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118 00 Prague 1, Czech Republic

Abstract

Let Dtt denote the set of truth-table degrees. A bijection π : Dtt →
Dtt is an automorphism if for all truth-table degrees x and y we have
x ≤tt y ⇔ π(x) ≤tt π(y). We say an automorphism π is fixed on a
cone if there is a degree b such that for all x ≥tt b we have π(x) = x.
We first prove that for every 2-generic real X we have X ′ 6≤tt X ⊕ 0′.
We next prove that for every real X ≥tt 0′ there is a real Y such that
Y ⊕ 0′ ≡tt Y ′ ≡tt X. Finally, we use this to demonstrate that every
automorphism of the truth-table degrees is fixed on a cone.

1 Introduction

The structure of the Turing degrees and the degrees of other reducibilities
is a basic object in Computability Theory. An important tool in studying
the differences between degree structures is examining the properties of their
automorphisms. We begin with several definitions. We view reals as elements
of the Cantor space (infinite binary strings).

∗The author was partially supported by two projects of the Ministry of Education
of the Czech Republic: Research project MSM0021620838 and Institute for Theoretical
Computer Science project 1M0545.
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Definition 1. A real X is n-generic if for every Σn set S of strings either
there is a number l such that X ↾ l ∈ S or there is a number l such that for
every string τ ⊇ X ↾ l we have τ /∈ S.

Definition 2. Φ is a truth-table reduction if there is a computable function
f : ω → ω such that for all n ∈ ω and strings σ of length f(n) we have
Φσ(n) ↓. We define A ≤tt B if there is a truth-table reduction Φ such that
Φ(B) = A.

Definition 3. A ≤m B if there is a computable function f : ω → ω such
that for all n ∈ ω we have x ∈ A ⇔ f(x) ∈ B. This is called many-one
reducibility.

Definition 4. A ≤h B if A is hyperarithmetic in B.

We let D be the set of Turing degrees and define Dtt, Dm, and Dh sim-
ilarly. We use ≤r and Dr to denote an arbitrary reducibility and the corre-
sponding set of degrees. An automorphism of a degree structure is a bijection
(a one-to-one and onto function) which preserves the order.

Definition 5. An automorphism of Dr is a bijection π : Dr → Dr such that
for all degrees x and y we have x ≤r y ⇔ π(x) ≤r π(y).

We say an automorphism π is fixed on an (upper) cone if there is a degree
b such that for all x ≥r b we have π(x) = x. We call b the base of the cone.

The truth-table degrees are often used in Computability Theory, espe-
cially in the areas of randomness and measure. However, almost nothing is
known about the automorphisms of the truth-table degrees. Kjos-Hanssen
[2] has recently used lattice embeddings to obtain a result in a related area.
He showed that in the structure of the truth-table degrees with jump, (Dtt,
≤tt,

′), every automorphism is fixed on the cone with base 0(4).
In this paper we prove that every automorphism π of the truth-table

degrees is fixed on a cone. The base of the cone is given by d′′⊕π(d′′)⊕ e′′⊕
π−1(e′′) where d = π−1(0′′′) and e = π(0′′′). To show this, we prove that for
every real X ≥tt 0′ there exists a real Y such that Y ⊕ 0′ ≡tt Y

′ ≡tt X. We
will also prove that for every 2-generic real X we have X ′ 6≤tt X ⊕ 0′.

To better understand the automorphisms of the truth-table degrees, we
examine the automorphisms of other degree structures. From results known
so far, it seems that the stronger the reducibility, the fewer the restrictions on
the automorphisms of its degree structures. At one extreme, the hyperdegrees
are rigid; there is no nontrivial automorphism of Dh [14].

At the other end, there are very few restrictions on the automorphisms
of the many-one degrees. Odifreddi has proved that 0 is the only m-degree
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fixed by every automorphism [12]. Shore has shown that there are 22ω

many
automorphisms of the m-degrees [12]. He has also noted that there is an
automorphism of the m-degrees which is not fixed on any cone [15]. Com-
bined with our main result, this provides a tangible difference between the
automorphisms of the m-degrees and those of the tt-degrees.

Our expectation is that the automorphisms of the tt-degrees will be more
restricted than those of the m-degrees, but less restricted than those of the
Turing degrees.

