Loebl-Komlos-So6s Conjecture: dense case

Jan Hladky Diana Pigueft

Abstract

We prove a version of the Loebl-Koml6s-So6s Conjecture foséegraphs.
For anyq > 0 there exists a numbep € N such that for any > ng andk > gn
the following holds: ifG be a graph of orden with at leastn/2 vertices of
degree at leat, then any tree of ordde+ 1 is a subgraph oB.
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1 Introduction

Embedding problems play central role in Graph Theory. Aatgrof graph em-
beddings (subgraphs, minors, subdivisions, immersiotts, h@ve been studied
extensively. A graph (finite, undirected, loopless, simplere as well as in the
rest of the paperH embedsn a graphG if there exists an injective mapping
¢@:V(H) — V(G) which preserves edges bf, i.e., p(X)@p(y) € E(G) for every
edgexy € E(H). As a synonym we say th& contains H(as a subgraphand
write H C G. Let s be a family of graphs. The graph is Z-universalif it
contains every graph froo¥’. This fact is denoted by7 C G.

In this paper we investigate embeddings of trees. This toascreceived con-
siderable attention during the last 40 years. The clgssonsists of all trees of
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orderk. One can ask which properties force a grapto be Z-universal. Loebl,
Komlés and Sés considered in [9] the median degrdé.of

Conjecture 1.1 (LKS Conjecture). Let G be a graph of order n. If at least/#
of the vertices of G have degree at least k, thgn; C G.

The main result of this paper is to prove the LKS Conjecture‘kdinear in
n”. For the exact statement see our main result, Theorem 1.4.

The bound ork of the minimal degree of high degree vertices cannot be de-
creased. Indeed, & is a graph in which half of its vertices have degree exactly
k—1, then it does not contain a st . On the other hand, it is suspected that
the number of vertices of degree at lelastin be lowered a little bit. This was first
raised by Zhao [22]. Discussion on the lower bound will beegiin [12].

There have been several partial results concerning the Lat§eCture. In [4],
Bazgan Li and Wozniak proved the conjecture for paths. &igumd Stein [17]
proved that the LKS Conjecture is true when restricted tocthss of trees of di-
ameter at most 5, improving upon a result of Barr and Johar{8}@and Sun [20].
There are several results proving the LKS Conjecture urdt#itianal assumptions
on the hosting graph.

Soffer [19] showed that the conjecture is true if the hostingph has girth
at least 7, Dobson [7] proved the conjecture when the comgiéwf the hosting
graph does not contalfp 3.

A special case of the LKS Conjecture is whies= n/2. This is often re-
ferred to in the literature as the/2-n/2-n/2) Conjecture, or the Loebl Conjecture.
Zhao [22] proved ther(/2-n/2-n/2) Conjecture for large graphs.

Theorem 1.2. There exists a numbegisuch that if a graph G of order » ng has
at least /2 of the vertices of degrees at leagiithen.7, 5.1 C G.

An approximate version of the LKS Conjecture was proven kbyufi and
Stein [16].

Theorem 1.3. For any g> 0 there exists a numbeprand a function . N — R,

f € 0o(1) such that for any n> ng and k> gn the following holds. If G is a graph
of order n with at least1/2+ f(n))n vertices of degree at lea&t + f(n))k, then
Fkt1 € G.

In this paper we strengthen Theorem 1.3 by removingtii¢ term.

Theorem 1.4 (Main Theorem). For any > 0 there exists a numbeipn= np(q)
such that for any n> ng and k> gn the following holds: if G is a graph of order n
with at least /2 vertices of degree at least k, then, 1 C G.



In fact, the proof of Theorem 1.4 will yield that the requirenton the number
of vertices of large degree can be relaxed in the case whlers far from being
an integer.

Theorem 1.5. For any @ > g1 > 0 such that the intervall/g»,1/q1] does not
contain an integer, there exist numbers- £(g1,92) > 0 and iy such that for any
n > np and ke (gin,gqzn) the following holds: if G is a graph of order n with at
least(1/2 — €)n vertices of degree at least k, théf, 1 C G.

We explicitly prove only Theorem 1.4 in the paper. In SecRome sketch how
the proof method can be revised to give Theorem 1.5. Howeetermining the
correct value ok&(qi,0g2) remains open. Note also that Theorem 1.4 has slightly
weaker assumptions @ithan Theorem 1.2 when reduced to the dase n/2|—
whenn is odd, the number of large vertices in Theorem 1.4 is smaljeone
compared to Theorem 1.2.

Recently, we learned that Oliver Cooley announced an inudgra proof of
Theorem 1.4.

The parameter which is considered in the LKS conjecturesisitadian degree.
If we replace it by the average degree, we obtain a famougctng of Erds and
S6s, which dates back to 1963.

Conjecture 1.6 (ES Conjecture).Let G be a graph of order n with more than
(k—2)n/2 edges. Thewj C G.

If true, the conjecture is sharp. After several partial lsson the problem, a
breakthrough was achieved by Ajtai, Komlds, Simonovits &nemeredi [1], who
announced a proof of the Ed-Sds Conjecture for larde

Theorem 1.7. There exists a numbeg lsuch that for any k> ky the following
holds: if a graph G of order n has more thgk— 2)n/2 edges, thewj C G.

The proof of Theorem 1.7 by Ajtai et al. has two parts. One patties the
dense version of the problem; the statement is analogousd¢orém 1.4. The
other part deals with the case whiefm < qo for some fixed valuep. We have
indications that the same approach might work for the LKSj€cuare. Thus our
Theorem 1.4 may be one of two essential ingredients in a ible LKS Con-
jecture.

The current work utilizes techniques of Zhao [22] and of lRigand Stein [16].
We postpone a detailed discussion of similarities betwegmpproach and theirs,
and of our own contribution until Section 2.



1.1 Ramsey number of a tree

We show in this section the connection between the LKS Caumje@and the Ram-
sey number of trees. For two grapRsandH we write R(F,H) for the Ramsey
numberof the graph$-, H. This is the smallest numbarsuch that in any red/blue
edge-coloring oK, there is a red copy df or a blue copy oH. For two fami-
lies of graphs# and.7# the Ramsey numbé&¥(.%#, .7¢) is the smallest numben
such that in any red/blue edge-coloringkgf the graph induced by the red edges
is .#-universal, or the graph induced by the blue edge#isuniversal. We shall
show how Theorem 1.4 implies an almost tight upper bound ¢duant additive
error of one) on the Ramsey number of trees, partially anagexr question of
Erdbs, Furedi, Loebl and Sos [9].

For a fixed numbep € (0,1/2) consider two numberg; and /¢, such that
01/0 € (p,1/p) andlq, > > ng, whereng = no(p/2) from Theorem 1.4. Consider
any red/blue edge-coloring of the gralgh ,.,. We say that a vertexc V (K¢, 1¢,)
is red if it incident to at least; red edges. Similarly € V (K, 1,) is blue if it
incident to at least, blue edges. Each vertex Kf, 4, is either red or blue. Thus
we have at least half of the vertices§f, . ,, that are red, or at least half of the
vertices that are blue. Theorem 1.4 can be applied to thengrejuced by the
majority color. We conclude th& (.77, 11, 77,+1) < 1+ Lo.

For the lower bound, first consider the case when at least bhAgand /s is
odd. Itis a well-known fact that there exists a red/blue edglering ofK;, ;4,1
such that the red degree of every vertekis- 1. Neither a red copy df; , nor a
blue copy oKy 4, is contained irKy, ; 4,1 with this coloring. ThuR(.7, 11, 72,+1)
> {1+ {2 —1. A construction in a similar spirit shows th&{.7, 1, 7,+1) >
{1+ 0, —2,if /1 andl, are even. We have

R(Zt,4+1, Z0,41) =L1+ L2, if {1is odd orlyis odd, and (1.1)
U1+l — 1< R(Ty11, Tip41) <Ll1+42, otherwise. (1.2)

Let us note that an easy consequence of the ES Conjecturd etihat the lower
boundin (1.2) is attained.

Ramsey numbers of several other classes of trees have hastigated; the
reader is referred to a survey of Burr [5] and to newer resalf8, 10, 11].

2 Outline of the proof

Theorem 1.4 is proved by iterating the following procedursteps = 1,2,3,.. ..
At each step, we find a seQ C V(G) \ Uj<; V;j such that at least about half of the
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vertices inQ are large (i. e., of degree at le&¥t Using the Regularity Lemma, we
try to embed a given trek € %, 1 in Q. If we do not succeed, then we can extract
from Q a subseY; 1 C Q of size approximatelk, that is nearly isolated from the
rest of the of the graph, and for which at least half of theigestare large. If we
cannot embed € J.; in any of the iterating steps (i.&/(G) \ U; Vi = 0), we
obtain a particular configuration of the graBhcalled theExtremal Configuration
In this case, we prove thdt C G, without the use of the Regularity Lemma.

In the remainder of the overview, we explain in more detaal finoof of the
part using the Regularity Lemma, as well as the part wGas in the Extremal
configuration.

The Regularity Lemma Part. Before applying the Regularity Lemma itself, we
first resolve two simple cases. The first one is wias close to a bipartite graph
with one of its color-classes being the large vertices (se@d3ition 4.2). The
second case (see Proposition 4.3) is when theTreée locally unbalanced (see
definition on page 12). In both cases an easy argument shaws th G.

We apply the Regularity Lemma to the gra@hand obtain a cluster graph
G. We apply a Tutte-type proposition (Proposition 6.4) to shbgraph induced
by clusters inQ, which guarantees the existence of one of two certain nmagchi
structures inG. Both expose a matchirlg in the cluster graph, and two clusters
A andB that are adjacent i@ and that have high average degree to the matching
M. These structures are called Case | and Case Il. The prenaiphe embedding
IS to use the edges ™ to embed parts of the tree in them, and use the clusters
andB to connect these parts.

The Extremal Case Configuration. In the Extremal case we are given disjoint
setsvy,...,Vi CV(G) such that each of them has size approximatetontains at
least nearlyk/2 large vertices, and each 34tis almost isolated from the rest of
the graph.

If the setsVvy,...,V; exhaust the whole grapB, we are able to show C G.
We find a seV;, so that most ofl can be mapped td,. We may need to use the
few edges that interconnect distinct s€{go distribute parts of the tree outside
Vi,- The way of finding these “bridges” depends on the structiitieetreeT .

If Vi,...,V; do not exhaus, the method remains the same. However, it has
two possible outputs. Either we show tiatC G or we are able to exhibit a set
Q CV\Uj«Vj allowing the next step of the iteration.



Strengthening of Theorem 1.4—Theorem 1.5. The only place where we use
the exact bound on the number of large vertices is the Igst$the Extremal case.
That is, the whole vertex s¥t(G) is decomposed into se¥§, each of them almost
exactly of sizek. But such a decomposition cannot exist whea (gin,gzn),
[1/02,1/0q1) "N = 0. This suffices to prove Theorem 1.5.

Relation to previous work. The proof of Theorem 1.4 is inspired by techniques
used to prove Theorem 1.3 ([16]) and Theorem 1.2 ([22]). Bo#ise papers build
on a seminal paper of Ajtai, Komlos and Szemerédi [2] wheragproximate
version of the(n/2 —n/2 —n/2)-Conjecture is proven. In [2] the basic strategy is
outlined.

In [22] the aproach of Ajtai, Komlos and Szemerédi is combingh the Sta-
bility method of Simonovits [18]. One extremal case is idieed, and solved
without the use of the Regularity Lemma.

The main contribution of [16] is a more general Tutte-typegasition, which
is applicable even whekyn < 1/2.

In this paper we further strengthen the Tutte-type propmsitom [16]. The
Extremal case is an extensive generalization of the Extreasa from [22].

Algorithmic questions. Let us remark that our proof of Theorem 1.4 yields a
polynomial time algorithm for finding an embedding of anyetiec .1 in G,
given thatk and G satisfy the conditions of Theorem 1.4. Indeed, it is easily
checked that all existential results we use (Regularity io@yand various match-
ing theorems) are known to have polynomial-time constvecigorithmic coun-
terparts. We omit details.

3 Notation and preliminaries

Forn e N we write[n] ={1,2,...,n}. The symbok- means the symmetric differ-
ence of two sets. The function dR — Z is theclosest integer functiodefined by
ci(x) = |x] if x—|x] < 0.5, and cix) = [x] otherwise.

We use standard graph-theory terminology and notatioigviig Diestel’s
book [6]. We define here only those symbols which are not user@t The order of
a graphH and the number of its edges are denoted(y) ande(H), respectively.
We writeH [X, Y] for the bipartite graph induced by the disjoint vertex ségndy,
andE(X,Y) for the set of the edges with one end-verteXiand the otherity. We
write e(X,Y) = |[E(X,Y)|. For a vertex and a vertex seX we define defk, X) =
deg (X) = e({x},X). Fortwo setX,Y CV(H) we define theverage degrerom



XtoY bydegX,Y)=-e(X,Y)/|X|. We write d egX) as a short for d é§,V(H)).
We define two variants of the minimum degred-bfin the following,X andY are
arbitrary vertex sets.

0(X) = [/rél)rgdeg(v) , and
o0(X,Y)=mindegV,Y) .

veX
N(x) is the set of neighbors of the vert&xNx (x) is the neighborhood aof re-
stricted to a seX, i. e., Nx(x) = N(x) N X, and N'X) is the set of all vertices i
which are adjacent to at least one vertex frgm. e., N(X) = Uyex N(V).

LetP =vivo...Vv, be a path. For arbitrary sets of verticgs X, ..., X, we say
thatP is aX; <« Xp < ... <> Xy-pathif v; € X; for everyi € [¢]. An edgexyis an
X Y edge ifx e X andy € Y and a matchin¢/l is aX < Y matching if its every
edgeis arX < Y edge.

The weighted graphis a pair(H, w), whereH is a graph andv: E(H) —
(0,+0) is its weight function. For two sefs,Y C V(H) theweight of the edges
crossing from X to s defined by€’(X,Y) = ¥, ce(x,y) w(Xy). Denote by d &Yy
the weighted degree, d'8g) = ¥ ycv (H) vuee(H) @(VU). For avertew and a vertex
setX we define d v, X) analogously to dgg, X).

We omit rounding symbols when this does not effect the ctmess of calcu-
lations.

3.1 Trees

Let F be a rooted tree with a roote V(F). We define a partial ordet onV (F)
by saying that < b if and only if the vertexo lies on the path connectirggwith
r. If a<b we say thata is below b A vertexa is achild of bif a <b and
abe E(F). And, in the other way, the vertdxis aparent of a Ch(b) denotes the
set of children ob. The parent of a vertexis denoted P&a) (note that Pg@) is
undefined ifa=r). We extend the definitions of Cf) and Paf-) to an arbitrary
setU C V(F) by PafU) = |,y Paru) and CHU ) = [J,cy Ch(u). We say that a
treeF; C F isinducedby a vertexx ¢ V(F) if V(F1) = {ve V(F) : v=<x} and
we write Fy = F(r, | X), or if the root is obvious from the contefj = F (| x).
A subtreeFy of F is afull-subtree with the root ¥ V(F), if there exists a set
C C Ch(y),C# 0 such thaty = F[{y} UUpec{V : V= b}]. We never refer ty as
to a leaf of the full subtre&p, and of the tred; induced byy, even though it may
be a leaf o and ofF; in the usual sense. A trée C F is anend subtredf there
exists a vertexv € V(F) such that = F(| w). If a subtred~; C F is not an end
subtree, then we call it anterior subtree



Fact 3.1. Let (F,r) be a rooted tree of order m withleaves.

1. For any integer i, 0 < mp < m, there exists a full-subtre Bf F of order
M e [mo/2,my).

2. For any integerlp, 0 < {o < ¢, there exists a full-subtreegFof F with /
leaves, wheré € [¢(o/2, /o).

Proof. 1. We shall move sequentially the candidaiéor the root offy down-
wards (in=), starting withro =r. In the first step we have(F (] ro)) =
m>mp/2. If v(F(| c)) < my/2 for everyc € Ch(rg) then we can find a
setC C Ch(rg) of vertices such that the full-subtrég=F [{ro} UU¢ec{V :

v < c}] has order in the intervaing /2, mp]. Otherwise, there exists a vertex
¢ € Ch(rg) such that/(F (] c)) > my/2. We resety = c and continue.

2. This is analogous.
n

Fact 3.1 is sometimes used without the root of the tree bgirgied. Then,
any internal vertex of the tree can serve as a root.

For any tred= we write Fe andF, for the vertices of its two color classes with
Fe being the larger one. We define thapof the treeF as gapF ) = |Fe| — |Fo|. For
a treeF, a partition of its vertices into set$;, andU, is calledsemiindependerit
|U1| < |U2| andU is an independent set. Furthermore,diserepancyf (Up,U>)
is disqU1,U>) = |Uz| — |U4| and the discrepancy &f is

disF) = max{disqU;,U>) : (U1,Uz) is semiindependeht
Clearly, gagF) < disq(F).

Fact 3.2. Let (U1,U,) be a semiindependent partition of a tree FFy > 1. Then
U, contains at leasfU,| — |U1| + 1 leaves.

Proof. We rootF at an arbitrary vertexe U;. LetU, be the set of internal vertices
in Uz. Since each vertex id; has at least one child ld; \ {x} and these children
are (for distinct vertices iJ;) distinct, we obtainU; \ {x}| > |U;|. Hence the
number of leaves ibJ; is at leasiU,| — [U1| + 1. O

Lemma 3.3. Letr be a vertex of atree T, and I@f;,U,) be any semiindependent
partition of T. Let?” be a subset of the components of the forest{F }. Then

1. |V ()N Te| = V() NTo|| < diso(T) +1.
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2. V() NUy| — V() NUy| < disg(T) +1.

Proof. We prove only Part 1, Part 2 being analogue. The statemeriivi®ws
when |V () NTg| — [V(£)NTo| = 0. Suppose thalv (%) NTa| — V()N

Tp| = ¢ > 0, wherea,b € {e 0}, a+# b is a choice of color-classes. It is enough
to exhibit a semiindependent partitigt;,U,) of the treeT with |Up| — |Uq| >
V(2 )NTe| — V() NTol| — 1. Partition the components of the fordst {r}
that are not included igZ” into two familiese” and% so thate7 contains those
componentX ¢ ¢ for which |V (K)NTa| > [V(K)NTp|, andZ contains those
component& ¢ ¢ for which |V (K)NTy| < |[V(K)NTy|. Obviously, the partition
below satisfies the requirements.

Ur={r} UV () NTo)UM(Z)NTo) UV (B)NTa),
Uz = (V(A)NTa) UV () NTa) U (V(£) N Th) -
0

Fact 3.4. Let F be a tree witlf leaves. Then F has at mdst 2 vertices of degree
at least three.

Proof. We patrtitionV (F) into the set of leave¥;, the sel/, of vertices of degree
two, and the se¥; of vertices of degree at least three. The handshaking lemma
applied toF yields that

2v(F)—-2= Z degqV) > |Vi|+2|Vo| + 3|V3| = 2v(F) — £+ |V3| .
\
The statement readily follows. O

3.2 Greedy embeddings

Given a tree- and a graptH there are several situations when one can embed
F in H greedily For example, if6(H) > v(F) — 1, then we embed the root of

F in an arbitrary vertex oH and extend the embedding levelwise. An analogous
procedure works iH is bipartite H = (V1,Vo; E), andd(V1,Vo) > |Fe|, 8(Va, V1) >

|Fo|. The fact stated below generalizes the greedy procedure.

