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Abstract

We prove a version of the Loebl-Komlós-Sós Conjecture for dense graphs.
For anyq> 0 there exists a numbern0 ∈N such that for anyn> n0 andk> qn
the following holds: ifG be a graph of ordern with at leastn/2 vertices of
degree at leastk, then any tree of orderk+1 is a subgraph ofG.
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1 Introduction

Embedding problems play central role in Graph Theory. A variety of graph em-
beddings (subgraphs, minors, subdivisions, immersions, etc) have been studied
extensively. A graph (finite, undirected, loopless, simple; here as well as in the
rest of the paper)H embedsin a graphG if there exists an injective mapping
φ : V(H) → V(G) which preserves edges ofH, i. e., φ(x)φ(y) ∈ E(G) for every
edgexy∈ E(H). As a synonym we say thatG contains H(as a subgraph) and
write H ⊆ G. Let H be a family of graphs. The graphG is H -universalif it
contains every graph fromH . This fact is denoted byH ⊆ G.

In this paper we investigate embeddings of trees. This topichas received con-
siderable attention during the last 40 years. The classTk consists of all trees of
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orderk. One can ask which properties force a graphH to beTk-universal. Loebl,
Komlós and Sós considered in [9] the median degree ofH.

Conjecture 1.1 (LKS Conjecture). Let G be a graph of order n. If at least n/2
of the vertices of G have degree at least k, thenTk+1 ⊆ G.

The main result of this paper is to prove the LKS Conjecture for “k linear in
n”. For the exact statement see our main result, Theorem 1.4.

The bound onk of the minimal degree of high degree vertices cannot be de-
creased. Indeed, ifG is a graph in which half of its vertices have degree exactly
k−1, then it does not contain a starK1,k. On the other hand, it is suspected that
the number of vertices of degree at leastk can be lowered a little bit. This was first
raised by Zhao [22]. Discussion on the lower bound will be given in [12].

There have been several partial results concerning the LKS Conjecture. In [4],
Bazgan Li and Woźniak proved the conjecture for paths. Piguet and Stein [17]
proved that the LKS Conjecture is true when restricted to theclass of trees of di-
ameter at most 5, improving upon a result of Barr and Johansson [3] and Sun [20].
There are several results proving the LKS Conjecture under additional assumptions
on the hosting graph.

Soffer [19] showed that the conjecture is true if the hostinggraph has girth
at least 7, Dobson [7] proved the conjecture when the complement of the hosting
graph does not containK2,3.

A special case of the LKS Conjecture is whenk = n/2. This is often re-
ferred to in the literature as the (n/2-n/2-n/2)Conjecture, or the Loebl Conjecture.
Zhao [22] proved the (n/2-n/2-n/2) Conjecture for large graphs.

Theorem 1.2. There exists a number n0 such that if a graph G of order n> n0 has
at least n/2 of the vertices of degrees at least n/2, thenT⌊n/2⌋+1 ⊆ G.

An approximate version of the LKS Conjecture was proven by Piguet and
Stein [16].

Theorem 1.3. For any q> 0 there exists a number n0 and a function f: N → R,
f ∈ o(1) such that for any n> n0 and k> qn the following holds. If G is a graph
of order n with at least(1/2+ f (n))n vertices of degree at least(1+ f (n))k, then
Tk+1 ⊆ G.

In this paper we strengthen Theorem 1.3 by removing theo(1) term.

Theorem 1.4 (Main Theorem). For any q> 0 there exists a number n0 = n0(q)
such that for any n> n0 and k> qn the following holds: if G is a graph of order n
with at least n/2 vertices of degree at least k, thenTk+1 ⊆ G.
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In fact, the proof of Theorem 1.4 will yield that the requirement on the number
of vertices of large degree can be relaxed in the case whenn/k is far from being
an integer.

Theorem 1.5. For any q2 > q1 > 0 such that the interval[1/q2,1/q1] does not
contain an integer, there exist numbersε = ε(q1,q2) > 0 and n0 such that for any
n > n0 and k∈ (q1n,q2n) the following holds: if G is a graph of order n with at
least(1/2− ε)n vertices of degree at least k, thenTk+1 ⊆ G.

We explicitly prove only Theorem 1.4 in the paper. In Section2 we sketch how
the proof method can be revised to give Theorem 1.5. However,determining the
correct value ofε(q1,q2) remains open. Note also that Theorem 1.4 has slightly
weaker assumptions onG than Theorem 1.2 when reduced to the casek= ⌊n/2⌋—
when n is odd, the number of large vertices in Theorem 1.4 is smallerby one
compared to Theorem 1.2.

Recently, we learned that Oliver Cooley announced an independent proof of
Theorem 1.4.

The parameter which is considered in the LKS conjecture is the median degree.
If we replace it by the average degree, we obtain a famous conjecture of Erd̋os and
Sós, which dates back to 1963.

Conjecture 1.6 (ES Conjecture).Let G be a graph of order n with more than
(k−2)n/2 edges. ThenTk ⊆ G.

If true, the conjecture is sharp. After several partial results on the problem, a
breakthrough was achieved by Ajtai, Komlós, Simonovits andSzemerédi [1], who
announced a proof of the Erdős-Sós Conjecture for largek.

Theorem 1.7. There exists a number k0 such that for any k> k0 the following
holds: if a graph G of order n has more than(k−2)n/2 edges, thenTk ⊆ G.

The proof of Theorem 1.7 by Ajtai et al. has two parts. One partsettles the
dense version of the problem; the statement is analogous to Theorem 1.4. The
other part deals with the case whenk/n < q0 for some fixed valueq0. We have
indications that the same approach might work for the LKS Conjecture. Thus our
Theorem 1.4 may be one of two essential ingredients in a proofof the LKS Con-
jecture.

The current work utilizes techniques of Zhao [22] and of Piguet and Stein [16].
We postpone a detailed discussion of similarities between our approach and theirs,
and of our own contribution until Section 2.
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1.1 Ramsey number of a tree

We show in this section the connection between the LKS Conjecture and the Ram-
sey number of trees. For two graphsF andH we write R(F,H) for the Ramsey
numberof the graphsF , H. This is the smallest numbermsuch that in any red/blue
edge-coloring ofKm there is a red copy ofF or a blue copy ofH. For two fami-
lies of graphsF andH the Ramsey numberR(F ,H ) is the smallest numberm
such that in any red/blue edge-coloring ofKm the graph induced by the red edges
is F -universal, or the graph induced by the blue edges isH -universal. We shall
show how Theorem 1.4 implies an almost tight upper bound (up to an additive
error of one) on the Ramsey number of trees, partially answering a question of
Erdős, Füredi, Loebl and Sós [9].

For a fixed numberp ∈ (0,1/2) consider two numbersℓ1 and ℓ2 such that
ℓ1/ℓ2 ∈ (p,1/p) andℓ1, ℓ2 > n0, wheren0 = n0(p/2) from Theorem 1.4. Consider
any red/blue edge-coloring of the graphKℓ1+ℓ2. We say that a vertexv∈V(Kℓ1+ℓ2)
is red if it incident to at leastℓ1 red edges. Similarly,v ∈ V(Kℓ1+ℓ2) is blue if it
incident to at leastℓ2 blue edges. Each vertex ofKℓ1+ℓ2 is either red or blue. Thus
we have at least half of the vertices ofKℓ1+ℓ2 that are red, or at least half of the
vertices that are blue. Theorem 1.4 can be applied to the graph induced by the
majority color. We conclude thatR(Tℓ1+1,Tℓ2+1) ≤ ℓ1 + ℓ2.

For the lower bound, first consider the case when at least one of ℓ1 andℓ2 is
odd. It is a well-known fact that there exists a red/blue edge-coloring ofKℓ1+ℓ2−1

such that the red degree of every vertex isℓ1−1. Neither a red copy ofK1,ℓ1 nor a
blue copy ofK1,ℓ2 is contained inKℓ1+ℓ2−1 with this coloring. ThusR(Tℓ1+1,Tℓ2+1)
> ℓ1 + ℓ2 − 1. A construction in a similar spirit shows thatR(Tℓ1+1,Tℓ2+1) >
ℓ1 + ℓ2−2, if ℓ1 andℓ2 are even. We have

R(Tℓ1+1,Tℓ2+1) = ℓ1 + ℓ2 , if ℓ1 is odd orℓ2 is odd, and (1.1)

ℓ1 + ℓ2−1≤ R(Tℓ1+1,Tℓ2+1) ≤ ℓ1 + ℓ2 , otherwise. (1.2)

Let us note that an easy consequence of the ES Conjecture would be that the lower
bound in (1.2) is attained.

Ramsey numbers of several other classes of trees have been investigated; the
reader is referred to a survey of Burr [5] and to newer resultsin [8, 10, 11].

2 Outline of the proof

Theorem 1.4 is proved by iterating the following procedure in stepsi = 1,2,3, . . ..
At each stepi, we find a setQ⊆V(G)\⋃ j≤i Vj such that at least about half of the
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vertices inQ are large (i. e., of degree at leastk). Using the Regularity Lemma, we
try to embed a given treeT ∈Tk+1 in Q. If we do not succeed, then we can extract
from Q a subsetVi+1 ⊆ Q of size approximatelyk, that is nearly isolated from the
rest of the of the graph, and for which at least half of the vertices are large. If we
cannot embedT ∈ Tk+1 in any of the iterating steps (i. e.,V(G) \⋃i Vi

∼= /0), we
obtain a particular configuration of the graphG, called theExtremal Configuration.
In this case, we prove thatT ⊆ G, without the use of the Regularity Lemma.

In the remainder of the overview, we explain in more detail the proof of the
part using the Regularity Lemma, as well as the part whenG is in the Extremal
configuration.

The Regularity Lemma Part. Before applying the Regularity Lemma itself, we
first resolve two simple cases. The first one is whenQ is close to a bipartite graph
with one of its color-classes being the large vertices (see Proposition 4.2). The
second case (see Proposition 4.3) is when the treeT is locally unbalanced (see
definition on page 12). In both cases an easy argument shows thatT ⊆ G.

We apply the Regularity Lemma to the graphG and obtain a cluster graph
G. We apply a Tutte-type proposition (Proposition 6.4) to thesubgraph induced
by clusters inQ, which guarantees the existence of one of two certain matching
structures inG. Both expose a matchingM in the cluster graph, and two clusters
A andB that are adjacent inG and that have high average degree to the matching
M. These structures are called Case I and Case II. The principle of the embedding
is to use the edges ofM to embed parts of the tree in them, and use the clustersA
andB to connect these parts.

The Extremal Case Configuration. In the Extremal case we are given disjoint
setsV1, . . . ,Vi ⊆V(G) such that each of them has size approximatelyk, contains at
least nearlyk/2 large vertices, and each setVj is almost isolated from the rest of
the graph.

If the setsV1, . . . ,Vi exhaust the whole graphG, we are able to showT ⊆ G.
We find a setVi0 so that most ofT can be mapped toVi0. We may need to use the
few edges that interconnect distinct setsVj to distribute parts of the treeT outside
Vi0. The way of finding these “bridges” depends on the structure of the treeT.

If V1, . . . ,Vi do not exhaustG, the method remains the same. However, it has
two possible outputs. Either we show thatT ⊆ G or we are able to exhibit a set
Q⊆V \⋃ j≤i Vj allowing the next step of the iteration.
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Strengthening of Theorem 1.4—Theorem 1.5. The only place where we use
the exact bound on the number of large vertices is the last step of the Extremal case.
That is, the whole vertex setV(G) is decomposed into setsVj , each of them almost
exactly of sizek. But such a decomposition cannot exist whenk ∈ (q1n,q2n),
[1/q2,1/q1]∩N = /0. This suffices to prove Theorem 1.5.

Relation to previous work. The proof of Theorem 1.4 is inspired by techniques
used to prove Theorem 1.3 ([16]) and Theorem 1.2 ([22]). Boththese papers build
on a seminal paper of Ajtai, Komlós and Szemerédi [2] where anapproximate
version of the(n/2−n/2−n/2)-Conjecture is proven. In [2] the basic strategy is
outlined.

In [22] the aproach of Ajtai, Komlós and Szemerédi is combined with the Sta-
bility method of Simonovits [18]. One extremal case is identified, and solved
without the use of the Regularity Lemma.

The main contribution of [16] is a more general Tutte-type proposition, which
is applicable even whenk/n < 1/2.

In this paper we further strengthen the Tutte-type proposition from [16]. The
Extremal case is an extensive generalization of the Extremal case from [22].

Algorithmic questions. Let us remark that our proof of Theorem 1.4 yields a
polynomial time algorithm for finding an embedding of any tree T ∈ Tk+1 in G,
given thatk and G satisfy the conditions of Theorem 1.4. Indeed, it is easily
checked that all existential results we use (Regularity Lemma, and various match-
ing theorems) are known to have polynomial-time constructive algorithmic coun-
terparts. We omit details.

3 Notation and preliminaries

Forn∈ N we write[n] = {1,2, . . . ,n}. The symbol÷ means the symmetric differ-
ence of two sets. The function ci :R → Z is theclosest integer functiondefined by
ci(x) = ⌊x⌋ if x−⌊x⌋< 0.5, and ci(x) = ⌈x⌉ otherwise.

We use standard graph-theory terminology and notation, following Diestel’s
book [6]. We define here only those symbols which are not used there. The order of
a graphH and the number of its edges are denoted byv(H) ande(H), respectively.
We writeH[X,Y] for the bipartite graph induced by the disjoint vertex setsX andY,
andE(X,Y) for the set of the edges with one end-vertex inX and the other inY. We
write e(X,Y) = |E(X,Y)|. For a vertexx and a vertex setX we define deg(x,X) =
degX(x) = e({x},X). For two setsX,Y ⊆V(H) we define theaverage degreefrom
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X toY by d ēg(X,Y) = e(X,Y)/|X|. We write d ēg(X) as a short for d ēg(X,V(H)).
We define two variants of the minimum degree ofH. In the following,X andY are
arbitrary vertex sets.

δ (X) = min
v∈X

deg(v) , and

δ (X,Y) = min
v∈X

deg(v,Y) .

N(x) is the set of neighbors of the vertexx, NX(x) is the neighborhood ofx re-
stricted to a setX, i. e., NX(x) = N(x)∩X, and N(X) is the set of all vertices inH
which are adjacent to at least one vertex fromX, i. e., N(X) =

⋃

v∈X N(v).
Let P= v1v2 . . .vℓ be a path. For arbitrary sets of verticesX1,X2, . . . ,Xℓ we say

thatP is aX1 ↔ X2 ↔ . . . ↔ Xℓ-path if vi ∈ Xi for everyi ∈ [ℓ]. An edgexy is an
X ↔Y edge ifx∈ X andy∈Y and a matchingM is aX ↔Y matching if its every
edge is anX ↔Y edge.

The weighted graphis a pair(H,ω), whereH is a graph andω : E(H) →
(0,+∞) is its weight function. For two setsX,Y ⊆V(H) theweight of the edges
crossing from X to Yis defined bȳeω(X,Y) = ∑xy∈E(X,Y) ω(xy). Denote by d ēgω

the weighted degree, d ēgω(v) = ∑u∈V(H),vu∈E(H) ω(vu). For a vertexv and a vertex
setX we define d ēgω(v,X) analogously to deg(v,X).

We omit rounding symbols when this does not effect the correctness of calcu-
lations.

3.1 Trees

Let F be a rooted tree with a rootr ∈V(F). We define a partial order� onV(F)
by saying thata� b if and only if the vertexb lies on the path connectinga with
r. If a � b we say thata is below b. A vertex a is a child of b if a � b and
ab∈ E(F). And, in the other way, the vertexb is aparent of a. Ch(b) denotes the
set of children ofb. The parent of a vertexa is denoted Par(a) (note that Par(a) is
undefined ifa = r). We extend the definitions of Ch(·) and Par(·) to an arbitrary
setU ⊆V(F) by Par(U) =

⋃

u∈U Par(u) and Ch(U) =
⋃

u∈U Ch(u). We say that a
treeF1 ⊆ F is inducedby a vertexx ∈ V(F) if V(F1) = {v∈ V(F) : v� x} and
we write F1 = F(r,↓ x), or if the root is obvious from the contextF1 = F(↓ x).
A subtreeF0 of F is a full-subtree with the root y∈ V(F), if there exists a set
C⊆ Ch(y), C 6= /0 such thatF0 = F [{y}∪⋃b∈C{v : v� b}]. We never refer toy as
to a leaf of the full subtreeF0, and of the treeF1 induced byy, even though it may
be a leaf ofF0 and ofF1 in the usual sense. A treeF2 ⊆ F is anend subtreeif there
exists a vertexw∈V(F) such thatF2 = F(↓ w). If a subtreeF3 ⊆ F is not an end
subtree, then we call it aninterior subtree.
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Fact 3.1. Let (F, r) be a rooted tree of order m withℓ leaves.

1. For any integer m0, 0 < m0 ≤ m, there exists a full-subtree F0 of F of order
m̃∈ [m0/2,m0].

2. For any integerℓ0, 0 < ℓ0 ≤ ℓ, there exists a full-subtree F0 of F with ℓ̃
leaves, wherẽℓ ∈ [ℓ0/2, ℓ0].

Proof. 1. We shall move sequentially the candidater0 for the root ofF0 down-
wards (in�), starting withr0 = r. In the first step we havev(F(↓ r0)) =
m≥ m0/2. If v(F(↓ c)) < m0/2 for everyc ∈ Ch(r0) then we can find a
setC⊆ Ch(r0) of vertices such that the full-subtreeF0 = F [{r0}∪

⋃

c∈C{v :
v� c}] has order in the interval[m0/2,m0]. Otherwise, there exists a vertex
c∈ Ch(r0) such thatv(F(↓ c)) ≥ m0/2. We resetr0 = c and continue.

2. This is analogous.

Fact 3.1 is sometimes used without the root of the tree being specified. Then,
any internal vertex of the tree can serve as a root.

For any treeF we writeFe andFo for the vertices of its two color classes with
Fe being the larger one. We define thegapof the treeF as gap(F) = |Fe|−|Fo|. For
a treeF, a partition of its vertices into setsU1 andU2 is calledsemiindependentif
|U1| ≤ |U2| andU2 is an independent set. Furthermore, thediscrepancyof (U1,U2)
is disc(U1,U2) = |U2|− |U1| and the discrepancy ofF is

disc(F) = max{disc(U1,U2) : (U1,U2) is semiindependent} .

Clearly, gap(F) ≤ disc(F).

Fact 3.2. Let (U1,U2) be a semiindependent partition of a tree F, v(F) > 1. Then
U2 contains at least|U2|− |U1|+1 leaves.

Proof. We rootF at an arbitrary vertexx∈U1. LetU ′
2 be the set of internal vertices

in U2. Since each vertex inU ′
2 has at least one child inU1\ {x} and these children

are (for distinct vertices inU ′
2) distinct, we obtain|U1 \ {x}| ≥ |U ′

2|. Hence the
number of leaves inU2 is at least|U2|− |U1|+1.

Lemma 3.3. Let r be a vertex of a tree T , and let(U1,U2) be any semiindependent
partition of T . LetK be a subset of the components of the forest T−{r}. Then

1. ||V(K )∩Te|− |V(K )∩To|| ≤ disc(T)+1 .
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2. |V(K )∩U2|− |V(K )∩U1| ≤ disc(T)+1 .

Proof. We prove only Part 1, Part 2 being analogue. The statement is obvious
when |V(K )∩ Te| − |V(K )∩ To| = 0. Suppose that|V(K )∩ Ta| − |V(K )∩
Tb| = ℓ > 0, wherea,b∈ {e,o}, a 6= b is a choice of color-classes. It is enough
to exhibit a semiindependent partition(U1,U2) of the treeT with |U2| − |U1| ≥
||V(K )∩Te|− |V(K )∩To||−1. Partition the components of the forestT −{r}
that are not included inK into two familiesA andB so thatA contains those
componentsK 6∈ K for which |V(K)∩Ta| ≥ |V(K)∩Tb|, andB contains those
componentsK 6∈ K for which |V(K)∩Ta|< |V(K)∩Tb|. Obviously, the partition
below satisfies the requirements.

U1 = {r}∪ (V(K )∩Tb)∪ (V(A )∩Tb)∪ (V(B)∩Ta) ,

U2 = (V(K )∩Ta)∪ (V(A )∩Ta)∪ (V(B)∩Tb) .

Fact 3.4. Let F be a tree withℓ leaves. Then F has at mostℓ−2 vertices of degree
at least three.

Proof. We partitionV(F) into the set of leavesV1, the setV2 of vertices of degree
two, and the setV3 of vertices of degree at least three. The handshaking lemma
applied toF yields that

2v(F)−2 = ∑
v

deg(v) ≥ |V1|+2|V2|+3|V3| = 2v(F)− ℓ+ |V3| .

The statement readily follows.

3.2 Greedy embeddings

Given a treeF and a graphH there are several situations when one can embed
F in H greedily. For example, ifδ (H) ≥ v(F)− 1, then we embed the root of
F in an arbitrary vertex ofH and extend the embedding levelwise. An analogous
procedure works ifH is bipartite,H = (V1,V2;E), andδ (V1,V2)≥ |Fe|,δ (V2,V1)≥
|Fo|. The fact stated below generalizes the greedy procedure.

Fact 3.5. Let (U1,U2) be a semiindependent partition of a tree F. If there exist
two disjoint sets of vertices V1 and V2 of a graph H such that

min{δ (V1,V2),δ (V1,V1),δ (V2,V1)} ≥ |U1|

andδ (V1) ≥ v(F)−1, then F⊆ H.
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Proof. The statement is trivial whenv(F) = 1. In the rest, assume thatv(F) > 1.
The setU l

2 denotes the leaves ofU2. By Fact 3.2,|U2 \U l
2| ≤ |U1|−1. We embed

greedilyF −U l
2 in H, mapping the vertices fromU1 to V1 and the vertices from

U2\U l
2 toV2. We argue that the greedy procedure works. If we have just embedded

a vertexu∈U1 then we can extend the embedding to all vertices N(u)∩U1 since
δ (V1,V1)≥ |U1|. The embedding can be extended to all vertices from N(u)∩(U2\
U l

2) sinceδ (V1,V2)≥ |U2\U l
2|. If we have just embedded a vertexw∈U2\U l

2 then
we can extend the embedding to all vertices from N(w) sinceδ (V2,V1)≥ |U1|. The
leavesU l

2 are embedded last, using high degrees of the vertices inV1.

3.3 Matchings

Let us state a simple corollary of Hall’s Matching Theorem.

Proposition 3.6. Let K= (W1,W2;J) be a bipartite graph such thatδ (K)≥ |W1|/2
and|W1| ≤ |W2|. Then K contains a matching covering W1.

3.4 A number-theoretic proposition

Proposition 3.7. Let I be a finite nonempty set, and let a,b,∆ > 0. For i ∈ I, let
αi ,βi ∈ (0,∆]. Suppose that

a

∑i∈I αi
+

b

∑i∈I βi
≤ 1 .

Then I can be partitioned into two sets Ia and Ib so that∑i∈Ia αi > a− ∆, and
∑i∈Ib βi ≥ b.

Proof. The reader may find a straightforward proof in [16].

