Math. Soc., 348(4):1281-1297, 1996.

[6] W. Hodges. A shorter model theory. Cambridge University Press, 1997.

[7] P. Komarek. Good characterisations in the class of oriented graphs. PhD thesis,
Czechoslovak Academy of Sciences, Prague, 1987. In Czech (Dobré charakteristiky
ve tfidé orientovanych grafi).

[8] R. E. Ladner. On the structure of polynomial time reducibility. J. Assoc. Comput.
Mach., 22(1):155-171, 1975,

13



[9]

[10]

[11]

[12]

B. Larose, C. Loten, and C. Tardif. A characterisation of first-order constraint
satisfaction problems. In Proceedings of the 21st IEEE Symposium on Logic in
Computer Science (LICS’06), pages 201-210. IEEE Computer Society, 2006.

C. Loten and C. Tardif. Majority functions on structures with finite duality. Euro-
pean J. Combin., 29(4):979-986, 2008.

M. Maréti. The existence of a near-unanimity term in a finite algebra is decidable.
Manuscript, 2005.

J. Negettil and C. Tardif. Duality theorems for finite structures (characterising gaps
and good characterisations). J. Combin. Theory Ser. B, 80(1):80-97, 2000.

J. Nesetfil and C. Tardif. Short answers to exponentially long questions: Extremal
aspects of homomorphism duality. SIAM J. Discrete Math., 19(4):914-920, 2005.

A. Pultr. The right adjoints into the categories of relational systems. In Reports of
the Midwest Category Seminar, IV, volume 137 of Lecture Notes in Mathematics,
pages 100-113, Berlin, 1970. Springer.

14