Fact 3.5. Let (U1,U2) be a semiindependent partition of a tree F. If there exist
two disjoint sets of vertices;\and \4 of a graph H such that

min{d(V1,V2),0(V1,V1),8(V2,V1)} > |Us]
anddo (V1) > v(F)—1,then FC H.



Proof. The statement is trivial whew(F) = 1. In the rest, assume that~) > 1.
The selJ; denotes the leaves bk. By Fact 3.2)U, \ U}| < |U;| — 1. We embed
greedilyF — Ué in H, mapping the vertices frotd, to V; and the vertices from
Uz\Ué toV,. We argue that the greedy procedure works. If we have jusedndd
a vertexu € U; then we can extend the embedding to all verticég)NU; since
0(V1,V1) > |U4|. The embedding can be extended to all vertices frquon N (Us \
UJ) sinced(V1,V2) > |Uz\UJ|. If we have just embedded a vertanc U, \ U} then
we can extend the embedding to all vertices frotwNsinced (V»,V1) > |U1|. The
leavedJ) are embedded last, using high degrees of the verticés in O

3.3 Matchings

Let us state a simple corollary of Hall’s Matching Theorem.

Proposition 3.6. Let K= (W;,Wb; J) be a bipartite graph such tha&t(K) > |Wy|/2
and|W;| < |Wa|. Then K contains a matching covering W

3.4 A number-theoretic proposition

Proposition 3.7. Let | be a finite nonempty set, and lebaA > 0. Fori € I, let
ai, i € (0,A]. Suppose that

a n b -

Yiel 0 Yiel B

Then | can be partitioned into two setg and |, so thaty;., ai > a—A, and
Zielb Bi > b.

Proof. The reader may find a straightforward proof in [16]. O

1.

3.5 Specific notation

A graphH is said to have theKS-property(with parametek) if at least half of
its vertices have degrees at lekst e., we havelL" | > v(H)/2, wherelH = {ve
V(H) : deg,(v) > k}.

When we refer tay,ng,n,k or G in the rest of the paper, we always refer to
the objects from the statement of Theorem 1.4. The verterfsétis denoted
by V. We partitionV = LUS whereL = {veV : degv) >k} andS= {ve
V : deqv) < k}. We call vertices fronL large and vertices frons small The
hypothesis of Theorem 1.4 implies thia > n/2. Finally T denotes a tree of
orderk+ 1 which we want to embed iG.
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Statements like “there exists a numlyer 0 such that a property’(y) holds
for any graphG” should read as “givenq > 0, there exists a numbgr> 0 such
that a property?(y) holds for any grapi® of order at leashg(q)”.

4  Proof of the Main Theorem (Theorem 1.4)

We first need to state some auxiliary propositions. For thst firoposition, we
need to introduce the notion @8, o)-Extremality. For two numberg, o € (0,1),
a decomposition of the vertex 9ét=V, UVL U...UV, UV is (B, 0)-Extremalif

e A>1.

e (1-PB)k< M| < (1+pB)kforeachi € [A].

e V=0o0rV|>ok.

e Vi,V \Vj) < BK? for eachi € [A], ande(V,V \V) < BK?.
e (1/2—PB)k< |VinL|foreachi € [A].

o VNL|<(1/2—0)V].

Proposition 4.1. There exists a constang c> 0 such that the following holds. If
G admits a(B, 0)-Extremal partition V,...,V,,V for B,0 < cg, B < 0, then
ki1 C G, or there exists a set Q V such that

° |Q|>k/2.
e [QNL[>Q[/2.
e e(QV\Q) < ak?.

Proposition 4.1 will be proved in Section 8. The next proposiis referred to
as the Special Case.

Proposition 4.2. For all g,ce > 0, there exists a numbeic> 0, ¢s < Cg such
that if there exists a s& C V with the following properties

o |V|> yTsk,
e eV,V\V) < csk?,
e (1/2—cg)|V| < VL[, and
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e e(GVNL]) < csk?,
then %1 C G.

Proof of Proposition 4.2 is given in Section 5. The followmpgposition is will
allow us to reduce trees which are locally unbalanced framiér considerations.
Let us introduce the notion (un)balanced forest now.

For a numbec € (0,1/2) we say that a familyg” of vertex disjoint subtrees
of a treeT € 1 is c-balancedif the forest formed by the tredse ¢ with
to| > c-Vv(t) is of order at leastk, i. e.,

v(t) > ck.
te?d
to|>cW(t)

The family % is c-unbalancedf it is not c-balanced.

Proposition 4.3. Let s be given by Proposition 4.2. Then there exists a constant
cy > 0 such that the following holds for any treed . 1. If there exists a set

W CV(T), |W| < cyk such that the famil¢’ of all components of the forestTW

Is qy-unbalanced, then T G.

Proposition 4.3 will be proved in Section 6.2. The last aaxryl proposition
(Proposition 4.4) will be proved in Section 7.

Proposition 4.4. Suppose that,gs, cg and g, are fixed positive numbers. For any
o,w > 0 with 0 < w < min{q,cs,Ce,cy}, there exisiB > 0 and ny = np(T, W)
such that for any graph G on r ng vertices satisfying the LKS-property (with
k > gn) with a subset CV having the following properties

o |V|> yosk,
e eV,V\V) < BK2, and
e ILNV|>(1-0)V|/2,
there exists a subset\Z V such that
o (1-wk< V< (1+wk,
o V'NL| > V'|/2, and
o eV V\V/) < wk?,

or Jik+1 € G.
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Proof of Theorem 1.4Letcs, cy, andcg be given by Propositions 4.3,4.2and 4.1,
respectively. Set = [%}, wy = min{g,cs,Cy,Ce}, ando; < ay. We find a se-
quence of parameters

0<Bi<<O<K=LknKn=K<K K<y 1=f<o<Lw, (4.1)

obtained by the following iterative procedure. In stepl start by settings, as the
number given by Proposition 4.4 for input parametgrand w,. Setw,_1 = B/
andoy_1 < wy_;. In general, in stepwe defineB,,1_; as the number given by
Proposition 4.4 for input parametess,; 1 andwy.1 . Setawy_i = Bri1-j and

0/-i < wy—i. Repeat the procedure fosteps. Sefip = rqaxg{no(ai,(q)}, where
i=1,...,

No(Gi, @ ) is also from Proposition 4.4,
Let G be a graph satisfying the conditions of Theorem 1.4 (g &s,fixed,nis
sufficiently large, andt > gn). We can make the following assumptions.

Assumption 4.5. |L| < |§ + 1.

Proof. Suppose thal | > |S+ 2. If e(L,S) =0, then any tred € %1 embeds
in G[L] greedily, and Theorem 1.4 is proven. Otherwise, there ®x¢ntedge
ec E(L,S). The grapis’ = G—eis of ordemn and has the LKS-property. Indeed,
at most one vertex of has decreased its degree@ For a graptH, denote
by LM the vertices oH with degrees at leagtandS™ the vertices of degree less
thank, i.e.,L =LC. Then|L®| > |L®|-1>|S®|+2-1>|S®|. If 4,1 C G,
then %, 1 C G. We can repeat this procedure uri#jl, ; C G or obtain a spanning
subgraplG* C G satisfying the LKS-property and such thef | < |S°'|+1. O

Assumption 4.6. The set S is independent.

Proof. If Assumption 4.6 is not fulfilled, we erase (& all the edges induced by
S. Clearly, the modified grap@’ still has the LKS-property and fulfills Assump-
tion 4.6. This does not disturb Assumption 4.5. Any tree thaubgraph o5’ is
also a subgraph ds. O

Let 3 = ci(n/k). We iterate the following process for at mdsisteps. In step
I, 1 <3J, we prove that’i 1 C G or we define a séf CV \ lJ;;V;j such that the
following conditions are fulfilled for eache [i].

(P1) (1-B)k< Vi < (1+B)k,
(P2) |LNVj|>(1/2—- Bk, and
(P3) e(V,V\V)) < Bk

13



In the step = 1, we apply Proposition 4.4 with paramet®rs-V, 0 = 01, w =
o and obtain that’ ;1 C G, or there exists a s& satisfying (P1), (P2), and
(P3). Suppose that in stepwve have set¥,...,V;i_1 that satisfy the conditions
(P1)-1, (P2)-1, and (P3) 1. Setv* =V \U;V;.

First assume thav*| > ¥Csk. If [LNV*| > (1—0i-1)|V*|/2, the graphG
satisfies the conditions of the Proposition 4.4 (With=V*). If [LNV*| < (1—
gi—1)|V*|/2, then the decomposition, ..., Vi_1,V* is (Bi_1, Gi—1)-Extremal. We
first apply Proposition 4.1 and show th&g. 1 C G, or there exists a s€ C V*
satisfying

e [Q>k/2,
e |QNL|>|Q|/2,and
e e(QV\Q) < g 1k*.

It is enough to assume the latter case. Again, the g@patisfies the conditions
of Proposition 4.4 (withv = Q). Proposition 4.4 yields thati 1 C G, or that
there exists a s& C Q satisfying Properties (PH(P3).

It remains to deal with the ca$e¢*| < ¥Csk. Having found set¥,...,Vy sat-
isfying (P1p—(P3), we redistribute the small amount of (at m@@:_k) vertices
of V equally betweelN,, ..., Vy. The thus defined partition (§/Cs, ce)-Extremal.
Proposition 4.1 yields thaft7k+1 C G (as no new se&) can be found). O

5 Special case (proof of Proposition 4.2)

Proof of Proposition 4.2 Fix a setl.’ C LNV of size|l’| = (1/2—cg)|V|. Define

L={uel’:dequ,V\L) > (1-2,/Cs)k}. It holds for any vertex € L’\L that

degx,L’) +degx,V\V) > 2,/Csk, otherwise it would be included ih. Since
e(G[L'])+e(L'\L,V\V) < 2csk? we get thatL"\ L| < 2, /Csk (each vertex of "\ L

is incident with at least ¢Csk such edges). Consequently, > (1/2—3,/Cs)|V|.

Next we verify that the s&§, defined a§= {ueV \L’ : dequ,L) > (1— 9,/Cs)K},

covers almost the whole sét\ L'. Indeed, not more thaszk? edges oL,V \ L]

are incident to some vertexe L, whereL is the set of vertices of € V \ L’ with

degx, ) > k. Observe that C L. Hence the number of edges in the bipartite

graphGIL,V \ (L'UL)] is at least

- 1. - 1. -
IL|(1—2,/Cs)k — ck? > é\vyk—4\/c—s\vu<—csk2 > SIVIk—6/CsV k.

14



Since no vertex fronv \ (L' UL) receives more thakiedges froni, it holds that

- )
. INk—6yGEVk  1.— _
VD) g > ZEEOVENE 2y 6 e,

Obviously,L C Sand thus|V \ (L'US)| < 7\ﬁ|V| (recall that’ andSare disjoint,
and|L’| = (1/2—cs)|V|). By the choice ofL andS and the fact thafv \ (L' U

)| < 7\/_|V| the minimum degree of vertices inin the bipartite graplG; =
G[L,§is at leask— 9\ﬁ]V] and of those irSat least(1— 9,/Cs)k. By choosing
sufficiently smallcs (as a function ofg; recall g > k/n) we can guarantee that
5(61) > k/2.

LetT € %1 be an arbitrary tree. We writE' for the set of internal vertices of

T which are contained i andTeI for the set of leaves iffe. By Fact 3.2 it holds
TN < |To| < k/2. We embed the subtrde— T, in G; using the greedy algorithm
embedding the vertices frofil in S. The last step is to embed the lealgs This
can be done using the property of high degree of verticégiote thafl! may be
mapped outsid&; at this step). O

6 Tools for the proof of Proposition 4.4

6.1 Szemerédi Regularity Lemma

In this section we recall briefly the Szemerédi Regularitgnoea [21] and establish
related notation. The reader may find more on the Regularéthibd in [14, 13].

LetH = (V(H);E(H)) be a graph of orden. For two nonempty disjoint sets
X,Y CV(H) we definedensityof the pair(X,Y) by

eX,Y)
XY

d(X,Y) =

Fore > 0 we say that a pair of vertex s¢#s B) is e-regularif |d(A,B) —d(X,Y)| <
¢ for every choice ofX andY, whereX C A, Y C B,
For ane-regular pair(A,B) a setX C A, and a selty C B is called asignifi-
cant setif |X| > ¢|A|, and|Y| > ¢|B|, respectively. For ag-regular pair(A, B)
we say that a vertex € X is typical with respect to a significant s&¢ C Y if
degv,B) > (d(A,B) — 2¢)|W]|.

Fact6.1. 1. Let(X,Y) be ane-regular pair and WC Y be a significant set.
Then all but at most|X| vertices of X are typical w.r.t. W.
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2. Let XY1,Y2,...,Y, be disjoint sets of vertices, such thag,Y1),...,(X,Y;)
are e-regular pairs. Suppose that we are given sefs2W; which are sig-
nificant for each ie [¢]. Then there are at mosfe|X| vertices of X which
are not typical with respect to at leagte/ sets W.

Proof. 1. The proofis direct.

2. For avertex € X, letly C [¢] be the set of those indicé$or whichv is not
typical with respect t&\. For contradiction, suppose thgt € X : |ly| >

Vel > v/€|X|. Then
HveX:ielh} =Y |l >¢X|L.
> v V; v

i€l

By averaging, there exists an indigxe [¢] such that the séfl = {ve X :
ip € Iy} is significant. Then,

deqgv,W
d(U7WO) f— ZVEL|JU ||\%/ | IO) < d(X,VV|O) - 28 S d(X,Ylo) - g L]
lo

a contradiction to the regularity of the p&X,Y;,).
O

A partitionVp, Vs, ..., Vy of the vertex se¥ (H ) of the graptH is called(g,N)-
regularif

o |\p| <em,
e |Vi| = |Vj| for everyi, j € [N], and
e all but at moseN? pairs(V;,V;) (for i, j € [N]) aree-regular,

The setd/y,...,Vy are callecclusters

The Regularity Lemma we use deals with graphs with initiaigartitioning of
the vertex set. Its proof follows the same lines as the proSktemerédi’s original
result [21].

Theorem 6.2 (Regularity Lemma, with initial partition). For everye > 0 and
every my,r € N, there exist numbers VINp € N such that every graph H of order
m > Np whose vertex sets is partitioned into r setg @O, U...UO; =V (H)
admits an(&; N)-regular partition \p, Vs, ..., VN for some g < N < Mg such that
for every ie [N] we have VC O for some je [r].
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6.2 Cutting the trees, and the (un)balanced trees

Let T € k.1 be atree and € N,/ < k. The purpose of this section is to give
constructive definitions of aftfine partition ofT, and a switched-fine partition
of T. The tre€T is rooted in a verteR. This gives us order onV (T).

For a treeF C T such thatR ¢ V(F) we define theseed of Fas the unique
vertexv e V(T)\V(F) such thaF C T(R, | v) andv is adjacent to a vertex from
F. We write See(F) =v.

SetTo =T andi = 1. We repeatedly (in stej) choose a vertex; € V(Ti_1)
such thaw(T_1(| X)) > ¢ and such that; is <-minimal among all such possible
choices. We sef; = Ti_1 — (V(Ti—1(] %)) \ {Xi}). If no suchx; exists we have
V(Ti—1) < ¢. We then sek; = Rand terminate. Since we deleted at |Iagtrtices
in each step, we have< [(k+ 1)/¢] at the moment of terminating. Set

A = {x; : dist(xj,R) isever} and B’ ={x; : distxj,R) is odd} .

Let 5 and s be those componentsof the forestT — (A’ UB’) which have
Seedt) € A’ and Seeft) € B/, respectively. For a componenive write

X(t)
X(t)
SetWa = A'UUcq, X(t) andWe = B' U, X(t). Observe that mg{Wa|, [Wa| }
< |A'| 4 |B'|. Let Za and Zg be those componentf the forestT — (Wa UWg)
which have Sedd) € Wa and Seeft) € W, respectively. Thé-fine partition of

T is the quaternary = (Wa, Wk, Za, Z8). The following properties of thé-fine
partition of T are obvious from the construction.

V(t)NN(B') fort e %a, and
V(t)NN(A) fort € €s.

e ReWh.

e The distance from any vertex Wi to any vertex inMg is odd. The distance
between any pair of vertices W or between any pair of vertices W is
even.

e T is decomposed into vertic®¥, Wi, and into tree¥/a and 7.

e Notree from%Z, is adjacent to any vertex ihs. No tree fromZg is adjacent
to any vertex inNj.

o max{|Wa|,[Wa|} < %.

e V(t) < /foranytred € ZaU Zp.

17



The partitionZ will be further refined to get a switchéefine partition. LetZ,
and &g denote the end-trees froms and Zg, respectively. In the following we
assume thafc 5 V(t) > Y1y V(). If this was not the case, we exchange the sets
Wa, We, andZx, Zg. For any tre¢ € g \ 7§ setY (t) =V (t) "N(Wg). Observe
that 3 e gg\ g [Y ()] < 2MB[. DefineWy = WaUUkegg 7 Y (1). Theswitched?-
fine partition of Tis the quaternar® = (W3, W, Z5, Zg), WhereZ, and 7 are
the sets of components of— (W, UWg) with the seed iW, andWg, respectively.
The switched-fine partition of T satisfies the following properties.

e Re W UWk.

e The distance from any vertex W, to any vertex in\g is odd. The distance
between any pair of vertices W, or between any pair of vertices Wk is
even.

e T is decomposed into vertic¥,, Wg, and into treesz, and Z.

e No tree fromZ, is adjacent to any vertex ifs. No tree fromZj is adjacent
to any vertex il\,.

12
o max{|Wj|, Wk} < 12

e V(t) < /foranytree € Z,U Zg.
e % contains no internal tree.

e We have
v(t) > Z v(t) .

te 7, teZg
t end tree

For an/-fine partition (or a switched-fine partition) 7 = (Wa,Ws, Za, ZB)
the trees € Y5 U 9g are calledshrublets

The /-fine partition and the switche@fine partition may not be unique, the
construction depended on the choice of the Rdtlowever, this is not a problem
in the later setting; we only need that there exists at least/dine partitionZ
and one switched-fine partitionZ’ of T satisfying the above properties.

Proof of Proposition 4.3.Setcy = cs/4.
If the setl induces less thetyn? edges then we havieC G by Proposition 4.2,
In the rest we assume th&{L] contains at leastsn® edges. A well-known fact
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asserts that there exists a gr&aphC G[L| with minimum degree at least half of the
average degree @JL],i.e.,0(G') > csn > 4cy(k+1).