3.5 Specific notation

A graphH is said to have theLKS-property(with parameterk) if at least half of
its vertices have degrees at leastk, i. e., we have|LH | ≥ v(H)/2, whereLH = {v∈
V(H) : degH(v) ≥ k}.

When we refer toq,n0,n,k or G in the rest of the paper, we always refer to
the objects from the statement of Theorem 1.4. The vertex setof G is denoted
by V. We partitionV = L∪S, whereL = {v ∈ V : deg(v) ≥ k} andS= {v ∈
V : deg(v) < k}. We call vertices fromL large and vertices fromS small. The
hypothesis of Theorem 1.4 implies that|L| ≥ n/2. Finally T denotes a tree of
orderk+1 which we want to embed inG.
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Statements like “there exists a numberγ > 0 such that a propertyP(γ) holds
for any graphG” should read as “givenq > 0, there exists a numberγ > 0 such
that a propertyP(γ) holds for any graphG of order at leastn0(q)”.

4 Proof of the Main Theorem (Theorem 1.4)

We first need to state some auxiliary propositions. For the first proposition, we
need to introduce the notion of(β ,σ)-Extremality. For two numbersβ ,σ ∈ (0,1),
a decomposition of the vertex setV = V1∪V2∪ . . .∪Vλ ∪Ṽ is (β ,σ)-Extremalif

• λ ≥ 1 .

• (1−β )k < |Vi | < (1+ β )k for eachi ∈ [λ ] .

• Ṽ = /0 or |Ṽ| > σk .

• e(Vi ,V \Vi) < βk2 for eachi ∈ [λ ] , ande(Ṽ,V \ Ṽ) < βk2 .

• (1/2−β )k< |Vi ∩L| for eachi ∈ [λ ] .

• |Ṽ ∩L| ≤ (1/2−σ)|Ṽ| .

Proposition 4.1. There exists a constant cE > 0 such that the following holds. If
G admits a(β ,σ)-Extremal partition V1, . . . ,Vλ ,Ṽ for β ,σ ≤ cE, β ≪ σ , then
Tk+1 ⊆ G, or there exists a set Q⊆ Ṽ such that

• |Q| > k/2 .

• |Q∩L| > |Q|/2 .

• e(Q,V \Q) < σk2 .

Proposition 4.1 will be proved in Section 8. The next proposition is referred to
as the Special Case.

Proposition 4.2. For all q,cE > 0, there exists a number cS > 0, cS ≪ cE such
that if there exists a set̄V ⊆V with the following properties

• |V̄| > 4
√

cSk ,

• e(V̄,V \ V̄) < cSk2 ,

• (1/2−cS)|V̄| < |V̄ ∩L| , and
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• e(G[V̄ ∩L]) < cSk2 ,

thenTk+1 ⊆ G.

Proof of Proposition 4.2 is given in Section 5. The followingproposition is will
allow us to reduce trees which are locally unbalanced from further considerations.
Let us introduce the notion (un)balanced forest now.

For a numberc ∈ (0,1/2) we say that a familyC of vertex disjoint subtrees
of a treeT ∈ Tk+1 is c-balancedif the forest formed by the treest ∈ C with
|to| > c ·v(t) is of order at leastck, i. e.,

∑
t∈C

|to|>cv(t)

v(t) ≥ ck .

The familyC is c-unbalancedif it is not c-balanced.

Proposition 4.3. Let cS be given by Proposition 4.2. Then there exists a constant
cU > 0 such that the following holds for any tree T∈ Tk+1. If there exists a set
W ⊆V(T), |W|< cUk such that the familyC of all components of the forest T−W
is cU-unbalanced, then T⊆ G.

Proposition 4.3 will be proved in Section 6.2. The last auxiliary proposition
(Proposition 4.4) will be proved in Section 7.

Proposition 4.4. Suppose that q,cS,cE and cU are fixed positive numbers. For any
σ ,ω > 0 with σ ≪ ω ≤ min{q,cS,cE,cU}, there existβ > 0 and n0 = n0(σ ,ω)
such that for any graph G on n≥ n0 vertices satisfying the LKS-property (with
k≥ qn) with a subset̄V ⊆V having the following properties

• |V̄| > 4
√

cSk ,

• e(V̄,V \ V̄) ≤ βk2 , and

• |L∩V̄| ≥ (1−σ)|V̄|/2 ,

there exists a subset V′ ⊆ V̄ such that

⋄ (1−ω)k≤ |V ′| ≤ (1+ ω)k ,

⋄ |V ′∩L| ≥ |V ′|/2 , and

⋄ e(V ′,V \V′) ≤ ωk2 ,

or Tk+1 ⊆ G.
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Proof of Theorem 1.4.Let cS,cU, andcE be given by Propositions 4.3, 4.2 and 4.1,
respectively. Setℓ = ⌈1

q⌉, ωℓ = min{q,cS,cU,cE}, andσℓ ≪ ωℓ. We find a se-
quence of parameters

0< β1 ≪ σ1 ≪ ω1 = β2 ≪ σ2 ≪ ω2 = β3 ≪ ···≪ ωℓ−1 = βℓ ≪ σℓ ≪ ωℓ , (4.1)

obtained by the following iterative procedure. In stepi = 1 start by settingβℓ as the
number given by Proposition 4.4 for input parametersσℓ andωℓ. Setωℓ−1 = βℓ

andσℓ−1 ≪ ωℓ−1. In general, in stepi we defineβℓ+1−i as the number given by
Proposition 4.4 for input parametersσℓ+1−1 andωℓ+1−ℓ. Setωℓ−i = βℓ+1−i and
σℓ−i ≪ ωℓ−i . Repeat the procedure forℓ steps. Setn0 = max

i=1,...,ℓ
{n0(σi ,ωi)}, where

n0(σi ,ωi) is also from Proposition 4.4.
Let G be a graph satisfying the conditions of Theorem 1.4 (i.e.,q is fixed,n is

sufficiently large, andk > qn). We can make the following assumptions.

Assumption 4.5. |L| ≤ |S|+1.

Proof. Suppose that|L| ≥ |S|+2. If e(L,S) = 0, then any treeT ∈ Tk+1 embeds
in G[L] greedily, and Theorem 1.4 is proven. Otherwise, there exists an edge
e∈ E(L,S). The graphG′ = G−e is of ordern and has the LKS-property. Indeed,
at most one vertex ofL has decreased its degree inG′. For a graphH, denote
by LH the vertices ofH with degrees at leastk andSH the vertices of degree less
thank, i. e.,L = LG. Then|LG′ | ≥ |LG|−1≥ |SG|+ 2−1≥ |SG′ |. If Tk+1 ⊆ G′,
thenTk+1 ⊆ G. We can repeat this procedure untilTk+1 ⊆ G or obtain a spanning
subgraphG∗ ⊆ G satisfying the LKS-property and such that|LG∗ | ≤ |SG∗ |+1.

Assumption 4.6. The set S is independent.

Proof. If Assumption 4.6 is not fulfilled, we erase inG all the edges induced by
S. Clearly, the modified graphG′ still has the LKS-property and fulfills Assump-
tion 4.6. This does not disturb Assumption 4.5. Any tree thatis subgraph ofG′ is
also a subgraph ofG.

Let ϑ = ci(n/k). We iterate the following process for at mostϑ steps. In step
i, i ≤ ϑ , we prove thatTk+1 ⊆ G or we define a setVi ⊆V \⋃ j<i Vj such that the
following conditions are fulfilled for eachj ∈ [i].

(P1)i (1−βi)k≤ |Vj | ≤ (1+ βi)k,

(P2)i |L∩Vj | ≥ (1/2−βi)k, and

(P3)i e(Vj ,V \Vj) ≤ βik2.
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In the stepi = 1, we apply Proposition 4.4 with parametersV =V, σ = σ1, ω =
ω1 and obtain thatTk+1 ⊆ G, or there exists a setV1 satisfying (P1)1, (P2)1, and
(P3)1. Suppose that in stepi we have setsV1, . . . ,Vi−1 that satisfy the conditions
(P1)i−1, (P2)i−1, and (P3)i−1. SetV∗ = V \⋃ j<i Vj .

First assume that|V∗| > 4
√

cSk. If |L∩V∗| ≥ (1−σi−1)|V∗|/2, the graphG
satisfies the conditions of the Proposition 4.4 (withV̄ = V∗). If |L∩V∗| < (1−
σi−1)|V∗|/2, then the decompositionV1, . . . ,Vi−1,V∗ is (βi−1,σi−1)-Extremal. We
first apply Proposition 4.1 and show thatTk+1 ⊆ G, or there exists a setQ ⊆ V∗

satisfying

• |Q| > k/2 ,

• |Q∩L| > |Q|/2 , and

• e(Q,V \Q) < σi−1k2 .

It is enough to assume the latter case. Again, the graphG satisfies the conditions
of Proposition 4.4 (withV̄ = Q). Proposition 4.4 yields thatTk+1 ⊆ G, or that
there exists a setVi ⊆ Q satisfying Properties (P1)i–(P3)i.

It remains to deal with the case|V∗| ≤ 4
√

cSk. Having found setsV1, . . . ,Vϑ sat-
isfying (P1)ϑ –(P3)ϑ , we redistribute the small amount of (at most4

√
cSk) vertices

of Ṽ equally betweenV1, . . . ,Vϑ . The thus defined partition is( 4
√

cS,cE)-Extremal.
Proposition 4.1 yields thatTk+1 ⊆ G (as no new setQ can be found).

5 Special case (proof of Proposition 4.2)

Proof of Proposition 4.2.Fix a setL′ ⊆ L∩V̄ of size|L′| = (1/2−cS)|V̄|. Define
L̃ = {u∈ L′ : deg(u,V̄ \L′) ≥ (1−2

√
cS)k}. It holds for any vertexx∈ L′ \ L̃ that

deg(x,L′)+ deg(x,V \ V̄) > 2
√

cSk, otherwise it would be included iñL. Since
e(G[L′])+e(L′\ L̃,V \V̄) < 2cSk2 we get that|L′\ L̃|< 2

√
cSk (each vertex ofL′\ L̃

is incident with at least 2
√

cSk such edges). Consequently,|L̃|> (1/2−3
√

cS)|V̄|.
Next we verify that the set̃S, defined as̃S= {u∈ V̄ \L′ : deg(u, L̃)≥ (1−9

√
cS)k},

covers almost the whole set̄V \L′. Indeed, not more thancSk2 edges ofE[L̃,V̄ \L′]
are incident to some vertexx∈ L, whereL is the set of vertices ofx∈ V̄ \L′ with
deg(x, L̃) > k. Observe thatL ⊆ L. Hence the number of edges in the bipartite
graphG[L̃,V̄ \ (L′∪L)] is at least

|L̃|(1−2
√

cS)k−cSk2 >
1
2
|V̄|k−4

√
cS|V̄|k−cSk2 >

1
2
|V̄|k−6

√
cS|V̄|k .
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Since no vertex from̄V \ (L′∪L) receives more thank edges from̃L, it holds that

|(V̄ \ (L′∪L))∩ S̃| ≥
1
2|V̄|k−6

√
cS|V̄|k

k
=

1
2
|V̄|−6

√
cS|V̄| .

Obviously,L⊆ S̃and thus,|V̄ \(L′∪S̃)| ≤7
√

cS|V̄| (recall thatL′ andS̃are disjoint,
and |L′| = (1/2− cS)|V̄|). By the choice ofL̃ andS̃ and the fact that|V̄ \ (L′ ∪
S̃)| ≤ 7

√
cS|V̄|, the minimum degree of vertices iñL in the bipartite graphG1 =

G[L̃, S̃] is at leastk−9 4
√

cS|V̄|, and of those iñSat least(1−9
√

cS)k. By choosing
sufficiently smallcS (as a function ofq; recall q > k/n) we can guarantee that
δ (G1) > k/2.

Let T ∈Tk+1 be an arbitrary tree. We writeTn
e for the set of internal vertices of

T which are contained inTe andT l
e for the set of leaves inTe. By Fact 3.2 it holds

|Tn
e | ≤ |To| ≤ k/2. We embed the subtreeT −T l

e in G1 using the greedy algorithm
embedding the vertices fromTn

e in S̃. The last step is to embed the leavesT l
e. This

can be done using the property of high degree of vertices inL̃ (note thatT l
e may be

mapped outsideG1 at this step).

6 Tools for the proof of Proposition 4.4

6.1 Szemerédi Regularity Lemma

In this section we recall briefly the Szemerédi Regularity Lemma [21] and establish
related notation. The reader may find more on the Regularity Method in [14, 13].

Let H = (V(H);E(H)) be a graph of orderm. For two nonempty disjoint sets
X,Y ⊆V(H) we definedensityof the pair(X,Y) by

d(X,Y) =
e(X,Y)

|X||Y| .

Forε > 0 we say that a pair of vertex sets(A,B) is ε-regularif |d(A,B)−d(X,Y)|<
ε for every choice ofX andY, whereX ⊆ A, Y ⊆ B, |X| > ε|A|, |Y| > ε|B|.
For an ε-regular pair(A,B) a setX ⊆ A, and a setY ⊆ B is called asignifi-
cant setif |X| > ε|A|, and|Y| > ε|B|, respectively. For anε-regular pair(A,B)
we say that a vertexv ∈ X is typical with respect to a significant setW ⊆ Y if
deg(v,B) ≥ (d(A,B)−2ε)|W|.

Fact 6.1. 1. Let (X,Y) be anε-regular pair and W⊆ Y be a significant set.
Then all but at mostε|X| vertices of X are typical w.r.t. W.
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2. Let X,Y1,Y2, . . . ,Yℓ be disjoint sets of vertices, such that(X,Y1), . . . ,(X,Yℓ)
are ε-regular pairs. Suppose that we are given sets Wi ⊆ Yi which are sig-
nificant for each i∈ [ℓ]. Then there are at most

√
ε|X| vertices of X which

are not typical with respect to at least
√

εℓ sets Wi .

Proof. 1. The proof is direct.

2. For a vertexv∈ X, let Iv ⊆ [ℓ] be the set of those indicesi for whichv is not
typical with respect toWi . For contradiction, suppose that|{v ∈ X : |Iv| >√

εℓ}|> √
ε|X|. Then

∑
i∈[ℓ]

|{v∈ X : i ∈ Iv}| = ∑
v∈X

|Iv| > ε|X|ℓ .

By averaging, there exists an indexi0 ∈ [ℓ] such that the setU = {v ∈ X :
i0 ∈ Iv} is significant. Then,

d(U,Wi0) =
∑v∈U deg(v,Wi0)

|U ||Wi0|
< d(X,Wi0)−2ε ≤ d(X,Yi0)− ε ,

a contradiction to the regularity of the pair(X,Yi0).

A partitionV0,V1, . . . ,VN of the vertex setV(H) of the graphH is called(ε,N)-
regular if

• |V0| < εm,

• |Vi | = |Vj | for everyi, j ∈ [N], and

• all but at mostεN2 pairs(Vi ,Vj) (for i, j ∈ [N]) areε-regular.

The setsV1, . . . ,VN are calledclusters.
The Regularity Lemma we use deals with graphs with initial prepartitioning of

the vertex set. Its proof follows the same lines as the proof of Szemerédi’s original
result [21].

Theorem 6.2 (Regularity Lemma, with initial partition). For everyε > 0 and
every m0, r ∈ N, there exist numbers M0,N0 ∈ N such that every graph H of order
m≥ N0 whose vertex sets is partitioned into r sets O1 ∪O2 ∪ . . .∪Or = V(H)
admits an(ε;N)-regular partition V0,V1, . . . ,VN for some m0 ≤ N ≤ M0 such that
for every i∈ [N] we have Vi ⊆ O j for some j∈ [r].
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6.2 Cutting the trees, and the (un)balanced trees

Let T ∈ Tk+1 be a tree andℓ ∈ N, ℓ < k. The purpose of this section is to give
constructive definitions of anℓ-fine partition ofT, and a switchedℓ-fine partition
of T. The treeT is rooted in a vertexR. This gives us order� onV(T).

For a treeF ⊆ T such thatR 6∈ V(F) we define theseed of Fas the unique
vertexv∈V(T)\V(F) such thatF ⊆ T(R,↓ v) andv is adjacent to a vertex from
F . We write Seed(F) = v.

SetT0 = T and i = 1. We repeatedly (in stepi) choose a vertexxi ∈ V(Ti−1)
such thatv(Ti−1(↓ xi)) > ℓ and such thatxi is �-minimal among all such possible
choices. We setTi = Ti−1 − (V(Ti−1(↓ xi)) \ {xi}). If no suchxi exists we have
v(Ti−1) ≤ ℓ. We then setxi = R and terminate. Since we deleted at leastℓ vertices
in each step, we havei ≤ ⌈(k+1)/ℓ⌉ at the moment of terminating. Set

A′ = {x j : dist(x j ,R) is even} and B′ = {x j : dist(x j ,R) is odd} .

Let CA and CB be those componentst of the forestT − (A′ ∪B′) which have
Seed(t) ∈ A′ and Seed(t) ∈ B′, respectively. For a componentt we write

X(t) = V(t)∩N(B′) for t ∈ CA, and

X(t) = V(t)∩N(A′) for t ∈ CB.

SetWA = A′∪⋃t∈CA
X(t) andWB = B′∪⋃t∈CB

X(t). Observe that max{|WA|, |WB|}
≤ |A′|+ |B′|. Let DA andDB be those componentst of the forestT − (WA∪WB)
which have Seed(t) ∈ WA and Seed(t) ∈ WB, respectively. Theℓ-fine partition of
T is the quaternaryD = (WA,WB,DA,DB). The following properties of theℓ-fine
partition ofT are obvious from the construction.

• R∈WA.

• The distance from any vertex inWA to any vertex inWB is odd. The distance
between any pair of vertices inWA or between any pair of vertices inWB is
even.

• T is decomposed into verticesWA, WB, and into treesDA andDB.

• No tree fromDA is adjacent to any vertex inWB. No tree fromDB is adjacent
to any vertex inWA.

• max{|WA|, |WB|} ≤ 4k
ℓ .

• v(t) ≤ ℓ for any treet ∈ DA∪DB.
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The partitionD will be further refined to get a switchedℓ-fine partition. LetD∗
A

andD∗
B denote the end-trees fromDA andDB, respectively. In the following we

assume that∑t∈D∗
A

v(t)≥ ∑t∈D∗
B

v(t). If this was not the case, we exchange the sets
WA, WB, andDA, DB. For any treet ∈ DB \D∗

B setY(t) = V(t)∩N(WB). Observe
that∑t∈DB\D∗

B
|Y(t)| ≤ 2|WB|. DefineW′

A = WA∪
⋃

t∈DB\D∗
B
Y(t). Theswitchedℓ-

fine partition of Tis the quaternaryD = (W′
A,WB,D ′

A,D ′
B), whereD ′

A andD ′
B are

the sets of components ofT− (W′
A∪WB) with the seed inW′

A andWB, respectively.
The switchedℓ-fine partition ofT satisfies the following properties.

• R∈W′
A∪WB.

• The distance from any vertex inW′
A to any vertex inWB is odd. The distance

between any pair of vertices inW′
A or between any pair of vertices inWB is

even.

• T is decomposed into verticesW′
A, WB, and into treesD ′

A andD ′
B.

• No tree fromD ′
A is adjacent to any vertex inWB. No tree fromD ′

B is adjacent
to any vertex inW′

A.

• max{|W′
A|, |WB|} ≤ 12k

ℓ .

• v(t) ≤ ℓ for any treet ∈ D ′
A∪D ′

B.

• D ′
B contains no internal tree.

• We have

∑
t∈D ′

A
t end tree

v(t) ≥ ∑
t∈D ′

B

v(t) .

For anℓ-fine partition (or a switchedℓ-fine partition)D = (WA,WB,DA,DB)
the treest ∈ DA∪DB are calledshrublets.

The ℓ-fine partition and the switchedℓ-fine partition may not be unique, the
construction depended on the choice of the rootR. However, this is not a problem
in the later setting; we only need that there exists at least one ℓ-fine partitionD
and one switchedℓ-fine partitionD ′ of T satisfying the above properties.

Proof of Proposition 4.3.SetcU = cS/4.
If the setL induces less thencSn2 edges then we haveT ⊆Gby Proposition 4.2.

In the rest we assume thatG[L] contains at leastcSn2 edges. A well-known fact
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asserts that there exists a graphG′ ⊆ G[L] with minimum degree at least half of the
average degree ofG[L], i. e.,δ (G′) ≥ cSn≥ 4cU(k+1).

Let C ′ ⊆C be those treest ∈C for which |to| ≤ cSv(t). It holds that∑t∈C ′ v(t)
> (1−4cU)k. We apply Fact 3.2 on each treet ∈ C ′. Summing the bound on the
number of leaves, given by Fact 3.2, we get that there are at least(1−2cU)(k+1)
leaves in the trees ofC ′. A leaf of a treet ∈ C ′ is either a leaf ofT or it is adjacent
to a vertex inW. RootT at an arbitrary vertexr. The vertexr determines a partial
order� with r being the maximal element. LetX be those vertices ofT which
are a leaf of some treet ∈ C ′ but not a leaf ofT. Each vertex inX is either a
�-minimal or a�-maximal vertex of some treet ∈ C . Let Xmin ⊆ X be the�-
minimal vertices andXmax = X \Xmin. (Note thatXmax does not have to contain
exactly the�-maximum “fake” leaves ofT; the vertices which come out from
1-vertex trees ofC ′ are not included.) As each treet has a unique�-maximal
vertex we get|Xmax| ≤ h, whereh is the number of treest in C ′ which have order
more than 1. Observe, that each such treet has at least 1/cU vertices and thus
h≤ cU(k+1). For eachv∈ Xmin we have|Ch(v)∩W| ≥ 1. Since for eachu∈W
it holds|Par(u)∩Xmin| ≤ 1 we have|Xmin| ≤ |W| < cUk. Summing the bounds we
get |X| < 2cU(k+1). ThusT has at least(1−4cU)(k+1) leaves. LetT ′ ⊆ T be
a subtree ofT formed by its internal vertices. We havev(T ′) ≤ 4cU(k+ 1). We
embedT ′ in G′ greedily. Then we extend the embedding also to the leaves ofT,
using the high degree of the images ofV(T ′).

6.3 A Tutte-type proposition

GraphH is calledfactor critical if for any its vertexv the graphH−v has a perfect
matching.

The following statement is a fundamental result in the Matching theory. See [15],
for example.

Theorem 6.3 (Gallai-Edmonds Matching Theorem).Let H be a graph. Then
there exist a set Q⊆ V(H) and a matching M of size|Q| in H such that every
component of H−Q is factor critical and the matching M matches every vertex in
Q to a different component of H−Q.

The setQ in Theorem 6.3 is called aseparator.

Proposition 6.4. Let (H,ω) be a weighted graph of order N, withω : E(H) →
(0,s]. Letσ ,K be two positive numbers with1/(2N)< σ < min{K/(32Ns),1/10}.
LetL be an arbitrary set of vertices, such that

• V(H)\L is an independent set,
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• |L | > N/2−σN,

• d ēgω(u) ≥ K for every u∈ L ,

• the setL induces at least one edge in H,

• d ēgω(u) < (1+ σ)K for every u∈V(H)\L .

SetL ∗ = {u∈V(H) : d ēgω(u) ≥ (1+ σ)K/2}.
Then there exist a matching M and two adjacent vertices A,B∈V(H) such that

at least one of the following holds.