There are several theorems which limit the possibilities for automorphisms
of the Turing degrees. Nerode and Shore [11] proved every automorphism
of the Turing degrees is fixed on a cone. Slaman and Woodin [17] improved
this result by showing every automorphism is fixed on the cone with base 0′′.
They also proved that if y is a Turing degree containing a 5-generic real and π
and ρ are automorphisms such that π(y) = ρ(y), then π = ρ. Finally, Shore
and Slaman [16] proved the Turing jump is definable in D, so π(x′) = (π(x))′

for every Turing degree x and automorphism π.
The fundamental question “Is there a nontrivial automorphism of the

Turing degrees?” is generally considered to be open as of this writing. Cooper
[1] has given an affirmative answer, but the proof has not yet been verified
by leading experts. Slaman and Woodin [17] have proved that the set of
automorphisms is at most countable, and that the statement “There is a
nontrivial automorphism of the Turing degrees” is absolute between well-
founded models of ZFC.

The author would like to thank Theodore Slaman and Antońın Kučera
for several helpful discussions.

2 Background

We wish to convert to the truth-table degrees the theorem of Nerode and
Shore [11] that every automorphism of the Turing degrees is fixed on a cone.
Nerode and Shore proved truth-table and many-one analogues for many of
their theorems on automorphisms. They noted “The general pattern of gen-
eralization is that if a proof for the Turing degrees does not use some form of
the Friedberg Completeness Theorem then some version or other of the re-
sult holds for all of these reducibilities” [11]. In 1984, Mohrherr [9] observed
more specifically that proving every automorphism of the truth-table degrees
is fixed on a cone required strong jump inversion of the truth-table degrees;
for every real X ≥tt 0′ there is a real Y such that Y ⊕ 0′ ≡tt Y

′ ≡tt X.
Mohrherr [9] adapted Friedberg’s proof of strong jump inversion of the

Turing degrees to prove ordinary jump inversion of the truth-table degrees;
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for every real X ≥tt 0′ there is a real Y such that Y ′ ≡tt X. Friedberg’s
proof obtained strong jump inversion by using the fact that every 1-generic
real X is such that X ′ ≤T X⊕0′. To adapt this part of Friedberg’s proof, we
might hope to prove an analogous fact for the truth-table degrees; for every
sufficiently generic real X, the statement X ′ ≤tt X ⊕ 0′ holds. Somewhat
unexpectedly, we instead find that for every sufficiently generic real X, the
statement fails.

3 Strong jump inversion

We prove that for every 2-generic real X we have X ′ 6≤tt X⊕0′. An intuitive
explanation is that this holds because a truth-table computation of X ′ is
bounded in its use of X, but the following is dense: the n required such that
{e}X↾n(e)↓ exceeds any fixed bound computable in e.

We give an outline of a proof by contradiction. We suppose there is a
truth-table reduction Φ with bound f such that Φ(X ⊕ 0′) = X ′ for some
2-generic real X. We assume f(n) is even for all n. By genericity, there is
an l ∈ ω such that for every τ ⊇ X ↾ l we never have Φ(τ⊕0′)↾f(n)(n) = 0
and {n}τ (n) ↓ for any n. We can then use the Recursion Theorem to find
an m such that for any σ we have {m}σ(m)↓⇔ σ(1

2
f(m) + 1) = 0. But the

computation of Φ(τ⊕0′)↾f(m)(m) can only use the first 1
2
f(m) many digits of τ .

Hence, if m is sufficiently large and X(1
2
f(m) + 1) = 1 then (X ↾ 1

2
f(m)) ˆ0

contradicts the statement given by genericity.

Theorem 3.1. Let X be a 2-generic real. Then X ′ 6≤tt X ⊕ 0′.

Proof. Suppose not. Let Φ be a truth-table reduction with bound f such
that Φ(X ⊕ 0′) = X ′. Without loss of generality, let f(n) be even for all n.

We define a set S of strings σ which witness a failure of Φ(A ⊕ 0′) = A′

for every A ⊇ σ.

S = {σ ∈ 2<ω | ∃n[Φ(σ⊕0′)↾f(n)(n) = 0 ∧ {n}σ(n)↓]}.