Let¢” C € be those treetsc ¢ for which [to| < csv(t). It holds thaty e v(t)
> (1—4cy)k. We apply Fact 3.2 on each tree ¢”’. Summing the bound on the
number of leaves, given by Fact 3.2, we get that there arastt(fle— 2cy)(k+ 1)
leaves in the trees &f”. A leaf of a tree € ¢” is either a leaf off or itis adjacent
to a vertex irlW. RootT at an arbitrary vertek. The vertex determines a partial
order= with r being the maximal element. L&t be those vertices of which
are a leaf of some treiec ¥’ but not a leaf ofT. Each vertex inX is either a
<-minimal or a<-maximal vertex of some trelec ¢. Let Xnin € X be the=<-
minimal vertices anKmax = X \ Xmin. (Note thatXnax does not have to contain
exactly the<-maximum “fake” leaves ofl ; the vertices which come out from
1-vertex trees of¢” are not included.) As each tréenas a unique<-maximal
vertex we getXmax < h, whereh is the number of treetsin 4” which have order
more than 1. Observe, that each such tréas at least Acy vertices and thus
h < cy(k+1). For eachv € Xnin we havelCh(v) "W| > 1. Since for eachi e W
it holds|Paru) N Xmin| < 1 we haveXmin| < |W| < cyk. Summing the bounds we
get|X| < 2cy(k+1). ThusT has at leastl — 4cy)(k+ 1) leaves. LefTl’ C T be
a subtree off formed by its internal vertices. We haveT’) < 4cy(k+1). We
embedT’ in G’ greedily. Then we extend the embedding also to the leavés of
using the high degree of the imageswiT’). |

6.3 A Tutte-type proposition

GraphH is calledfactor critical if for any its vertexv the graptH — v has a perfect
matching.

The following statement is a fundamental result in the Maugltheory. See [15],
for example.

Theorem 6.3 (Gallai-Edmonds Matching Theorem).Let H be a graph. Then
there exist a set @ V(H) and a matching M of siz&| in H such that every
component of H- Q is factor critical and the matching M matches every vertex i
Q to a different component of HQ.

The setQ in Theorem 6.3 is called separator

Proposition 6.4. Let (H,w) be a weighted graph of order N, wito: E(H) —
(0,9]. Leto, K be two positive numbers wifly (2N) < o < min{K/(32Ns),1/10}.
Let.# be an arbitrary set of vertices, such that

e V(H)\ . Zis anindependent set,
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e |.Z|>N/2—0N,

e ded(u) > K forevery ue .Z,

e the setZ induces at least one edge in H,
e def(u) < (1+0)K foreveryue V(H)\ .Z.

SetZ*={ueV(H) : def(u) > (1+ 0)K/2}.
Then there exist a matching M and two adjacent verticdsV (H) such that
at least one of the following holds.

Case | For the vertex A it holdsed(A,V(M)) > K and for each edge e M we

have|N(A) Ne| < 1. For the vertex B it holdd e§'(B,V (M) U.Z*) > (1+
o)K/2.

Case Il There exists a s&t” CV(H), withd e§(x,V(M)) > d e§(x) — 20Ns for
all vertices xe 2. Furthermore, ABe 2" N.%¢, and|V(M')\ 27| <1,
where M = {xye M : x,y e N(Z7)}.

Moreover observe that each edge M intersects the se?’.

Case 11

o

.

.
.
o

.
.
o

3,

1,
=
=
=
-
v

IIIIIIIIII|IIIIIIII||||||IIAI;‘§

V(H)\V (M)

\d
fnmnnnnRRRRRRRRRRRRRRRRRRRRRRRRRReY

QUENERRRRRRRRNNNT,

4

Figure 1: Two resulting matching structures from Proposits.4. Dashed lines
represent no connections (in Case |), or sparse conne¢iro@sse Il).

Proof. Among all matchings satisfying the conclusion of the Galildmonds Match-
ing Theorem, choose a matchiiMy that covers a maximum number of vertices
fromV(H)\ Z*. Let Q be the corresponding separator. Recall thigtis a
Q< (V(H)\ Q)-matching. Setp =\ Qand.¥ =V(H)\ .Z.
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We distinguish three cases.

e There exists ahg < Lg edge.
Set2” =LoUN(Lp) \ Q and letA andB be vertices of anyo < Lo edge. Then
A andB lie in the same compone@tof H — Q. If V(Mp) NV (C) # 0, then take
{x} =V(Mg) NV (C), and choose& arbitrarily in C, otherwise. Sinc€ is factor
critical, there exists a perfect matchiig in C — x. It is straightforward to check
that the matchingy! = Mo U M satisfies conditions of Case II.

e Lo=0.
SetZ” =V(H) andM = My. Let AandB be end-vertices of an arbitralyf «— ¥
edge. ltis clear tha¥(M')\ 27 = 0. SinceQ 2> %, || > N/2—0oN, and
IV(M)| = 2|Q] it holds that all but at most@N vertices ofH are covered b,
thus for any vertex € 2"/, we have that d &jx,V(M)) > d ed(x) — 20Ns

e Lo is anindependent set ahg £ 0.
First we observe that each compon€rdf H — Q is a singleton. Indeed, sinc#
andLg are independent all the edges in any matchin@ are in the form¢” < Lo.
SinceC is factor critical, we havé/(C—u) NLy| = [V(C—u)N.~| for any vertex
ueV(C). Thusv(C) = 1. (Note thaiMp is thus maximum.) Se¥l = Mo.

Definel = {ue N(Lp) : de§(u) > K}. Observe that C Q. We shall prove
that

L£0 (6.1)

by contradiction. Assume that for every vertgx N(Lo) it holds d ef(u) < K.
We get|Lo|K < &(Lo,N(Lo)) < K|N(Lo)| implying |Lo| < [N(Lo)|. FromL =0
it follows that N(Lg) N.Z = 0 and thus every vertex in(Np) is matched by to
a distinct vertex ir_g, a contradiction.

We show that the grap¥i(H) fulfills conditions of Case I. It suffices to find a
vertexB € N(Lo) such that d &B,V(M)U.#*) > (14 0)K/2. The pair(A,B),
whereA € N(B) N Lo, satisfies conditions of Case I.

DefineX =V (H) \ (V(M)U_.Z*). For contradiction, assume that for every
B e L we have

de§¢(BV(M)UL*) < (1+0)K/2, (6.2)
which yields

de§(B,X)> (1—0)K/2. (6.3)
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This implies thatM does not contain any edge with both end-vertice<in In-
deed, suppose that such an edge M exists. Therx € Lo andy € L. By (6.3),
ded(y,X) > (1— 0)K/2. In particular, there exists a vertgxe Nx(y). The
matchingM1 = {yp} UMp \ {xy} is a matching as in Gallai-Edmonds Matching
Theorem (with separatd®) which covers more vertices &(H) \ .Z* thanMg
does. This contradicts the choice M§. Observe that for any vertaxe X, we
have d &(u,V(M)) =d e§(u) < (1+0)K/2and thus d &fu,L) < (1+ 0)K/2.
We boundé’(L, X) from both sides.

(1-0)IE|

|\J|7<

<&LX) < (1+a)|X]§,

which yields

1+o0
L] < 1o X (6.4)

We use (6.2) to obtain bounds a¥(Q,Lo).
||—0|K§_é°(Q,|—o):_é"(|~—U(Q\~) 0)
<(1+ 0) (IC|+1Q\ 1)

§(1+0)2

which gives N
2lLo| < (1+0)|L+2/Q\ . (6.5)

Every vertex inQ\ . is matched to a vertex ihg, and conversary, if a vertex
in Lo is matched, then it is matched to a vertex@n .. Therefore|Q\ .Z| =
ILoNV(M)|. Combined with (6.5) we have thatl2 \ V(M)| < (1+ 0)|L|. Plug-
ging (6.4) we obtain
(1+ 0)2
l1-0
From|Z| > [V(H)\Z|— 20N we get|Lo\V(M)| > |X| — 20N (Recall that any
edge ofM has one end-vertex it and the other one i (H) \ .¥). Together
with (6.6) we obtain

2ILo\V(M)| < 1X]|. (6.6)

2
(A4 0)" v > 21x| — 40N,
l1-0

yielding

40N

> |X].

1-30 X

A contradiction with (6.3), (6.1), and the bound an O
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6.4 Embedding lemmas

In this section, we introduce some tools for embedding astoire one regular
pair. Similar results are folklore, however we prove themethto our needs.
Lemma 6.5 describes sufficient conditions for embedding#erbtree in a regular
pair.

Lemma 6.5. Let(t,r) be arooted tree, and & 2¢ > 0. Let(X,Y) be ane-regular
pair with |[X| =|Y| = s and densitgl(X,Y) >d. LetPCPCXandQ@C QCY
be such thamin{|P|,|Q[} > A andmax{|P'|,|Q|} > A, whereA = &Y Then
there exists an embeddigmof t in PUQ such that the root r is mapped t6 PQ'.
The following two further requirements can be also fulfilled

L If P\ P > 4, we can ensure thap(V (t) \ {r}) 1P’ =0, and similarly, i
IQ\ Q| > A, we can ensure thap(V (t) \ {r})NQ = 0.

2. If|P'| > A we can can prescribe the vertex r to be mapped'tdfRQ/| > A
we can can prescribe the vertex r to be mapped’to Q

Proof. Without loss of generality assume tH&| > A. Choose an auxiliary set
S C P with |Sp| = A subject to|Se N P'| being minimal. In particular, we have
S CP\P,if |P\P| > A. Similarly, choose a se& C Q with |Sy| = A with
respect tdSo N Q| being minimal. The setSp and S, are significant. Choose
a vertexv € P/ which is typical w.r.t.Sy. There are at leasP’| — es > 1 such
vertices. Setp(r) = v.

We inductively extend the embeddigg so that every vertex dfwhich was
mapped taP is typical w.r.t.Sy, and that every vertex which was mappedlo
Is typical w.r.t.Sp. We illustrate the inductive step by describing how to embed
the neighborhood of a vertexwhich was already embeddedi The case when
@(u) € Qis analogous. Lel C N(u) be the yet unembedded neighborsiofThe
vertexg(u) has at leasfd — 2¢)A > s+ v(t) neighbors irg. At least|N| of them
are typical w.r.tS and not yet used bg. We then mapN to these vertices.

Clearly, Part 1. was satisfied. In addition, Part 2. can aéstubilled. Indeed,
we only need to observe that|F’| > A, there is at least one vertex which is
typical w.r.t.S. This vertex will be used for embedding the rootThe second
condition of Part 2 is analogous. ]

For the proof of Proposition 4.4 (which is the key tool for yirg Theo-
rem 1.4), we need to embed the shrublets of the Tree an efficient way. To
this end, we try to fill the clusters of the regular pair witle ttame speed. The
following definition ofi-packness formalizes this.
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Leti € {1,2} andX,Y,Z C V(G) be three disjoint subsets. We say thlat
XUY is i-packed(with parameterd , 1) with respect to thdead set Zand with
respect to thembedding sets AndY, if

min{|XNU|,[YNU|} > min{ip,v} —A,

or
IXNU|—[Ynu[| <1,

where
p=min{dedZ,X),degZ,Y)}, and v=max{degZ,X),degZ,Y)}.

If U represents the vertices used by an embedding, then tolkdepacked
means that we have roughly the same amount of used verticbsthrsides of
X andY until we have embedded roughlyi2rertices. If we manage to keép
2-packed, we have this “balance” for even longer.

The following embedding lemma allows us to “fill-up” a regufair with a
rooted forest. The lemma is divided into three parts to satg#ferent embed-
ding requirements of the proof of Proposition 4.4. The mogiartant one is the
“saving” Part 3. Having a clustet and a regular paifX,Y), Part 1 ensures the
embedding of a rooted foreg, R) mappingRto Z andF — Rto X UY, provided
that the order of is slightly less than d ég, X UY). Part 3 allows us to embed
even a larger fore$t, under certain additional conditions.

Lemma 6.6. Let (F,R) be a rooted tree with root R such that each component of
F —R has order at mogt. Let XY, Z be three disjoint vertex sets, witk| = |Y| =

s, forming threes-regular pairs. Assume théf)s(z’—Y> >d>2gandd(Z,X),d(Z,Y) €
{0}uU[d,1]. SetA = £5L. LetU C XUY. In the following we write Fand F, for

the vertices of - R with odd and even distance from R, respectively.

1. Ifv(F)+|U| <degZ, XUY)—A;—A—2¢es,whereA; =A+ 1+ 3¢es,U is
1-packed w.r.t. Z (with parameterg and 1), and R is mapped to a vertex
r € Z that is typical w.r.t. X and w.r.t. Y, then the mapping of R te
extended to an embeddiggof F such that

(c1) ¢(V(F —R)) € (XUY)\U,

(c2) each vertex of{Hs mapped to a vertex which has at le&dt- 2¢)|Z|
neighborsin Z, and

(c3) the setW ¢ (V(F —R)) is 1-packed (with parameters, and1) w.r.t.
the head set Z and the embedding sets X and Y.
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2. Ifmax{|Fi|,|F|} +[XNU| <degZ,X)— A1 —A—es, U isl-packed (with
parameters\; = A+ 1+ 3¢s andr) w. r. t. the head set Z and the embedding
sets X and Y, and R is mapped to a vertex# that is typical w.r.t. X and
w.r.t. Y, then the mapping of R can be extended to an embeddaid-
such that (c1), (c2), and (c3) hold.

3. Ifdegz,X) € [ns,(1—n)s|, wherens > 12, andA; = 2A+ 7es+ 41, U
is 2-packed w.r.t. Z (with parameteY, and 1), each component of F R
has at least two vertices, R is mapped to a vertexzr that is typical w.r. t.
X\U andw.r.t. Y\U, and

_ ns
V(F)+|U] gdegZ,XUY)JrZ, (6.7)
then the mapping of R can be extended to an embeddiogF such that
(cl), (c2), and

(d) Uu¢(V(F —R)) is 2-packed w.r.t. Z (with parameteds and 1)
hold.

Proof. Setu = min{d e¢Z,X),dedZ,Y)} andv = max{d e¢Z,X),d edZ,Y)}.
We split the embedding of the forelst— R into ¢ steps, wherd is the number
of components of — R. In each step, we embed a componefitof F — R in
(XUY)\ (UUuUi), whereU; = ¢(U;iV(tj)) is the image of trees embedded in
previous steps. The componeénis a tree, we write; for its root, {ri} =V (tj) N
N(R). Moreover, we assume that the trdesire ordered so thdt,...,t,, are
trees of order at most twdy, 1, ...,t,, are stars of order at least three with their
centers in the roots of the components &nd, .. . ,t, are trees which are not stars
centered in the roots. This ordering is unnecessarily in the proof of Parts 1, 2,
we only use it in the embedding described in Part 3. Obsertdhle assumptions
of Part 3 assert that all treg i € [¢1] have order exactly two. For step set

R =X\ (UUUjuB), andQ; =Y\ (UUU; UB), whereB is the set of vertices in
X UY which are not typical w.r.t. the s&t We have magXNB|,|YNBJ|} < es.
DefineP = RNN(r) andQ = Qi NN(r).

Part 1. In each step, the embedding will satisfy conditions (¢1jc2), and
(c3). These conditions are modified versions of (c1), (c2), ak, (where we
considelU UU; instead oU and¢ (t;) instead ofg (V (F — R)). Conditions (c1y,
(c2), and (c3) are clearly met. We shall verify (gl)c2), and (c3) inductively
at the end of each stepFirst we claim that maiP/|,|Q/|} > A. This is implied

25



by the following chain of inequalities.

IR UQi|=dedr,RUQ) >degZ,XUY)—|UUUj| - |B| —4es>
>A1+A—3es>2A. (6.8)

Second, we claim that m{fR |, |Qi|} > A. If this is not the case,
max{|[ XN U uUj),[YN(UUU;)|} >s—A—es>v—-A—es.
Now asU U U; is 1-packed,
min{| XN U UU))|,[YNUUU)| > p—A1,

or
min{|X N (UUU)[,[YN(UUU)| >v—A—es—T.

In both cases, we obtain thiat UU;| > de@Z,XUY) — A1 —A— €s, a contradic-
tion. Thus by Lemma 6.5, we can embed the tyedf min{|P/|,|Q{|} > A, we
embed; in B UQ; using Lemma 6.5, Part 2, so that

[IXN(UUUiz1)| — YN (U UUiz1) || <maxX{||[XNUuU)|—[YNnUuU)l|, 1}
(6.9)
Inequality (6.9) ensures that Property (d3lds. There is nothing to prove if

min{|XN (U UUi;1)],[YN (U UUi;1)|} > min{d edZ,X),dedZ,Y)} — A1 .
(6.10)
So, suppose that (6.10) does not hold. We show tha{ |®in|Q{|} > A. Then
by (6.9) and by the fact that UU; is 1-packed, we obtain thgX N (U UU;;1)| —
YN (UUUis1)|| < 1. Assume for contradiction and without loss of generalitth
IP/| <A. Then

XN (UUU)| > degr,X) —A—[BAX| > — Ay +T.

AsU UUj; is 1-packed, we obtain (6.10), a contradiction to our assiompProp-
erties (cl)and (c2) follow from the fact tha® is disjoint fromU U U; andB.

Part 2. The proof goes in a similar spirit as in Part 1. We embed setplgn
the components of F — Rusing Lemma 6.5. In each step, vertice3/df;) N F;
are mapped tdl(A) N (XUY)\ (UUU;) so thatU UU; remains 1-balanced.

Part 3. In each stepof the embedding we require the following four invariants
to hold.

(P1) UuUU;.1 is 2-packed (with parameteis andT).
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(P2) If |R\ P| > A, then the tred is embedded so that(V (ti) \ {ri}) "N(r)n
X =0. Similarly, if |Q;\ Q| > A, theng (V (i) \ {ri}) AN(r)NY = 0.

(P3) I min{|P/|,|Q}|} > A, then

|(UUUir)NX|—[(UUUiL)NY]| <maxX{t, ||[(UuU)nX|—[(UuU;)NY||}.

(P4) If min{|(UUUi11) NX|,[(UUUiz1)NY|} <min{2u,v} — Ay, then
min{[P 4], 1Q 1]} > A

PropertiegP1), (P2), (P3), and(P4) are clearly met at step= 0. Assume that
(P1), (P2), (P3), and(P4) hold in the step — 1. We first prove the following
auxiliary claims

(o) max{|P/],|Q/]} >4, and
(B) min{|R[,|Qi[} = A.
We prove () by contradiction. Suppose that mak’|, |Q/|} < A. We claim that
min{|X\ (UUUUN())[,]Y\ (UUUiUN(r))|} > A+e€s. (6.11)

Suppose that (6.11) does not hold. Assume without loss oérgdity that|X \
(UUU;UN(r))| < A+ e€s. Recall thatP/| < A. Thus we havéX N (U UU;)| > s—
2A—2¢s. The factthal UU; is 2-packed implies thalt) UU;| > s+min{2u,v} —

Ay — 20 —2es>dedZ, XuUY) + L a contradiction. Inequality (6.11) implies by
(P2) that only the roots of the treds (j < i) were embedded in (¥) and thus
UiNN(r)| < |Ui|/2 <Vv(F)/2 (recall thatv(tj) > 2 for all j < i). We have thus

B[ +1Q| = d(Z,X)[X\U[+d(Z,Y)[Y \U| = JUin N(r)| — 6es

> d 8¢z, X uY VR Z, X)X NU|—d(Z,Y)|]Y "U| — 6es
2

Y dzx) +d(Z,Y))§ +(1/2— d(Z, X)X NU |+
(12— dZ Y)Y NU|— %S . (6.12)

We writeRH Sto denote the right-hand side of (6.12). We bo&RtdiSin two cases
separately, based on the value ¢ZdY).
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o d(Z,Y)>1/2.
RHS> (d(Z,X) +d(Z,Y))s/2+ (1/2—d(Z,X))|XNU |+

+(1/2-d(Z,Y))s— %S

= (d(Z.X) ~ d(Z,Y))s/2+ (1/2— d(Z, X)) XU| +5/2— L

_ %d(Z,X)|X\U|+ %(1—d(Z,X))|XmU -z yv)s2- T
> 15

— 12’

a contradiction.

e d(Z,)Y)<1/2.