Case I For the vertex A it holdsd ēgω (A,V(M)) ≥ K and for each edge e∈ M we
have|N(A)∩e| ≤ 1. For the vertex B it holdsd ēgω (B,V(M)∪L ∗) ≥ (1+
σ)K/2.

Case II There exists a setX ′ ⊆V(H), with d ēgω (x,V(M)) ≥ d ēgω (x)−2σNs for
all vertices x∈ X ′. Furthermore, A,B ∈ X ′ ∩L , and|V(M′) \X ′| ≤ 1,
where M′ = {xy∈ M : x,y∈ N(X ′)}.

Moreover observe that each edge e∈ M intersects the setL .

Figure 1: Two resulting matching structures from Proposition 6.4. Dashed lines
represent no connections (in Case I), or sparse connections(in Case II).

Proof. Among all matchings satisfying the conclusion of the Gallai-Edmonds Match-
ing Theorem, choose a matchingM0 that covers a maximum number of vertices
from V(H) \L ∗. Let Q be the corresponding separator. Recall thatM0 is a
Q↔ (V(H)\Q)-matching. SetL0 = L \Q andS = V(H)\L .
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We distinguish three cases.

• There exists anL0 ↔ L0 edge.
SetX ′ = L0∪N(L0)\Q and letA andB be vertices of anyL0 ↔ L0 edge. Then
A andB lie in the same componentC of H −Q. If V(M0)∩V(C) 6= /0, then take
{x} = V(M0)∩V(C), and choosex arbitrarily in C, otherwise. SinceC is factor
critical, there exists a perfect matchingM1 in C−x. It is straightforward to check
that the matchingM = M0∪M1 satisfies conditions of Case II.

• L0 = /0.
SetX ′ = V(H) andM = M0. Let A andB be end-vertices of an arbitraryL ↔L
edge. It is clear thatV(M′) \X ′ = /0. SinceQ ⊇ L , |L | ≥ N/2− σN, and
|V(M)| = 2|Q| it holds that all but at most 2σN vertices ofH are covered byM,
thus for any vertexx∈ X ′, we have that d ēgω(x,V(M)) ≥ d ēgω(x)−2σNs.

• L0 is an independent set andL0 6= /0.
First we observe that each componentC of H −Q is a singleton. Indeed, sinceS
andL0 are independent all the edges in any matching inC are in the formS ↔ L0.
SinceC is factor critical, we have|V(C−u)∩L0|= |V(C−u)∩S | for any vertex
u∈V(C). Thusv(C) = 1. (Note thatM0 is thus maximum.) SetM = M0.

DefineL̃ = {u∈ N(L0) : d ēgω(u) ≥ K}. Observe that̃L ⊆ Q. We shall prove
that

L̃ 6= /0 (6.1)

by contradiction. Assume that for every vertexu ∈ N(L0) it holds d ēgω(u) < K.
We get|L0|K ≤ ēω(L0,N(L0)) < K|N(L0)| implying |L0| < |N(L0)|. FromL̃ = /0
it follows that N(L0)∩L = /0 and thus every vertex in N(L0) is matched byM to
a distinct vertex inL0, a contradiction.

We show that the graphV(H) fulfills conditions of Case I. It suffices to find a
vertexB∈ N(L0) such that d ēgω(B,V(M)∪L ∗) ≥ (1+ σ)K/2. The pair(A,B),
whereA∈ N(B)∩L0, satisfies conditions of Case I.

DefineX = V(H) \ (V(M)∪L ∗). For contradiction, assume that for every
B∈ L̃ we have

d ēgω (B,V(M)∪L ∗) < (1+ σ)K/2 , (6.2)

which yields

d ēgω(B,X) > (1−σ)K/2 . (6.3)

21



This implies thatM does not contain any edge with both end-vertices inL . In-
deed, suppose that such an edgexy∈ M exists. Thenx∈ L0 andy∈ L̃. By (6.3),
d ēgω(y,X) > (1− σ)K/2. In particular, there exists a vertexp ∈ NX(y). The
matchingM1 = {yp}∪M0 \ {xy} is a matching as in Gallai-Edmonds Matching
Theorem (with separatorQ) which covers more vertices ofV(H) \L ∗ thanM0

does. This contradicts the choice ofM0. Observe that for any vertexu ∈ X, we
have d ēgω(u,V(M)) = d ēgω(u) < (1+σ)K/2 and thus d ēgω (u, L̃) < (1+σ)K/2.
We bound̄eω(L̃,X) from both sides.

(1−σ)|L̃|K
2
≤ ēω(L̃,X) ≤ (1+ σ)|X|K

2
,

which yields

|L̃| ≤ 1+ σ
1−σ

|X| . (6.4)

We use (6.2) to obtain bounds onēω(Q,L0).

|L0|K ≤ ēω(Q,L0) = ēω(L̃∪ (Q\ L̃),L0)

≤ (1+ σ)
K
2

(

|L̃|+ |Q\L |
)

≤ (1+ σ)
K
2
|L̃|+K|Q\L | ,

which gives
2|L0| ≤ (1+ σ)|L̃|+2|Q\L | . (6.5)

Every vertex inQ\L is matched to a vertex inL0, and conversary, if a vertex
in L0 is matched, then it is matched to a vertex inQ\L . Therefore,|Q\L | =
|L0∩V(M)|. Combined with (6.5) we have that 2|L0\V(M)| ≤ (1+ σ)|L̃|. Plug-
ging (6.4) we obtain

2|L0\V(M)| ≤ (1+ σ)2

1−σ
|X| . (6.6)

From|L | > |V(H)\L |−2σN we get|L0 \V(M)| ≥ |X|−2σN (Recall that any
edge ofM has one end-vertex inL and the other one inV(H) \L ). Together
with (6.6) we obtain

(1+ σ)2

1−σ
|X| ≥ 2|X|−4σN ,

yielding
4σN

1−3σ
≥ |X| .

A contradiction with (6.3), (6.1), and the bound onσ .
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6.4 Embedding lemmas

In this section, we introduce some tools for embedding a forest in one regular
pair. Similar results are folklore, however we prove them tailed to our needs.
Lemma 6.5 describes sufficient conditions for embedding a rooted tree in a regular
pair.

Lemma 6.5. Let(t, r) be a rooted tree, and d> 2ε > 0. Let(X,Y) be anε-regular
pair with |X| = |Y| = s and densityd(X,Y) ≥ d. Let P′ ⊆ P⊆ X and Q′ ⊆ Q⊆Y

be such thatmin{|P|, |Q|} ≥ ∆ andmax{|P′|, |Q′|} ≥ ∆, where∆ = εs+v(t)
d−2ε . Then

there exists an embeddingφ of t in P∪Q such that the root r is mapped to P′∪Q′.
The following two further requirements can be also fulfilled.

1. If |P\P′| ≥ ∆, we can ensure thatφ(V(t) \ {r})∩P′ = /0, and similarly, if
|Q\Q′| ≥ ∆, we can ensure thatφ(V(t)\ {r})∩Q′ = /0.

2. If |P′| ≥ ∆ we can can prescribe the vertex r to be mapped to P′. If |Q′| ≥ ∆
we can can prescribe the vertex r to be mapped to Q′.

Proof. Without loss of generality assume that|P′| ≥ ∆. Choose an auxiliary set
SP ⊆ P with |SP| = ∆ subject to|SP∩P′| being minimal. In particular, we have
SP ⊆ P\P′, if |P\P′| ≥ ∆. Similarly, choose a setSQ ⊆ Q with |SQ| = ∆ with
respect to|SQ∩Q′| being minimal. The setsSP andSQ are significant. Choose
a vertexv ∈ P′ which is typical w. r. t.SQ. There are at least|P′| − εs > 1 such
vertices. Setφ(r) = v.

We inductively extend the embeddingφ , so that every vertex oft which was
mapped toP is typical w. r. t.SQ, and that every vertex which was mapped toQ
is typical w. r. t.SP. We illustrate the inductive step by describing how to embed
the neighborhood of a vertexu which was already embedded inP. The case when
φ(u) ∈ Q is analogous. LetN ⊆ N(u) be the yet unembedded neighbors ofu. The
vertexφ(u) has at least(d−2ε)∆≥ εs+v(t) neighbors inSQ. At least|N| of them
are typical w. r. t.SP and not yet used byφ . We then mapN to these vertices.

Clearly, Part 1. was satisfied. In addition, Part 2. can also be fulfilled. Indeed,
we only need to observe that if|P′| ≥ ∆, there is at least one vertex inP′ which is
typical w. r. t.SQ. This vertex will be used for embedding the rootr. The second
condition of Part 2 is analogous.

For the proof of Proposition 4.4 (which is the key tool for proving Theo-
rem 1.4), we need to embed the shrublets of the treeT in an efficient way. To
this end, we try to fill the clusters of the regular pair with the same speed. The
following definition of i-packness formalizes this.
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Let i ∈ {1,2} andX,Y,Z ⊆ V(G) be three disjoint subsets. We say thatU ⊆
X ∪Y is i-packed(with parametersλ ,τ) with respect to thehead set Zand with
respect to theembedding sets XandY, if

min{|X∩U |, |Y∩U |} ≥ min{iµ ,ν}−λ ,

or
||X∩U |− |Y∩U || ≤ τ,

where

µ = min{d ēg(Z,X),d ēg(Z,Y)}, and ν = max{d ēg(Z,X),d ēg(Z,Y)}.

If U represents the vertices used by an embedding, then to keepU 1-packed
means that we have roughly the same amount of used vertices onboth sides of
X andY until we have embedded roughly 2µ vertices. If we manage to keepU
2-packed, we have this “balance” for even longer.

The following embedding lemma allows us to “fill-up” a regular pair with a
rooted forest. The lemma is divided into three parts to satisfy different embed-
ding requirements of the proof of Proposition 4.4. The most important one is the
“saving” Part 3. Having a clusterZ and a regular pair(X,Y), Part 1 ensures the
embedding of a rooted forest(F,R) mappingR to Z andF −R to X∪Y, provided
that the order ofF is slightly less than d ēg(Z,X ∪Y). Part 3 allows us to embed
even a larger forestF , under certain additional conditions.

Lemma 6.6. Let (F,R) be a rooted tree with root R such that each component of
F−R has order at mostτ. Let X,Y,Z be three disjoint vertex sets, with|X|= |Y|=
s, forming threeε-regular pairs. Assume thate(X,Y)

s2 ≥ d > 2ε andd(Z,X),d(Z,Y)∈
{0}∪ [d,1]. Set∆ = εs+τ

d−2ε . Let U⊆ X∪Y. In the following we write F1 and F2 for
the vertices of F−R with odd and even distance from R, respectively.

1. If v(F)+ |U | ≤ d ēg(Z,X∪Y)−λ1−∆−2εs, whereλ1 = ∆ + τ +3εs, U is
1-packed w. r. t. Z (with parametersλ1 andτ), and R is mapped to a vertex
r ∈ Z that is typical w. r. t. X and w. r. t. Y , then the mapping of R can be
extended to an embeddingϕ of F such that

(c1) ϕ(V(F −R))⊆ (X∪Y)\U,

(c2) each vertex of F1 is mapped to a vertex which has at least(d−2ε)|Z|
neighbors in Z, and

(c3) the set U∪ϕ(V(F −R)) is 1-packed (with parametersλ1 andτ) w. r. t.
the head set Z and the embedding sets X and Y.
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2. If max{|F1|, |F2|}+ |X∩U | ≤ d ēg(Z,X)−λ1−∆− εs, U is1-packed (with
parametersλ1 = ∆+τ +3εs andτ) w. r. t. the head set Z and the embedding
sets X and Y, and R is mapped to a vertex r∈ Z that is typical w. r. t. X and
w. r. t. Y , then the mapping of R can be extended to an embeddingϕ of F
such that (c1), (c2), and (c3) hold.

3. If d ēg(Z,X) ∈ [ηs,(1−η)s], whereηs≥ 12λ2, andλ2 = 2∆ +7εs+4τ, U
is 2-packed w. r. t. Z (with parameterλ2 and τ), each component of F−R
has at least two vertices, R is mapped to a vertex r∈ Z that is typical w. r. t.
X \U and w. r. t. Y\U, and

v(F)+ |U | ≤ d ēg(Z,X∪Y)+
ηs
4

, (6.7)

then the mapping of R can be extended to an embeddingϕ of F such that
(c1), (c2), and

(d) U∪ϕ(V(F −R)) is 2-packed w. r. t. Z (with parametersλ2 andτ)

hold.

Proof. Set µ = min{d ēg(Z,X),d ēg(Z,Y)} and ν = max{d ēg(Z,X),d ēg(Z,Y)}.
We split the embedding of the forestF −R into ℓ steps, whereℓ is the number
of components ofF −R. In each stepi, we embed a componentti of F −R in
(X ∪Y) \ (U ∪Ui), whereUi = ϕ(

⋃

j<i V(t j)) is the image of trees embedded in
previous steps. The componentti is a tree, we writer i for its root,{r i} = V(ti)∩
N(R). Moreover, we assume that the treesti are ordered so thatt1, . . . ,tℓ1 are
trees of order at most two,tℓ1+1, . . . ,tℓ2 are stars of order at least three with their
centers in the roots of the components andtℓ2+1, . . . ,tℓ are trees which are not stars
centered in the rootsr i . This ordering is unnecessarily in the proof of Parts 1, 2,
we only use it in the embedding described in Part 3. Observe that the assumptions
of Part 3 assert that all treeti , i ∈ [ℓ1] have order exactly two. For stepi, set
Pi = X \ (U ∪Ui ∪B), andQi = Y \ (U ∪Ui ∪B), whereB is the set of vertices in
X∪Y which are not typical w. r. t. the setZ. We have max{|X∩B|, |Y∩B|} ≤ εs.
DefineP′

i = Pi ∩N(r) andQ′
i = Qi ∩N(r).

Part 1. In each stepi, the embedding will satisfy conditions (c1)i, (c2)i, and
(c3)i. These conditions are modified versions of (c1), (c2), and (c3), where we
considerU ∪Ui instead ofU andϕ(ti) instead ofϕ(V(F −R)). Conditions (c1)0,
(c2)0, and (c3)0 are clearly met. We shall verify (c1)i, (c2)i, and (c3)i inductively
at the end of each stepi. First we claim that max{|P′

i |, |Q′
i |} ≥ ∆. This is implied
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by the following chain of inequalities.

|P′
i ∪Q′

i | = deg(r,Pi ∪Qi) ≥ d ēg(Z,X∪Y)−|U ∪Ui |− |B|−4εs≥
≥ λ1 + ∆−3εs> 2∆ . (6.8)

Second, we claim that min{|Pi|, |Qi |} ≥ ∆. If this is not the case,

max{|X∩ (U ∪Ui)|, |Y∩ (U ∪Ui)|} ≥ s−∆− εs≥ ν −∆− εs.

Now asU ∪Ui is 1-packed,

min{|X∩ (U ∪Ui)|, |Y∩ (U ∪Ui)| ≥ µ −λ1 ,

or
min{|X∩ (U ∪Ui)|, |Y∩ (U ∪Ui)| ≥ ν −∆− εs− τ .

In both cases, we obtain that|U ∪Ui | > d ēg(Z,X∪Y)−λ1−∆− εs, a contradic-
tion. Thus by Lemma 6.5, we can embed the treeti . If min{|P′

i |, |Q′
i |} ≥ ∆, we

embedti in Pi ∪Qi using Lemma 6.5, Part 2, so that

||X∩ (U ∪Ui+1)|− |Y∩ (U ∪Ui+1)|| ≤ max{||X∩ (U ∪Ui)|− |Y∩ (U ∪Ui)||,τ}.
(6.9)

Inequality (6.9) ensures that Property (c3)i holds. There is nothing to prove if

min{|X∩ (U ∪Ui+1)|, |Y∩ (U ∪Ui+1)|} ≥ min{d ēg(Z,X),d ēg(Z,Y)}−λ1 .
(6.10)

So, suppose that (6.10) does not hold. We show that min{|P′
i |, |Q′

i |} ≥ ∆. Then
by (6.9) and by the fact thatU ∪Ui is 1-packed, we obtain that||X∩ (U ∪Ui+1)|−
|Y∩(U ∪Ui+1)|| ≤ τ. Assume for contradiction and without loss of generality that
|P′

i | < ∆. Then

|X∩ (U ∪Ui)| ≥ deg(r,X)−∆−|B∩X| ≥ µ −λ1+ τ.

As U ∪Ui is 1-packed, we obtain (6.10), a contradiction to our assumption. Prop-
erties (c1)i and (c2)i follow from the fact thatPi is disjoint fromU ∪Ui andB.

Part 2. The proof goes in a similar spirit as in Part 1. We embed sequentially
the componentsti of F −R using Lemma 6.5. In each step, vertices ofV(ti)∩F1

are mapped toN(A)∩ (X∪Y)\ (U ∪Ui) so thatU ∪Ui remains 1-balanced.
Part 3. In each stepi of the embedding we require the following four invariants

to hold.

(P1) U ∪Ui+1 is 2-packed (with parametersλ2 andτ).
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(P2) If |Pi \P′
i | > ∆, then the treeti is embedded so thatϕ(V(ti)\ {r i})∩N(r)∩

X = /0. Similarly, if |Qi \Q′
i| > ∆, thenϕ(V(ti)\ {r i})∩N(r)∩Y = /0.

(P3) If min{|P′
i |, |Q′

i |} ≥ ∆, then

||(U∪Ui+1)∩X|−|(U∪Ui+1)∩Y|| ≤max{τ, ||(U∪Ui)∩X|−|(U∪Ui)∩Y||}.

(P4) If min{|(U ∪Ui+1)∩X|, |(U ∪Ui+1)∩Y|} < min{2µ ,ν}−λ2, then

min{|P′
i+1|, |Q′

i+1|} ≥ ∆.

Properties(P1), (P2), (P3), and(P4) are clearly met at stepi = 0. Assume that
(P1), (P2), (P3), and (P4) hold in the stepi − 1. We first prove the following
auxiliary claims

(α) max{|P′
i |, |Q′

i |} ≥ ∆, and

(β ) min{|Pi|, |Qi |} ≥ ∆.

We prove (α) by contradiction. Suppose that max{|P′
i |, |Q′

i |} < ∆. We claim that

min{|X \ (U ∪Ui ∪N(r))|, |Y \ (U ∪Ui ∪N(r))|} ≥ ∆ + εs . (6.11)

Suppose that (6.11) does not hold. Assume without loss of generality that|X \
(U ∪Ui ∪N(r))| < ∆+εs. Recall that|P′

i |< ∆. Thus we have|X∩(U ∪Ui)|> s−
2∆−2εs. The fact thatU∪Ui is 2-packed implies that|U∪Ui | ≥ s+min{2µ ,ν}−
λ2−2∆−2εs> d ēg(Z,X∪Y)+ ηs

2 , a contradiction. Inequality (6.11) implies by
(P2) that only the roots of the treest j ( j < i) were embedded in N(r) and thus
|Ui ∩N(r)| ≤ |Ui |/2≤ v(F)/2 (recall thatv(t j) ≥ 2 for all j < i). We have thus

|P′
i |+ |Q′

i| ≥ d(Z,X)|X \U |+d(Z,Y)|Y \U |− |Ui ∩N(r)|−6εs

≥ d ēg(Z,X∪Y)− v(F)

2
−d(Z,X)|X∩U |−d(Z,Y)|Y∩U |−6εs

(6.7)
≥ (d(Z,X)+d(Z,Y))

s
2

+(1/2−d(Z,X))|X∩U |+

+(1/2−d(Z,Y))|Y∩U |− ηs
6

. (6.12)

We writeRHSto denote the right-hand side of (6.12). We boundRHSin two cases
separately, based on the value of d(Z,Y).
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• d(Z,Y) ≥ 1/2.

RHS≥ (d(Z,X)+d(Z,Y))s/2+(1/2−d(Z,X))|X∩U |+

+(1/2−d(Z,Y))s− ηs
6

= (d(Z,X)−d(Z,Y))s/2+(1/2−d(Z,X))|X∩U |+s/2− ηs
6

=
1
2

d(Z,X)|X \U |+ 1
2
(1−d(Z,X))|X∩U |+(1−d(Z,Y))s/2− ηs

6

≥ ηs
12

,

a contradiction.

• d(Z,Y) ≤ 1/2.

RHS≥ d(Z,X)s/2+(1/2−d(Z,X))|X∩U |− ηs
6

=
1
2
(1−d(Z,X))|X∩U |+ 1

2
d(Z,X)|X \U |− ηs

6

≥ ηs
12

,

a contradiction.

We now turn to proving (β ). If (β ) does not hold, then max{|X∩(U ∪Ui)|, |Y∩
(U ∪Ui)|} ≥ s− ∆ − εs. As U ∪Ui is 2-packed min{|X ∩ (U ∪Ui)|, |Y ∩ (U ∪
Ui)|} ≥ s−∆− εs− τ, or min{|X∩ (U ∪Ui)|, |Y∩ (U ∪Ui)|} ≥ min{2µ ,ν}−λ2.
In both cases, we obtain

|U ∪Ui| ≥ s+min{2µ ,ν}−∆− εs−λ2

≥ d ēg(Z,X∪Y)+ ηs−∆− εs−λ2 ,

a contradiction with the bound (6.7), asηs−∆− εs−λ2 > ηs
4 .

Having proved that (α) and (β ) hold, we may use Lemma 6.5 in order to embed
ti in Pi ∪Qi . If min{|(U ∪Ui)∩X|, |(U ∪Ui)∩Y|} ≥ min{2µ ,ν}−λ2 we use only
Part 1. If min{|(U ∪Ui)∩X|, |(U ∪Ui)∩Y|} < min{2µ ,ν}−λ2, we use Parts 1
and 2. Property(P4) for i − 1 implies that we have the choice or mappingr i

to P′
i or to Q′

i . We choose the side so that||(U ∪Ui+1)∩X|− |(U ∪Ui+1)∩Y|| ≤
max{τ, ||(U∪Ui)∩X|−|(U ∪Ui)∩Y||}, and ifv(ti) = 2, we mapr i to the opposite
cluster to the one where liesϕ(r i−1).

The embedding ofti clearly satisfies(P1), (P2) and (P3). To prove that the
embedding ofti satisfies also(P4), we need the following auxiliary claim.
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Claim. If min{|(U ∪Ui)∩X|, |(U ∪Ui)∩Y|} < min{2µ ,ν}−λ2, then

|ϕ({r1, . . . , r i})∩X| ≤ |Ui+1∩X|/2+ τ +1

and
|ϕ({r1, . . . , r i})∩Y| ≤ |Ui+1∩Y|/2+ τ +1.