X does not meet S because Φ(X ⊕ 0′) = X ′. We note S is Σ1(0
′) so S is

Σ2. Since X is 2-generic, there is a l such that for every τ ⊇ X ↾ l we have
τ /∈ S.

Define {j(y)}σ(n) = 0 if σ(1
2
f(y) + 1) = 0 and {j(y)}σ(n) ↑ otherwise.

By the Recursion Theorem, there is an infinite computable set M such that
for every m ∈M we have {j(m)} = {m}.

Claim. ∃v ∈M such that 1
2
f(v) > l and X(1

2
f(v) + 1) = 1.
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Proof. Let V = {σ ∈ 2<ω | ∃m ∈ M [1
2
f(m) > l ∧ σ(1

2
f(m) + 1) = 1]}.

Suppose X does not meet V . Then since X is 2-generic there is a k such
that for every γ ⊇ X ↾ k we have γ /∈ V . But (X ↾ k) ˆ 1j ∈ V for any
sufficiently large j, for a contradiction. Therefore we have X ↾ k ∈ V for
some k. We then let v be the witness that X ↾ k ∈ V .

Let v be given by the claim. Since v ∈ M and X(1
2
f(v) + 1) = 1 we have

{v}X(v) = {j(v)}X(v) = ↑. Hence v /∈ X ′. Thus Φ(X⊕0′)↾f(v)(v) = 0. Let
τ = (X ↾ 1

2
f(v))ˆ0. Since 1

2
f(v) > l we have τ ⊇ X ↾ l so τ /∈ S. We already

have Φ(X⊕0′)↾f(v)(v) = 0 so we must conclude {v}τ (v)↑. But since v ∈M and
τ(1

2
f(v) + 1) = 0 we have {v}τ (v) = {j(v)}τ(v) = 0 for a contradiction.

Kjos-Hanssen [3] has noted that Mohrherr’s [9] construction for 0′ yields
a 1-generic real X such that X ′ ≤tt X ⊕ 0′. Hence this result is sharp.

The proof of Theorem 3.1 illustrates some of the difficulties in proving
strong jump inversion for the truth-table degrees. When constructing a real
Y such that Y ′ ≤tt Y ⊕ 0′ we must keep making choices about the values
that Y ′ will take, before we are able to extend Y to confirm these choices.
As a result, we need a way to find choices which maximize the possibilities
available to us later. Our original proof did this by using a “bushy” structure
similar to those developed by Kumabe and Lewis [7]. Kučera [5] suggested
that switching to a PA (binary valued diagonally noncomputable) approach
would greatly simplify the proof’s bookkeeping.

Following the notation in [6], we define PA = {f ∈ 2ω | ∀x[f(x) 6=
{x}(x)]}. Kučera and Slaman [6] have shown how PA can be used as a
“universal” Π0

1 class which can easily be used to code information. We start
with some definitions. Let f ∈ 2ω, M be an infinite set, and 〈mi | i ∈ ω〉
be an increasing enumeration of M . We define Restr (f,M) to be the
function g where g(i) = f(mi). If we think of M as a set of locations
where information is coded, then Restr (f,M) is the real coded into f . For
σ ∈ 2<ω we define Restr (σ,M) as a string τ where τ(i) = σ(mi) for all i
where mi is less than the length of σ. Finally, for B ⊆ 2ω we define Restr
(B,M) = {g ∈ 2ω | ∃f ∈ B [g = Restr(f,M)]}.

The following theorem allows us to uniformly shrink a Π0
1 subclass while

still recursively coding information.

Theorem 3.2 (Kučera and Slaman [6]). Let B ⊆ PA be a Π0
1 class. Then

there is an infinite computable set M such that if B is nonempty then Restr
(B,M) = 2ω. Moreover, we can (uniformly) computably find an index for M
from an index for B.

For T ⊆ 2<ω a tree, let [T ] denote the set of paths through T . For an
index of a Π0

1 tree T we use a n such that T = 2<ω \Wn (we view Wn as the
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n-th c.e. set of strings). An index of a Π0
1 class [T ] is an index for T . For a

tree T and a string σ we define T [σ] = {τ ∈ T | τ ⊇ σ ∨ τ ⊆ σ} to be the
part of T compatible with the root σ.