RHSZ d(Z,X)s/2+ (1/2—d(Z,X)IXNU| - &
= S@-d@X)XNU]+5dZ X)X \U| - L
s
— 12’

a contradiction.

We now turn to provingf). If (8) does not hold, then m&kx N (U uU;)|,[Y N
(UUUj)|} >s—A—¢es. AsUUU; is 2-packed mifiiX N (U UU;)|,[YN (U U
Ui)|} >s—A—es—1,ormin{| XN U UU;),[YN(UUU)|} >min{2u,v} —As.
In both cases, we obtain

UUUi| >s+min{2u,v} —A—es—A;
>degZ,XUY)+ns—A—es— Ay,

a contradiction with the bound (6.7), Bs— A — €s— Ay > ’773.

Having proved thatq) and (8) hold, we may use Lemma 6.5 in order to embed
tiin RUQ;. If min{|(UuU;))NnX|,[(VUuU;)NY|} >min{2u,v} — A, we use only
Part 1. If min{|(UUU;) N X|,|(UUUi)NY|} < min{2u,v} — Ay, we use Parts 1
and 2. PropertyP4) for i — 1 implies that we have the choice or mapping
to P or to Q. We choose the side so thaty UU; 1) N X| — (U UUi11) NY]| <
max{1,||(UuU;)NX|—|(UuU;i)NY]||}, andifv(t)) = 2, we mag; to the opposite
cluster to the one where liggr;_1).

The embedding of; clearly satisfiegP1), (P2) and(P3). To prove that the
embedding of; satisfies als§P4), we need the following auxiliary claim.
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Claim. If min{|(UUU;)NX|,[(UUU;)NY|} <min{2u,v} — Ay, then
[@({re,...,riH)NX] < |Uip1NX[/2+1+1

and
[o({re,....,riH)NY| < UianY|/2+ 7+ 1.

The proof of the claim is postponed to the end of the inductiep.

We prove PropertyP4) by contradiction, so assume that fji(tU UU;_1) N
X[,|[(UUUi_1)NY[} <min{2u,v} —Azand thatP’ ;| < A(the case wheQ/_ ;| <
A is proved analogously). We claim that

IPL1\ P4 > A+s—min{2u, v} 4 6es+ 31 > A. (6.13)

Indeed, otherwis¢X N (U UUj 1)| >s— R 1\ P 1| —A—&s>min{2u,v} -
A2+ 1. Property(P1)implies that

min{|(U UUi+1) N X, [(UUUir1) NY |} > min{2u, v} — Az,

a contradiction with our assumption. This settles (6.13)e property(P2), to-
gether with Inequality (6.13) and Part 1 of Lemma 6.5, ingptigat only the roots
of the trees;, j <iwere mapped tX N(r),i.e.,Ui1NXNN(r) = ¢ (N(R))NX.
By the auxiliary claim, we obtain

Ui 1 NXANE) = [¢({re,....i ) NX| < [UanX[/2+T+1. (6.14)
On the other hand, using (6.13), we obtain

Uia N X] < [XAU| = [Rya\ Ry
<min{2u,v}—|XNU|—-A—6es— 3t
<2d(Z,X)|[X\U|—A—6es— 3.

Together with the assumptidR’, ,| < A, this yields the following inequality.
+1

Uirs NXNAN()| > IN(r)N(X\U)|—A—¢s
>d(Z,X)|X\U|—A—3es
> [UiraNX[/2+T+1,

a contradiction to (6.14). Let us now prove the auxiliaryrola
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Proof of the auxiliary claim.We alternated the embedding of the roofs j <
min{i, /1} betweenX andY. This ensures that fgr< min{i, ¢, } we have

@ ({r1,...,ri}H)NX| < \Umin{i,el}HﬂX\/ZJrland
[ ({ra,-- 1) NY| < [Uningien+1NY[/2+1, (6.15)

proving the claim fori < ¢;. Thus we assume that> ¢/;. Denote byl'; the
roots of the the treets for j € {¢1+1,...,min{i,¢2}}. Then seX; = XN ¢ (),
Xo=XN@(NT (M) NV(T(] Ty)), and similarlyY; =Y N ¢ () andY, =Y N
¢ (N7 (Ti))V(T(LTi)). Thusthe setXy, Xz,Y1, Y, form a partition oUming s141\
Uy, +1. As all trees under consideration have order at least 3 robsiat 2X;| <
V2| and 2Y1| < [Xo|. AsU andUpng ¢,1+1 are 2-packed angll, N X| = [Uy, NY],
we know that|X; UXp| — [YoUY2|| < 21. Then

Xal 4 [Xa| +27 = [Ya[ + Y| = |Y2| = 2[Xq].

This implies that|Xy| + 21 > |X3]. The same holds fov; andY,. Together

with (6.15), this leads to the desired inequalities, 4 /,. To see that the claim
also holds fon > /5, it is enough to realize that fgr> /,, when embedding the
rootrj of the tredj in a setC € {X,Y}, at least one vertex of —r; is also mapped
toC. ]

It remains to check whether the embeddihgf F — R satisfies (c1), (c2),
and (d). Each component was mappe@to Q;, which is disjoint with the set
and contains only vertices typical w. r4. This ensures Properties (c1) and (c2).
Property (d) follows from the way we utilized property°4) during embedding

via Lemma 6.5 Part 2.
O

7 Proof of Proposition 4.4

Proof. Setn so thato < n < w, andf,y, a so that

O<Bkxyxaxoao.

Letng (the minimal order of the graph) amty (the upper bound for the number
of clusters) be the numbers given by the Regularity Lemmdd@.xput parame-
ters (for precision),o = 2/ (for minimum number of clusters) and 4 (for the
number of pre-partition classes).
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Let G be a graph of ordar > ng and the se¥ C V satisfying the assumptions
of Proposition 4.4. _ B B _

Prepartition the vertex-s&t intoVNL,VNSL\V, andS\V. By the Reg-
ularity Lemma 6.2, there exists a partitith= Co UCy U - - - UCy satisfying the
following.

o Mo <N<TI,

ICi| = |Cj| = s, for anyi, j € [N],
Col < Bn,
all but at mos{3N? pairs(C;,C;) areB-regular,

if GNL #0, thenC; C L, for anyi € [N], and
e if NV #£0, thenC, CV, for anyi € [N].

Let G, denote the subgraph & obtained fromG by deleting the edges inci-
dent toCp, contained in som€;, lying betweernV \ V andV, or between pairs
that are irregular or of density smaller thaf/2. Let (G,d eg,(,-)) denote
the weighted cluster graph induced @By, i.e., G has ordemN, with vertex-set
V(G) ={Cy,...,Cny} and edge-set

E(G) = {CD : (C,D) is anf-regular pair with density at leagt/2} ,

with the weight function d egE(G) — R, defined by d €gD) = d eg (C,D).

Denote byZ the set of clusters containedlimV which have large average degree

inV, _ _
Z={CeV(G):CcLnV,deg (CV)=k-yn}.

We write N to denote the number of clusters Vh Observe that.Z| > (1—
0)N/2—yN > N/2— oN. Most of the cluster¥ (G) formed by vertices oE NV
are in.Z. From Assumption 4.6, there are at most

2yN (7.1)

clustersC € V(G)\ . with C CV such that d &g(C,V(G) \ .£) > yn. LetH be

the subgraph o6 induced by clusters containedVhsuch that all edges induced
by the se{C € G : CCV \ Upc ¢ D} are removed. The weights of the edges in
H are inherited front.
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7.1 Matching structure in the cluster graph

If G satisfies the Special Case with parametg considering the se¥), then
Jk+1 C G by Proposition 4.2. In the rest of the proof, we thus assumies{B[V N
L]) > csn?, and thuse(G, |V NL]) > $n?, implying that.# induces at least one
edge inG. This edge is an edge Hh also. The weighted gragiH, d §gy) satisfies
all the conditions of Proposition 6.4 (with parameterandK = k— yn). This
ensures that one of the two specific matching structurds exists. Together
with (7.1), this yields the existence of one of the followitngp configurations in
the cluster grapls.

Case |:There are two adjacent clusteksB and a matchindg/l in G such that
e d &g, (AV(M)>k-yn,

e each edge € M intersects the neighbourhood Afin at most one cluster,
and

e dég (B,V(M)UL") > (1+0/2)%, whereZ* = {CeV(G) : deg, (C) >
(1+0/2)k1.

Case ll:There exist a set of clusteg8” C V(G), two adjacent clusters, B, and a
matchingM in G such that

e ABe 2'NnY%,
e V(M)\ Z' <1, whereM'={CDeM :C,DeN(Z")},

e all but at most $N clustersC € 2" satisfy d eg,(C,V(M)) > deg (C) —
3on,

e and each edgec M intersects?.

In the rest of the paper the average degree d eg will alwagisdueiated with the
underlying graptGy, i.e., d eg is an abbraviation for leye_:g

Let M C M be the maximal submatching bf not coveringA norB. LetT €
k41 be any tree wittk edges. Trivially|M| > |[M| — 2. Choose a rodR e V(T)
and cut the tred as in Section 6.2 in order to obtain a switchedéine partition
(Wa, W, Za, Z8), with T = Bk/M.
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7.2 Casel

Denote by.7 the components a¥ consisting of interior subtrees and B the
ones consisting of end subtrees@f. Denote byTr the forest induced by the
components inZg, by Ta the forest induced by the componentsdi[ and byTg
the forest induced by the componentsag. Recall thatZg consists only of end
subtrees. 175U 23 is cy-unbalanced, them C G, as shown by Proposition 4.3.
Thus we may assume thag U .7x U 2 is cy-balanced.

We partition each cluste€ € V(M) U Z* so that the partition defines two
disjoint setsM" and MB of vertices ofG, such thatM",MB C J{C € V(M)}.
The embedding : V(T) — V of the treeT is defined in three phases. In the first
phase, we embed the subtfBe= T[Wx UWs UV (Te UTAN)], whereT C T will
be defined later. The foret is embedded iviF and the foresTd! in MB. In the
second phase, we emb& = Tg — V(T in U{C € (Z*\V(M))UN(Z")}. In
the last phase we embdg in (J{C € V(M)}. Thus we complete the embedding
of T.

The difference between the presented proof of Theorem d4tarapproxi-
mate version Theorem 1.3 is that in the proof of Theorem 1.4awe to fight to
gain back small loses caused by the use of the Regularity laenktowever, this
IS not necessary when we have the matching structure of Caikem, we are able
to reduce the situation to the “approximate version”, i@ the setting of similar
nature as in Theorem 1.3.

We partition each cluste® € V(M) uU.Z* into CT andCB in an arbitrary way
so that|C™ | = (1—y)|C| and|CB| = y|C|, where

VTaUTe) 1 nTe) 1
= . > . .
kK 1to0/4 %"k 1yo/4 ¢

(7.2)

Set

ME= |J cB, M= |J CcF,and #®= |J C°P.
CeV(M) CeV(M) CeZ*\V(M)

Observe thay € (a,1— a). Thus, for eaclC € V(M) U.Z*, the setCB andCF
are significant. Observe also that the p&@§, D" ) and(CB, DB) are /a-regular
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for everyC,D € V(M) U.Z*. Now,

degB,MBU.ZB) > y(1+ G/2)§—Bh—4s

121+0/2
~ 14+0/4

v(Tg) + ag —pBn—4s

> V(Tg) +or§r . (7.3)

A similar calculation shows that for any clustere .#*, we have

degbd,V\ (MFUAUB)) > v(Tg) + ai—;. (7.4)

For clusterA, we obtain
degA M") > (1—y)(k—yn)—Bn—4s

(7.2)

> k—Vv(TaUTg)/(14+0/4) —ak—yn—pBn—4s

>V(Tg) +Vv(TaUTg)0/8—2an
>max{|V(Te) N To|, V(TE)NTe|} + ocik/32—2an,  (7.5)

where the last inequality follows from the fact th#g is cy/2-balanced, or7a U
Iy is. Let 73" C Zg be a maximal subset @fg such that

v(t) < d egB,MB) — %‘. (7.6)

te 7M™

Let T2 be the forest formed by the trees. @', let 75- = Zg \ Za" andTg be the
forest formed by the trees ifi-. Recall thafl’ = T|WaUWs UV (Tg) UV (T)].

Phase 1. Inthis phase, we embed the subtiéeThe embedding of ' is devided
intow = Wy UWg| steps. We label the vertices\bh UWE asxy, . .., Xw, indexing
from the rootR downwards, i.e., in such way thi < j>» wheneverxj, ~r Xj,.

In stepi > 1, we shall take the vertex and define the embedding fgrand the
shrublets hanging from, i. e., we embed the treg,

T=T[{x}u J V(R)],

1€lci]
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wherePy, ..., P, denotes the componer®of Tr UTH such that Chx ) NV (P) #
0. The treej is a union of tree§ =T [{x} UV (P)] (1 € [ci]). SetVi = U V(T]
andU; = ¢ (V).

If i > 1, let pj = Parx). During the embedding process we will keep the
following three invariants in every step

(I1) TheU;n (CFuDF)is 1-packed with parameters

_ Bs/a+rt B
F= 22— 28/a +1+3B5/a andt, wheres = (1—Yy)s,
with respect to the embedding s€s andDF and the head se for each
edgeCD € M,

(12) TheU;n (CBUDB) is 1-packed with parameters

e — Bs'/a+t1
° T V?/2-2B/a

with respect to the embedding s€&8 andDP and the head sé for each
edgeCD € M, and

+1+3Bs’/a andt, wheres’ =ys,

(13) if i > 1, then the vertexp; was already embedded in some previous step
so that|N(¢(pi)) NA| > y?s/4 (if xi € Wa), or [N(¢(pi)) N B| > y?s/4 (if
Xi € Wa).

Say that a vertex i8-typical if it is typical w.r. t. all but at mos\/ﬁ N setsCF,
C € V(M), w.r.t. all but at most/BN clustersC € V(M), and w.r. t. the cluster
B. All but at most S\/ﬁ |A| vertices of clusteA are A-typical. Say that a vertex
is B-typical if is is typical w.r.t. all but at most/BN setsCB, C € V(M), w.r.t.
B, and w.r.t. the clusteA. All but at most 3/B|B| vertices of clusteB are
B-typical. The embedding will be defined in such a way that(Wa) € A and
¢ (Ws) € B. From the property of the switchedfine partition(\Wa, Ws, Za, ZB)
we have mak/Wa|, We|} < 12k/T < y?s/4. Thus if the predecessor of a vertex
X € Wx has at leasy?s/4 neighbours imA, then we have have enough candidates
to choose an unusedtypical vertex from a (x;).

To define the embedding of the tr@ewe first choosep(x;). If i =1 then
Xxi = R, and we mapg to an arbitraryA-typical vertex inA (if R € W), or on an
arbitraryB-typical vertex inB (if R€ Wg). If i > 1 choose fokp (x;) anyA-typical
vertex INANN(¢(pi)) (if X € Wa), or anyB-typical vertex inBNN(¢(pi)) (if
Xi € Wg). This is possible byl3).
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Assume that; € Wa. ThenV(T)) C V(Tg). Set% = {C e V(M)NN(A) :
¢ (x) is typical w.r.t.CF}. We deduce that

S degA.Ch)—|UinM"| > degA M) — \/Bn— MOV (Tk)|
Ce%i

(725)max{ V(TE) NV (To)|, [V (TE) NV (Te) |} —

~MOV(Te) + 3 (%U)z-k—Zan— V/Bn
> max{[V(T) NV (To),V(T) V(Te)l} +ak  (7.7)

We consider an auxiliary mappirg: [ci] — M which has the property that for any
XY e M, X € G it holds

Z V(P) +]Uin(XFUYF)| <degA X" uYF) —Ae. (7.8)
1€{=+(XY)

From (7.7) such mapping exists.

We embed the treds, 1 =1,...,¢ using Lemma 6.6 Part 2. The setting for
applying Lemma 6.6 is the following. The root 8fis the vertex. The head set
is the clusteA and the embedding sets are the 3€tsY™, whereXY = {(1). The
set of “forbidden vertices” i&); , = (Ui UU,-, ¢ (t) N (XF UYF). The sel;, is
1-packed with parametessandt, by induction. Now, Lemma 6.6 Part 1 allows
us to embed the tre¢ so that

o H(t/) C (XTUYF)\ Ui,

e each vertex iV (t') with odd distance fronx; has at leasy?s/4 neighbors
in A,

e the set(UiUU,<, ¢ (t")) N (XF UYF) is 1-packed with parametersand.

Observe that the last property is sufficient for our induetigsumption on the sets
Ui, and also to prove invariagitl). The second property ensures invarid8j to
hold. Property12) is preserved.

In the case that € Wg, set

M; = {CBDB : CD e M, ¢(x) is typical w.r.t. botrCB andDB}.
Similar calculations as above give
Z d egB, (CBUDB)\U) > v(T)) +ak/16.
CBDBeM

We embed the tree$, | = 1,...,¢ using Lemma 6.6 Part 1 in the s&8 U DB
(CD € M) so that invariant¢l1), (I11), and(I3) hold.
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Phase 2. In this phase, we embed the yet unembedded shrublets atijad#g
(i.e. T3). We label the shrublets ofy- asty, . .. 71 Instepi > 1, we define the

embedding for shrublétin a suitable edg€D € E(G). SetU; = ¢ (V (T UT3MH U
Uj<iV(tj)). Let x € Wg be the parent of the root of the shrublet The vertex

¢ (x) is typical w.r.t..#B and hence by (7.3) and (7.6),
ded ¢ (x),-2°) > d egB, #®) —2fn
—degB,MBu.2®) —degB,MB) —2Bn
> v(Tg) + ak/4—v(TY") — ak/8—2Bn
> v(Tg) + ak/16.

Thus there is a clustd € .Z*\ V(M) containing a large unused neighbourhood
of ¢(x). Thatis

_ _ ak Bs+T1
IN@(x))D\UI| 2 7a0 =

From (7.4) we obtain that
degD,V \U;) >degD,V\ (MFUAUB)) —|¢(V(Te))NUi| > v(t) + ak/4.

Thus there is a clust€ € N(D) with |C\ U;| > yf;;f’zﬁ. Use Lemma 6.5 to embed

ti in (CUD)\U; so that the root; of the shrublet; is mapped to Ng (x;)) "D\ U;.

Phase 3. In this phase, we finish the embedding of the tree by embedtimg
end shrublets adjacentV¥ (i. e. Ta). We label the shrublets ofa asty, .. . ,t| 7).