The proof of the claim is postponed to the end of the inductivestep.
We prove Property(P4) by contradiction, so assume that min{|(U ∪Ui−1)∩

X|, |(U∪Ui−1)∩Y|}< min{2µ ,ν}−λ2 and that|P′
i+1|< ∆ (the case when|Q′

i+1|<
∆ is proved analogously). We claim that

|Pi+1\P′
i+1| ≥ ∆ +s−min{2µ ,ν}+6εs+3τ > ∆. (6.13)

Indeed, otherwise|X ∩ (U ∪Ui+1)| > s− |Pi+1 \P′
i+1| −∆− εs≥ min{2µ ,ν}−

λ2 + τ. Property(P1) implies that

min{|(U ∪Ui+1)∩X|, |(U ∪Ui+1)∩Y|} > min{2µ ,ν}−λ2,

a contradiction with our assumption. This settles (6.13). The property(P2), to-
gether with Inequality (6.13) and Part 1 of Lemma 6.5, implies that only the roots
of the treest j , j ≤ i were mapped toX∩N(r), i. e.,Ui+1∩X∩N(r) = ϕ(N(R))∩X.
By the auxiliary claim, we obtain

|Ui+1∩X∩N(r)| = |ϕ({r1, . . . , r i})∩X| ≤ |Ui+1∩X|/2+ τ +1. (6.14)

On the other hand, using (6.13), we obtain

|Ui+1∩X| ≤ |X \U |− |Pi+1\P′
i+1|

≤ min{2µ ,ν}− |X∩U |−∆−6εs−3τ
≤ 2d(Z,X)|X \U |−∆−6εs−3τ.

Together with the assumption|P′
i+1| < ∆, this yields the following inequality.

|Ui+1∩X∩N(r)| ≥ |N(r)∩ (X \U)|−∆− εs

≥ d(Z,X)|X \U |−∆−3εs

> |Ui+1∩X|/2+ τ +1,

a contradiction to (6.14). Let us now prove the auxiliary claim.
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Proof of the auxiliary claim.We alternated the embedding of the rootsr j , j ≤
min{i, ℓ1} betweenX andY. This ensures that forj ≤ min{i, ℓ1} we have

|ϕ({r1, . . . , r j})∩X| ≤ |Umin{i,ℓ1}+1∩X|/2+1 and

|ϕ({r1, . . . , r j})∩Y| ≤ |Umin{i,ℓ1}+1∩Y|/2+1, (6.15)

proving the claim fori ≤ ℓ1. Thus we assume thati > ℓ1. Denote byΓi the
roots of the the treest j for j ∈ {ℓ1 +1, . . . ,min{i, ℓ2}}. Then setX1 = X∩ϕ(Γi),
X2 = X ∩ ϕ(NT(Γi))∩V(T(↓ Γi)), and similarlyY1 = Y ∩ ϕ(Γi) andY2 = Y ∩
ϕ(NT(Γi))V(T(↓ Γi)). Thus the setsX1,X2,Y1,Y2 form a partition ofUmin{i,ℓ2}+1\
Uℓ1+1. As all trees under consideration have order at least 3, observe that 2|X1| ≤
|Y2| and 2|Y1| ≤ |X2|. AsU andUmin{i,ℓ2}+1 are 2-packed and|Uℓ1 ∩X|= |Uℓ1 ∩Y|,
we know that||X1∪X2|− |Y1∪Y2|| ≤ 2τ. Then

|X1|+ |X2|+2τ ≥ |Y1|+ |Y2| ≥ |Y2| ≥ 2|X1|.

This implies that|X2|+ 2τ ≥ |X1|. The same holds forY1 and Y2. Together
with (6.15), this leads to the desired inequalities, ifi ≤ ℓ2. To see that the claim
also holds fori > ℓ2, it is enough to realize that forj > ℓ2, when embedding the
rootr j of the treet j in a setC∈ {X,Y}, at least one vertex oft j − r j is also mapped
to C.

It remains to check whether the embeddingϕ of F −R satisfies (c1), (c2),
and (d). Each component was mapped toPi ∪Qi , which is disjoint with the setU
and contains only vertices typical w. r. t.Z. This ensures Properties (c1) and (c2).
Property (d) follows from the way we utilized property(P4) during embedding
via Lemma 6.5 Part 2.

7 Proof of Proposition 4.4

Proof. Setη so thatσ ≪ η ≪ ω , andβ ,γ,α so that

0 < β ≪ γ ≪ α ≪ σ .

Letn0 (the minimal order of the graph) andΠ1 (the upper bound for the number
of clusters) be the numbers given by the Regularity Lemma 6.2for input parame-
tersβ (for precision),Π0 = 2/β (for minimum number of clusters) and 4 (for the
number of pre-partition classes).
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Let G be a graph of ordern≥ n0 and the set̄V ⊆V satisfying the assumptions
of Proposition 4.4.

Prepartition the vertex-setV into V̄ ∩ L,V̄ ∩S,L \ V̄, andS\ V̄. By the Reg-
ularity Lemma 6.2, there exists a partitionV = C0 ∪C1 ∪ ·· · ∪CN satisfying the
following.

• Π0 ≤ N ≤ Π1,

• |Ci | = |Cj | = s, for anyi, j ∈ [N],

• |C0| ≤ βn,

• all but at mostβN2 pairs(Ci ,Cj) areβ -regular,

• if Ci ∩L 6= /0, thenCi ⊆ L, for anyi ∈ [N], and

• if Ci ∩V̄ 6= /0, thenCi ⊆ V̄, for anyi ∈ [N].

Let Gγ denote the subgraph ofG obtained fromG by deleting the edges inci-
dent toC0, contained in someCi , lying betweenV \ V̄ andV̄, or between pairs
that are irregular or of density smaller thanγ2/2. Let (G,d ēgGγ (·, ·)) denote
the weighted cluster graph induced byGγ , i. e., G has orderN, with vertex-set
V(G) = {C1, . . . ,CN} and edge-set

E(G) = {CD : (C,D) is anβ -regular pair with density at leastγ2/2} ,

with the weight function d ēg :E(G) → R, defined by d ēg(CD) = d ēgGγ (C,D).

Denote byL the set of clusters contained inL∩V̄ which have large average degree
in V̄,

L = {C∈V(G) : C⊆ L∩V̄, d ēgGγ (C,V̄) ≥ k− γn} .

We write N̄ to denote the number of clusters in̄V. Observe that|L | ≥ (1−
σ)N̄/2− γN ≥ N̄/2−σN̄. Most of the clustersV(G) formed by vertices ofL∩V̄
are inL . From Assumption 4.6, there are at most

2γN (7.1)

clustersC∈V(G)\L with C⊆ V̄ such that d ēgGγ (C,V(G)\L ) > γn. Let H be

the subgraph ofG induced by clusters contained in̄V such that all edges induced
by the set{C∈ G : C ⊆ V̄ \⋃D∈L D} are removed. The weights of the edges in
H are inherited fromG.
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7.1 Matching structure in the cluster graph

If G satisfies the Special Case with parametercS (considering the set̄V), then
Tk+1 ⊆G by Proposition 4.2. In the rest of the proof, we thus assume thate(G[V̄∩
L]) ≥ cSn2, and thuse(Gγ [V̄ ∩L]) ≥ cS

2 n2, implying thatL induces at least one
edge inG. This edge is an edge inH also. The weighted graph(H,d ēgGγ ) satisfies
all the conditions of Proposition 6.4 (with parametersσ andK = k− γn). This
ensures that one of the two specific matching structures inH exists. Together
with (7.1), this yields the existence of one of the followingtwo configurations in
the cluster graphG.

Case I:There are two adjacent clustersA,B and a matchingM in G such that

• d ēgGγ (A,V(M)) ≥ k− γn,

• each edgee∈ M intersects the neighbourhood ofA in at most one cluster,
and

• d ēgGγ (B,V(M)∪L ∗)≥ (1+σ/2) k
2, whereL ∗ = {C∈V(G) : d ēgGγ (C)≥

(1+ σ/2) k
2}.

Case II:There exist a set of clustersX ′ ⊆V(G), two adjacent clustersA,B, and a
matchingM in G such that

• A,B∈ X ′∩L ,

• |V(M′)\X ′| ≤ 1, whereM′ = {CD∈ M : C,D ∈ N(X ′)},

• all but at most 3γN clustersC ∈ X ′ satisfy d ēgGγ (C,V(M)) ≥ d ēgGγ (C)−
3σn,

• and each edgee∈ M intersectsL .

In the rest of the paper the average degree d ēg will always beassociated with the
underlying graphGγ , i.e., d ēg is an abbraviation for d ēgGγ .

Let M̃ ⊆ M be the maximal submatching ofM not coveringA nor B. Let T ∈
Tk+1 be any tree withk edges. Trivially,|M̃| ≥ |M|−2. Choose a rootR∈V(T)
and cut the treeT as in Section 6.2 in order to obtain a switchedτ-fine partition
(WA,WB,DA,DB), with τ = βk/Π1.
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7.2 Case I

Denote byTF the components ofDA consisting of interior subtrees and byTA the
ones consisting of end subtrees ofDA. Denote byTF the forest induced by the
components inTF , by TA the forest induced by the components inTA and byTB

the forest induced by the components inDB. Recall thatDB consists only of end
subtrees. IfDA∪DB is cU-unbalanced, thenT ⊆ G, as shown by Proposition 4.3.
Thus we may assume thatTF ∪TA∪DB is cU-balanced.

We partition each clusterC ∈ V(M)∪L ∗ so that the partition defines two
disjoint setsMF and MB of vertices ofG, such thatMF ,MB ⊆ ⋃{C ∈ V(M̃)}.
The embeddingϕ : V(T) →V of the treeT is defined in three phases. In the first
phase, we embed the subtreeT ′ = T[WA∪WB∪V(TF ∪TM

B )], whereTM
B ⊆ TB will

be defined later. The forestTF is embedded inMF and the forestTM
B in MB. In the

second phase, we embedTL
B = TB−V(TM

B ) in
⋃{C∈ (L ∗ \V(M))∪N(L ∗)}. In

the last phase we embedTA in
⋃{C ∈ V(M̃)}. Thus we complete the embedding

of T.
The difference between the presented proof of Theorem 1.4 and its approxi-

mate version Theorem 1.3 is that in the proof of Theorem 1.4 wehave to fight to
gain back small loses caused by the use of the Regularity Lemma. However, this
is not necessary when we have the matching structure of Case I. Then, we are able
to reduce the situation to the “approximate version”, i.e.,to the setting of similar
nature as in Theorem 1.3.

We partition each clusterC ∈V(M)∪L ∗ into CF andCB in an arbitrary way
so that|CF | = (1−y)|C| and|CB| = y|C|, where

y =
v(TA∪TB)

k
· 1
1+ σ/4

+ α ≥ 2v(TB)

k
· 1
1+ σ/4

+ α. (7.2)

Set

MB =
⋃

C∈V(M̃)

CB , MF =
⋃

C∈V(M̃)

CF , and L B =
⋃

C∈L ∗\V(M)

CB .

Observe thaty∈ (α,1−α). Thus, for eachC ∈ V(M)∪L ∗, the setsCB andCF

are significant. Observe also that the pairs(CF ,DF) and(CB,DB) areβ/α-regular
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for everyC,D ∈V(M)∪L ∗. Now,

d ēg(B,MB∪L B) ≥ y(1+ σ/2)
k
2
−βn−4s

(7.2)
≥ 1+ σ/2

1+ σ/4
v(TB)+ α

k
2
−βn−4s

> v(TB)+ α
k
4

. (7.3)

A similar calculation shows that for any clusterD ∈ L ∗, we have

d ēg(D,V \ (MF ∪A∪B))≥ v(TB)+ α
k
4
. (7.4)

For clusterA, we obtain

d ēg(A,MF) ≥ (1−y)(k− γn)−βn−4s
(7.2)
≥ k−v(TA∪TB)/(1+ σ/4)−αk− γn−βn−4s

≥ v(TF)+v(TA∪TB)σ/8−2αn

≥ max{|V(TF)∩To|, |V(TF)∩Te|}+ σc2
Uk/32−2αn, (7.5)

where the last inequality follows from the fact thatTF is cU/2-balanced, orTA∪
DB is. LetT M

B ⊆ DB be a maximal subset ofDB such that

∑
t∈T M

B

v(t) ≤ d ēg(B,MB)− αk
8

. (7.6)

Let TM
B be the forest formed by the trees ofT M

B , letT L
B = DB\T M

B andTL
B be the

forest formed by the trees inT L
B . Recall thatT ′ = T[WA∪WB∪V(TF)∪V(TM

B )].

Phase 1. In this phase, we embed the subtreeT ′. The embedding ofT ′ is devided
into w = |WA∪WB| steps. We label the vertices ofWA∪WB asx1, . . . ,xw, indexing
from the rootR downwards, i.e., in such way thatj1 ≤ j2 wheneverx j1 �R x j2.
In stepi ≥ 1, we shall take the vertexxi and define the embedding forxi and the
shrublets hanging fromxi , i. e., we embed the treeTi ,

Ti = T[{xi}∪
⋃

ι∈[ci ]

V(Pι)] ,
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whereP1, . . . ,Pci denotes the componentsP of TF ∪TM
B such that Ch(xi)∩V(P) 6=

/0. The treeTi is a union of treestι
i = T[{xi}∪V(Pι)] (ι ∈ [ci ]). SetVi =

⋃

j<i V(Tj)
andUi = ϕ(Vi).

If i > 1, let pi = Par(xi). During the embedding process we will keep the
following three invariants in every stepi.

(I1) TheUi ∩ (CF ∪DF) is 1-packed with parameters

λF =
βs′/α + τ

γ2/2−2β/α
+ τ +3βs′/α andτ , wheres′ = (1−y)s ,

with respect to the embedding setsCF andDF and the head setA for each
edgeCD∈ M̃,

(I2) TheUi ∩ (CB∪DB) is 1-packed with parameters

λB =
βs′′/α + τ

γ2/2−2β/α
+ τ +3βs′′/α andτ , wheres′′ = ys,

with respect to the embedding setsCB andDB and the head setB for each
edgeCD∈ M̃, and

(I3) if i > 1, then the vertexpi was already embedded in some previous step
so that|N(ϕ(pi))∩A| ≥ γ2s/4 (if xi ∈ WA), or |N(ϕ(pi))∩B| ≥ γ2s/4 (if
xi ∈WB).

Say that a vertex isA-typical, if it is typical w. r. t. all but at most
√

βN setsCF ,
C ∈ V(M̃), w. r. t. all but at most

√

βN clustersC ∈ V(M̃), and w. r. t. the cluster
B. All but at most 3

√

β |A| vertices of clusterA areA-typical. Say that a vertex
is B-typical, if is is typical w. r. t. all but at most

√

βN setsCB, C ∈ V(M̃), w. r. t.
L B, and w. r. t. the clusterA. All but at most 3

√

β |B| vertices of clusterB are
B-typical. The embeddingϕ will be defined in such a way thatϕ(WA) ⊆ A and
ϕ(WB) ⊆ B. From the property of the switchedτ-fine partition(WA,WB,DA,DB)
we have max{|WA|, |WB|} ≤ 12k/τ ≪ γ2s/4. Thus if the predecessor of a vertex
xi ∈WA has at leastγ2s/4 neighbours inA, then we have have enough candidates
to choose an unusedA-typical vertex from asϕ(xi).

To define the embedding of the treeTi we first chooseϕ(xi). If i = 1 then
xi = R, and we mapxi to an arbitraryA-typical vertex inA (if R∈ WA), or on an
arbitraryB-typical vertex inB (if R∈WB). If i > 1 choose forϕ(xi) anyA-typical
vertex inA∩N(ϕ(pi)) (if xi ∈ WA), or anyB-typical vertex inB∩N(ϕ(pi)) (if
xi ∈WB). This is possible by(I3).
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Assume thatxi ∈ WA. ThenV(Ti) ⊆ V(TF). SetCi = {C ∈ V(M̃)∩N(A) :
ϕ(xi) is typical w. r. t.CF}. We deduce that

∑
C∈Ci

d ēg(A,CF)−|Ui ∩MF | ≥ d ēg(A,MF )−
√

βn−|Vi ∩V(TF)|

(7.5)
≥ max{|V(TF)∩V(To)|, |V(TF)∩V(Te)|}−

− |Vi ∩V(TF)|+ σ
8

(cU

2

)2
·k−2αn−

√

βn

≥ max{|V(Ti)∩V(To)|, |V(Ti)∩V(Te)|}+ αk. (7.7)

We consider an auxiliary mappingζ : [ci ]→ M̃ which has the property that for any
XY∈ M̃, X ∈ Ci it holds

∑
ι∈ζ−1(XY)

v(Pι) + |Ui ∩ (XF ∪YF)| ≤ d ēg(A,XF ∪YF)−λF . (7.8)

From (7.7) such mappingζ exists.
We embed the treestι

i , ι = 1, . . . ,ci using Lemma 6.6 Part 2. The setting for
applying Lemma 6.6 is the following. The root oftι

i is the vertexxi . The head set
is the clusterA and the embedding sets are the setsXF ,YF , whereXY = ζ (ι). The
set of “forbidden vertices” isUi,ι = (Ui ∪

⋃

ℓ<ι ϕ(tℓi )∩ (XF ∪YF). The setUi,ι is
1-packed with parametersλ andτ, by induction. Now, Lemma 6.6 Part 1 allows
us to embed the treetι

i so that

• ϕ(tι
i ) ⊆ (XF ∪YF)\Ui,ι ,

• each vertex inV(tι
i ) with odd distance fromxi has at leastγ2s/4 neighbors

in A,

• the set(Ui ∪
⋃

ℓ≤ι ϕ(tℓi ))∩ (XF ∪YF) is 1-packed with parametersλ andτ.

Observe that the last property is sufficient for our inductive assumption on the sets
Ui,ι , and also to prove invariant(I1). The second property ensures invariant(I3) to
hold. Property(I2) is preserved.

In the case thatxi ∈WB, set

Mi = {CBDB : CD∈ M̃, ϕ(xi) is typical w. r. t. bothCB andDB}.
Similar calculations as above give

∑
CBDB∈Mi

d ēg(B,(CB∪DB)\Ui) ≥ v(Ti)+ αk/16.

We embed the treestι
i , ι = 1, . . . ,ci using Lemma 6.6 Part 1 in the setsCB∪DB

(CD∈ Mi) so that invariants(I1), (I1), and(I3) hold.
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Phase 2. In this phase, we embed the yet unembedded shrublets adjacent to WB

(i. e.TL
B ). We label the shrublets ofT L

B ast1, . . . ,t|T L
B |. In stepi ≥ 1, we define the

embedding for shrubletti in a suitable edgeCD∈ E(G). SetUi = ϕ(V(TF ∪TM
B )∪

⋃

j<i V(t j)). Let xi ∈ WB be the parent of the root of the shrubletti . The vertex
ϕ(xi) is typical w. r. t.L B and hence by (7.3) and (7.6),

deg(ϕ(xi),L
B) ≥ d ēg(B,L B)−2βn

= d ēg(B,MB∪L B)−d ēg(B,MB)−2βn

≥ v(TB)+ αk/4−v(TM
B )−αk/8−2βn

≥ v(TL
B )+ αk/16 .

Thus there is a clusterD ∈ L ∗ \V(M) containing a large unused neighbourhood
of ϕ(xi). That is

|N(ϕ(xi))∩D\Ui| ≥
αk
16N

≥ βs+ τ
γ2/2−2β

.

From (7.4) we obtain that

d ēg(D,V \Ui) ≥ d ēg(D,V \ (MF ∪A∪B))−|ϕ(V(TB))∩Ui | ≥ v(ti)+ αk/4 .

Thus there is a clusterC∈N(D) with |C\Ui| ≥ β s+τ
γ2/2−2β . Use Lemma 6.5 to embed

ti in (C∪D)\Ui so that the rootr i of the shrubletti is mapped to N(ϕ(xi))∩D\Ui .

Phase 3. In this phase, we finish the embedding of the tree by embeddingthe
end shrublets adjacent toWA (i. e.TA). We label the shrublets ofTA ast1, . . . ,t|TA|.

First assume thatTF ∪DB is cU/2-balanced. The embedding will be defined
for stepsi ∈ [|TA|]. In step i for a clusterX ∈ V(M̃) denote byXUi the set of
vertices inX used by the embedding ofTF ∪TB and of

⋃

j<i t j . We find a suitable
edgeCD∈ M̃ in which we embed the treeti . Let xi ∈WA be the parent of the root
of ti . By Lemma 6.5, the shrubletti can be embedded in unused vertices of an edge
CD ∈ M̃, C ∈ N(A) in such a way that the root ofti is mapped to a neighbor of
ϕ(xi), wheneverCD satisfies

ϒi
CD = min{|N(ϕ(xi))∩C\CUi |, |D\DUi |} ≥ v(ti)+ αs . (7.9)

Thus we are able to finish the embedding ofT if we can find an every stepi an
edgeCD∈ M̃ satisfying (7.9). Suppose that at some stepi ≥ 1 there are no edges
in M̃ with this property. Denote byMi ⊆ M̃ the submatching of̃M induced by the

37



clusters{X ∈ V(M̃) : ϕ(xi) is typical w. r. t.X}. Thenϒi
CD < v(ti)+ αs for any

CD∈ Mi . The non-existence of a suitable matching edge implies that

∑
CD∈M̃

ϒi
CD < ∑

CD∈M̃

(τ + αs) ≤ 1
2

N(τ + αs) < αn .

On the other hand,

∑
CD∈M̃
C∈N(A)

ϒi
CD ≥ ∑

CD∈Mi
C∈N(A)

(|N(ϕ(xi))∩C|−max{|CUi |, |DUi |})

≥k− γn−
√

βn− (v(TF ∪TB)−c2
Uk/4)−v(TA)

≥αn ,

a contradiction.
If TF ∪DB is cU/2-unbalanced, thenTA is cU/2-balanced implying that

max{|V(TA∩Te)|, |V(TA∩To)|} ≤ v(TA)− (cU/2)2k.

Similarly as above, we find a suitable edgeCD∈ M̃, C∈ N(A) with

ϒi
CD = min{|N(ϕ(xi))∩C\CUi |, |D\DUi |} ≥ max{|V(ti)∩To|, |V(ti)∩Te|}+αs .

The calculations that such an edge exists are left to the reader. We use Propo-
sition 6.5 to embedti in (C\CUi )∪ (D \DUi ) with the root ofti mapped toC∩
N(ϕ(x1)).

7.3 Case II

This case follows the lines of part of the proof from [22]. Forcompleteness, and
to adjust the setting, we prove this part in all detail.

Denote byTA the forest induced by the components inDA and byTB the forest
induced by the components inDB. Observe thatv(TB) ≤ v(TA). If DA∪DB is cU-
unbalanced, thenT ⊆ G, as shown by Proposition 4.3. Thus we may assume that
DA∪DB is cU-balanced. In the first part of this section, after auxiliaryLemmas 7.1
and 7.2, we show in Lemma 7.3 thatT ⊆ G or the clustersA and B are very
densely connected to their respective neighbourhood. In the second part, we prove
in Lemma 7.7 that ifV ′, the neighbourhood of the clusterA, is well connected
to V \V ′, thenT ⊆ G. If V ′ is poorly connected toV \V ′, then we show thatV ′

satisfies the properties required by the statements of Proposition 4.4.
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Let M̃ be the maximum submatching ofM not containing the clustersA andB.
With a slight abuse of notation, we can writẽM = M \ {eA,eB}, whereeA andeB

are the matching edges containingA, andB respectively (the edgeseA, eB may be
not defined, though). Observe that

min{d ēg(A,V(M̃)),d ēg(B,V(M̃))} ≥ k−4σn . (7.10)

PART I: Defining V ′.