We outline the proof of strong jump inversion for the truth-table degrees.
Given X ≥tt 0′ we construct a Y such that X ≤tt Y ⊕ 0′ and Y ′ ≤tt X. We
build Y as a path through a shrinking set of trees Ti. If i ∈ A′ for every path
A ∈ [Ti] then we let Ti+1 = Ti[Yi]. If not, we obtain Ti+1 by removing from
Ti[Yi] every point which forces i ∈ Y ′. In either case, we force a value for
Y ′(i).

The key idea is that Theorem 3.2 guarantees that the resulting tree will
be thick enough to code with. In this way the Theorem internalizes the role
of a “bushy” condition which could be used to ensure that the chosen tree
is sufficiently thick (as in [7]). We can then extend Y to record the value of
X(i) at the next coding location and proceed to the next stage. To prove
that we can calculate X or Y ′ by truth-table reductions, we need to obtain a
computable bound on the use of Y ⊕0′ or X needed to reach a given stage of
the construction. We do this by exhaustively considering all possible values
for the inputs and parameters.

Theorem 3.3. Let X be a real such that X ≥tt 0′. Then there exists a real
Y such that Y ⊕ 0′ ≡tt Y

′ ≡tt X.

Proof. We construct the real Y in stages. For bookkeeping, we will also use
Π0

1 trees Ti for i ∈ ω. At each stage we will have Yi+1 extend Yi, Ti+1 ⊆ Ti,
and Yi ∈ Ti. We start with Y0 = 〈〉 and T0 = PA.

At stage i we use 0′ to determine if there is a number d such that for all
strings σ of length d extending Yi we have σ /∈ Ti or {i}σ(i) ↓. This is a Σ0

1

question. If the answer is yes we let Ti+1 = Ti[Yi]. We note that since we will
have Y ∈ [Ti+1], we have forced i ∈ Y ′.

If the answer is no we let Ti+1 = Ti[Yi] \ {σ ∈ 2<ω | {i}σ(i) ↓}. We note
that Ti+1 is Π0

1 and we have forced i /∈ Y ′.
In either case, by compactness and our choice of Yi, we have that [Ti+1]

is nonempty. Let M be the set given by Theorem 3.2 for [Ti+1] and let m
be the least element of M . We then use 0′ to define Yi+1 to be the leftmost
string σ ∈ Ti+1 of length m such that σ(m) = X(i) and

[

Ti+1[σ]
]

6= ∅. Such
a σ exists by our choice of m. This completes stage i.

It is clear that this construction can be done computably in X (since
X ≥tt 0′). For every i ∈ ω we can determine if i ∈ Y ′ from the i-th stage of
the construction. Hence Y ′ is computable in X. We can also see that given
Y and 0′ we can use the construction to find X. At the end of the i-th stage
we read Y (m) to find X(i). Thus Y ⊕ 0′ ≡T Y

′ ≡T X.

6



To obtain truth-table reductions we must use computations which are
total. If an unexpected input is used for 0′ in the computation of Y then
at some stage the computation may find no possible extension for Yi+1. To
fix this, we define the computation so that it ceases normal operations and
outputs an infinite string of 0’s if this occurs. Since at any stage there are
only finitely many possibilities for Yi+1, the computation will realize an error
state has been reached. We define the computation of X on unexpected
inputs for Y or 0′ similarly. It remains to show we can bound the use on
these computations (for expected and unexpected inputs).

We first define several computable functions. Let m be the index of a Π0
1

tree T . For i ∈ ω we define u(m, i) to be the index of T∩{τ ∈ 2<ω | {i}τ (i)↑}.
For σ a string we let q(m, σ) be the index of T [σ]. Using Theorem 3.2, let
s be a computable function such that if i is the index for a tree then s(i)
is the least element of the corresponding set M . We note that Theorem 3.2
still gives the index of a (meaningless) total, infinite computable set if the
Π0

1 class is empty. Hence s is total.
We define computable functions t and l to bound the indices of the Ti and

the lengths of the Yi, respectively. These functions are defined by simultane-
ous induction starting with t(0) equal to the index of PA and l(0) = 0. For
the inductive step, we define t(i + 1) and l(i + 1) to be the largest possible
result for any values used in the roles of Y ′ ↾ i, X ↾ i, and for j ≤ i, Tj and
Yj. Hence we first define

t(i+ 1) = max
σ∈2≤l(i), e≤t(i)

(

max(q(e, σ), q(u(e, i), σ))
)

.