First assume thatr U s is cy/2-balanced. The embedding will be defined
for stepsi € [|.7a]]. In stepi for a clusterX € V(M) denote byXy, the set of
vertices inX used by the embedding & U Tg and ofUKItJ We find a suitable
edgeCD € M in which we embed the tree Letx; € Wa be the parent of the root
oft;. By Lemma 6.5, the shrublgtcan be embedded in unused vertices of an edge
CD e M, C e N(A) in such a way that the root ¢f is mapped to a neighbor of
¢ (%), wheneveCD satisfies

Yep = min{|N(¢ (%)) NC\Cy,|,[D\ Dy, |} > v(t)) + as. (7.9)

Thus we are able to finish the embeddingToif we can find an every stepan
edgeCD € M satisfying (7.9). Suppose that at some stepl there are no edges
in M with this property. Denote biyl, C M the submatching dfl induced by the
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clusters{X € V(M) : ¢(x) is typical w.r.t.X}. ThenYp < V(&) + as for any
CD € M;. The non-existence of a suitable matching edge implies that

- 1
z Yep < z (T+as) < éN(T+as)<orn.
CDeM CDeM

On the other hand,

S Yeo> [ZM (IN(¢ (%)) NC| —max{|Cy; [, |Dy;})
CDeM )

CeN(A) CeN(

>k—yn—+/Bn— (V(Te UTg) — c3k/4) — v(Ta)
>an,

a contradiction.
If ¢ U Zgis cy/2-unbalanced, thef, is ¢y /2-balanced implying that

max{|V(TaNTe)|, [V(TANTo) |} < W(Ta) — (cu/2)%k
Similarly as above, we find a suitable edgp € M, C € N(A) with
Yeo = min{IN(¢ (%)) NC\ Gy, D\ Dy, |} = max{|V () N To|, IV (t) N Te|} +ars.

The calculations that such an edge exists are left to theerealle use Propo-
sition 6.5 to embed in (C\Cy,) U (D \ Dy,) with the root oft; mapped taC N

N((x1))-

7.3 Casell

This case follows the lines of part of the proof from [22]. Femmpleteness, and
to adjust the setting, we prove this part in all detail.

Denote byTa the forest induced by the componentsip and byTg the forest
induced by the components i#g. Observe that(Tg) < V(Ta). If ZaU Zg is cy-
unbalanced, thef C G, as shown by Proposition 4.3. Thus we may assume that
2nU I is cy-balanced. In the first part of this section, after auxiliaeynmas 7.1
and 7.2, we show in Lemma 7.3 thatC G or the clustersA and B are very
densely connected to their respective neighbourhood elselond part, we prove
in Lemma 7.7 that iV, the neighbourhood of the clustér is well connected
toV\V/, thenT C G. If V' is poorly connected t& \ V’, then we show tha¥’
satisfies the properties required by the statements of Bitopo4.4.
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Let M be the maximum submatching Bf not containing the clustessandB.
With a slight abuse of notation, we can wre= M\ {ea, e}, Wheree, andeg
are the matching edges containidgandB respectively (the edge=, eg may be
not defined, though). Observe that

min{d egA,V(M)),d egB,V(M))} > k—4on. (7.10)

PART I: Defining V.

Lemma 7.1. Suppose that(g) > v/ok. ThenSe\y|degA e) —degB,e)| <
9y/ok,or T C G.

Proof. Assume that(Tg) > v/okandy v |d egA, e) —d egB,e)| > 9v/ok. Then
ZeeM |d edgA,e) —d egB,e)| > 8¢/ak. We show that thel C G. SetM! = {ec
M : degA e) >degB,e)} andM? =M\ ML. Without loss of generality, we may
assume that

d 8gA,V(M1)) —d egB,V (MY)) > 4¢/ok. (7.11)

Label the edges d¥l as{ey, ... ,e|,\7||} so that for any < j, it holds that

deg(A) deg (A)
deg(B) ~ deg (B) ’

with the convention thag = +oo, for anyx > 0. Asv(Tg) > +/0k, there exists an
index/ such that

V(Ta)+ak< 5 deg(A) < W(Ta) + ak+2s < degAV(N)).  (7.12)

<7
SetMa = {ey,...,e} andMg = M \ Ma. We claim that

d egB,V (Mg)) > v(Tg) + ak. (7.13)
We prove (7.13) by case analysis. If d&y (Ma)) < k/4, then

d egB,V (Mg)) degB,V(M)) —dedB,V(Myp))

(710)
> k—4on—k/4>k/2+ ak
>

V(TB) +ak.
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If d edA,V(Ma)) —d 6B,V (Ma)) > ¥ then

d egB,V (Mg)) degB,V (M)) —d egB,V (Ma))
k—4on—degAV(Ma))+ /ok/4

k—Vv(Tpa) + ok/4—4on—ak—4s
v(Te) + ak.

[

IV IVis IVis |l
N o
N N

Hence, we may assume in the rest of the proof of (7.13), that
degB,V(Ma)) > k/4, and (7.14)

d egA,V(Ma)) —d egB,V (Ma)) < @(. (7.15)

First, we consider the case whene M?. We deduce from (7.11) and (7.15) that
degB,V(Ma\M1)) —degA vV (Ma\ M) > (4¢/0 — /g /4)k > 2¥aqn.
Hence there is at least one matching edge Ma \ M for which
d egB,e;y) — d edA, &) > 2v/aqn/|Ma\ MY| > 4¢/agn/N .
Therefore, for the numbey, = d egB, e/)/d edgA, &) it holds,

degB,es) . 4v/ogn 4
> > :
p‘—degAea)— 2oN +1>2vy0q+1, (7.16)

and thus

ZeeMB degAe) 0d 5@3 e)
+ ZeeMB degAe)#0 g egA e degA e)

> pe-degAV(Mg))
= Pr-(degA V(M) —dedgAV(Ma)))
(7.10)&(7.12)
NG (V(Tg) —5an)
( > ) 2y/0q(v/ok—50n)+v(Tg) — 50n
> v(Tg) + ak.

Now, assume that, € M1. From

dEGAV(Ma) 715  /Tk (719)
deBV(Ma) ~ 4 degevMy) (L = Vol
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we deduce that there exists an edgec Ma such that d €8 e,) < (Vo +1)-
d e¢B,e,). For anyj > ¢ it holds

dEgAe) _ datAe,)
JogB.e) ~ dogB.e) ~ VoL (7.17)

If d edB,V (M)) < 3k, then
(7.11)

490k < Seui(degAe) —degp,e)))
= Jiw(degAe)—degB.e)) +3 j-¢ (degAe)—degs.e))

gjemt
Y27 4 EAV (MA)) — d 8B,V (Ma)) + /T - d 8B,V ML\ M)
U2 Jok/a+ a3k
< 40k,

a contradiction. It remains to consider the case wher(RI¥gM)) > 3k. As
e, € M1, we obtain

~

degB,V(Mg)) =degB,V(M))—degB,V (Ma))
> 3k—dedAV(Ma))
>k—Vv(Ta) +2k— ak—2s
>Vv(Tg) +ak.

We have thus proved that Inequality (7.13) holds in all cases

We say that a vertex i&-typical if it is typical w. r. t. clusteB and typical w.r. t.
all but at most\/ﬁN clusters oV (Ma). We say that a vertex iB-typical if it is

typical w.r. t. clusteA and typical w.r. t. all but at mos\t/ﬁN clusters oV (Mg).
Label the vertices of\V asay,...,aw,| SO thati < j wheneveig; ~r aj. Sim-
ilarly, label the vertices o¥\g as b1,---,b\wB| In a non—<gr-increasing way. We
embed the tre@ in the graphG using the standard embedding procedure. We start
the embedding process with the rddand proceed downwards in ther order.
We embed the vertices W in A-typical vertices of the clustekx and the vertices
of B in B-typical vertices of the clustd8. The shrublets 0f/5 are embedded in
edges oM and the shrublets a¥g are embedded in edges . Adjacencies
between the vertices &y andWg, and between the shrubletg, U g and the
seeddVy UWg are preserved during the embedding. We use Lemma 6.6 Part 1 in
order to embed the shrublets. It remains to set up envirofoehiemma 6.6. In
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the first step we embed the ra@tin an A-typical vertex inA (if R€ Wp) orin a
B-typical vertex inB (if R € Wg). Suppose that vertess € Wy was embedded in
a A-typical vertex inA and we want to extend the embedding to the unembedded

neighbors ofa Let 9,& &) C 9 be the set of shrublets belaay which neighbor
a. SetW.™ =W NN(a)NT(] &) andW® =NV U2Z3)NT(| a). The
shrublets of@,& %) and the vertlcew( )UWé %) will be embedded in this step. Let
M(a‘) contain those edgesof Ma such that the image Gai IS typical with respect

to both end-clusters & Define an auxiliary mapping(® ( a) _, M( %) in such
a way that

dedA e) > z v(t) +|U @ ﬁUe\+2A+T+5Bs for eache € M,&a‘),

te(2@) ()
whereU (@) is the set of vertices d used by the embedding in the previous steps,
andA = (Bs+1)/(y?/2—2B). It follows from(7.12) and from theé\-typicality
of the image of the vertes; that such an mapping@) exists. Lemma 6.6 Part
1 ensures that we can embed each each shrtlge? ) in the edge? @) (t).
Moreover, the embedding a# is such, that all the vertices &) can be

mapped toA-typical vertices inA. It is easy to embed the vertices ‘ﬂéa‘) in
B-typical vertices oB. This finishes the inductive step faf € Wa. The case of
extending the neighborhood of the vertgxc Wg is analogous. ]

Lemma 7.2. Let M* C M be a matching such thgtN < |[M*| <qN/8, let{U; }rcw,
be a system of sets of vertices of G such that for eveMyk it holds U C JV (M),
and letg : Wa — A be a mapping that maps every vertex Wy to a vertex which
is typical w. r. t. all but at most/BN sets ofC\U; : CcV(M*)}. LetZ* C Za

be such that ns
V(T") > dBGAV (M) + 5o |M]

where T is the forest induced by the trees#i.

If the mapping can be extended to an embedding of the sublqWwzsUV (T*)]
so thatg (V(T*)) CUV(M*), then TC G.

Moreover, the same holds if we interchange the roles piNth Wi, and Za
with 2.

Proof. Label the edges dfl \ M* as{ey,...,en}, wherem= |M\ M*|, so that, if
I < |, then B
degB,e) - degB,e)

degA.e) — degAg)
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Fix £ € [m] so that the matchinlylg = {ey,...,e/} C M\ M* satisfies
v(Tg) +ak < degB,V(Mg)) <Vv(Tg) + ak+ 2s. (7.18)

The choice of is possible from the bouni/*| < qN/8. SetMa = M\ (MgUM*).
We claim that
dedgAV(Ma)) > V(Ta—T7)| 4+ ak. (7.19)

To prove (7.19), first assume thdflg) > v/ok. From Lemma 7.1, we may assume
that

[degA,V(Mg)) —degB,V(Ms))| < ZA [degA.e) —degB,e)| < 9vok,

since otherwis@ C G. This implies that

d egA,V (Mp)) > d egA,V(M)) —d egB,V (Mg)) — 9/ak—

—degA V(M)
(7.10)&(7.18)
> k—4on—v(Tg) —ak—2s— 9ok — v(T*)+
+25|M¥|
> v(TA—T*)—i—ak.

Now, we consider the case whefTg) < v/ok. If 2 >d egA, e/)/d e¢B, &), then

degA,V (Ma)) degAV(M)) —degA,V(M*)) — d 8¢AV (Ms))

* °n _ degB\V(Mg))-degAV(M
k—4;cn—v(T )+ g — 48 d(égE)a?V(ﬁng@)) e
K-+ '72_20n —4on— V(T*) _ (V(TB)+ZE_—£§2;; egA.e)
k+ L5 —4on—v(T*) — v(Tg) — v/ok — 20k — 4s
V(TA—T%)+ak.

~~
~
[EEN
(=}
~

VIV IV IV

On the other hand, if d 8 e/) /d egB, e/) > 2, then

degAV(Ma)) > 2-degBV(Mp))
> 2.(degB,V(M))—2sM*|—d egB,V(Mg)))
(7210) 2(k—40on—sqN/4—/ok— ak— 2s)
> V(TaA—T%)+ak.

Foraset) C Ucev(w+)C, say thata vertex i@, U )-typical ifitis typical w. . t.
the clusteB, typical w.r. t. all but at mos{/ﬁN clusters oV (Ma), and typical to
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all but at most,/BN setsC\ U, C € V(M*). Say that a vertex iB-typical, if it is
typical w. . t. cluster and typical w.r. t. all but at mosy/BN cluster ofV (Mg).

We embed the tre€, starting with the rooR and progressing downwards in the
<r-order. We embed the verticess Wx in (A,U;)-typical vertices of the cluster
A, and embed the vertices @& in B-typical vertices of the clustds. According
to the hypothesis of lemma, the shrubletsafare embedded in the edgesh\df.
Then the shrublets a¥a \ Z* are embedded iMa, and the ones ofg \ Z* in
Mg. The embeddings a¥a \ 2* and of Zg are ensured by Lemma 6.6 Part 1, in a
standard way. It remains to check whether the conditionsetemma 6.6 Part 1
are matched. If we denote by the submatching df1a such thaw; € ¢(Wa) is
typical to all its clusters, then de§,V (M) > d egA,V (Ma)) —2/Bn > V(Ta —

T*) + ak—2,/Bn. We can thus partition the séix\ 2" = Uv coWy) Ueemi Z'e

in a suitable way so that each partition clé&sg embeds in the edgef M' using
Lemma 6.6 Part 1. Similar calculations hold fdE.

We briefly sketch the “moreover” part of the statement, wité toles oWy
with Wg, andZa with &g interchanged. Consider the subforésiof Tg composed
by components oZg with

V(T*) = d8GAV (M) + 22 M)

Observe that we need to check only the case wi@p) > v/ok. Similarly as
before, we can find a submatchik C M\ M* so that

V(Te — T*) + ak < d 8¢A,V (Mg)) < V(Tg — T*) + ak + 2s.

SetMa =M \ (MgUM*). From Lemma 7.1, we obtain th&tC G, or we deduce
that

degB,V(Ma)) > V(Ta) + ak.
We use Lemma 6.6 to map the vertiaes Wi to vertices inA that are typical
w.r.t. B, typical w.r.t. all but al mos\/ﬁN clusters oV (Mg), and typical w.r. .

all but al most,/BN setsC\ Uy,C € V(M*); we mapWa to vertices inB that are

typical w.r. t.A, and typical w.r. t. all but at mos\I/fZN clusters oV (Ma). Embed
T*in M*, Tg — T* In Mg, andTa In Ma. O
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We consider the following submatchingsMf For a clusteX € V(G), set

My = {CDeM : degX,C) < nsand d e,D) > (1—n)s},

M3 ={CDeM : degX,C) € [ns,(1—n)s ordegX,D) € [ns,(1—n)s},
M3 ={CDeM : degX,CuD) < 2ns}, and

M~ (X) =M UM UME .

Lemma 7.3. It holdsmax{|M{|, [MB|,IM2[, M|} <2nN,or TC G .

Proof. We prove only that if magM%|,|M2|} > 2nN, thenT C G. The case
when max|M2|,[M3|} > 2nN is analogous. Assume th&}| > 2nN (resp.
IM%| > 2nN). Choose a submatching® C M2 (resp.M* C M%) of size 21N. We
know thatZa U Zg is cy-balanced. Henc&p is cy/2-balanced o3 is cy/2-
balanced. Suppose first thads is cy/2-balanced. Consider a minimal subset
9* C P such that it induces a forest of order at least(@8g(M*)) + n?n/10,
and such that it € 2%, then mi{ |V (t) N Tol|, V(1) N Te|} > cy/2-v(t). LetT*
be the forest induced by the componentsast We use Lemma 7.2 to show that
T C G. To this end, it is enough to extend a mappihgWa — A satisfying the
conditions of Lemma 7.2 to an embeddingTof. We label the vertices ofVy as
r1,r2,..., My, Sothatifri <grjtheni > j. SetZ = {t € 2* : V(t)NCh(r;) # 0}.

At each step > 1 setU; = ¢(U;;V(Z])) C V(M~) for the set of used vertices
used for the embedding in previous steps. Observelthat(CuUD) = 0 for all
CD € M* and thus it is 1-packed (resp. 2-packed) with any parameigmath
respect to the embedding s€&d, and the head sét Set

M*(r;i) = {CD € M* : rj is typical w.r. t. bottC\ Uy, andD \ Uy, } ,

whereU, = 0 if M* C M1, andUy, = U; if M* C M3 (we defineUy, inductively, as
the embedding of is always defined step by step in thg order). The embedding

is extended separately ft* C Mi andM* C M2. SetA = yzlizL_TzB
First consider the case wha* C M7'. We shall use Lemma 6.6 Part 2. For
I > 1, the setJ; is 1-packed (with paramet@i andt) by induction for any pair of

embedding set&C,D), whereCD € M*. SetA; = A+ 1+ 3Bs. By the choice of
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9*, we know that

max{[V(Z") N To|, IV (Z7) N Tel} + > DU

_ CDeM*
d egAvD)z(l_n)s

V(2

i<i
2
<(1-2) (d SGAV (M ))+'71—O+r)

< > d egA, D) +2/Bn+7nn—cynn
CDeM*(rj)
d&GAD)>(1 1)
< > degA,D) — [M*(ri)|(T+ A1+ A+ Bs).
CDeM*(rj)
d&gAD)> (1 n)s

1__

Thus we can partition the sé&t* in setsZ", for each edge € M*(r;) satisfying
the conditions of Lemma 6.6 Part 2 (er:7 A, U = U; and fore=CD, we have
X =D, where d é@h,D) > (1—-n)sandY = C). We thus embed the forest’, in
the edge2 € M*(rj).

Now consider the case whéh* C M2. We shall use Lemma 6.6 Part 3. The
setU,, N (CUD), is 2-packed (with parametefs and 1) by induction, for all
CD e M*. SetA, = 2A+ 73s+ 4t1. Observe that each tree 6f° has at least two
vertices.

Uv(Zy)

j<i

< (d SGAV (M¥)) + % + r)

2
Y d8gA CUD) +/Bn+ 1y ¢

CDeM*(rj) 10
— ns

< Z dedA,CUD)+N(——1).
CDeM*(rj) 4

Thus we can partition the sét" in sets%,, e € M*(rj) satisfying the conditions
of the Lemma 6.6 Part 3, fat = A, U = U,, and fore=CD we haveX = C and
Y = D. We thus embed each foresf, in the edgee.

If 98 is cy/2-balanced, we interchange the rolez¥ and Zg, and ofWa and

Wk in the above.
O
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The pair of cluster$A, B) was characterized by the following properties:
e ABE E(G),
e ABec 2'NnNZ.

Thus, any pair of cluster§X,Y), such thatXY € E(G), andX,Y € 2" N.¥¢
can play the same role as the clustérand B, in particular Lemmas 7.1, 7.2,
and 7.3 can be applied to any such pair of clustetsy) to obtainT C G, or
max{|My[, M|, IMX|,IMY|} < 2nN. Thus in the following it is enough to con-
sider the latter case. Then, for aBy 27" N.ZNN(Z"N.¥) we have

degC,v(M~(C))) < 10nn. (7.20)

ChooseM*(A) C M\ M~ (A) maximal such that foy’ = Ucpem+(a)CUD we
have|V’| < k+ 2s. We claim that

LNV’ >|V'|/2, and (7.21)
V| >degAV') >k-105nn. (7.22)
For property (7.21) it is enough to observe that at leastdfalie vertices in any

edgeCD € M*(A) are large. Property (7.22) is proved by analysing two caées.
M*(A) =M\ M~ (A), then

(7.10)&(7.20)
>

degA V') >degA V(M) —degA V(M (A))) k—4on—10nn>

>k—10.5nn.