Lemma 7.1. Suppose that v(TB) ≥ 4
√

σk. Then∑e∈M |d ēg(A,e)− d ēg(B,e)| <
9 4
√

σk, or T ⊆ G.

Proof. Assume thatv(TB)≥ 4
√

σk and∑e∈M |d ēg(A,e)−d ēg(B,e)| ≥ 9 4
√

σk. Then
∑e∈M̃ |d ēg(A,e)−d ēg(B,e)| ≥ 8 4

√
σk. We show that thenT ⊆ G. SetM1 = {e∈

M̃ : d ēg(A,e) ≥ d ēg(B,e)} andM2 = M̃ \M1. Without loss of generality, we may
assume that

d ēg(A,V(M1))−d ēg(B,V(M1)) ≥ 4 4
√

σk . (7.11)

Label the edges of̃M as{e1, . . . ,e|M̃|} so that for anyi < j, it holds that

d ēgei
(A)

d ēgei
(B)

≥
d ēgej

(A)

d ēgej
(B)

,

with the convention thatx0 = +∞, for anyx≥ 0. Asv(TB) ≥ 4
√

σk, there exists an
indexℓ such that

v(TA)+ αk≤ ∑
i≤ℓ

d ēgei
(A) < v(TA)+ αk+2s

(7.10)
< d ēg(A,V(M̃)) . (7.12)

SetMA = {e1, . . . ,eℓ} andMB = M̃ \MA. We claim that

d ēg(B,V(MB)) ≥ v(TB)+ αk . (7.13)

We prove (7.13) by case analysis. If d ēg(B,V(MA)) < k/4, then

d ēg(B,V(MB)) = d ēg(B,V(M̃))−d ēg(B,V(MA))
(7.10)
> k−4σn−k/4> k/2+ αk
≥ v(TB)+ αk .
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If d ēg(A,V(MA))−d ēg(B,V(MA)) ≥
√

σk
4 , then

d ēg(B,V(MB)) = d ēg(B,V(M̃))−d ēg(B,V(MA))
(7.10)
≥ k−4σn−d ēg(A,V(MA))+

√
σk/4

(7.12)
≥ k−v(TA)+

√
σk/4−4σn−αk−4s

≥ v(TB)+ αk .

Hence, we may assume in the rest of the proof of (7.13), that

d ēg(B,V(MA)) ≥ k/4 , and (7.14)

d ēg(A,V(MA))−d ēg(B,V(MA)) <

√
σk
4

. (7.15)

First, we consider the case wheneℓ ∈ M2. We deduce from (7.11) and (7.15) that

d ēg(B,V(MA \M1))−d ēg(A,V(MA\M1)) ≥ (4 4
√

σ −
√

σ/4)k≥ 2 4
√

σqn .

Hence there is at least one matching edgeea ∈ MA\M1 for which

d ēg(B,ea)−d ēg(A,ea) > 2 4
√

σqn/|MA\M1| ≥ 4 4
√

σqn/N .

Therefore, for the numberρℓ = d ēg(B,eℓ)/d ēg(A,eℓ) it holds,

ρℓ ≥
d ēg(B,ea)

d ēg(A,ea)
≥ 4 4

√
σqn

2sN
+1≥ 2 4

√
σq+1 , (7.16)

and thus

d ēg(B,V(MB)) = ∑e∈MB,d ēg(A,e)=0d ēg(B,e)+

+∑e∈MB,d ēg(A,e) 6=0
d ēg(B,e)
d ēg(A,e) deg(A,e)

≥ ρℓ ·d ēg(A,V(MB))
= ρℓ · (d ēg(A,V(M̃))−d ēg(A,V(MA)))

(7.10)&(7.12)
≥ ρℓ · (v(TB)−5σn)

(7.16)
≥ 2 4

√
σq( 4

√
σk−5σn)+v(TB)−5σn

≥ v(TB)+ αk .

Now, assume thateℓ ∈ M1. From

d ēg(A,V(MA))

d ēg(B,V(MA))

(7.15)
<

√
σk

4 ·d ēg(B,V(MA))
+1

(7.14)
≤

√
σ +1 .

40



we deduce that there exists an edgeeb ∈ MA such that d ēg(A,eb) < (
√

σ + 1) ·
d ēg(B,eb). For any j ≥ ℓ it holds

d ēg(A,ej)

d ēg(B,ej)
≤ d ēg(A,eb)

d ēg(B,eb)
<
√

σ +1 . (7.17)

If d ēg(B,V(M̃)) < 3k, then

4 4
√

σk
(7.11)
≤ ∑e∈M1(d ēg(A,e)−d ēg(B,e)))
= ∑i≤ℓ (d ēg(A,ei)−d ēg(B,ei))+ ∑ j>ℓ

ej∈M1
(d ēg(A,ej)−d ēg(B,ej))

(7.17)
≤ d ēg(A,V(MA))−d ēg(B,V(MA))+

√
σ ·d ēg(B,V(M1 \MA))

(7.15)
<

√
σk/4+

√
σ3k

< 4
√

σk ,

a contradiction. It remains to consider the case when d ēg(B,V(M̃)) ≥ 3k. As
eℓ ∈ M1, we obtain

d ēg(B,V(MB)) = d ēg(B,V(M̃))−d ēg(B,V(MA))

≥ 3k−d ēg(A,V(MA))

≥ k−v(TA)+2k−αk−2s

≥ v(TB)+ αk .

We have thus proved that Inequality (7.13) holds in all cases.

We say that a vertex isA-typical if it is typical w. r. t. clusterB and typical w. r. t.
all but at most

√

βN clusters ofV(MA). We say that a vertex isB-typical if it is
typical w. r. t. clusterA and typical w. r. t. all but at most

√

βN clusters ofV(MB).
Label the vertices ofWA asa1, . . . ,a|WA| so thati ≤ j wheneverai �R a j . Sim-

ilarly, label the vertices ofWB asb1, . . . ,b|WB| in a non-�R-increasing way. We
embed the treeT in the graphG using the standard embedding procedure. We start
the embedding process with the rootR and proceed downwards in the�R order.
We embed the vertices ofWA in A-typical vertices of the clusterA and the vertices
of B in B-typical vertices of the clusterB. The shrublets ofDA are embedded in
edges ofMA and the shrublets ofDB are embedded in edges ofMB. Adjacencies
between the vertices ofWA andWB, and between the shrubletsDA ∪DB and the
seedsWA∪WB are preserved during the embedding. We use Lemma 6.6 Part 1 in
order to embed the shrublets. It remains to set up enviromentfor Lemma 6.6. In
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the first step we embed the rootR in anA-typical vertex inA (if R∈ WA) or in a
B-typical vertex inB (if R∈WB). Suppose that vertexai ∈ WA was embedded in
a A-typical vertex inA and we want to extend the embedding to the unembedded

neighbors ofai . Let D
(ai)
A ⊆ DA be the set of shrublets belowai which neighbor

ai . SetW(ai)
B = WB∩N(ai)∩T(↓ ai) andW(ai)

A = N(V(
⋃

D
(ai)
A ))∩T(↓ ai). The

shrublets ofD (ai)
A and the verticesW(ai)

A ∪W(ai)
B will be embedded in this step. Let

M(ai)
A contain those edgese of MA such that the image ofai is typical with respect

to both end-clusters ofe. Define an auxiliary mappingζ (ai) : D (ai)
A →M(ai)

A in such
a way that

d ēg(A,e) ≥ ∑
t∈(ζ (ai ))

−1
(e)

v(t)+ |U (ai) ∩
⋃

e|+2∆ + τ +5βs , for eache∈ M(ai)
A ,

whereU (ai) is the set of vertices ofG used by the embedding in the previous steps,
and∆ = (βs+ τ)/(γ2/2− 2β ). It follows from(7.12) and from theA-typicality
of the image of the vertexai that such an mappingζ (ai) exists. Lemma 6.6 Part

1 ensures that we can embed each each shrublett ∈ D
(ai)
A in the edgeζ (ai)(t).

Moreover, the embedding ofD (ai)
A is such, that all the vertices ofW(ai)

A can be

mapped toA-typical vertices inA. It is easy to embed the vertices ofW(ai)
B in

B-typical vertices ofB. This finishes the inductive step forai ∈ WA. The case of
extending the neighborhood of the vertexb j ∈WB is analogous.

Lemma 7.2. Let M∗ ⊆M be a matching such thatηN≤ |M∗| ≤ qN/8, let{Ur}r∈WA

be a system of sets of vertices of G such that for every r∈WA it holds Ur ⊆
⋃

V(M),
and letϕ : WA → A be a mapping that maps every vertex r∈WA to a vertex which
is typical w. r. t. all but at most

√

βN sets of{C\Ur : C∈V(M∗)}. LetD∗ ⊆ DA

be such that
v(T∗) ≥ d ēg(A,V(M∗))+

ηs
20

|M∗| ,

where T∗ is the forest induced by the trees inD∗.
If the mapping can be extended to an embedding of the subforest T[WA∪V(T∗)]

so thatϕ(V(T∗)) ⊆⋃V(M∗), then T⊆ G.
Moreover, the same holds if we interchange the roles of WA with WB, andDA

with DB.

Proof. Label the edges of̃M \M∗ as{e1, . . . ,em}, wherem= |M̃ \M∗|, so that, if
i < j, then

d ēg(B,ei)

d ēg(A,ei)
≥ d ēg(B,ej)

d ēg(A,ej)
.
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Fix ℓ ∈ [m] so that the matchingMB = {e1, . . . ,eℓ} ⊆ M̃ \M∗ satisfies

v(TB)+ αk≤ d ēg(B,V(MB)) ≤ v(TB)+ αk+2s. (7.18)

The choice ofℓ is possible from the bound|M∗| ≤ qN/8. SetMA = M̃\(MB∪M∗).
We claim that

d ēg(A,V(MA)) ≥ |V(TA−T∗)|+ αk . (7.19)

To prove (7.19), first assume thatv(TB)≥ 4
√

σk. From Lemma 7.1, we may assume
that

|d ēg(A,V(MB))−d ēg(B,V(MB))| ≤ ∑
e∈M

|d ēg(A,e)−d ēg(B,e)| < 9 4
√

σk ,

since otherwiseT ⊆ G. This implies that

d ēg(A,V(MA)) ≥ d ēg(A,V(M̃))−d ēg(B,V(MB))−9 4
√

σk−
−d ēg(A,V(M∗))

(7.10)&(7.18)
≥ k−4σn−v(TB)−αk−2s−9 4

√
σk−v(T∗)+

+ηs
20|M∗|

> v(TA−T∗)+ αk .

Now, we consider the case whenv(TB) < 4
√

σk. If 2 ≥ d ēg(A,eℓ)/d ēg(B,eℓ), then

d ēg(A,V(MA)) = d ēg(A,V(M̃))−d ēg(A,V(M∗))−d ēg(A,V(MB))
(7.10)
≥ k−4σn−v(T∗)+ η2n

20 − d ēg(B,V(MB))·d ēg(A,V(MB))
d ēg(B,V(MB))

≥ k+ η2n
20 −4σn−v(T∗)− (v(TB)+αk+2s)·d ēg(A,eℓ)

d ēg(B,eℓ)

≥ k+ η2n
20 −4σn−v(T∗)−v(TB)− 4

√
σk−2αk−4s

≥ v(TA−T∗)+ αk .

On the other hand, if d ēg(A,eℓ)/d ēg(B,eℓ) ≥ 2, then

d ēg(A,V(MA)) ≥ 2 ·d ēg(B,V(MA))
≥ 2 · (d ēg(B,V(M̃))−2s|M∗|−d ēg(B,V(MB)))

(7.10)
≥ 2(k−4σn−sqN/4− 4

√
σk−αk−2s)

≥ v(TA−T∗)+ αk .

For a setU ⊆⋃C∈V(M∗)C, say that a vertex is(A,U)-typical if it is typical w. r. t.

the clusterB, typical w. r. t. all but at most
√

βN clusters ofV(MA), and typical to

43



all but at most
√

βN setsC\U , C∈V(M∗). Say that a vertex isB-typical, if it is
typical w. r. t. clusterA and typical w. r. t. all but at most

√

βN cluster ofV(MB).
We embed the treeT, starting with the rootRand progressing downwards in the

�R-order. We embed the verticesr ∈WA in (A,Ur)-typical vertices of the cluster
A, and embed the vertices ofWB in B-typical vertices of the clusterB. According
to the hypothesis of lemma, the shrublets ofD∗ are embedded in the edges ofM∗.
Then the shrublets ofDA \D∗ are embedded inMA, and the ones ofDB \D∗ in
MB. The embeddings ofDA\D∗ and ofDB are ensured by Lemma 6.6 Part 1, in a
standard way. It remains to check whether the conditions of the Lemma 6.6 Part 1
are matched. If we denote byMi the submatching ofMA such thatvi ∈ ϕ(WA) is
typical to all its clusters, then deg(A,V(Mi)) ≥ d ēg(A,V(MA))−2

√

βn≥ v(TA−
T∗)+ αk−2

√

βn. We can thus partition the setDA \D∗ =
⋃

vi∈ϕ(WA)

⋃

e∈Mi D∗
i,e

in a suitable way so that each partition classD∗
i,e embeds in the edgeseof Mi using

Lemma 6.6 Part 1. Similar calculations hold forMB.
We briefly sketch the “moreover” part of the statement, with the roles ofWA

with WB, andDA with DB interchanged. Consider the subforestT∗ of TB composed
by components ofDB with

v(T∗) ≥ d ēg(A,V(M∗))+
ηs
20

|M∗| .

Observe that we need to check only the case whenv(TB) ≥ 4
√

σk. Similarly as
before, we can find a submatchingMB ⊆ M̃ \M∗ so that

v(TB−T∗)+ αk≤ d ēg(A,V(MB)) ≤ v(TB−T∗)+ αk+2s.

SetMA = M̃ \ (MB∪M∗). From Lemma 7.1, we obtain thatT ⊆ G, or we deduce
that

d ēg(B,V(MA)) ≥ v(TA)+ αk .

We use Lemma 6.6 to map the verticesr ∈ WB to vertices inA that are typical
w. r. t. B, typical w. r. t. all but al most

√

βN clusters ofV(MB), and typical w. r. t.
all but al most

√

βN setsC\Ur ,C ∈V(M∗); we mapWA to vertices inB that are
typical w. r. t.A, and typical w. r. t. all but at most

√

βN clusters ofV(MA). Embed
T∗ in M∗, TB−T∗ in MB, andTA in MA.
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We consider the following submatchings ofM. For a clusterX ∈V(G), set

MX
1 = {CD∈ M : d ēg(X,C) < ηs and d ēg(X,D) > (1−η)s} ,

MX
2 = {CD∈ M : d ēg(X,C) ∈ [ηs,(1−η)s] or d ēg(X,D) ∈ [ηs,(1−η)s]} ,

MX
3 = {CD∈ M : d ēg(X,C∪D) < 2ηs} , and

M−(X) = MX
1 ∪MX

2 ∪MX
3 .

Lemma 7.3. It holdsmax{|MA
1 |, |MB

1 |, |MA
2 |, |MB

2 |} < 2ηN, or T ⊆ G .

Proof. We prove only that if max{|MA
1 |, |MA

2 |} ≥ 2ηN, thenT ⊆ G. The case
when max{|MB

1 |, |MB
2 |} ≥ 2ηN is analogous. Assume that|MA

1 | ≥ 2ηN (resp.
|MA

2 | ≥ 2ηN). Choose a submatchingM∗ ⊆ MA
1 (resp.M∗ ⊆ MA

2 ) of size 2ηN. We
know thatDA∪DB is cU-balanced. HenceDA is cU/2-balanced orDB is cU/2-
balanced. Suppose first thatDA is cU/2-balanced. Consider a minimal subset
D∗ ⊆ DA such that it induces a forest of order at least d ēg(A,V(M∗))+ η2n/10,
and such that ift ∈ D∗, then min{|V(t)∩To|, |V(t)∩Te|} ≥ cU/2 · v(t). Let T∗

be the forest induced by the components ofD∗. We use Lemma 7.2 to show that
T ⊆ G. To this end, it is enough to extend a mappingϕ : WA → A satisfying the
conditions of Lemma 7.2 to an embedding ofT∗. We label the vertices ofWA as
r1, r2, . . . , r|WA| so that ifr i ≺R r j theni > j. SetD∗

i = {t ∈D∗ : V(t)∩Ch(r i) 6= /0}.
At each stepi ≥ 1 setUi = ϕ(

⋃

j<i V(D∗
j )) ⊆ V(M∗) for the set of used vertices

used for the embedding in previous steps. Observe thatU1∩ (C∪D) = /0 for all
CD ∈ M∗ and thus it is 1-packed (resp. 2-packed) with any parameter and with
respect to the embedding setsC,D, and the head setA. Set

M∗(r i) = {CD∈ M∗ : r i is typical w. r. t. bothC\Ur i andD\Ur i} ,

whereUr i = /0 if M∗ ⊆ M1
A, andUr i = Ui if M∗ ⊆ M2

A (we defineUr i inductively, as
the embedding ofT is always defined step by step in the�R order). The embedding
is extended separately forM∗ ⊆ M1

A andM∗ ⊆ M2
A. Set∆ = β s+τ

γ2/2−2β .

First consider the case whenM∗ ⊆ MA
1 . We shall use Lemma 6.6 Part 2. For

i > 1, the setUi is 1-packed (with parameterλ1 andτ) by induction for any pair of
embedding sets(C,D), whereCD∈ M∗. Setλ1 = ∆ + τ + 3βs. By the choice of
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D∗, we know that

max{|V(D∗
i )∩To|, |V(D∗

i )∩Te|}+ ∑
CD∈M∗

d ēg(A,D)≥(1−η)s

|D∩Ui|

≤ (1− cU

2
)

∣

∣

∣

∣

∣

⋃

j≤i

V(D∗
j )

∣

∣

∣

∣

∣

≤ (1− cU

2
)

(

d ēg(A,V(M∗))+
η2n
10

+ τ
)

≤ ∑
CD∈M∗(r i)

d ēg(A,D)≥(1−η)s

d ēg(A,D)+2
√

βn+7η2n−cUηn

≤ ∑
CD∈M∗(r i)

d ēg(A,D)≥(1−η)s

d ēg(A,D)−|M∗(r i)|(τ + λ1+ ∆ + βs) .

Thus we can partition the setD∗
i in setsD∗

i,e for each edgee∈ M∗(r i) satisfying
the conditions of Lemma 6.6 Part 2 (forZ = A, U = Ui and fore= CD, we have
X = D, where d ēg(A,D) ≥ (1−η)s andY = C). We thus embed the forestD∗

i,e in
the edgee∈ M∗(r i).

Now consider the case whenM∗ ⊆ M2
A. We shall use Lemma 6.6 Part 3. The

setUr i ∩ (C∪D), is 2-packed (with parametersλ2 and τ) by induction, for all
CD∈ M∗. Setλ2 = 2∆ +7βs+4τ. Observe that each tree ofD∗ has at least two
vertices.

∣

∣

∣

∣

∣

⋃

j≤i

V(D∗
j )

∣

∣

∣

∣

∣

≤
(

d ēg(A,V(M∗))+
η2n
10

+ τ
)

≤ ∑
CD∈M∗(r i)

d ēg(A,C∪D)+
√

βn+
η2n
10

+ τ

≤ ∑
CD∈M∗(r i)

d ēg(A,C∪D)+N(
ηs
4

− τ) .

Thus we can partition the setD∗
i in setsD∗

i,e, e∈ M∗(r i) satisfying the conditions
of the Lemma 6.6 Part 3, forZ = A, U = Ur i and fore= CD we haveX = C and
Y = D. We thus embed each forestD∗

i,e in the edgee.

If DB is cU/2-balanced, we interchange the role ofDA andDB, and ofWA and
WB in the above.
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The pair of clusters(A,B) was characterized by the following properties:

• AB∈ E(G),

• A,B∈ X ′∩L .

Thus, any pair of clusters(X,Y), such thatXY ∈ E(G), and X,Y ∈ X ′ ∩L
can play the same role as the clustersA and B, in particular Lemmas 7.1, 7.2,
and 7.3 can be applied to any such pair of clusters(X,Y) to obtainT ⊆ G, or
max{|MX

1 |, |MY
1 |, |MX

2 |, |MY
2 |} < 2ηN. Thus in the following it is enough to con-

sider the latter case. Then, for anyC∈ X ′∩L ∩N(X ′∩L ) we have

d ēg(C,V(M−(C))) ≤ 10ηn . (7.20)

ChooseM∗(A) ⊆ M̃ \M−(A) maximal such that forV ′ =
⋃

CD∈M∗(A)C∪D we
have|V ′| ≤ k+2s. We claim that

|L∩V ′| ≥ |V ′|/2 , and (7.21)

|V ′| ≥ d ēg(A,V ′) ≥ k−10.5ηn . (7.22)

For property (7.21) it is enough to observe that at least halfof the vertices in any
edgeCD∈ M∗(A) are large. Property (7.22) is proved by analysing two cases.If
M∗(A) = M̃ \M−(A), then

d ēg(A,V ′) ≥ d ēg(A,V(M̃))−d ēg(A,V(M−(A)))
(7.10)&(7.20)

≥ k−4σn−10ηn≥

≥ k−10.5ηn .

If M∗(A) 6= M̃ \M−(A), then d ēg(A,V ′) ≥ (1−η)k > k−10.5ηn .
Observe that for anyX ∈X ′∩L ∩N(X ′∩L ), similarly as above, we obtain

d ēg(C,V(M̃ \M−(C)))
(7.10)&(7.20)

≥ k−10.5ηn . (7.23)

If eGγ (V
′,V \V′)≤ ωn2/2, theneG(V ′,V \V ′)≤ ωn2, as by cleaning the clus-

ter graphG we deleted at most 2γn2 edges, andeG(V̄,V \ V̄) ≤ βn2 (recall that
β ≪ γ ≪ ω). The setV ′ satisfies the requirements of the Proposition 4.4.
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PART II: Escaping from V ′. In the rest of the proof, we assume that

eGγ (V
′,V \V′) ≥ ωn2/2 . (7.24)

Under this assumption, we show thatT ⊆ G. We use the edges betweenV ′ and
V \V′ in order to “escape” fromV ′. More precisely, we save space in the neigh-
bourhood ofA by embedding part of the forestTA in V \V′.

SetT ≥3 = {t ∈DA : |V(t)\N(WA)| ≥ 2} andT ≥3
∗ = {t ∈DA\T ≥3 : v(t)≥

3}. For i = 1,2 setT i = {t ∈ DA : v(t) = i}, and byT i the forest induced byT i .
Observe thatT ≥3, T ≥3

∗ , T 2, andT 1 partitionDA. Since the distance between
any two vertices inWA is even, for each treet ∈ T 1 ∪T 2, only the root oft is
adjacent toWA.

Lemma 7.4. |V(
⋃{t ∈ T ≥3})| < 36ηn, or T ⊆ G .