We then let l(i+ 1) = maxe≤t(i+1)(s(e)) to complete the induction.
We next wish to find a computable function g to bound the amount of 0′

used in steps of the construction. Let h : 2<ω × ω× ω → ω be a computable
function such that h(τ, n, i) ∈ 0′ iff there is a number d such that for all
strings σ of length d extending τ we have σ ∈Wn or {i}σ(i)↓. Similarly, let
j : 2<ω ×ω → ω be a computable function such that j(τ, n) ∈ 0′ iff there is a
number d such that for all strings σ of length d extending τ we have σ ∈Wn.
We then let

g(i) = max
τ∈2≤l(i+1), m≤i, n≤t(i+1)

(

max(h(τ, n,m), j(τ, n))
)

so the construction uses at most 0′ ↾ g(i) for step i.
We can now complete the proof. In calculating Y ′(n) from X (and 0′),

we need to reach the n-th step of the construction. This requires the first
n digits of X and 0′ ↾ g(i). Hence if f witnesses that 0′ ≤tt X, then we
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need X ↾ max(n, f(g(n))) to calculate Y ′(n). Thus we have a computable
bound for the use of X. Similarly, in calculating X(n) from Y and 0′ we
need Y ↾ l(n+ 1) and 0′ ↾ g(n), so we have computable bounds on the use of
Y and 0′.

These bounds also work for unexpected inputs since they use the largest
result for all possible values of the inputs for X, Y , and 0′. If an error state
is reached then the use no longer increases, so it remains below the bounds.
Therefore, Y ⊕ 0′ ≡tt Y

′ ≡tt X.

We wish to prove a relativized form of this theorem; given reals A and
X ≥tt A

′ there is a real Y ≥tt A such that X ≡tt Y
′ ≡tt Y ⊕A′. The difficulty

is showing that the bounding functions for the truth-table reductions are
computable (instead of just computable in A). To do this we use a powerful
relativized form of Theorem 3.2

Theorem 3.4 (Kučera and Slaman [6]). Let A be a real and B ⊆ PA(A) be
a Π0,A

1 class. Then there is an infinite computable set M such that if B is
nonempty then Restr (B,M) = 2ω. Moreover, an index of M can be found
(uniformly) computably from an index of B, i.e. in a uniform way which does
not depend on the oracle A.

We also use the relativized s-m-n Theorem.

Theorem 3.5 ([18]). Let m,n ≥ 1. There exists an injective computable
function sm

n such that for all reals A and all x, y1, . . . , ym ∈ ω we have

{sm
n (x, y1, . . . , ym)}A(z1, . . . , zn) = {x}A(y1, . . . , ym, z1, . . . , zn).

We can now prove the relativized form of Theorem 3.3.

Theorem 3.6. Let A and X be reals such that X ≥tt A
′. Then there is a

real Y ≥tt A such that X ≡tt Y
′ ≡tt Y ⊕A′.

Proof. Following the approach in [6], we let C = {f ∈ PA(A) | Restr(f,M) =
A} where M is from Theorem 3.2 applied to PA(A). C is a nonempty Π0,A

1

class such that for every f ∈ C we have f ≥tt A (we check the values of f
on the recursive set M).

We begin the construction with T0 = C. This ensures that Y ≥tt A (so
also Y ′ ≥tt A

′). The rest of the construction remains essentially the same,
changing the oracle 0′ to A′ and using Theorem 3.4 instead of Theorem 3.2.
We do not change {i}σ to {i}A since we wish to control Y ′, not A′. For
the computation of the bounding functions, we note that s is computable
by Theorem 3.4. The functions u, q, h, and j are computable by Theorem
3.5.
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Corollary 3.7. Let n ∈ ω and let X and A be reals such that X ≥tt A
(n).

Then there exists a real Y ≥tt A such that Y ⊕A(n) ≡tt Y
(n) ≡tt X.