If M*(A) #M\ M~ (A), thend @, V') > (1—n)k>k—105nn.
Observe thatforanX € 2" N.ZNN(Z"'N.Z), similarly as above, we obtain

_ ~ (7.10)&(7.20)
de¢CV(M\M~(C))) >  k—-105nn. (7.23)

If e, (V/,V\V’) < wn?/2, theneg(V',V \ V') < wn?, as by cleaning the clus-
ter graphG we deleted at mosty2? edges, anég(V,V \V) < Bn? (recall that
B < y< w). The seV’ satisfies the requirements of the Proposition 4.4.
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PART II: Escaping from V’. In the rest of the proof, we assume that
2
es, (V',V\V') > wn®/2. (7.24)

Under this assumption, we show thaiC G. We use the edges betwe¥hand
V\ V' in order to “escape” fron¥’. More precisely, we save space in the neigh-
bourhood ofA by embedding part of the fore$g in vV \ V'.

Set723={tc Zn: [V(t)\NWy)|>2}and.Z7=3 = {t € Zp\ 723 : v(t) >
3}. Fori=1,2set7' = {t € 25 : v(t) =i}, and byT' the forest induced by .
Observe that7 =3, 7,23, 72, and.7! partition Za. Since the distance between
any two vertices il is even, for each treec 71U .72, only the root oft is

adjacent toNj.
Lemma 7.4. |V(U{t € 723})| < 36nn,orTCG.

Proof. Suppose thalVv (J{t € .7=3})| > 36nn. We show thaflf C G. Choose
a maximal foresfly of order at most 36(1 — 2n)n formed by components of
723, Thenv(T;) > 36n(1—2n)n— 1. This forest contains relatively few vertices
adjacent toAMx, more precisely

IN(WA) NV (TR)| <12(1—2n)nn—+ [Wha| . (7.25)

As eg,(V/,V\V') > wn?/2, for at leastwN/4 clustersC € V(G), C C V/,
it holds d efC,V \ V') > wn/4. All but at most 3N of these clusters have the
property that d &§,V(M)) > d e¢C) — 3on— 4s > d e¢C) — 4on (from the as-
sumptions of Case Il). Thus

d &g,V (M \ M*(A))) > %—40& (7.26)
Let ¢ be a set of 18N such clusters. We shall use the clustergias bridges to
embed part off; outside ofV'. In €, we shall embed the vertices f that are
adjacent t&\a, and the rest (T, ) will be mapped t&/ \ V'. We cannotthen use the
clusters that are matched withi anymore, however this loss is overcompensated
by the amount of vertices @iy that we are able to embedVh\ V'.
SetM* = {CD e M*(A) : {C,D}N% # 0}. Then,

max{d edA,V(M")),d egB,V(M"))} < 24nn (7.27)
and thus
_ _ (7.22)
d egA,vV(M*(A)\M*)) >degA V') —24nn > k—351n
>V(T)—Vv(Txy)+nn/2. (7.28)
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We claim that there are disjoint submatchimgs andMg of M\ M* such that

dedA,V(Ma)) > Vv(Ta) —V(Tx)+nn/8, and (7.29)
degB,V(Mg)) > v(Tg) + Nn/8. (7.30)

To prove the existence M andMg satisfying (7.29) and (7.30), we consider two
cases based on the orderTgt
(1) Firstassume that(Tg) > +/ok. Lemma 7.1 implies that that

_ _ (7.22)
degB,V’) >degA V') -9/ok > k—1inn.

Similarly as in (7.28), we obtain d@V (M*(A)\ M*)) > v(T) —v(Ts) +nn/2.
Requirements (7.29) and (7.30) follow by application ofgrsition 3.7. Indeed,
settingA = 2s,a=Vv(Ta) — V(T ) +nn/8,b=v(Tg) + nn/8,1 = M*(A)\ (A) \ M*
and fore € | settingae = d egA, e) andfB: = d egB, e), we infer that the matching
M\ M* can be partitioned into two submatchinys and Mg satisfying (7.29)
and (7.30).
(#2) Now assume that(Tg) < +/ok. Then
_ - (7.23)&(7.27)

degB,vV(M\ (M~ (B)uM*))) > k—10.5nn—24nn

> v(Tg)+nn/8.

LetMg C M\ (M~ (B)UM*) be such tha¥(Tg)+nn/8<d egB,V (Mg)) < V(Tg) +
nn/8+ 2s. Equation (7.30) holds. Recall th8tis densely connected tdl \
M~ (B), thus

2s-|Mg| < (v(Tg) +nn/8+2s)/(1-n)
< 2y/ok+(nNn/8+n*n/4) +4s

<nn/4. (7.31)
SetMa = M*(A)\ (M*UMg). Then,
degA,V(Ma)) > d egA v (M*(A)\M*)) —2s- [Mg]|
(7.28)&(7.31)
> V(T) —=Vv(Tx) +nn/2—nn/4
> V(Ta) =V(Ta) +nn/8,

implying (7.29).
In both cases, observe that for each clu€ter4 we obtain

(7.31)
| >

_ ~ (7.26)
dedC,V(M\ (MguUM*(A)) > wn/4—10nn—4s—2sMg\M*(A) wn/8.

(7.32)
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Say that a vertex ig-typical if it is typical w.r.t. clusteiB, typical w.r.t.%,
typical w.r.t. all but at mos{/ﬁN clusters o/ (Ma). Say that a vertex iB-typical
if it is typical w.r. t. clusterA, and typical w.r. t. all but at mos\t/ﬁN clusters of
V(Mg).

We embed the tre€ in the graphG starting with the rooR and progressing
downwards in the<r-order. We embed the vertices\k in A-typical vertices of
the clusterA, and embed the vertices Wi in B-typical vertices of the clustes.
The forestTp — T, is embedded itMa and the foresTg in Mg. The set NWa) N

V(Ty) is mapped to vertices i’ that are typical w.r.t. all but at mosy/SN
clusters oV (M \ (M*(A)UMg)), and the foresT; — N(Wa) is embedded iV \
(M*(A)UMg). Adjacencies are preserved. To embge-T,, Tg andTy; — N(Wa),
we shall use Lemma 6.6 Part 1.

Letv be any vertex i (Wa), and let the seM) consist of the edgesY € Ma
such thaw is typical to bothX andY. Similarly defineMg for a vertexv € ¢ (W)
and(M\ (M*(A) UMg))Y for a vertexv € ¢ (N(Wa) NV (TL)). Then,

deg AV (MR)) > |V (Ta) \V(TR)| + nk/4—2¢/BNs> |V (Ta) \V(Ta)| + ak.
Forv e ¢(Wa) by (7.25) it holds
degjv,%) > d égA7Cg) o BS‘%|
>(1-n—-p)12nn
> IN(WA) NV(TH)| + ak.
Similarly, we obtain d €8,V (Mg)) > v(Tg) + ak for v e ¢ (W), and

d 8¢C, (M \ (M*(A)UMs))") > wn/8—2y/Bn > v(TZ) + ak,
forve ¢(N(Wa) NV (Ty)). For eaclr € Wa, we extend its mapping to an embed-
ding of the components aix — T, with root in CHr). This is done by filling up
the cluster€ andD, for everyCD ¢ Mz(r). Lemma 6.6 Part 1 ensures that we can

embed inCD e Mf(r) components of total order of at least &8¢ UD) — ak/2
(the setJ denotes the set of used vertices; it is 1-packed by inductibine em-
bedding ofTg and of T, — N(W,) are treated similarly. ]

Now we have the tools to prove Lemma 7.5. It considers thatsitn when a
substantial portion of the edges betw&€randV \ V' does not emanate fror#’.
Sety ={C:CDecM*(A),C¢ 2} andS= J..,C.

Lemma 7.5. It holds &, (SV \ V') <320, or TC G..
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Proof. Assume thaeey(é,v \ V') > 32nn?. We show thafl C G. For this, we
consider three cases. The first cé8&) deals with the case when there are many
leaves ofl adjacent to vertices 0. As such leaves can be embedded at the end
in a greedy way, it is enough to embed a significantly smaikss.t The second
possibility (C2) deals with the case when the $8t contains many ‘large’ com-
ponents. This case was treated in the Lemma 7.4. In the lasbfphe proof we
consider the remaining cagé3), when most of the trees i are paths of length

2.

(C1) If |Uie 1 V(1) > 2nn, then consider the subgraph=T —V(T?) ob-
tained fromT after deleting all leaves adjacent\). Observe thal’ is a tree.

V(T')+nn<k—nn<min{degA V(M)),d egB,V(M))} .

By Proposition 3.7, there exists a partitibh= MaUMg such that d .,V (Mp)) >
V(Ta) \V(TYH)| +nn/4 and d &B,V (Mg)) > v(Tg) +nn/4. We then define the
embedding ofT’ in a standard way. The trees 6f' are leaves whose parent
vertices are mapped tq and can be embedded greedily. This implies That G.

(C2) By Lemma 7.4, ifj Uic >3V ()| > 36nn, thenT C G.

(C3) If [Uier=sV(t)| < 36nnand|Uic 71V (t)| < 2nn, then the trees from
I\ (723U 71U .7?) consist only of trees of order at least 3 that contain only
one vertex not adjacent Y.

U V)

te g2

~vT—| U Vol-w-| U v

te7=3 te 723
> K/2— |[WaUWB| — 36nn—2nn— 3|Wj|
> 26nn.

Let T be a maximal forest of order at most/p6 formed by trees from72.
Observe that 26n— 1 < v(Tx) < 26nn.

There are at least 1N clustersC € . for which d e¢C,M \ M*(A)) > 16nn.
Let % be a set of sizerfN formed by such clusters contained in different edges of
M. Set

M*={CDeM*(A) : {C,D}NE #0} .

From d eA,V(M*)) < 14nnwe deduce that
d egA,vV (M*(A)\M*)) > k—11nn—14nn>k—251nn
>V(T)—=Vv(Tx)+nn.

51



We claim that there exist disjoint submatchings andMg of M \ M* such that
d egA,V(Ma)) > V(Ta) —V(T5) +nn/8 and d &dB,V (Mg)) > v(Tg) +nn/8. We
consider two cases, dependingwdiiig).

(#1) Firstassume tha{Tg) > v/ok. Then, similarly as above and by Lemma 7.1,
we have thal C G, or

degB,V(M*(A)\M7)) = v(T) — (Ta) +nn.

Using Proposition 3.7, we partitidvi*(A) \ M* in two submatchingsla andMg so
thatd efA,V (Ma)) = [V (Ta) \V(Tx)|+nn/8and d &@B,V (Mg)) > v(Ts) +1nn/8.
(#2) If v(Tg) < v/0k, then choose a submatchikly C M\ (M~ (B) UM*) so
that
V(Tg) +nn/8<degB,V(Mg)) <Vv(Tg) +nNn/8+ 2s.

It follows that X- [Mg| < (v(Tg) +nn/8+2s)/(1—n)<nn/4. SetMa = M*(A) \
(M*UMg). Then,

degAV(Ma)) > V(T) —Vv(Tx) +nn—2s-|Mg| > V(Ta—Tx) +n1n/8.

Say that a vertex i#-typical if it is typical w.r. t. clustemB, typical w.r.t.%,
typical w.r.t.V(M*)\ &, typical w.r.t. all but at most/BN clusters oV (Ma).
A vertex isB-typical if it is typical w.r.t. clusterA, typical w.r.t. all but at most
/BN clusters oM.

We embedr progressing downwards in ther-order. We embed the vertices
of W in A-typical vertices of the clustek, and embed the vertices W in B-
typical vertices of the clusteéB. The forestTy — T, is embedded M, and the
forestTg in Mg. The roots of half of the foresky are mapped to vertices &
that are typical w.r.tV(M\ (M*(A) UMg)), and the neighbours of such roots
are mapped to the s&t\V’. The left-over roots off; are mapped to vertices
of V(M*)\ ¢, and their respective neighbours are embedded greedilis i$h
possible, as vertices M(M*) \ € are large vertices. We use Lemma 6.6 Part 1 in
a standard way in order to embed the components of the faréseirespective
matching edges. Adjacencies are preserved. Details ate kbfe reader. O

SetM_. = {CDe M*(A) : {C,D} C .Z}. Inthe same spirit as above, we prove
the following auxiliary lemma.

Lemma 7.6. It holds|M_| < 7nN,orTC G.

Proof. The proofis analogue to the one of Lemma 7.5 and thus we peant a
short sketch of it. Assume thé¥l | > 7nN. We chooseM* C M, of order 1 N.
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We partitionM \ M* = Ma U Mg as before. The s&l) is mapped to vertices that
are typical w.r. t. clusteB, typical w.r.t.V(M*) and typical w.r. t. all but at most
/BN clusters oV (Mp). The setWs, the forestTa \ T, and the foresty are
embedded as above; the rootsTgfare mapped to vertices [V (M*) C L; the
left-over leaves are embedded greedily. O

Lemma 7.7. Under the above assumptions, it holds_1G .

Proof. Assume thatg, (V' SV\V/) > wn?/4 and thaiM_| < 7nN. We show
that thenegy(é,v \V’) > 321n? and by Lemma 7.5, this implies thatC G.

For at leastwN /4 clustersC of V(M*(A)) \ . it holds that d €,V \ V') >
wn/4. As such clusters are in(N) N %, at leastwN /4 — 1 > wN/8 of them are
in 27 N.% (see Proposition 6.4). Denote this set#y By (7.20), we obtain for
Cc ¢ thatdefC,V(Mc)) > wn/4— 11nn, whereMc = M\ (M~ (C)UM*(A)).
At least nearly half of the weight fro to Mc goes to clusters that are i, as all
matching edges are incidentt6 and the degrees to both end-clusters cannot differ
too much. Also all but at most one cluster\WfMc) N.Z are in.2”. Therefore
dedC,V(Mc)N2Z'N.¥L) > wn/10.

Set? =Ucee V(IMc)N 27" NZL. Then|2| > wN/10. We deduce that

es, (J%.\J2) > (s wN/8) - wn/10= w’n®/80.

From (7.20), we infer that eadd € 2’ sends at most Xins edges inM~ (D).
Sodefd,% \V(M~(D))) > w?n/80— 11nn > w?n/100. The clusted has also
large degree to the clusters which are matche#@'tg/ (M~ (D)) by M*(A). As
IML| < 71N, nearly all those clusters are i#f. We deduce that d @9,S) > (1—
n)w?n/100— 7nn> w?n/200 and thus

wNs w?n

it 2
10 200 21"

es, (V\V',9) > e, (JiD € 7},8) >
what we wanted to show. O

This finishes the proof of the Proposition 4.4.
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8 Extremal case (proof of Proposition 4.1)

Let y be such thaf < y < 0 < 1. Throughout this section we write= ci(n/k).
It holdsA < 3. The sety, i € [A] are callectlusters.

Suppose thab admits &8, 0)-Extremal partitionVy, . .., V) V. In any cluster
Vi most of the vertices o¥; N L are adjacent to almost all vertices of the cluster.
Likewise, almost every vertex i N Sis adjacent to almost all large vertices of
the cluster. We make these statements precise in the follpaelaim, however
throughout the rest of the section we just refefffoo )-Extremality to use similar
properties.

Claim (Properties of a cluster in a(f3, 0)-Extremal partition). For anyic [A]
and any c> 0 the following holds.

1. For all but at most,/Bk/c vertices v Vi NL it holds thatdegv,V;) > k —
cv/Bk.

2. For all but at mos®,/Bk/c vertices ve Vi NS it holds thadegv,V, NL) >
Vi NL| —cy/Bk.

Proof. 1. LetU ={veVinL : degv,\i) < k—c,/Bk}. Since every vertex
v e U sends at Ieasi\/ﬁk edges outsid¥;, we deduce frone(Vi,V \ Vi) <

BK? that|U| < \/Bk/c.

2. LetW = {veVinS: degv,ViNL) < [V,NL| —cy/Bk}. From
e(ViNL,ViNnS) > M NLk—|ViNL[2— Bk > [ViNL||V; NS —2Bk?, and
e(V,NL,ViNS) =eV,NL,W) +eV,NL,V,N1S\W)

< (MNL[—cy/BR)W|+ M NLI(MNS — W)
=[ViNL|MNS —cy/BkW]|

we infer thatw| < 2,/Bk/c.
[l

(Using the above claim with = 1 will be sufficient for our purposes.)
~Foreach € [A]we setl' = {uec L : deqgu,Vi) > (1-y/2)k}. Observe that
IL'|>(1- y/2)'§, and thatd(G[L', A]) > |A| — yk for everyA C V..

1The notion of “cluster” in Section 8 is very different frometfone used in other sections of the
paper. There, a cluster is a vertex set obtained by the Réagulamma.
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The (B, o)-Extremal partition has two subcases. lalsundantf there exists
i € [A] with [L'| > (k+1)/2, and it isdeficientif |L'| < (k+1)/2 for alli € [A].

For eachi € [A] we setS, = {ve SNV, : degv,L') > |L'| — yk/2}. Observe
that the set§, are pairwise disjoint, and th#it' US| > (1— y/2)k.

The goal of this section is to prove Proposition 4.1. Thagisen a(f3,0)-
Extremal decompositiols,...,V,,V of V (with B < 0) we have to show that
ki1 C G, or there exists a s€ C V such that

e Q| >k/2.
e |QNL[>]Q|/2.
e (Q,V\Q) < ak?.

The proof of Proposition 4.1 is decomposed into two sepatatements, Proposi-
tion 8.1 and Proposition 8.2, according the number of leavdise treeT € .1
considered.

Proposition 8.1. Let T € 1 be a tree that has at mo$0yk leaves. Fur-
thermore, suppose that G admit§3, o)-Extremal partition ;... ,V,,V. Then
T C G, or there exists a set QV such that

e [Q>k/2.
e [QNL[>1Ql/2.

o &(Q,V\Q) < ak2.

Proposition 8.2. Let T € Ji, be a tree that has more tha0yk leaves. Fur-
thermore, suppose that G admitg @, o)-Extremal partition \,...,V,,V. Then
T CG.

The proofs of Propositions 8.1, 8.2 occupy Sections 8.1 8ahdespectively.

Let us first rule out some easy configuration from further aerations.

Lemma 8.3. Suppose that G admits#, o)-Extremal partition \(, ...V, ,V. Any
tree T € 941 with discrepancy at leastyk is a subgraph of G.

Proof. Choose.* C L with |L*| = (1—y/2)X, and se6" = (L'US,)\ L*. Observe
that|S*| > (1 - y/2)%, and thus

min{3(G[L",S')). 8(G[S',L"]). 8(GIL", L))} > (1 y/2)k/2— yk/2 > (1-3y/2)k/2.
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Take the semiindependent partitidd;,U,) of T witnessing that digd@ ) > 2yk.
Denote byV the set of leaves oF. Since by Fact 3.2

U2 \W| < |Uy| < (k+1—(2yk))/2 < (1—3y/2)k/2,
we may apply Fact 3.5 to embéddin G using the sets* andS". O

Lemma8.4. 1. The sets{Li}iem are mutually disjoint, or%1 C G.

2. Suppose thal = 0. If there exists a vertexa L\ (;L'), thenZ,1 C G.

Proof. For eachi € [A] fix A C L' a set of sizg1/2— y/4)k, and seB; = (L' U
S)\A.