Proof. Suppose that|V(
⋃{t ∈ T ≥3})| ≥ 36ηn. We show thatT ⊆ G. Choose

a maximal forestT∗
A of order at most 36η(1− 2η)n formed by components of

T ≥3. Thenv(T∗
A )≥ 36η(1−2η)n−τ. This forest contains relatively few vertices

adjacent toWA, more precisely

|N(WA)∩V(T∗
A )| ≤ 12(1−2η)ηn+ |WA| . (7.25)

As eGγ (V
′,V \V ′) ≥ ωn2/2, for at leastωN/4 clustersC ∈ V(G), C ⊆ V ′,

it holds d ēg(C,V \V ′) ≥ ωn/4. All but at most 3γN of these clusters have the
property that d ēg(C,V(M̃)) ≥ d ēg(C)− 3σn−4s> d ēg(C)−4σn (from the as-
sumptions of Case II). Thus

d ēg(C,V(M̃ \M∗(A))) ≥ ωn
4

−4σn . (7.26)

Let C be a set of 12ηN such clusters. We shall use the clusters inC as bridges to
embed part ofT∗

A outside ofV ′. In C , we shall embed the vertices ofT∗
A that are

adjacent toWA, and the restV(T∗
A ) will be mapped toV \V ′. We cannot then use the

clusters that are matched withC anymore, however this loss is overcompensated
by the amount of vertices ofT∗

A that we are able to embed inV \V′.
SetM∗ = {CD∈ M∗(A) : {C,D}∩C 6= /0}. Then,

max{d ēg(A,V(M∗)),d ēg(B,V(M∗))} ≤ 24ηn (7.27)

and thus

d ēg(A,V(M∗(A)\M∗)) ≥ d ēg(A,V ′)−24ηn
(7.22)
≥ k−35ηn

≥ v(T)−v(T∗
A)+ ηn/2 . (7.28)
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We claim that there are disjoint submatchingsMA andMB of M̃ \M∗ such that

d ēg(A,V(MA)) ≥ v(TA)−v(T∗
A)+ ηn/8 , and (7.29)

d ēg(B,V(MB)) ≥ v(TB)+ ηn/8 . (7.30)

To prove the existence ofMA andMB satisfying (7.29) and (7.30), we consider two
cases based on the order ofTB.

(♣1) First assume thatv(TB) ≥ 4
√

σk. Lemma 7.1 implies that that

d ēg(B,V ′) ≥ d ēg(A,V ′)−9
√

σk
(7.22)
≥ k−11ηn .

Similarly as in (7.28), we obtain d ēg(B,V(M∗(A)\M∗)) ≥ v(T)−v(T∗
A )+ ηn/2.

Requirements (7.29) and (7.30) follow by application of Proposition 3.7. Indeed,
setting∆ = 2s,a = v(TA)−v(T∗

A )+ηn/8,b= v(TB)+ηn/8, I = M∗(A)\ (A)\M∗

and fore∈ I settingαe = d ēg(A,e) andβe = d ēg(B,e), we infer that the matching
M̃ \M∗ can be partitioned into two submatchingsMA and MB satisfying (7.29)
and (7.30).

(♣2) Now assume thatv(TB) < 4
√

σk. Then

d ēg(B,V(M̃ \ (M−(B)∪M∗)))
(7.23)&(7.27)

≥ k−10.5ηn−24ηn
≥ v(TB)+ ηn/8 .

LetMB ⊆ M̃\(M−(B)∪M∗) be such thatv(TB)+ηn/8≤ d ēg(B,V(MB))≤ v(TB)+
ηn/8+ 2s. Equation (7.30) holds. Recall thatB is densely connected toM \
M−(B), thus

2s· |MB| ≤ (v(TB)+ ηn/8+2s)/(1−η)

≤ 2 4
√

σk+(ηn/8+ η2n/4)+4s

< ηn/4 . (7.31)

SetMA = M∗(A)\ (M∗∪MB). Then,

d ēg(A,V(MA)) ≥ d ēg(A,V(M∗(A)\M∗))−2s· |MB|
(7.28)&(7.31)

≥ v(T)−v(T∗
A )+ ηn/2−ηn/4

> v(TA)−v(T∗
A )+ ηn/8 ,

implying (7.29).
In both cases, observe that for each clusterC∈ C we obtain

d ēg(C,V(M̃ \(MB∪M∗(A))
(7.26)
≥ ωn/4−10ηn−4s−2s|MB\M∗(A)|

(7.31)
> ωn/8 .

(7.32)
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Say that a vertex isA-typical if it is typical w. r. t. clusterB, typical w. r. t.C ,
typical w. r. t. all but at most

√

βN clusters ofV(MA). Say that a vertex isB-typical
if it is typical w. r. t. clusterA, and typical w. r. t. all but at most

√

βN clusters of
V(MB).

We embed the treeT in the graphG starting with the rootR and progressing
downwards in the�R-order. We embed the vertices ofWA in A-typical vertices of
the clusterA, and embed the vertices ofWB in B-typical vertices of the clusterB.
The forestTA−T∗

A is embedded inMA and the forestTB in MB. The set N(WA)∩
V(T∗

A ) is mapped to vertices inC that are typical w. r. t. all but at most
√

βN
clusters ofV(M̃ \ (M∗(A)∪MB)), and the forestT∗

A −N(WA) is embedded inM̃ \
(M∗(A)∪MB). Adjacencies are preserved. To embedTA−T∗

A , TB andT∗
A −N(WA),

we shall use Lemma 6.6 Part 1.
Let v be any vertex inϕ(WA), and let the setMv

A consist of the edgesXY∈ MA

such thatv is typical to bothX andY. Similarly defineMv
B for a vertexv∈ ϕ(WB)

and(M \ (M∗(A)∪MB))v for a vertexv∈ ϕ(N(WA)∩V(T∗
A )). Then,

deg(A,V(Mv
A)) ≥ |V(TA)\V(T∗

A )|+ ηk/4−2
√

βNs≥ |V(TA)\V(T∗
A )|+ αk .

Forv∈ ϕ(WA) by (7.25) it holds

deg(v,C ) ≥ d ēg(A,C )−βs|C |
≥ (1−η −β )12ηn

≥ |N(WA)∩V(T∗
A )|+ αk .

Similarly, we obtain d ēg(B,V(Mv
B)) ≥ v(TB)+ αk for v∈ ϕ(WB), and

d ēg(C,(M̃ \ (M∗(A)∪MB))v) ≥ ωn/8−2
√

βn≥ v(T∗
A )+ αk ,

for v∈ ϕ(N(WA)∩V(T∗
A )). For eachr ∈WA, we extend its mapping to an embed-

ding of the components ofTA−T∗
A , with root in Ch(r). This is done by filling up

the clustersC andD, for everyCD∈ Mϕ(r)
A . Lemma 6.6 Part 1 ensures that we can

embed inCD∈ Mϕ(r)
A components of total order of at least d ēg(A,C∪D)−αk/2

(the setU denotes the set of used vertices; it is 1-packed by induction). The em-
bedding ofTB and ofT∗

A −N(WA) are treated similarly.

Now we have the tools to prove Lemma 7.5. It considers the situation when a
substantial portion of the edges betweenV ′ andV \V ′ does not emanate fromL .
SetS̃ = {C : CD∈ M∗(A), C /∈ L } andS̃=

⋃

C∈S̃ C.

Lemma 7.5. It holds eGγ (S̃,V \V′) < 32ηn2, or T ⊆ G .
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Proof. Assume thateGγ (S̃,V \V′) ≥ 32ηn2. We show thatT ⊆ G. For this, we
consider three cases. The first case(C1) deals with the case when there are many
leaves ofT adjacent to vertices ofWA. As such leaves can be embedded at the end
in a greedy way, it is enough to embed a significantly smaller tree. The second
possibility (C2) deals with the case when the setDA contains many ‘large’ com-
ponents. This case was treated in the Lemma 7.4. In the last part of the proof we
consider the remaining case(C3), when most of the trees inDA are paths of length
2.

(C1) If |⋃t∈T 1 V(t)| ≥ 2ηn, then consider the subgraphT ′ = T −V(T1) ob-
tained fromT after deleting all leaves adjacent toWA. Observe thatT ′ is a tree.

v(T ′)+ ηn≤ k−ηn≤ min{d ēg(A,V(M̃)),d ēg(B,V(M̃))} .

By Proposition 3.7, there exists a partitionM̃ = MA∪MB such that d ēg(A,V(MA))≥
|V(TA) \V(T1)|+ ηn/4 and d ēg(B,V(MB)) ≥ v(TB)+ ηn/4. We then define the
embedding ofT ′ in a standard way. The trees ofT 1 are leaves whose parent
vertices are mapped toL, and can be embedded greedily. This implies thatT ⊆ G.

(C2) By Lemma 7.4, if|⋃t∈T ≥3 V(t)| ≥ 36ηn, thenT ⊆ G.
(C3) If |⋃t∈T ≥3 V(t)| < 36ηn and|⋃t∈T 1 V(t)| < 2ηn, then the trees from

DA \ (T ≥3∪T 1∪T 2) consist only of trees of order at least 3 that contain only
one vertex not adjacent toWA.

∣

∣

∣

∣

∣

⋃

t∈T 2

V(t)

∣

∣

∣

∣

∣

= v(TA)−|
⋃

t∈T ≥3

V(t)|−v(T1)−|
⋃

t∈T ≥3
∗

V(t)|

≥ k/2−|WA∪WB|−36ηn−2ηn−3|WA|
> 26ηn .

Let T∗
A be a maximal forest of order at most 26ηn formed by trees fromT 2.

Observe that 26ηn− τ ≤ v(T∗
A ) ≤ 26ηn.

There are at least 16ηN clustersC∈ S̃ for which d ēg(C,M \M∗(A))≥ 16ηn.
Let C be a set of size 7ηN formed by such clusters contained in different edges of
M. Set

M∗ = {CD∈ M∗(A) : {C,D}∩C 6= /0} .

From d ēg(A,V(M∗)) ≤ 14ηn we deduce that

d ēg(A,V(M∗(A)\M∗)) ≥ k−11ηn−14ηn≥ k−25ηn

≥ v(T)−v(T∗
A)+ ηn .
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We claim that there exist disjoint submatchingsMA andMB of M̃ \M∗ such that
d ēg(A,V(MA)) ≥ v(TA)−v(T∗

A )+ ηn/8 and d ēg(B,V(MB)) ≥ v(TB)+ ηn/8. We
consider two cases, depending onv(TB).

(♠1) First assume thatv(TB)≥ 4
√

σk. Then, similarly as above and by Lemma 7.1,
we have thatT ⊆ G, or

d ēg(B,V(M∗(A)\M∗)) ≥ v(T)− (T∗
A )+ ηn .

Using Proposition 3.7, we partitionM∗(A)\M∗ in two submatchingsMA andMB so
that d ēg(A,V(MA))≥ |V(TA)\V(T∗

A )|+ηn/8 and d ēg(B,V(MB))≥ v(TB)+ηn/8.
(♠2) If v(TB) < 4

√
σk, then choose a submatchingMB ⊆ M̃ \ (M−(B)∪M∗) so

that
v(TB)+ ηn/8≤ d ēg(B,V(MB)) ≤ v(TB)+ ηn/8+2s.

It follows that 2s· |MB| ≤ (v(TB)+ηn/8+2s)/(1−η)≤ ηn/4. SetMA = M∗(A)\
(M∗∪MB). Then,

d ēg(A,V(MA)) ≥ v(T)−v(T∗
A )+ ηn−2s· |MB| > v(TA−T∗

A )+ ηn/8 .

Say that a vertex isA-typical if it is typical w. r. t. clusterB, typical w. r. t.C ,
typical w. r. t.V(M∗) \C , typical w. r. t. all but at most

√

βN clusters ofV(MA).
A vertex isB-typical if it is typical w. r. t. clusterA, typical w. r. t. all but at most
√

βN clusters ofMB.
We embedT progressing downwards in the�R-order. We embed the vertices

of WA in A-typical vertices of the clusterA, and embed the vertices ofWB in B-
typical vertices of the clusterB. The forestTA−T∗

A is embedded inMA, and the
forestTB in MB. The roots of half of the forestT∗

A are mapped to vertices inC
that are typical w. r. t.V(M \ (M∗(A)∪MB)), and the neighbours of such roots
are mapped to the setV \V ′. The left-over roots ofT∗

A are mapped to vertices
of V(M∗) \C , and their respective neighbours are embedded greedily. This is
possible, as vertices inV(M∗)\C are large vertices. We use Lemma 6.6 Part 1 in
a standard way in order to embed the components of the forest in the respective
matching edges. Adjacencies are preserved. Details are left to the reader.

SetML = {CD∈ M∗(A) : {C,D} ⊆ L }. In the same spirit as above, we prove
the following auxiliary lemma.

Lemma 7.6. It holds|ML| < 7ηN, or T ⊆ G .

Proof. The proof is analogue to the one of Lemma 7.5 and thus we provide only a
short sketch of it. Assume that|ML| ≥ 7ηN. We chooseM∗ ⊆ ML of order 7ηN.
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We partitionM̃ \M∗ = MA∪MB as before. The setWA is mapped to vertices that
are typical w. r. t. clusterB, typical w. r. t.V(M∗) and typical w. r. t. all but at most
√

βN clusters ofV(MA). The setWB, the forestTA \ T∗
A , and the forestTB are

embedded as above; the roots ofT∗
A are mapped to vertices in

⋃

V(M∗) ⊆ L; the
left-over leaves are embedded greedily.

Lemma 7.7. Under the above assumptions, it holds T⊆ G .

Proof. Assume thateGγ (V
′ \ S̃,V \V′) ≥ ωn2/4 and that|ML| < 7ηN. We show

that theneGγ (S̃,V \V′) ≥ 32ηn2 and by Lemma 7.5, this implies thatT ⊆ G.
For at leastωN/4 clustersC of V(M∗(A)) \ S̃ it holds that d ēg(C,V \V ′) ≥

ωn/4. As such clusters are in N(A)∩L , at leastωN/4−1≥ ωN/8 of them are
in X ′∩L (see Proposition 6.4). Denote this set byC . By (7.20), we obtain for
C ∈ C that d ēg(C,V(MC)) ≥ ωn/4−11ηn, whereMC = M̃ \ (M−(C)∪M∗(A)).
At least nearly half of the weight fromC to MC goes to clusters that are inL , as all
matching edges are incident toL and the degrees to both end-clusters cannot differ
too much. Also all but at most one cluster ofV(MC)∩L are inX ′. Therefore
d ēg(C,V(MC)∩X ′∩L ) > ωn/10.

SetD =
⋃

C∈C V(MC)∩X ′∩L . Then|D | > ωN/10. We deduce that

eGγ (
⋃

C ,
⋃

D) ≥ (s·ωN/8) ·ωn/10= ω2n2/80.

From (7.20), we infer that eachD ∈ D ′ sends at most 11ηns edges inM−(D).
So d ēg(D,C \V(M−(D))) ≥ ω2n/80−11ηn> ω2n/100. The clusterD has also
large degree to the clusters which are matched toC \V(M−(D)) by M∗(A). As
|ML| < 7ηN, nearly all those clusters are iñS . We deduce that d ēg(D, S̃) ≥ (1−
η)ω2n/100−7ηn> ω2n/200 and thus

eGγ

(

V \V ′, S̃
)

≥ eGγ

(

⋃

{D ∈ D}, S̃
)

>
ωNs
10

· ω2n
200

> 32ηn2 ,

what we wanted to show.

This finishes the proof of the Proposition 4.4.
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8 Extremal case (proof of Proposition 4.1)

Let γ be such thatβ ≪ γ ≪ σ ≪ 1. Throughout this section we writeϑ = ci(n/k).
It holdsλ ≤ ϑ . The setsVi, i ∈ [λ ] are calledclusters1.

Suppose thatG admits a(β ,σ)-Extremal partitionV1, . . . ,Vλ ,Ṽ. In any cluster
Vi most of the vertices ofVi ∩L are adjacent to almost all vertices of the cluster.
Likewise, almost every vertex inVi ∩S is adjacent to almost all large vertices of
the cluster. We make these statements precise in the following claim, however
throughout the rest of the section we just refer to(β ,σ)-Extremality to use similar
properties.

Claim (Properties of a cluster in a(β ,σ)-Extremal partition). For any i∈ [λ ]
and any c> 0 the following holds.

1. For all but at most
√

βk/c vertices v∈Vi ∩L it holds thatdeg(v,Vi) ≥ k−
c
√

βk.

2. For all but at most2
√

βk/c vertices v∈Vi ∩S it holds thatdeg(v,Vi ∩L) ≥
|Vi ∩L|−c

√

βk.

Proof. 1. LetU = {v ∈ Vi ∩L : deg(v,Vi) < k− c
√

βk}. Since every vertex
v∈U sends at leastc

√

βk edges outsideVi , we deduce frome(Vi ,V \Vi) <

βk2 that|U | ≤
√

βk/c.

2. LetW = {v∈Vi ∩S : deg(v,Vi ∩L) < |Vi ∩L|−c
√

βk}. From

e(Vi ∩L,Vi ∩S) > |Vi ∩L|k−|Vi ∩L|2−βk2 > |Vi ∩L||Vi ∩S|−2βk2 , and

e(Vi ∩L,Vi ∩S) = e(Vi ∩L,W)+e(Vi ∩L,Vi ∩S\W)

≤ (|Vi ∩L|−c
√

βk)|W|+ |Vi ∩L|(|Vi ∩S|− |W|)
= |Vi ∩L||Vi ∩S|−c

√

βk|W|

we infer that|W| < 2
√

βk/c.

(Using the above claim withc = 1 will be sufficient for our purposes.)
For eachi ∈ [λ ] we setLi = {u∈ L : deg(u,Vi) > (1− γ/2)k}. Observe that

|Li | ≥ (1− γ/2) k
2, and thatδ (G[Li ,A]) ≥ |A|− γk for everyA⊆Vi .

1The notion of “cluster” in Section 8 is very different from the one used in other sections of the
paper. There, a cluster is a vertex set obtained by the Regularity Lemma.
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The(β ,σ)-Extremal partition has two subcases. It isabundantif there exists
i ∈ [λ ] with |Li | ≥ (k+1)/2, and it isdeficientif |Li | < (k+1)/2 for all i ∈ [λ ].

For eachi ∈ [λ ] we setSi
⋄ = {v∈ S∩Vi : deg(v,Li) > |Li |− γk/2}. Observe

that the setsSi
⋄ are pairwise disjoint, and that|Li ∪Si

⋄| ≥ (1− γ/2)k.

The goal of this section is to prove Proposition 4.1. That is,given a(β ,σ)-
Extremal decompositionV1, . . . ,Vλ ,Ṽ of V (with β ≪ σ ) we have to show that
Tk+1 ⊆ G, or there exists a setQ⊆ Ṽ such that

• |Q| > k/2.

• |Q∩L| > |Q|/2.

• e(Q,V \Q) < σk2.

The proof of Proposition 4.1 is decomposed into two separatestatements, Proposi-
tion 8.1 and Proposition 8.2, according the number of leavesof the treeT ∈ Tk+1
considered.

Proposition 8.1. Let T ∈ Tk+1 be a tree that has at most60γk leaves. Fur-
thermore, suppose that G admits a(β ,σ)-Extremal partition V1, . . . ,Vλ ,Ṽ . Then
T ⊆ G, or there exists a set Q⊆ Ṽ such that

• |Q| > k/2.

• |Q∩L| > |Q|/2.

• e(Q,V \Q) < σk2.

Proposition 8.2. Let T ∈ Tk+1 be a tree that has more than60γk leaves. Fur-
thermore, suppose that G admits a(β ,σ)-Extremal partition V1, . . . ,Vλ ,Ṽ . Then
T ⊆ G.

The proofs of Propositions 8.1, 8.2 occupy Sections 8.1, and8.2, respectively.

Let us first rule out some easy configuration from further considerations.

Lemma 8.3. Suppose that G admits a(β ,σ)-Extremal partition V1, . . . ,Vλ ,Ṽ . Any
tree T∈ Tk+1 with discrepancy at least2γk is a subgraph of G.

Proof. ChooseL∗ ⊆ Li with |L∗|= (1−γ/2) k
2, and setS∗ = (Li ∪Si

⋄)\L∗. Observe
that|S∗| ≥ (1− γ/2) k

2, and thus

min{δ (G[L∗,S∗]),δ (G[S∗,L∗]),δ (G[L∗,L∗])}≥ (1−γ/2)k/2−γk/2≥ (1−3γ/2)k/2 .
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Take the semiindependent partition(U1,U2) of T witnessing that disc(T) ≥ 2γk.
Denote byW the set of leaves ofT. Since by Fact 3.2

|U2\W| ≤ |U1| ≤ (k+1− (2γk))/2< (1−3γ/2)k/2 ,

we may apply Fact 3.5 to embedT in G using the setsL∗ andS∗.

Lemma 8.4. 1. The sets{Li}i∈[λ ] are mutually disjoint, orTk+1 ⊆ G.

2. Suppose that̃V = /0. If there exists a vertex u∈ L\ (
⋃

i L
i), thenTk+1 ⊆ G.

Proof. For eachi ∈ [λ ] fix Ai ⊆ Li a set of size(1/2− γ/4)k, and setBi = (Li ∪
Si
⋄)\Ai.

1. Suppose that there exist distinct indicesi, j ∈ [λ ] and a vertexu ∈ Li ∩L j .
Let T ∈ Tk+1 be arbitrary. By Lemma 8.3 we can assume in the following
that disc(T) < 2γk. Sincee(Vi ,Vj) < βk2, it holds that|Li ∩L j | < γk. By
Fact 3.1 there exists a full-subtreeT̃ ⊆T rooted at a vertexr such thatv(T̃)∈
[k/6,k/3]. We mapr to u, and the treẽT to G[Ai,Bi ] greedily (this is possible
since max{|Te∩V(T̃)|, |To ∩V(T̃)|} < v(T̃)/2+ 2γk, by Lemma 3.3). By
Lemma 3.3 it holds min{|Te∩V(T − T̃)|, |To∩V(T − T̃)}| > v(T − T̃)/2−
2γk, and we infer that max{|Te∩V(T− T̃)|, |To∩V(T− T̃)|}< 5k/12+2γk,
we can embedT − T̃ in G[A j ,B j ] greedily (avoiding the previously used
vertices ofLi ∩L j ).

2. Suppose that there exists a vertexu∈ L\⋃i L
i . By Part 1 of the lemma, we

may assume that the setsLi are pairwise disjoint.

We saw in the proof of Part 1 of the lemma that the graphsG[Ai,Bi ] are
suitable for embedding a tree whose both color-classes havesizes at most
(1/2−2γ)k, and of a tree with substantial discrepancy. We shall consider
setsXi ⊆ Ai andYi ⊆ Bi which have even better embedding properties. De-
fine

Xi = {u∈ Ai : deg(v,Vi) > (1− γ/(13ϑ))k} , and

Yi = {u∈ Bi : deg(v,Li) > |Xi |− γk/(13ϑ)} .

It holds that
|Vi \ (Xi ∪Yi)| < γk/(3ϑ 2) . (8.1)

As Xi ⊆ Li andYi ⊆ Si
⋄, all the setsXi andYi are pairwise disjoint. Let

T ∈ Tk+1 be arbitrary. Analogously as in the proof of Lemma 8.3 it holds
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T ⊆G if disc(T)≥ γk/(6ϑ). Therefore we assume that disc(T) < γk/(6ϑ).
By Fact 3.1 there exists a full-subtreeT̃ ⊆ T rooted in a vertexr such that
v(T̃) ∈ [0.3k,0.6k]. We will embed the whole treeT in G, mappingr to u.
Let D be the set of leaves ofT in NT(u). We first embed the treeT −D.
The embedding is then extended to an embedding ofT using the property of
high degree ofu.

A 2+-componentis a component of the forestT − r of order at least two.
Let C be the family of all 2+-components. For any subfamilyC ′ it holds by
Lemma 3.3 and the assumption disc(T) ≤ γk/(6ϑ) that

max{V(C ′)∩To,V(C ′)∩Te} < |V(C ′)|/2+ γk/(12ϑ)+1 . (8.2)

By (8.1) at mostγk/(3ϑ) vertices of the graphGare not contained in
⋃

i(Xi∪
Yi). Thus, deg(u,

⋃

i(Xi ∪Yi)) ≥ (1− γ/(3ϑ))k. We shall assign each 2+-
componentC ∈ C an indexiC ∈ [ϑ ]. The idea is that each 2+-component
will be mapped to the clusterViC. Thus the following requirement on the
assignment for eachj ∈ [ϑ ] is natural:

deg(u,Xj ∪Yj) ≥ |{C∈ C | iC = j}| , and (8.3)

∑
C∈C
iC= j

v(C) ≤ (1−2γ/3)k . (8.4)

We argue that such an assignment exists. We order the 2+-components in an
arbitrary way asC1, . . . ,C|C |. Without loss of generality, we assume that
deg(u,X1 ∪Y1) ≤ . . . ≤ deg(u,Xϑ ∪Yϑ ). For j = 1,2, . . . ,ϑ we sequen-
tially assign the yet unassigned 2+-componentsC the index j (i.e., we set
iC = j) as long as (8.3) and (8.4) hold. If one of the conditions is tobe
violated (for stepj) we proceed with assigning the components the index
j + 1. It remains to check that there are no unassigned 2+-components left
when we finish the stepj = ϑ . Indeed, if all steps were terminated be-
cause of condition (8.3) then we are done. Otherwise, suppose that we as-
signed 2+-componentsC1, . . . ,Cκ−1 the indices 1, . . . , j − 1 in such a way
that the terminating rule performed was (8.3), and then the 2+-components
Cκ ,Cκ+1, . . . ,Cκ+w−1 were assigned the indexj, and we were not able to
assign componentCκ+w the indexj even though deg(u,Xj ∪Yj) < w. Then
∑κ+w

ℓ=κ v(Cℓ) > (1−2γ/3)k. Since deg(u,Xj ∪Yj) < (1−2γ/3)kwe have that

deg

(

u,
⋃

ℓ 6= j

(Xℓ ∪Yℓ)

)

>
κ−1

∑
ℓ=1

v(Cℓ)+
|C |
∑

ℓ=κ+w

v(Cℓ) .
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Thus the remaining 2+-components can be assigned an index, not violat-
ing (8.3) Observe, that (8.4) is not be violated in any futurestep, since the
2+-components of total order at leastk/6−2γk/3 were embedded inXj ∪Yj

(no 2+-component is larger than 5k/6 by the way the rootr was found).

We embed the treeT as follows. The vertexr is mapped tou. For each
componentC∈ C we embed its rootrC ∈V(C)∩NT(r) in one vertex from
(XiC ∪YiC)∩NG(u) (so that distinct roots are mapped to distinct vertices).
We denote the image of the rootrC by ϕ(rC). Then the embedding of
the roots is extended to an embedding of all 2+-components. This can be
done greedily since each of the graphsG[Xi,Yi ] has minimum degree at least
(1/2− γ/(12ϑ))k+1, and by (8.2) it holds by a double application of (8.2)
that

∑
C∈C

ϕ(rC)∈Xi

|V(C)∩Te|+ ∑
C∈C

ϕ(rC)∈Yi

|V(C)∩To| <

< (1−2γ/3)k/2+2(γk/(12ϑ)+1)≤ δ (G[Xi ,Yi ]) , and

∑
C∈C

ϕ(rC)∈Xi

|V(C)∩To|+ ∑
C∈C

ϕ(rC)∈Yi

|V(C)∩Te| <

< (1−2γ/3)k/2+2(γk/(12ϑ)+1)≤ δ (G[Xi ,Yi ]) .

The next three statements (Lemma 8.5, Lemma 8.6, and Proposition 8.7) deal
with the Deficient case. In this case, it may happen that none of the clusters are
suitable for embedding of the treeT ∈ Tk+1. For this reason, we must find con-
necting structures that allow us to distribute parts of the tree to different clusters.
Each of the following three statements is used for a different type of trees.

If the configuration of the graph is Deficient, we show thatṼ = /0. First we
bound the sizes of the setsL andS: |L| < λ (1+ γ)k/2+(1−σ)|Ṽ|, |S| > λ (1−
γ)k/2+(1+σ)|Ṽ|. Since|L| ≥ |S|, we infer, that|Ṽ|< σk/2. This in turn implies
thatṼ = /0. Thus,λ = ϑ . Observe also that

ϑ(k+1) > n . (8.5)

Lemma 8.5. Suppose that G admits a(β ,σ)-Extremal Deficient partitionV1, . . . ,Vϑ ,
Ṽ , (Ṽ = /0), such that{Li}ϑ

i=1 is a partition of L. For i∈ [ϑ ] define Si♯ = {u∈ S :

deg(u,Li) > (1/2− γ)k}.
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Then there exist distinct indices i1, i2 ∈ [ϑ ] such that there exists an Li1 ↔ Li2-
edge, or a Li1 ↔ Si2

♯ -edge, or there exists a vertex x0 ∈ S such thatdeg(x0,L) ≥
(1/2− γ)k,min{deg(x0,Li1),deg(x0,Li2)} ≥ 1.

Figure 2: Three possible connecting structures guaranteedby Lemma 8.5.

Proof. We may assume that the setsSi
♯ are mutually disjoint, otherwise there exists

a Li1 ↔ Si2
♯ -edge (i1 6= i2). Also, we are done if there exists anLi1 ↔ Li2-edge, or

there exists anLi1 ↔ Si2
♯ -edge (i1 6= i2). We suppose that this is not the case in the

following.
We writeY = S\⋃i S

i
♯. For anyi ∈ [ϑ ] and any vertexu∈ Li there are at least

max{k+1−|Li|− |Si
♯|,0} edges emanating fromu to Y. Thus,

e(L,Y) ≥ ∑
i
|Li |max{k+1−|Li|− |Si

♯|,0}

≥ ∑
i

(1/2− γ)k(k+1−|Li|− |Si
♯|)

= (1/2− γ)k(ϑ(k+1)−|L|− |S|+ |Y|)
(8.5)
> (1/2− γ)k|Y|

By averaging, there is a vertexx0 ∈Y such that deg(x0,L) > (1/2− γ)k. From the
definition ofY, deg(x0,Li) < (1/2− γ)k, for anyi ∈ [ϑ ]. Hence,x0 is adjacent to
at least two sets from{L j} j , as required.

Lemma 8.6. Suppose that G admits a(β ,σ)-Extremal Deficient partition V1, . . . ,
Vϑ ,Ṽ (Ṽ = /0), such that{Li}ϑ

i=1 is a partition of L. There exist i0 ∈ [ϑ ] and a vertex
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v ∈ Li0 such thatdeg(v,Li0)+ deg(v,
⋃

j 6=i0(L
j ∪Sj)) ≥ k/2, where Sj = {v ∈ S :

deg(v,L j) ≥ k/(3ϑ)}.

Figure 3: Connecting structure guaranteed by Lemma 8.6.

Proof. Partition
⋃

j S
j into setsS̃j , j ∈ [ϑ ] such thatS̃j ⊆ Sj . As |L| ≥ |S|, there

exists an indexi ∈ [ϑ ] such that|S̃i| ≤ |Li | ≤ k/2. Without loss of generality,
assume thatk/2−|S̃1| is the maximum value among all valuesk/2−|S̃i| (i ∈ [ϑ ]).
Thenk/2−|S̃1| is non-negative.

Suppose that Lemma 8.6 is not true. Then for all verticesv∈ L1 it holds

deg(v,S\
⋃

j 6=1

S̃j) ≥ deg(v,S\
⋃

j 6=1

Sj) > k/2.

Thus deg(v,S−) > k/2− |S̃1|, whereS− = {u ∈ S : deg(u,Li) < k/(3ϑ),∀i =
1, . . . ,ϑ}. A double counting argument on the edges betweenL1 andS− gives

|S−| k
3ϑ

> e(L1,S−) > |L1|
(

k
2
−|S̃1|

)

,

implying that

|S−| > 3ϑ |L1|
k

(

k
2
−|S̃1|

)

. (8.6)

On the other hand, as

∑
j
|L j | = |L| ≥ |S|= ∑

j
|S̃j |+ |S−|,
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there exists ani ∈ [ϑ ] such that|Li | ≥ |S̃i |+ |S−|/ϑ . From the maximality of
k/2−|S̃1| and from (8.6) we deduce that

k
2
−|S̃1| ≥ k

2
−|S̃i| ≥ |Li |− |S̃i| ≥ |S−|

ϑ
>

3|L1|
k

(

k
2
−|S̃1|

)

,

implying k > 3|L1|, a contradiction.

Proposition 8.7. Suppose that G admits a(β ,σ)-Extremal Deficient partition
V1, . . . ,Vϑ ,Ṽ (Ṽ = /0). Furthermore, suppose that the sets{Li}i∈[ϑ ] partition the
set L. Then there exists an index i0 ∈ [ϑ ] and matchingsE i0, andJ i0 such that
the following hold.

• E i0 is a Li0 ↔ (L\Li0)-matching,J i0 is a Li0 ↔ S-matching.

• Each edge xy∈Ji0, x∈ Li0,y∈S has the property thatdeg(y,L j ) > k/(5ϑ)
for some j6= i0.

• V(E i0)∩V(J i0) = /0.

• |Li0|+ |E i0|+ |J i0| ≥ k+1
2 .

Figure 4: Connecting structure guaranteed by Proposition 8.7.
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Proof. For eachi ∈ [ϑ ] let Si
♥ = {u∈S : deg(u,Li) > k/(5ϑ)}. It holds by(β ,σ)-

Extremality that|Si
♥| > (1/2− γ)k. We first find for eachi ∈ [ϑ ] two vertex-

disjoint matchingsEi andDi , such thatEi is a Li ↔ (L \ Li)-matching,Di is a
Li ↔ (S\Si

♥)-matching, and such that the matchings{Di}i∈[ϑ ] are pairwise vertex-
disjoint.

For eachi takeEi to be a maximumLi ↔ (L\Li) matching, and if|Li |+ |Si
♥|+

|Ei | > k+1, truncateEi so that|Li |+ |Si
♥|+ |Ei | = max{k+1, |Li|+ |Si

♥|}. In the
following we assume that

|L1|+ |S1
♥|+ |E1| ≥ |L2|+ |S2

♥|+ |E2| ≥ . . . ≥ |Lϑ |+ |Sϑ
♥|+ |Eϑ | . (8.7)

Start withi = 1, and increase the indexi gradually. TakeDi to be a maximum(Li \
V(Ei)) ↔ (S\ (Si

♥ ∪⋃ j<i V(D j))) matching and truncate it so that|Li |+ |Si
♥|+

|Ei |+ |Di | = max{k+ 1, |Li |+ |Si
♥|+ |Ei |}. We show that such a matchingDi

exists. If|Li |+ |Si
♥|+ |Ei | ≥ k+1, then setDi = /0. Otherwise, we want to findDi of

sizedi = k+1−|Li|− |Si
♥|− |Ei|. By (8.7) it holds for the setBi = S∩⋃ j<i V(D j)

that|Bi |< ϑdi . Each vertexu∈ Li has at leastdi neighbors outsideLi ∪Si
♥∪V(Ei).

Color arbitrarydi edges emanating from each vertexu∈ Li outsideLi ∪Si
♥∪V(Ei)

by black, and the remaining edges incident tou by grey. Easy calculation gives

eblack(L
i \V(Ei),S\ (Si

♥∪Bi)) > di(1/2−3γ)k−ϑdi
k

5ϑ
>

dik
5

. (8.8)

Since the maximum degree in the graphGblack[Li \V(Ei),S\ (Si
♥∪Bi)] is upper-

bounded by max{k/(5ϑ),di} = k/(5ϑ), we see that there is no vertex cover of
Gblack[Li \V(Ei),S\ (Si

♥∪Bi)] of size less than

dik/5
k/(5ϑ)

≥ di .

Hence, by König’s Matching Theorem, there exists a matchingDi of sizedi with
the desired properties. We setXi = V(Di)\Li .

Let us summarize the properties of the obtained structure. For any i ∈ [ϑ ] it
holds

|Li |+ |Si
♥|+ |Ei|+ |Xi| ≥ k+1, and (8.9)

Xi ∩
⋃

j 6=i

Xj = /0 and Si
♥∩Xi = /0 . (8.10)
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The aim of the following several lines is to prove that there must be an index
i ∈ [ϑ ] such that sufficiently many vertices fromSi

♥∪Xi are contained in
⋃

j 6=i S
j
♥,

thus providing with the desired bridges from the clusterVi . It holds

n−|L| ≥
∣

∣

∣

∣

∣

⋃

i

(Si
♥∪Xi)

∣

∣

∣

∣

∣

(8.10)
≥ ∑

i

|Si
♥|+∑

i

|Xi |−∑
i

∣

∣

∣

∣

∣

(Si
♥∪Xi)∩

⋃

j 6=i

Sj
♥

∣

∣

∣

∣

∣

(8.9)
≥ ϑ(k+1)−|L|−∑

i

∣

∣

∣

∣

∣

(Si
♥∪Xi)∩

⋃

j 6=i

Sj
♥

∣

∣

∣

∣

∣

−∑
i
|Ei | ,

which yields

∑
i

(

|Li |+ |Ei|+
∣

∣

∣

∣

∣

(Si
♥∪Xi)∩

⋃

j 6=i

Sj
♥

∣

∣

∣

∣

∣

)

≥ |L|+ ϑ(k+1)−n≥ ϑ(k+1)− n
2

(8.5)
≥ ϑ(k+1)

2
.

By averaging, there exists an indexi0 ∈ [ϑ ] such that

|Li0|+ |Ei0|+
∣

∣

∣

∣

∣

(Si0
♥∪Xi0)∩

⋃

j 6=i0

Sj
♥

∣

∣

∣

∣

∣

≥ k+1
2

. (8.11)

SetE i0 = Ei0. The matchingJ i0 consists of two vertex disjoint matchingsJ1

andJ2. The matchingJ1 is defined byJ1 = {e∈ Di0 : e∩⋃ j 6=i0 Sj
♥ 6= /0}.

We takeJ2 any matching inG[Si0
♥∩⋃ j 6=i0 Sj

♥,Li0 \V(E i0 ∪J1)] that coversQ =

Si0
♥∩⋃ j 6=i0 Sj

♥. Since|Q| < γk, such a matching can be found greedily.

8.1 Proof of Proposition 8.1

Suppose the treeT and the graphG satisfying the hypothesis of Proposition 8.1
are given. Throughout the proof we writeα = 60γ.

For eachi ∈ [λ ] we defineXi = {v∈Vi : deg(v,Li) > k/(5ϑ)}. Vertices in
⋃

i∈λ
Li ∪

⋃

i∈[λ ]

Xi

aresubstantial, vertices in

O = V \



Ṽ ∪
⋃

i∈[λ ]

Li ∪
⋃

i∈[λ ]

Xi




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arenegligible. Observe that there are at most 2rγk negligible vertices. The sub-
stantial vertices are suitable for embedding: suppose we have a forestF of or-
der at mostk/(5ϑ) consisting of rooted components(r1,C1), . . . ,(rp,Cp). Let
v1 ∈ Vi1, . . . ,vp ∈ Vip be arbitrary distinct substantial vertices. ThenF can be
embedded inG so that every componentCx is embedded inVix, with its root rx

mapped to the vertexvx. If G is Abundant, we setΛ ⊆ [λ ] to be the set of indices
i0 such that|Li0| ≥ (k+1)/2, and setE i0 = J i0 = /0. If G is Deficient, we apply
Proposition 8.7 to obtain an indexi0 and two matchingsE i0 andJ i0 such that
|Li0|+ |E i0|+ |J i0| ≥ (k+1)/2. We then setΛ = {i0}.

For eachi0 ∈ Λ, we shall try to embed the treeT so that most of the vertices
of T are embedded inVi0. We shall show that if all the attempts fail, then there
exists a setQ satisfying the hypothesis of Proposition 8.1. The embedding plan is
as follows. We try to embed most ofTo in (a subset of)Li0 and the internal vertices
of Te into vertices which are well-connected toLi0 (the leaves ofTe being treated in
the last stage). The setLi0 may be not large enough to absorb all the vertices from
To, since we only know that|Li0| > (1/2− γ)k+1 andTo may be as large ask/2.
We use the edges of the matchingsE i0 andJ i0 in order to distribute the excess
parts ofT outsideVi0. We want then to show that the set of vertices well-connected
to Li0 is large enough to absorb the internal vertices ofTe. However, this need not
to be the case; but then we are able to exhibit the desired setQ.

The following statement provides an embedding of the tree, given a suitable
embedding structure. We defer its proof to the end of the section.

Proposition 8.8. For any tree T∈ Tk+1 with ℓ < αk leaves the following holds.
Let H and Hκ , κ ∈ I (the index set I is arbitrary) be vertex disjoint subgraphsof
G. The graph H is bipartite, H= (A,B;E). Suppose that the graphs H, and Hκ
(κ ∈ I) have the following properties.

• δ (Hκ ) > 25αk for eachκ ∈ I.

• δ (A) ≥ k.

• There exists A↔ (
⋃

κ(V(Hκ)))-matchingE , and a familyM of vertex dis-
joint A↔ (V \V(H)) ↔ (

⋃

κ V(Hκ)) paths. Moreover, V(E )∩V(M ) = /0.

• |E |+ |M |< αk.

• |A|+ |E | ≥ |To|.

• |B|+ |E |+ |M | ≥ |Te|−1.

• δ (A,B) ≥ |B|−αk.
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• The set B has a decomposition B= Ba∪Bd, |Bd| ≤ αk, δ (Ba,A)≥ |A|−αk,
and there exists a familyQ = {P1, . . . ,Pr} of r = |Bd| vertex-disjoint A↔
Bd ↔ A paths. Moreover, V(Q)∩ (V(E )∪V(M )) = /0.

Then there exists an embedding of T in G.

For eachi0 ∈ Λ we try to find a structure suitable for applying Proposition 8.8.
We do the following for eachi0 ∈ Λ.

We write e = |E i0| and b = |J i0|. Fix a setL∗ ⊆ Li0 of size |To| − b− e
which containsF = (V(E i0)∪V(J i0))∩ Li0. SetWa = (Li0 \ L∗)∪Si0⋄ . Note
that|Wa| > |Te|− γk. Take a maximum familyP = {P1, . . . ,Pa} of vertex-disjoint
(L∗ \F) ↔ (V \ (L∗∪Wa)) ↔ (L∗ \F)-paths, and letWd be their middle vertices.

Assume that|Wa|+ |Wd|+ |E i0| ≥ |Te|−1. Consider a family of pathsP ′ ⊆P
by truncatingP so that|P ′| = min{|P|,αk}, and denoteW′

d the set of middle
vertices ofP ′. We apply Proposition 8.8, setting the parameters of the proposition
as follows:A = L∗,Ba = Wa,Bd = W′

d,Q = P ′,E = E i0 ∪J i0,M = /0, I = [λ ]\
{i0}, andHκ = G[Lκ ∪Sκ

⋄ ] (for eachκ ∈ I ). Proposition 8.8 will be used several
other times. When using it later, we shall explicitly mention only those parameters
of the proposition which differ from the ones above.

Now, assume that|Wa|+ |Wd|+ |E i0| < |Te|−1. Then|P| < γk. From each
vertexu∈ L∗ \(F∪V(P)) at least two edgesex

u = uxu andey
u = uyu are emanating

intoV \(L∗∪Wa∪Wd∪E i0). SetRi0 =
⋃

u∈L∗\(F∪V(P)){xu,yu}. By the maximality
of P all the verticesxu,yu, (u∈ L∗ \ (F ∪V(P))) are distinct. At most 2ϑγk of
these are negligible vertices. Denote the set of substantial vertices ofRi0 by Mi0,
and call the setYi0 = Ri0 ∩ Ṽ theshadowof L∗. If |Mi0| ≥ 2γk then one can find
a matchingN1 ⊆ ⋃

u∈L∗\(F∪V(P)){e1
u,e

2
u} of sizeγk, and Proposition 8.8 can be

applied (withE = E i0∪N1, Bd =Wd, andQ = P) to show thatT ⊆G. Otherwise,
|Yi0| ≥ 2|L∗|−|O|−|Mi0| ≥ 2|L∗|−ϑγk. The choice ofL∗ ⊆Li0 was arbitrary, with
the only restrictionF ⊆ L∗. Thus the above procedure can be applied for another
choice ofL∗. Denote byỸi0 the union of shadows corresponding to all possible
choices ofL∗ (for a fixed vertexu∈ Li0 \ (F ∪V(P)), the choice ofxu andyu does
not depend on the choice ofL∗). Thus we get thatT ⊆ G by Proposition 8.8, or
|Ỹi0| ≥ 2|Li0|−3ϑγk.

Suppose that we were not able to use Proposition 8.8 so far forany i0 ∈ Λ. If
there existsi0 ∈ Λ such that|Ỹi0 ∩

⋃

i∈Λ\{i0} Ỹi | ≥ 4γk, thenT ⊆ G. Indeed, one
can find a familyN2 of at leastγk vertex disjointLi0 ↔ (Ỹi0 ∩

⋃

i∈Λ\{i0} Ỹi) ↔
(

⋃

i∈Λ\{i0}Li
)

-paths and apply Proposition 8.8 withM = N2. We assume in the

65



rest that suchi0 does not exist. Since|⋃i∈Λ Ỹi | ≥ ∑i∈Λ(|Ỹi |− |Ỹi ∩
⋃

j∈Λ\{i0} Ỹj |),
we have that

∣

∣

∣

∣

∣

⋃

i∈Λ
Ỹi

∣

∣

∣

∣

∣

≥ 2∑
i∈Λ

|Li |−4ϑ 2γk . (8.12)

SetY =
⋃

i∈Λ Ỹi .
We distinguish three cases:

(♣1) It holds|L∩Y| ≤ k/8 and e(Y,Ṽ \Y) < σk2.
Solution of(♣1): The idea is to show that the setQ = Ṽ \Y satisfies the
requirements of Proposition 8.1. To this end, it is enough toshow that

|Q∩L| > 1
2
|Q| . (8.13)

By the hypothesis of(♣1), not many vertices inY are large. Thus the ratio of
the large vertices in the graphG[

⋃

i∈ΛVi ∪Y] is substantially smaller than one
half. Then there must be substantially more than half of the large vertices in
the complementary setQ, and (8.13) follows. We make the idea rigorous by
the following calculations. For anyi ∈ Λ setl i = |Li |.

1
2

n≤ |L| ≤ (λ −|Λ|)k/2+ ∑
i∈Λ

l i + |L∩Y|+ |L∩Q|+ |L\ (Ṽ∪
⋃

j∈[λ ]

L j)|

< (λ −|Λ|)k/2+ ∑
i∈Λ

l i +k/8+ |L∩Q|+ γn .