1. Suppose that there exist distinct indi¢gise [A] and a vertexu € L' NLI.
Let T € .1 be arbitrary. By Lemma 8.3 we can assume in the following
that dis¢T) < 2yk. Sincee(V;,V;) < BK?, it holds that|L' NLI| < yk. By
Fact 3.1 there exists a full-subtre_ T rooted at a vertexsuch thay(T) €
[k/6,k/3]. We mayr tou, and the tred to G[A;, B;] greedily (this is possible
since max|TeNV (T)|,[ToNV(T)|} < v(T)/2+ 2yk, by Lemma 3.3). By
Lemma 3.3 it holds mif| TeNV/(T = T)|, [ ToNV(T =T} >w(T -T)/2—
2yk, and we infer that maf{TeNV (T —T) |, [ToNV(T —T)|} < Bk/12+ 2yk,
we can embed — T in G[Aj,Bj] greedily (avoiding the previously used
vertices ofL' NL)).

2. Suppose that there exists a vertex L \ L'. By Part 1 of the lemma, we
may assume that the sétsare pairwise disjoint.

We saw in the proof of Part 1 of the lemma that the gra@p&,B;] are
suitable for embedding a tree whose both color-classes $iags at most
(1/2—2y)k, and of a tree with substantial discrepancy. We shall cemsid
setsX; C A andY; C B; which have even better embedding properties. De-
fine

Xi={ueA :degv,Vi) > (1-y/(139))k}, and
Yi ={ueBi:degyL') > |X|—yk/(139)}.

It holds that
Vi\ (KUY < vk/(392) . (8.1)

As X C L' andY; C S, all the setsX; andY; are pairwise disjoint. Let
T € 1 be arbitrary. Analogously as in the proof of Lemma 8.3 it Isold
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T CGifdisc(T) > yk/(63). Therefore we assume that di$¢ < yk/(63).
By Fact 3.1 there exists a full-subtréeC T rooted in a vertex such that
v(T) € [0.3k,0.6k]. We will embed the whole tre€ in G, mappingr to u.
Let D be the set of leaves af in Nt (u). We first embed the tre€ — D.
The embedding is then extended to an embeddifiguding the property of
high degree ot.

A 27-components a component of the fore3t—r of order at least two.
Let ¢ be the family of all Z-components. For any subfamity it holds by
Lemma 3.3 and the assumption dis¢ < yk/(63) that

max{V(¢")NTo, V(€' ) NTe} < V(€")|/2+ yk/(129)+1.  (8.2)

By (8.1) at mosyk/ (339 ) vertices of the grap@ are not contained ip); (X U
Yi). Thus, de@u,lJ;(X UY;)) > (1—y/(39))k. We shall assign each2
component € ¢ an indexic € [9]. The idea is that each2component
will be mapped to the clustesi.. Thus the following requirement on the
assignment for eache [J] is natural:

dequ,X;UYj) > [{Ce ¥ |ic=j}| ,and (8.3)

Z v(C) < (1-2y/3)k. (8.4)

Ce?
Ic=]

We argue that such an assignment exists. We order'tiemthponents in an
arbitrary way a<Cy,...,Cig. Without loss of generality, we assume that
dequ,X1UY;) < ... <dedqu,XygUYy). Forj=12...,9 we sequen-
tially assign the yet unassigned-2omponent€ the indexj (i.e., we set

ic = J) as long as (8.3) and (8.4) hold. If one of the conditions i®&o
violated (for stepj) we proceed with assigning the components the index
j +1. It remains to check that there are no unassigneddmponents left
when we finish the step = 3. Indeed, if all steps were terminated be-
cause of condition (8.3) then we are done. Otherwise, su#pihad we as-
signed Z -component&,,...,Cx_1 the indices 1...,j — 1 in such a way
that the terminating rule performed was (8.3), and then the@mponents
C«,Cxi1,...,Ckrw_1 Were assigned the indgx and we were not able to
assign componei . the indexj even though dea, X; UYj) <w. Then
>iv(C) > (1—2y/3)k. Since defu, Xj UY)) < (1—2y/3)kwe have that

K—1 €|
deg(u, U(Xg UYg)) > /z V(Cg) + Z V(Cg) .
=1

(4] {=K+WwW
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Thus the remaining 2-components can be assigned an index, not violat-
ing (8.3) Observe, that (8.4) is not be violated in any futstep, since the
2" -components of total order at ledg6 — 2yk/3 were embedded i UY;

(no 2"-component is larger thark®6 by the way the roat was found).

We embed the tre& as follows. The vertex is mapped tas. For each
componenC € ¥ we embed its rootc € V(C) NN+ (r) in one vertex from
(Xic UYic) N"Ng(u) (so that distinct roots are mapped to distinct vertices).
We denote the image of the roat by ¢(rc). Then the embedding of
the roots is extended to an embedding of all@mponents. This can be
done greedily since each of the graj@i%;, Y;] has minimum degree at least
(1/2—y/(128))k+ 1, and by (8.2) it holds by a double application of (8.2)
that

> NONT+ » [V(C)NTo| <
Ce¥ Ce¥
o(rec)eX ¢(rc)eY;

< (1-2y/3)k/2+2(yk/(129) +1) < 5(G[X,¥i)) , and
S NONT+ ¥ NONT <

Ce% Ce%
p(rc)eX; ¢(rc)eyi

< (1—2y/3)k/2+2(yk/(128) +1) < 5(GIX;, Y]) .

]

The next three statements (Lemma 8.5, Lemma 8.6, and Ptimgpo8i7) deal
with the Deficient case. In this case, it may happen that némieeoclusters are
suitable for embedding of the tr8ec 9 ,. For this reason, we must find con-
necting structures that allow us to distribute parts of tke to different clusters.
Each of the following three statements is used for a diffengre of trees.

If the configuration of the graph is Deficient, we show tﬁa& 0. First we

bound the sizes of the sdtsandS. IL| <A (1+y)k/2+ (1~ 0) (1—
y)k/2+(1+0)
thatV = 0. Thus)\ J. Observe also that
J(k+1)>n. (8.5)

Lemma 8.5. Suppose that G admity#, 0)-Extremal Deficient partition¥/. ..., Vy,
V, (V = 0), such that{L'}? , is a partition of L. For ic [3] define $={ues:

degu,L') > (1/2— y)k}.
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Then there exist distinct indices i; € [9] such that there exists antl«+ L'2-
edge, orall — Suz-edge, or there exists a vertey & S such thatlegxop,L) >

(1/2 - y)k, min{degxg,L'1),degxo,L'2)} > 1.

4 i NLf i N 4 i Nf N
L L L"
i2
S
G J V. " J V.

Figure 2: Three possible connecting structures guaramgéemma 8.5.

Proof. We may assume that the sﬂare mutually disjoint, otherwise there exists
alt — S?-edge (1 # iz). Also, we are done if there exists aht — L'2-edge, or
there exists ah't Suz—edge (1 # i2). We suppose that this is not the case in the

following. ' _
We writeY = S\ J; §. For anyi € [#] and any vertexi € L' there are at least

max{k+1— |L'| - |§|,0} edges emanating fromto Y. Thus,
e(L,Y) > ¥ [L'max{k+1—[L'| - |S],0}
7
> I2(1/2—)/)k(k+1—||—i|— S)
= (1/2=y)k(& (k+1) = |L| = [§[+]Y])
= w/2-yky|

By averaging, there is a vertey € Y such that dexo,L) > (1/2— y)k. From the
definition ofY, dedxo,L') < (1/2—y)k, for anyi € [#]. Hencexo is adjacent to
at least two sets frorflL! }j, as required. ]

Lemma 8.6. Suppose that G admits(#, o)-Extremal Deficient partition V...,
Vy,V (V =0), such thaf L' ;9:1 is a partition of L. There exispic [3] and a vertex
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v € L'o such thatdeg(v,L'0) + degv, U, (L' US')) > k/2, where $= {ve S
degv,Li) > k/(39)}.

Figure 3: Connecting structure guaranteed by Lemma 8.6.

Proof. Partition{J; S into setsS, j € [8] such thatS C S. As|L| > |S], there
exists an index € [9] such that/S| < |L'| < k/2. Without loss of generality,
assume that/2 —|S!| is the maximum value among all value& — |S| (i € [9]).
Thenk/2 — |S'| is non-negative.

Suppose that Lemma 8.6 is not true. Then for all verticed ! it holds

degv,S\ | J ) > degv,S\ | JS') > k/2.
j#1 j#1

Thus degv,S™) > k/2—|S!|, whereS™ = {ue S: dequ,L) < k/(39),Vi =
1,...,9}. A double counting argument on the edges betwieandS™ gives

k 1 1 k cl
S I35 > LS ) > 1L (5 184).
implying that n
39ILY (K a
51> = (E -3 |> . (8.6)

On the other hand, as

SIUI= LIS =T I8 +Is
J J
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there exists an € [J] such that|lL'| > |S|+|S|/d. From the maximality of
k/2— |S'| and from (8.6) we deduce that

K =,k 5 s ST 3L [k

S>> —ISI> -S>l s 2 (2

5131251812 U -18) > S > T (5 -18),
implying k > 3|L%|, a contradiction. |

Proposition 8.7. Suppose that G admits 3, 0)-Extremal Deficient partition
Vi,...,Vs,V (V = 0). Furthermore, suppose that the s¢ts }i-(s partition the
set L. Then there exists an indgxd [9] and matchingg™o, and _#'o such that
the following hold.

e &oisallo s (L\L)-matching, o isa Lo «» S-matching.

e Eachedge xg £, xc Lo,y e S has the property thategy,L1) > k/(59)
for some j# ip.

o V(&0)NV( o) =0.
o [LO[4|&%|+ | 70| > KL,

Figure 4: Connecting structure guaranteed by Proposition 8
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Proof. Foreach € [3]letS, = {ue S: dequ,L') > k/(58)}. Itholds by(B, 0)-
Extremality that|S,| > (1/2— y)k. We first find for each € [8] two vertex-
disjoint matchingsE' and D', such thatE' is aL' « (L\ L')-matching,D' is a
L' < (S\ §,)-matching, and such that the matchiq@®}; (5| are pairwise vertex-
disjoint.

JFor eacti takeE' to be a maximunk!' < (L\ L') matching, and ifL'| +|S, |+
[E'| > k+ 1, truncateE’ so that|L'| + |S,| + |E'| = max{k+ 1, |L"| + |,|}. In the
following we assume that

LM+ S5+ [EY > [P+ [SB] +E? > ... > L7 [+|SO|+ [E’|.  (8.7)

Start withi = 1, and increase the indegradually. Takd' to be a maximungL'\
V(E')) < (S\ (8, Ul V(D'))) matching and truncate it so that | +|S,| +
|E'| +|D'| = max{k+1,[L'| +|S,| + |E'[}. We show that such a matchirig
exists. If|L'|+|S,|+|E'| > k+1, then seD' = 0. Otherwise, we want to findl' of
sizedi =k+1—|L'| —|S,| — |E'|. By (8.7) it holds for the seB; = SNUJ;; V(D)
that|B;j| < &d;. Each vertexic L' has at leagti neighbors outside' US, UV (E').
Color arbitraryd; edges emanating from each vertex L' outsidel ! U% UV (E)
by black, and the remaining edges incidentifoy grey. Easy calculation gives
i i - k  dk

eplack(L' \V(E'"),S\ (S, UB;)) > di(1/2—3y)k — 79di§ > = (8.8)
Since the maximum degree in the graPhlacL' \ V(E'), S\ (S, UB)| is upper-
bounded by maik/(58),di} = k/(58), we see that there is no vertex cover of
GolacklL' \V(E'), S\ (S, UBj)] of size less than

dik/5

K(59) =9

Hence, by Konig's Matching Theorem, there exists a matcBihgf sized; with
the desired properties. We 9§t=V (D') \ L'.

Let us summarize the properties of the obtained structuoe.aRyi € [9] it
holds

L'+ |S,| + |E'| + X > k+1, and (8.9)
XN JXj=0 and S,NX =0. (8.10)
i#i
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The aim of the following several lines is to prove that theresimbe an index
I € [#] such that sufficiently many vertices frofy U X' are contained i %
thus providing with the desired bridges from the clu$feit holds

U(%um(&z”’z%wzmz‘(

n—|Lf =

j#

_Z‘Ei’

9(k+1)—|L|—

J#i
which yields

ZOU+E“+

>>>L+8&+Q—n>8&+ﬂ—g
j#

8.5
(>) J(k+1) |
. 2
By averaging, there exists an indiex [2] such that

(SSUXe) N | S| =

j#io

k+1

L[+ |E'| + (8.11)

Set&'o = E'o. The matching #'° consists of two vertex disjoint matchinggy
and _#,. The matching 71 is defined by 71 = {e€ D' : enU;4, S, # 0}.
We take_¢, any matching irG[S9 N Ujio g, Lo\Vv(&lou _g1)] that cover®) =
S"@ NUj 4, % Since|Q| < yk, such a matching can be found greedily. H

8.1 Proof of Proposition 8.1

Suppose the tre€ and the graplt satisfying the hypothesis of Proposition 8.1
are given. Throughout the proof we write= 60y.
For each € [A] we defineX' = {veV; : deqv,L') > k/(53)}. Vertices in

JL'u Ux'

€A i€[A]

aresubstantial vertices in

0=V\ (\7u ULuly x‘)

i€[A] ie[A]
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arenegligible Observe that there are at mosyR negligible vertices. The sub-
stantial vertices are suitable for embedding: suppose we hdorest- of or-
der at mostk/(59) consisting of rooted components;,Cy),...,(rp,Cp). Let
Vi € Vig,...,Vp € Vi, be arbitrary distinct substantial vertices. ThEncan be
embedded irG so that every componef is embedded iV, with its rootry
mapped to the vertex. If G is Abundant, we seh C [A] to be the set of indices
ig such thatL'o| > (k+1)/2, and set’o = _¢'o = 0. If G is Deficient, we apply
Proposition 8.7 to obtain an indéx and two matchingg’o and _¢'o such that
|Lio| +|&To| 4| _go| > (k+1)/2. We then sed = {ig}.

For eachip € A\, we shall try to embed the tréle so that most of the vertices
of T are embedded iNj,. We shall show that if all the attempts fail, then there
exists a seQ satisfying the hypothesis of Proposition 8.1. The embegidlan is
as follows. We try to embed most & in (a subset of).'> and the internal vertices
of Te into vertices which are well-connectedltd (the leaves oT being treated in
the last stage). The skt may be not large enough to absorb all the vertices from
To, Since we only know that'o| > (1/2 — y)k+ 1 andT, may be as large dg/2.
We use the edges of the matchings and /io in order to distribute the excess
parts of T outsideVi,. We want then to show that the set of vertices well-connected
to L'o is large enough to absorb the internal verticeofHowever, this need not
to be the case; but then we are able to exhibit the desirgg. set

The following statement provides an embedding of the tre&nga suitable
embedding structure. We defer its proof to the end of themect

Proposition 8.8. For any tree Te .1 with ¢ < ak leaves the following holds.
Let H and H, k €| (the index set | is arbitrary) be vertex disjoint subgrapifs
G. The graph H is bipartite, H= (A,B;E). Suppose that the graphs H, ang H
(k € 1) have the following properties.

e O(Hk) > 25ak for eachk € I.
° 5(A) > K.

e There exists A~ (U, (V(Hk)))-matching®’, and a family.# of vertex dis-
jointA— (V\V(H)) < (UcV(Hk)) paths. Moreover, V&) NV (.Z) = 0.

&+ || < ak.

Al +[&] = [Tol.
B+ [&]+ 4] = |Te| - 1.
5(A,B) > [B| — ak.
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e The set B has a decompositior-88;UBy, |Bq| < ak, 8(Ba,A) > |A| — ak,
and there exists a famil® = {Py,...,R } of r = |By| vertex-disjoint A—
By <+ A paths. Moreover, V2)N (V(&) UV (Z)) = 0.

Then there exists an embedding of T in G.

For each € A we try to find a structure suitable for applying Propositio8. 8
We do the following for eachy € A.

We write e = |£'0| andb = |_#'0|. Fix a setL, C Lo of size |To| —b—e
which containsF = (V(&"0) UV(_#'0))nLlo. SetW, = (L' \ L.)US?. Note
that|\Wa| > |Te| — yk. Take a maximum family”? = {Py, ..., P,} of vertex-disjoint
(Li \F) < (V\ (LiUW,)) < (L. \ F)-paths, and le¥\ly be their middle vertices.

Assume thafWa| + [Wy| + |£'0| > | Te| — 1. Consider a family of pathg?’ C &
by truncating?” so that|.?”’| = min{|#?|,ak}, and denot&\; the set of middle
vertices of%?’. We apply Proposition 8.8, setting the parameters of thpgsition
as follows:A=L.,Ba=Ws,Bg =W}, 2 = 2' & = &ou _glo ./ =0,1 = [A]\
{io}, andHx = G[L*¥ US| (for eachk € I). Proposition 8.8 will be used several
other times. When using it later, we shall explicitly mentanly those parameters
of the proposition which differ from the ones above.

Now, assume thaiNy| + [Wy| + |&'0| < |Te| — 1. Then| 2| < yk. From each
vertexu € L, \ (FUV(2)) at least two edges{ = ux, ande}| = uy, are emanating
intoV \ (L, UMaUWyU&'0). SetRy, = UueL.\ (v (2)) 1%, Yu}- By the maximality
of & all the verticesq,yu, (U € L.\ (FUV(Z))) are distinct. At most 2 yk of
these are negligible vertices. Denote the set of substamstiices ofR;, by M;,,
and call the seYj, = R, NV theshadowof L,. If |M;,| > 2yk then one can find
a matching #1 C Uyer,\(Fuv(#) {€ &} of size yk, and Proposition 8.8 can be
applied (with& = &'oU.41, By =Wy, and2 = &) to show thafl C G. Otherwise,
Yio| > 2|Ls| — || —|Miy| > 2|L.| — 3 yk. The choice of.. C L'o was arbitrary, with
the only restrictior- C L,. Thus the above procedure can be applied for another
choice ofL.. Denote by\?io the union of shadows corresponding to all possible
choices oL, (for a fixed vertexu € Lo\ (F UV (2?)), the choice ok, andy, does
not depend on the choice bf). Thus we get thal C G by Proposition 8.8, or
Y| > 2|Lio| — 39 yk.

Suppose that we were not able to use Proposition 8.8 so fanfdp € A. If
there existdg € A such thatYi; N Uica gig) Yil = 4V, thenT C G. Indeed, one

can find a family.#; of at leastyk vertex disjointL'® < (Y, N Uicay fig) ¥i) <
(Uie,\\{io} Li)-paths and apply Proposition 8.8 with = _4>. We assume in the
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rest that sucliy does not exist. SinctJica ¥i| > Siea (1% — [% NUjenfio) Vi
we have that
UV

ieN

22_2\\LU-432yk. (8.12)

SetY = Uicp Vi
We distinguish three cases:

(%1) Itholds|LNY| <k/8and €Y,V \Y) < ok?. )
Solution of(&1): The idea is to show that the s&t=V \ Y satisfies the
requirements of Proposition 8.1. To this end, it is enougshimw that

1
QNL| > E\Q\ . (8.13)

By the hypothesis dfé1), not many vertices il are large. Thus the ratio of
the large vertices in the gra@jl;c, Vi UY] is substantially smaller than one
half. Then there must be substantially more than half ofdingd vertices in
the complementary s€}, and (8.13) follows. We make the idea rigorous by
the following calculations. For ariyc A setl; = |L'|.

1 ~ .
PN SIS (- ADK/2+ 5+ LAYIHILQU+ L (VU U L)
ic jelA]

< (A =|A])k/2+ Z li+k/8+|LNQ|+ yn.
ieEN

Thus,

1
LNQ| > 5n— (A — MDk/Z_'Z\Ii —k/8—yn

1 ~
> NV]=25 1 | +|Ak/2—k/8—2yn
2( ieZ\l>

(8.12) 1 1
S751QI+ IAK/2—k/7> 2 |Q

which was to be shown.

(%2) Itholds|LNY|>k/8and €Y,V \Y) < ak?.
Solution of(&2): We show thafl C G. Since the average degree in the
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graphG|[Y] is atleask/20, there exists a subgraph C G[Y] with 8(H..) >
gk/40. By averaging, there exigisc A such that

Yio NV (Hy)| > gk/(409) . (8.14)

Fix such an indexo. By (8.14) there exists B'© — V(H,)-matching& of
sizeak/2. By Proposition 8.8 (with = {x}) it holdsT C G.

(%3) Itholds €Y,V \Y) > gk?.
Solution of(&3): We show thafl C G. The average degree of the bipartite
graphG[Y,V \ Y] is at leastgok. Thus there exists a graph. C G[Y,V \
Y] with 6(H.) > qok/2. There must be an indax € A such that)Y, N
V(H.)| > ogk/(29). Fix such an index, and find matching’ as in(&2).
By Proposition 8.8 (with = {x}) it holdsT C G.

Proof of Proposition 8.8 RootT at an arbitrary vertex € T,. An c-induced path
a1...a.11 C T is a path whose internal vertices have degree twad .in Take
a maximum family.# of vertex disjoint 6-induced paths i. We show that
V(%) > k—19.

LetD3={ueV(T) : deg (u) > 3} andD; = {ue V(T) : deg (u) =i} for
i =1,2. By Fact 3.4, we havis| < ¢ (and|D2| > k— 2¢). From

k=Y degu)=|Di|+2Dz+ ¥ degu)>2k—3¢+ Y degu).

ueV(T) uebDs3 uebg

we deduce that there are at moé#3L maximal (w. r. t. inclusion) paths formed by
vertices of degree 2 or 1 not containing the reo®n each such maximal path, at
most 5 vertices are not covered B¥. Thus the total number of vertices uncovered
by .# is at most %3¢+ 1) + |D3| + [{Vv}| < 19¢. The order=y naturally extends
to an order of the paths oF. For a family.7’ C .% we write T(| .%#’) to denote
all the vertices oV (.%#'), and all vertices which are below some verteX¢&%'),
le.,

TlZ)= U V(T(uw).

ueVv (.#")

One can find a family?Z C .# satisfying the three properties below.
(P1) | 2| <|&|+ |4 |.
(P2) |T(l #)| <25ak, and 3|&|+ [.Z]) < min{|TeNT(L Z)|,[ToNT (L Z)[}.

(P3) Z is a=y-antichain.
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We describe a procedure how to obtain such a famwily By an inductive con-
struction, we first find an auxiliary family?’, starting with%’ = 0. While |%Z’| <
|&| + |.#| we take a<y-minimal path in% which is not included i7’ and add it
to #’'. By the boundV (T)\V ()| < 19, in each step it holds théT (| #’)| <
6|%'| + 190k, and obviously 8%7'| < min{|TeNT (| Z')|,|ToNT (| Z')|}.

Let Z be the<,-maximal elements of?’. The propertie$P1), (P2), and(P3)
are satisfied.

Setd = 5ak. Take a family 2™ = {X,...,Xq} of d 5-induced vertex-disjoint
Te « To < Te <« Ty <> Te paths, such that no path interse¢tg UT (| #’). For
any pathR € # we write ar to denote its<y-maximum vertex inl,, and sebr =
Ch(ar), cr = Ch(br), anddr = Ch(cr). We setU = AN (V(&)UV(#)) and
Q=ANV(2).

We now describe the embeddiggof T. First note that we do not have to
embed those leaves, whose parents are embeddid Indeed, having such a
partial embedding, it easily extends to an embedding oking high degrees of
vertices inA. Hence we shall not embed them until the very last step. Wesdmb
the rootvin an arbitrary vertex i\ (U UQ). We continue embeddiriggreedily,
mapping vertices frori, to A\ (U UQ) and internal vertices df to Ba. However,
there are two exceptions in the greedy procedure.

(S1) If we are about to embed a vertéx (for someR € %), then we do not
embed it, neither the part of the tré¢| bg).

(S2) If we are aboutto embed a vertexwhich was part of some pakaxoXzxaXs €
2" we skip its embedding, as well as the embedding of the vertigcand
X4. We continue with mappings to Bs.

Observe that we are able to finish the greedy part of the eniiggduhce the two
“skipping rules” guarantee that both Aaand inB at leastd > ak vertices ofT
remain unembedded.

In the next step, we build missing connections in the grdptaused by the
skipping rules.

We construct an auxiliary bipartite grapgh = (O, Op; E1). We arbitrarily pair
up 2(d—r) vertices ofA\ (U UQ) unused byp into pairspy = {at,a2},... ug_r =
{aé_r,aﬁ_r}. The remaining pairs are formed by endvertices of the path€in

Hird—r =ANV(R).
Vertices of the color clas®y are formed by the pairg; (i € [d]). Vertices of

the color clas€O, are formed by the paths i#". A path XxiXoX3XaXs € 2" IS
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adjacent irK; to a pairy; if and only if there exists a perfect matching in the graph
H{W(x1),P(xs)}, ki]. Since|Oy) = |Op| andd(Ky) > |O4 — 2ak > |04 /2, there
exists, by Proposition 3.6, a perfect matchMg in K;. The matchingM; gives

us instructions where to embed the vertiggsand x4 of any pathx;xoXzXaxs €

Z . We extendy accordingly on the verticelsly . x.x,xsc2 1%2,Xa}. If a path
X1XoX3XgXs € 2 was matched withy;, 4, (for somei € [r]) in Ky then we embed
X3 in the middle vertex of the pafh. We write 2"’ for those path&;xoxsxaxs € 2
whose vertexs was not yet embedded. It holfdg€™| > 4ak.

Let x : #Z — U be an arbitrary injective mapping. We construct anotheambip
tite graphK, = (Ja,Jp; E2). Vertices of the color clas, are elements o7 U 2™/
(Ja= 2 U Z") and vertices of the color clask are vertices oB; unused by
Y (Jph € By). A pathRe Z is adjacent inK; with anb € J, if and only if
by(ar) € E(H) andbx(R) € E(H). A pathxixoxsxaXs € 27 is adjacent to a
vertexb € J, if and only if by(y,) € E(H) andby(ys) € E(H). There exists a
matchingM, in K, coveringJ,. The existence of the matchifdp in K, covering
Jais a direct consequence of Proposition 3.6. Indé¢Hy ) > [Ja| — 2yk > 4|/ 2,
and|Ja] < |Jp|. Such a matching gives us instructions where to embed urduhelde
verticesxs (in the case of a patkyxoxsxaxs € 2" and verticedr (in the case of a
pathR € #). For a patlR € # we finish embedding the part of the tréé| cgr),
extending the mapping. If Y(cr) € V(&) we just use the corresponding con-
necting edge of’ to embeddg in Hk (for somek € |) and continue embedding
T(] dr) greedily inH. If (cr) € V(.#) we embedir in the middle vertex of
the corresponding connecting pa#f and embed the rest df(| dr) greedily in
Hk (for somek € 1). ]

8.2 Proof of Proposition 8.2

In order to prove Proposition 8.2 we need the following twaikary lemmas.

Lemma 8.9. Let G be in & 3, 0)-Extremal, Deficient configuration. Letd .1
be a tree with a vertex € V(T) such that the forest F r contains a componentC
of order (C) € [k/(38),k—4yk]. Then TC G.

Proof. By Lemmas 8.3 and 3.3 we can assume that{jilaxV (C)|, |To\V(C)|} <
(k+1—Vv(C))/2+ (2yk+1)/2 < k/2 — 2yk, otherwiseT C G.

Fori € [9] defineS, = {ue S: degu,L') > (1/2—y)k}. By (B, 0)-Extremality
it holds that\S'd] > (1/2— y)k. By Lemma 8.5 there is at least one of the follow-
ing three connecting structures @ We show thafl C G in each of the cases
separately.

69



(A1) There exists an edgey, x € L',y € L'2, i1 # .
(A2) There exists an edge/, x € L', y € S2, i1 # i.

(A3) There exists a vertexy € Ssuch that de@o,L) > (1/2— y)k, andxg is
adjacent to vertices of at least two different clustétd.'2, i.e.,

min{degxo,L'"),degxg, L2} > 1.

To solve the casefAl) and(A2) it is enough to map to x, and use the edge

Xy to greedily embed in G[LiZ,SuZ]. The partT — (V(C)U{r}) can be greedily
embedded iG[L"*,S}].

It remains to solve the cagé\3). Let: be such an index for which the
value degxp, L") is minimal positive. We embedin Xo, C in G[L',S]. The forest

F=T-(V(C)u{r}) can be greedily embedded in the clustg¥g; (preserving
adjacencies af to the components d¥). This is standard. O

Lemma 8.10. Let F be a rooted forest with partition ¥ ) = O; U Oy, such that
O, is independent. Let W be the set of leaves of F and se{Bc O, : [WN
Ch(u)| = 1}. Let H be a graph and let B C V(H) be two disjoint sets such that
|A| > |04/, min{&(A,A),0(B,A)} > |O1] — f, 6(A,B) > |B|— T, |B| > |02\ W],
ando(A) > v(F) — 1. If |P| > 2f, then there exists an embeddip@f F in H such
that¢(O1) C A.

Proof. Choose a subset C P of size|P’'| = 2f. Consider the subtrd€ =F — W/,
whereW =W n (0O, UN(P")). We embed greedily the tréd€ in AUB, so that
V(F")n O maps toA andV (F’) N O, maps toB. Denote this embedding by'.
Next we want to embed the leavs N O, in A. Denote byA’ the set of vertices
in Athat are not used by’, i. e.,A' = A\ ¢(V(F’)). We want to find a matching
M in H[A' ¢’ (P")] that coversp’(P’). By Proposition 3.6, such a matching exists
since|A'| > 2f = |¢/(P')|, and

O(p(P),A)>f=|P|/2, O(A,9(P))>f=|P|/2. (8.15)

We extend¢’ to an embedding of F, by embeddingv’ N O, according to the
matchingM, and by embedding/ N O, greedily (this is guaranteed by the minimal
degree condition of the s&). ]

A semiindependent partitioft1,U,) of a treeF is ¢-idealif each of the vertex
setslU; andU» contains at leagtleaves ofF.
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If disc(T) > 2yk, then Lemma 8.3 ensures tilat G. We shall further assume
only the case digd@’) < 2yk.

We prove Proposition 8.2 in two steps. In the first step we sth@awT has an
8yk-ideal semiindependent partition, ®rC G. In the second step, we prove that
if T has an §k-ideal semiindependent partition, thérc G.

First step. Denote byW.: andW, the leaves inle and inTy,, respectively. Let
W =W, UW; be the set of all leaves df. Setwe = |We| andw, = [Ws|. Remark
thatwe + Wy > 60yk. We distinguish three cases based on the valuag ahdw.

1. If we > 8yk andwy > 8yk, then(To, Te) is an 8/k-ideal semiindependent
partition.

2. If we < 8ykthen it holdsw, > 52yk. We distinguish two subcases.

o If |Pa\,)| < 16yk we consider setdl; = Tp + (W, U Paf\W,)) and
Us = Te+ Wo UParfW,)). The partition(U;,U>) is semiindependent
with |Uz| — |U1| > 72yk, a contradiction with the assumption di$g <
2yk.

o If |PafWs)| > 16yk then we choose an arbitrary subBetC Par\\)
with |P'| = 8yk and seWW;, = N(P’) N\W,. The partitionU1,U,) defined
byU; = To+ (WJUP'), U1 = Te+= (W, UP’) is an 8k-ideal semiinde-
pendent partition.

3. If wyp < 8yk we use Fact 3.1 (Part 2) to find a full-subtfBec T rooted in
a vertexr with ¢ leaves, wheré € [20yk,40yk]. The choice ofl has the
property that

min{[\WeNV (T)], WeNV(T)\V(T)|} > 12yk (8.16)
Setd = [V(T)NTe| — [V(T) N To|. We distinguish six subcases.

(Cl)r e Teandd < gapT)/2, (C2)r e Toandd > gapT)/2,
(C3)r e Teandd > gapT)/2+1, (C4)r e Toandd < gapT)/2—1,
(C5)reTeandd = (gapT)+1)/2, (C6)r € Toandd = (gapT)—1)/2.

In casegC1)-(C4)we obtain an gk-ideal semiindependent partition by flip-
ping eitherV(T) (in caseqC1) and(C2)) orV(T)\ {r} (in caseqC3) and
(C4)) from the original partitionTo, Te). Details are omitted.

In the rest, we consider only the cg$&5), case(C6) being analogous. We
find an 8/k-ideal semiindependent partition, or embBed G. First observe
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thatkis even. Consider the partitid(T ) = O UO2, whereOy = To+-V(T)
andO; = Te+V(T). It holds|O| = (k+2)/2,|02| =k/2, and mif{|O1N
WI,|O2NWI[} > 12yk.

(%1) Suppose first that, NV (T —T) NN(r) # 0. Then take an arbitrary
vertexu € Wo NV (T — T)NN(r) and consider the partitiofs,Uz), Uy =
01 +{u}, U = O = {u}. By (8.16), this is an gk-ideal semiindependent
partition. Therefore we restrict ourselves to the case WhighV (T —T)N
N(r) = 0.

(#d2) We claim that if there exist two distinct leaveg z, € O; with a
common neighbofx} = Par{z;,z}), then there exists any/&-ideal semi-
independent partitiorjU;,U,). By the assumption above we know that
X € Oy. SetU; = 01+ {X,21,2} andUy = Oy + {X,21,2}. Then|Uy| =
’O]_| —1= k/2 and|U1| = |02‘ +1= k/2+ 1, and\Ul ﬂW’ = ’01 ﬂW‘ -2,
and U, NW| = |0, NW| + 2. From (8.16), the partitioiU;,U>) is 8yk-
ideal semiindependent. Therefore, we may assume thatdea¥® have
pairwise distinct parents.

(%3) We claim that there exists a vertgx ParO;) "W such that degy) =

2. Suppose for contradiction that every vertex in(Raj "W has degree at
least three. We have already observed that every vertex{©PahW has
exactly one leaf-child irD;. SetW, = O;NV(T)NW andT, = T[V(T)\
W,]. Observe that the leaves @f lying in O, coincide with the leaves
of T lying in O,. We show thafl, contains at least & leaves fromT,,
contradicting the assumptiom, < 8yk. By Fact 3.2 it is enough to show
that |V (T.) N To| > [V (T.) N Te| + 8yk.

V(T)NTo| = [V(T) N0 = [V(T) N To|

—
AVAE>

V(T) N Te| —2yk -2
V(Te) NTe| + [Wi| — 2yk — 2
V() NTe| + 8yk,

Vv

where (x) follows from Lemma 3.3. Lez € O; "W be a leaf ofT with
parenty, deqy) = 2. We show thaT C G in two caseg<>1) and(<>2) sep-
arately, based on whethé@ris in the Abundant or Deficient configuration.

(¢1) If G admits an Abundant partition, then there exists an inidefA |
such thatL'| > (k+1)/2. Askis even,|L'| > (k+2)/2. Choosd., C L'
such thaiL,| = (k+2)/2. DefineW* = {ue WNO; : Pafu) € Oz}, and
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let W C W* be the set of leaves W* with no brother/sister iwW*. We
claim that
(WM O1) \W*| < vk, and|W* \W/| < yk (8.17)

Assuming (8.17), we can use Lemma 8.10 witk- L,, B=S U (L' \ L,),
f = yk, and the partitiorfO1, O;) of the treeT to getT C G.

It remains to prove (8.17). IfW N O71) \ W*| > yk, then consider the par-
tition (Ul,Uz) with Uy = Ol\ ((Wﬂ Ol) \W*) andU; = O, U (W N Ol) \
W*. If |W*\W'| > yk, then consider the partitiofU,U,) obtained from
(01,02) by flipping (W*\ W) UPar(W*\ W’). In both casefU,| — |U1| >
2yk, a contradiction to our assumption that diBg < 2yk.

(©2) If Gis in a Deficient configuration, then by Lemma 8.6 there exists
an indexi € [9] and a vertew € L' such that degy, L") + degv, ;. (L' U
9)) >k/2, whereSl = {ue S: dequ,L)) > k/(39)}. Setyn = degv,L")
and g, = degv,U;4 (L' US)). All components ofT — {r} have size at
mostk/(63), or by Lemma 8.9 the tre& embeds inG (the components
cannot be larger thak— 18yk by the choice of). Denote by 7" the set
of components off — {r} of order at least 2. Sinc®; is an independent
set, any component fron¥” has non-empty intersection with;. Choose
o C ¢ with a maximum number of vertices @y satisfying the following.

o [ 2| < .
o SkenV(K) <k/(39).
Set#) = %\ . Mapr to vand embed the components.ab greedily

inUj (LIu9)) in such a way that the roots of the components are mapped
to neighbors of.

If V(1) < k—6yk— 1, then from Lemma 3.3 we deduce that i@y N
V(), |TeNV (£1)]} < k/2—2yk and thus the components of; can be
embedded il' US, greedily.

Hence, we suppose thit(#71)| > k— 6yk— 1. The maximality of%5 im-
plies that 75| = . SetU; = 01NV (#1) andU; = O, NV (J#7). Observe
thatU, is independent. We show thiat; | < ¢. If r € Oy, then

kK+2
Ul <101~ |43l — [{r} = <=~ 4~ 1< g

It remains to analyze the cases O,. LetK € J# be the component con-
taining the vertexz. Then, by the choice of?>, there exists a component
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K’ € ¢ such thatO; NV (K’)| > 2. Again we concludeU;| < |Oq] —
(|2 +1) < yn.

Observe that miflU; NW/|, U2 "W/} > 9yk — 6yk— 1 > 2yk, and by pre-
vious assumptions, any two leaveddpnhave distinct parents that arelih
(the only leaves D1 with parents inO; are children of and thus are not
contained inx").

We embed the trees from in L' US,. We distinguish two cases.

e rcTeorr e Toand|N(r)NUz| < (1/2—-2y)k.
We apply Lemma 8.10 with = L' NN(v), B= S, NN(V), the partition
of the foresV (_#1) being(U1,U,), andP = ParU1) (recall that leaves
in U1 have pairwise distinct parentswy).

e r € Toand|N(r)NUz| > (1/2—2y)k. N
Set#;1 ={Ke 1 :v(K)=2,N(r)nV(K) CUs}. Thenv(.# \ .#1) <
2yk. Consider the partitiofiJ;,Us) obtained from(Uz,U,) by flipping
. Ther1|01| < ¢n. Construct an embeddingof the forest induced
by J#1\ o1 such thatp(V (J£1\ o£1) NUs) C L', @(V (1 \ 1) NUz) C
g andg(V (1 \ A2) NN(r)) C N().

The embedding ofr} UV (.#") can be extended to the whole tréeasr is
mapped td..

Second step. We assume that has an §k-ideal semi-independent partition
(Up,U2). The proof goes very similarly as ig>1), for the Abundant case, and
as in(<»2) for the Deficient case. Details are omitted.
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