Thus,

|L∩Q| > 1
2

n− (λ −|Λ|)k/2−∑
i∈Λ

l i −k/8− γn

>
1
2

(

|Ṽ|−2∑
i∈Λ

l i

)

+ |Λ|k/2−k/8−2γn

(8.12)
>

1
2
|Q|+ |Λ|k/2−k/7>

1
2
|Q| ,

which was to be shown.

(♣2) It holds|L∩Y| > k/8 and e(Y,Ṽ \Y) < σk2.
Solution of(♣2): We show thatT ⊆ G. Since the average degree in the
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graphG[Y] is at leastqk/20, there exists a subgraphH∗ ⊆G[Y] with δ (H∗)≥
qk/40. By averaging, there existsi0 ∈ Λ such that

|Yi0 ∩V(H∗)| > qk/(40ϑ) . (8.14)

Fix such an indexi0. By (8.14) there exists aLi0 ↔ V(H∗)-matchingE of
sizeαk/2. By Proposition 8.8 (withI = {∗}) it holdsT ⊆ G.

(♣3) It holds e(Y,Ṽ \Y) ≥ σk2.
Solution of(♣3): We show thatT ⊆ G. The average degree of the bipartite
graphG[Y,Ṽ \Y] is at leastqσk. Thus there exists a graphH∗ ⊆ G[Y,Ṽ \
Y] with δ (H∗) ≥ qσk/2. There must be an indexi0 ∈ Λ such that|Yi0 ∩
V(H∗)| > σqk/(2ϑ). Fix such an indexi0 and find matchingE as in(♣2).
By Proposition 8.8 (withI = {∗}) it holdsT ⊆ G.

Proof of Proposition 8.8.RootT at an arbitrary vertexv∈ To. An c-induced path
a1 . . .ac+1 ⊆ T is a path whose internal vertices have degree two inT. Take
a maximum familyF of vertex disjoint 6-induced paths inT. We show that
|V(F )| ≥ k−19ℓ.

Let D3 = {u∈V(T) : degT(u) ≥ 3} andDi = {u∈V(T) : degT(u) = i} for
i = 1,2. By Fact 3.4, we have|D3| < ℓ (and|D2| ≥ k−2ℓ). From

2k = ∑
u∈V(T)

deg(u) = |D1|+2|D2|+ ∑
u∈D3

deg(u) ≥ 2k−3ℓ+ ∑
u∈D3

deg(u) ,

we deduce that there are at most 3ℓ+1 maximal (w. r. t. inclusion) paths formed by
vertices of degree 2 or 1 not containing the rootv. On each such maximal path, at
most 5 vertices are not covered byF . Thus the total number of vertices uncovered
by F is at most 5(3ℓ+ 1)+ |D3|+ |{v}| ≤ 19ℓ. The order�v naturally extends
to an order of the paths ofF . For a familyF ′ ⊆ F we writeT(↓ F ′) to denote
all the vertices ofV(F ′), and all vertices which are below some vertex ofV(F ′),
i.e.,

T(↓ F ′) =
⋃

u∈V(F ′)

V(T(↓ u)) .

One can find a familyR ⊆ F satisfying the three properties below.

(P1) |R| ≤ |E |+ |M |.

(P2) |T(↓ R)| < 25αk, and 3(|E |+ |M |)≤ min{|Te∩T(↓ R)|, |To∩T(↓ R)|}.

(P3) R is a�v-antichain.
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We describe a procedure how to obtain such a familyR. By an inductive con-
struction, we first find an auxiliary familyR ′, starting withR ′ = /0. While |R ′| <
|E |+ |M | we take a�v-minimal path inF which is not included inR ′ and add it
to R ′. By the bound|V(T)\V(F )| < 19ℓ, in each step it holds that|T(↓ R ′)| ≤
6|R ′|+19αk, and obviously 3|R ′| ≤ min{|Te∩T(↓ R ′)|, |To∩T(↓ R ′)|}.

Let R be the�v-maximal elements ofR ′. The properties(P1), (P2), and(P3)
are satisfied.

Setd = 5αk. Take a familyX = {X1, . . . ,Xd} of d 5-induced vertex-disjoint
Te ↔ To ↔ Te ↔ To ↔ Te paths, such that no path intersects{v}∪T(↓ R ′). For
any pathR∈ R we writeaR to denote its�v-maximum vertex inTo, and setbR =
Ch(aR), cR = Ch(bR), anddR = Ch(cR). We setU = A∩ (V(E )∪V(M )) and
Q = A∩V(Q).

We now describe the embeddingψ of T. First note that we do not have to
embed those leaves, whose parents are embedded inA. Indeed, having such a
partial embedding, it easily extends to an embedding ofT using high degrees of
vertices inA. Hence we shall not embed them until the very last step. We embed
the rootv in an arbitrary vertex inA\(U ∪Q). We continue embeddingT greedily,
mapping vertices fromTo to A\(U∪Q) and internal vertices ofTe to Ba. However,
there are two exceptions in the greedy procedure.

(S1) If we are about to embed a vertexbR (for someR∈ R), then we do not
embed it, neither the part of the treeT(↓ bR).

(S2) If we are about to embed a vertexx2 which was part of some pathx1x2x3x4x5 ∈
X we skip its embedding, as well as the embedding of the vertices x3 and
x4. We continue with mappingx5 to Ba.

Observe that we are able to finish the greedy part of the embedding since the two
“skipping rules” guarantee that both inA and inB at leastd > αk vertices ofT
remain unembedded.

In the next step, we build missing connections in the graphH caused by the
skipping rules.

We construct an auxiliary bipartite graphK1 = (Oa,Ob;E1). We arbitrarily pair
up 2(d−r) vertices ofA\(U∪Q) unused byψ into pairsµ1 = {a1

1,a
2
1}, . . . ,µd−r =

{a1
d−r ,a

2
d−r}. The remainingr pairs are formed by endvertices of the paths inQ,

µi+d−r = A∩V(Pi) .

Vertices of the color classOb are formed by the pairsµi (i ∈ [d]). Vertices of
the color classOa are formed by the paths inX . A path x1x2x3x4x5 ∈ X is

68



adjacent inK1 to a pairµi if and only if there exists a perfect matching in the graph
H[{ψ(x1),ψ(x5)},µi ]. Since|Oa| = |Ob| andδ (K1) ≥ |Oa|−2αk≥ |Oa|/2, there
exists, by Proposition 3.6, a perfect matchingM1 in K1. The matchingM1 gives
us instructions where to embed the verticesx2 andx4 of any pathx1x2x3x4x5 ∈
X . We extendψ accordingly on the vertices

⋃

x1x2x3x4x5∈X {x2,x4}. If a path
x1x2x3x4x5 ∈ X was matched withµi+d−r (for somei ∈ [r]) in K1 then we embed
x3 in the middle vertex of the pathPi. We writeX ′ for those pathsx1x2x3x4x5 ∈X
whose vertexx3 was not yet embedded. It holds|X ′| ≥ 4αk.

Let χ : R →U be an arbitrary injective mapping. We construct another bipar-
tite graphK2 = (Ja,Jb;E2). Vertices of the color classJa are elements ofR ∪X ′

(Ja = R ∪X ′) and vertices of the color classJb are vertices ofBa unused by
ψ (Jb ⊆ Ba). A path R ∈ R is adjacent inK1 with an b ∈ Jb if and only if
bψ(aR) ∈ E(H) and bχ(R) ∈ E(H). A path x1x2x3x4x5 ∈ X ′ is adjacent to a
vertexb ∈ Jb if and only if bψ(y2) ∈ E(H) andbψ(y4) ∈ E(H). There exists a
matchingM2 in K2 coveringJa. The existence of the matchingM2 in K2 covering
Ja is a direct consequence of Proposition 3.6. Indeed,δ (K1) ≥ |Ja|−2γk> |Ja|/2,
and|Ja| ≤ |Jb|. Such a matching gives us instructions where to embed unembedded
verticesx3 (in the case of a pathx1x2x3x4x5 ∈ X ′ and verticesbR (in the case of a
pathR∈ R). For a pathR∈ R we finish embedding the part of the treeT(↓ cR),
extending the mappingψ . If ψ(cR) ∈ V(E ) we just use the corresponding con-
necting edge ofE to embeddR in Hκ (for someκ ∈ I ) and continue embedding
T(↓ dR) greedily inHκ . If ψ(cR) ∈ V(M ) we embeddR in the middle vertex of
the corresponding connecting pathM and embed the rest ofT(↓ dR) greedily in
Hκ (for someκ ∈ I ).

8.2 Proof of Proposition 8.2

In order to prove Proposition 8.2 we need the following two auxiliary lemmas.

Lemma 8.9. Let G be in a(β ,σ)-Extremal, Deficient configuration. Let T∈Tk+1
be a tree with a vertex r∈V(T) such that the forest T− r contains a component C
of order v(C) ∈ [k/(3ϑ),k−4γk]. Then T⊆ G.

Proof. By Lemmas 8.3 and 3.3 we can assume that max{|Te\V(C)|, |To\V(C)|}<
(k+1−v(C))/2+(2γk+1)/2< k/2−2γk, otherwiseT ⊆ G.

For i ∈ [ϑ ] defineSi
♯ = {u∈S: deg(u,Li)> (1/2−γ)k}. By (β ,σ)-Extremality

it holds that|Si
♯| > (1/2− γ)k. By Lemma 8.5 there is at least one of the follow-

ing three connecting structures inG. We show thatT ⊆ G in each of the cases
separately.
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(A1) There exists an edgexy, x∈ Li1, y∈ Li2, i1 6= i2.

(A2) There exists an edgexy, x∈ Li1, y∈ Si2
♯ , i1 6= i2.

(A3) There exists a vertexx0 ∈ S such that deg(x0,L) > (1/2− γ)k, andx0 is
adjacent to vertices of at least two different clustersLi1,Li2, i.e.,

min{deg(x0,L
i1),deg(x0,L

i2} ≥ 1.

To solve the cases(A1) and (A2) it is enough to mapr to x, and use the edge
xy to greedily embedC in G[Li2,Si2

♯ ]. The partT − (V(C)∪{r}) can be greedily

embedded inG[Li1,Si1
♯ ].

It remains to solve the case(A3). Let ι be such an indexi for which the
value deg(x0,Li) is minimal positive. We embedr in x0, C in G[Lι ,Sι

⋄]. The forest
F = T − (V(C)∪{r}) can be greedily embedded in the clusters{Vi}i (preserving
adjacencies ofr to the components ofF). This is standard.

Lemma 8.10. Let F be a rooted forest with partition V(F) = O1∪O2, such that
O2 is independent. Let W be the set of leaves of F and set P= {u ∈ O2 : |W∩
Ch(u)| = 1}. Let H be a graph and let A,B⊆V(H) be two disjoint sets such that
|A| ≥ |O1|, min{δ (A,A),δ (B,A)} > |O1|− f , δ (A,B) > |B|− f , |B| ≥ |O2 \W|,
andδ (A)≥ v(F)−1. If |P| ≥ 2 f , then there exists an embeddingϕ of F in H such
thatϕ(O1) ⊆ A.

Proof. Choose a subsetP′ ⊆P of size|P′|= 2 f . Consider the subtreeF ′ = F−W′,
whereW′ = W∩ (O2 ∪N(P′)). We embed greedily the treeF ′ in A∪B, so that
V(F ′)∩O1 maps toA andV(F ′)∩O2 maps toB. Denote this embedding byϕ ′.
Next we want to embed the leavesW′∩O1 in A. Denote byA′ the set of vertices
in A that are not used byϕ ′, i. e.,A′ = A\ϕ(V(F ′)). We want to find a matching
M in H[A′,ϕ ′(P′)] that coversϕ ′(P′). By Proposition 3.6, such a matching exists
since|A′| ≥ 2 f = |ϕ ′(P′)|, and

δ (ϕ(P′),A′) > f = |P′|/2, δ (A′,ϕ(P′)) > f = |P′|/2 . (8.15)

We extendϕ ′ to an embeddingϕ of F, by embeddingW′ ∩O1 according to the
matchingM, and by embeddingW∩O2 greedily (this is guaranteed by the minimal
degree condition of the setA).

A semiindependent partition(U1,U2) of a treeF is ℓ-ideal if each of the vertex
setsU1 andU2 contains at leastℓ leaves ofF .

70



If disc(T)≥ 2γk, then Lemma 8.3 ensures thatT ⊆G. We shall further assume
only the case disc(T) < 2γk.

We prove Proposition 8.2 in two steps. In the first step we showthatT has an
8γk-ideal semiindependent partition, orT ⊆ G. In the second step, we prove that
if T has an 8γk-ideal semiindependent partition, thenT ⊆ G.

First step. Denote byWe andWo the leaves inTe and inTo, respectively. Let
W = We∪We be the set of all leaves ofT. Setwe = |We| andwo = |Wo|. Remark
thatwe+wo ≥ 60γk. We distinguish three cases based on the values ofwe andwe.

1. If we ≥ 8γk andwo ≥ 8γk, then(To,Te) is an 8γk-ideal semiindependent
partition.

2. If we < 8γk then it holdswo ≥ 52γk. We distinguish two subcases.

• If |Par(Wo)| ≤ 16γk we consider setsU1 = To ÷ (Wo ∪Par(Wo)) and
U2 = Te÷ (Wo∪Par(Wo)). The partition(U1,U2) is semiindependent
with |U2|−|U1| ≥ 72γk, a contradiction with the assumption disc(T) <
2γk.

• If |Par(Wo)| > 16γk then we choose an arbitrary subsetP′ ⊆ Par(Wo)
with |P′|= 8γk and setW′

o = N(P′)∩Wo. The partition(U1,U2) defined
by U1 = To÷ (W′

o∪P′), U1 = Te÷ (W′
o∪P′) is an 8γk-ideal semiinde-

pendent partition.

3. If wo < 8γk we use Fact 3.1 (Part 2) to find a full-subtreeT̃ ⊆ T rooted in
a vertexr with ℓ leaves, whereℓ ∈ [20γk,40γk]. The choice ofT̃ has the
property that

min{|We∩V(T̃)|, |We∩V(T)\V(T̃)|} ≥ 12γk (8.16)

Setd = |V(T̃)∩Te|− |V(T̃)∩To|. We distinguish six subcases.

(C1) r ∈ Te andd ≤ gap(T)/2, (C2) r ∈ To andd ≥ gap(T)/2,
(C3) r ∈ Te andd ≥ gap(T)/2+1, (C4) r ∈ To andd ≤ gap(T)/2−1,
(C5) r ∈ Te andd = (gap(T)+1)/2, (C6) r ∈ To andd = (gap(T)−1)/2.

In cases(C1)-(C4)we obtain an 8γk-ideal semiindependent partition by flip-
ping eitherV(T̃) (in cases(C1) and(C2)) or V(T̃)\ {r} (in cases(C3) and
(C4)) from the original partition(To,Te). Details are omitted.

In the rest, we consider only the case(C5), case(C6) being analogous. We
find an 8γk-ideal semiindependent partition, or embedT in G. First observe
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thatk is even. Consider the partitionV(T) = O1∪O2, whereO1 = To÷V(T̃)
andO2 = Te÷V(T̃). It holds|O1| = (k+2)/2, |O2| = k/2, and min{|O1∩
W|, |O2∩W|} ≥ 12γk.

(♣1) Suppose first thatWo∩V(T − T̃)∩N(r) 6= /0. Then take an arbitrary
vertexu∈ Wo∩V(T − T̃)∩N(r) and consider the partition(U1,U2), U1 =
O1÷{u}, U2 = O2÷{u}. By (8.16), this is an 8γk-ideal semiindependent
partition. Therefore we restrict ourselves to the case whenWo∩V(T − T̃)∩
N(r) = /0.

(♣2) We claim that if there exist two distinct leavesz1,z2 ∈ O1 with a
common neighbor{x} = Par({z1,z2}), then there exists an 8γk-ideal semi-
independent partition(U1,U2). By the assumption above we know that
x ∈ O2. SetU1 = O1 ÷{x,z1,z2} andU2 = O2 ÷{x,z1,z2}. Then|U1| =
|O1|−1= k/2 and|U1| = |O2|+1= k/2+1, and|U1∩W| = |O1∩W|−2,
and |U2 ∩W| = |O2 ∩W|+ 2. From (8.16), the partition(U1,U2) is 8γk-
ideal semiindependent. Therefore, we may assume that leaves in O1 have
pairwise distinct parents.

(♣3) We claim that there exists a vertexy∈Par(O1)∩W such that deg(y) =
2. Suppose for contradiction that every vertex in Par(O1)∩W has degree at
least three. We have already observed that every vertex in Par(O1)∩W has
exactly one leaf-child inO1. SetW∗ = O1∩V(T̃)∩W andT∗ = T[V(T̃) \
W∗]. Observe that the leaves ofT∗ lying in O2 coincide with the leaves
of T̃ lying in O2. We show thatT∗ contains at least 8γk leaves fromTo,
contradicting the assumptionwo < 8γk. By Fact 3.2 it is enough to show
that |V(T∗)∩To| ≥ |V(T∗)∩Te|+8γk.

|V(T∗)∩To| = |V(T∗)∩O2| = |V(T̃)∩To|
(∗)
≥ |V(T̃)∩Te|−2γk−2

= |V(T∗)∩Te|+ |W∗|−2γk−2

≥ |V(T∗)∩Te|+8γk,

where(∗) follows from Lemma 3.3. Letz∈ O1 ∩W be a leaf ofT with
parenty, deg(y) = 2. We show thatT ⊆ G in two cases(♦1) and(♦2) sep-
arately, based on whetherG is in the Abundant or Deficient configuration.

(♦1) If G admits an Abundant partition, then there exists an indexi ∈ [λ ]
such that|Li | ≥ (k+ 1)/2. As k is even,|Li | ≥ (k+ 2)/2. ChooseL∗ ⊆ Li

such that|L∗| = (k+2)/2. DefineW∗ = {u∈W∩O1 : Par(u) ∈ O2}, and
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let W′ ⊆ W∗ be the set of leaves inW∗ with no brother/sister inW∗. We
claim that

|(W∩O1)\W∗| ≤ γk, and|W∗ \W′| ≤ γk. (8.17)

Assuming (8.17), we can use Lemma 8.10 withA = L∗, B = Si
⋄∪ (Li \L∗),

f = γk, and the partition(O1,O2) of the treeT to getT ⊆ G.

It remains to prove (8.17). If|(W∩O1) \W∗| > γk, then consider the par-
tition (U1,U2) with U1 = O1 \ ((W∩O1) \W∗) andU2 = O2∪ (W∩O1) \
W∗. If |W∗ \W′| > γk, then consider the partition(U1,U2) obtained from
(O1,O2) by flipping (W∗ \W′)∪Par(W∗ \W′). In both cases|U2|− |U1| >
2γk, a contradiction to our assumption that disc(T) ≤ 2γk.

(♦2) If G is in a Deficient configuration, then by Lemma 8.6 there exists
an indexi ∈ [ϑ ] and a vertexv∈ Li such that deg(v,Li)+ deg(v,

⋃

j 6=i(L
j ∪

Sj)) ≥ k/2, whereSj = {u∈ S : deg(u,L j) ≥ k/(3ϑ)}. Setψ1 = deg(v,Li)
and ψ2 = deg(v,

⋃

j 6=i(L
j ∪Sj)). All components ofT −{r} have size at

mostk/(6ϑ), or by Lemma 8.9 the treeT embeds inG (the components
cannot be larger thank− 18γk by the choice ofr). Denote byK the set
of components ofT −{r} of order at least 2. SinceO2 is an independent
set, any component fromK has non-empty intersection withO1. Choose
K2 ⊆K with a maximum number of vertices inO1 satisfying the following.

• |K2| ≤ ψ2.

• ∑K∈K2
v(K) ≤ k/(3ϑ).

SetK1 = K \K2. Map r to v and embed the components ofK2 greedily
in
⋃

j 6=i(L
j ∪Sj) in such a way that the roots of the components are mapped

to neighbors ofv.

If |V(K1)| ≤ k−6γk−1, then from Lemma 3.3 we deduce that max{|To∩
V(K1)|, |Te∩V(K1)|} ≤ k/2−2γk and thus the components ofK1 can be
embedded inLi ∪Si

⋄ greedily.

Hence, we suppose that|V(K1)| > k−6γk−1. The maximality ofK2 im-
plies that|K2| = ψ2. SetU1 = O1∩V(K1) andU2 = O2∩V(K1). Observe
thatU2 is independent. We show that|U1| ≤ ψ1. If r ∈ O1, then

|U1| ≤ |O1|− |K2|− |{r}|= k+2
2

−ψ2−1≤ ψ1 .

It remains to analyze the caser ∈ O2. Let K ∈ K be the component con-
taining the vertexz. Then, by the choice ofK2, there exists a component
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K′ ∈ K∈ such that|O1 ∩V(K′)| ≥ 2. Again we conclude|U1| ≤ |O1| −
(|K2|+1)≤ ψ1.

Observe that min{|U1∩W|, |U2∩W|} ≥ 9γk−6γk−1 > 2γk, and by pre-
vious assumptions, any two leaves inU1 have distinct parents that are inU2

(the only leaves inO1 with parents inO1 are children ofr and thus are not
contained inK ).

We embed the trees fromK1 in Li ∪Si
⋄. We distinguish two cases.

• r ∈ Te or r ∈ To and|N(r)∩U2| ≤ (1/2−2γ)k.
We apply Lemma 8.10 withA= Li ∩N(v), B= Si

⋄∩N(v), the partition
of the forestV(K1) being(U1,U2), andP= Par(U1) (recall that leaves
in U1 have pairwise distinct parents inU2).

• r ∈ To and|N(r)∩U2| > (1/2−2γ)k.
Set ˜K1 = {K ∈K1 : v(K)= 2,N(r)∩V(K)⊆U2}. Thenv(K \ ˜K1)≤
2γk. Consider the partition(Ũ1,Ũ2) obtained from(U1,U2) by flipping

˜K1. Then|Ũ1| ≤ ψ1. Construct an embeddingφ of the forest induced
byK1\ ˜K1 such thatφ(V(K1\ ˜K1)∩Ũ1)⊆Li , φ(V(K1\ ˜K1)∩Ũ2)⊆
Si
⋄ andφ(V(K1\ ˜K1)∩N(r)) ⊆ N(v).

The embedding of{r}∪V(K ) can be extended to the whole treeT, asr is
mapped toL.

Second step. We assume thatT has an 8γk-ideal semi-independent partition
(U1,U2). The proof goes very similarly as in(♦1), for the Abundant case, and
as in(♦2) for the Deficient case. Details are omitted.
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Erdős and his mathematics.

[12] J. Hladký. Szemerédi regularity lemma and its applications. MSc. Thesis,
Charles University in Prague, in preparation.

75



[13] J. Komlós, A. Shokoufandeh, M. Simonovits, and E. Szemerédi. The regu-
larity lemma and its applications in graph theory. InTheoretical aspects of
computer science (Tehran, 2000), volume 2292 ofLecture Notes in Comput.
Sci., pages 84–112. Springer, Berlin, 2002.

[14] J. Komlós and M. Simonovits. Szemerédi’s regularity lemma and its ap-
plications in graph theory. InCombinatorics, Paul Erdős is eighty, Vol. 2
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