Proof. We prove the statement by induction. The base case is given by
Theorem 3.6. For the inductive case, assume the statement holds for n and
let X ≥tt A

(n+1) be arbitrary. By Theorem 3.6 with base A(n) there exists
a Z ≥tt A

(n) such that Z ⊕ A(n+1) ≡tt Z
′ ≡tt X. Applying the inductive

hypothesis to Z we obtain a real Y ≥tt A such that Y ⊕A(n) ≡tt Y
(n) ≡tt Z.

We then note Y ⊕ A(n+1) ≥tt Z ⊕ A(n+1) ≥tt X ≥tt Z
′ ≥tt Y

(n+1). Hence
Y ⊕A(n+1) ≡tt Y

(n+1) ≡tt X, completing the induction.

4 Applications to automorphisms

To apply strong jump inversion to automorphisms of the truth-table degrees,
we need a way to code a real in the truth-table degrees using a finite number
of parameters. We can use the method of Nerode and Shore [11] to do this,
but obtain a slightly lower base for the cone by using a theorem of Mytilinaios
and Slaman [10].

The theorem below gives a finite set of parameters ~p and a countable
set of reals G1, G2, . . . representing the natural numbers. These reals satisfy
equations which allow us to uniquely determine Gi+1 given ~p and Gi. Hence
~p and G1 uniquely determine every Gi. Since the relations depend only on
≤tt, they are invariant under automorphisms of the truth-table degrees.

Let (X) denote the ideal generated by X (the tt-degrees below X).

Theorem 4.1 (Mytilinaios and Slaman [10]). Let B ≥tt 0′. Then there exist
reals ~p = 〈E1, E2, D1, D2, F1, F2〉 ≤tt B

′′ and 〈Gn | n ∈ ω〉 ≤tt B
′′ (uniformly)

such that:

1. B is tt-computable in each component of ~p and B ≤tt Gn for all n ∈ ω.

2. For any Gn1, Gn2 , . . .Gnk
and m 6= nj for all j < k we have

(Gn1 ⊕ . . .⊕Gnk
) ∩ (Gm) = (B).

3. D1 6≥tt D2 and for any n ∈ ω we have D1 ⊕Gn ≥tt D2.

4. For n odd, (F1 ⊕Gn) ∩ (E1) = (Gn+1) and
For n even, (F2 ⊕Gn) ∩ (E2) = (Gn+1).

In Mytilinaios and Slaman [10] this theorem is given with the value of 0′

for B (the variable O is used in the paper). However, it is clear that the proof
works for any B ≥tt 0′. The complexity bounds used in the construction are
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given in terms of B and the construction makes no use of any property of
B except an implied use of the fact that B ≥tt 0′ (so the construction can
enumerate all tt-reductions).

We use Theorem 4.1 with the next theorem to code a real S. Given S we
find a real Q such that Gi satisfies a certain relation involving Q if and only
if i ∈ S. Again, since the relation only depends on ≤tt it is invariant under
automorphisms.

Theorem 4.2 (Mytilinaios and Slaman [10]). Let B, ~p, and 〈Gn | n ∈ ω〉
satisfy the conditions above. Let S ⊆ ω. Then S is Σ0

2(~p) ⇔ ∃Q[Q ≤tt ~p ∧
∀i ∈ ω [i ∈ S ↔ ∃X[X ≤tt Gi ∧ X ≤tt Q ∧ D2 ≤tt X ⊕D1]]].

We can now outline the proof that every automorphism of the truth-table
degrees is fixed on a cone. We say q codes S for ~p and 〈Gn | n ∈ ω〉 over base
B if q satisfies the conditions for the set witnessing the result of Theorem
4.2 for the set S, when using ~p, 〈Gn | n ∈ ω〉, and B for the sets satisfying
the conditions from Theorem 4.1. We omit the base when it is clear from
context. We note that if Q codes a real R for ~p and 〈Gn | n ∈ ω〉 over base
B, and R is such that R ≡tt B

′′, then ~p ≤tt R. Furthermore R is Σ0
2(~p), so

R ≤tt (~p)′′.
Suppose we let R in the above example have degree π(y) for an automor-

phism π and some sufficiently high y. Then ~p ≤tt π(y) so π−1(~p) ≤tt y. Since
the relations are invariant under automorphisms, π−1(q) codes R for π−1(~p)
and 〈π−1(Gn) | n ∈ ω〉. Hence R ≤tt (π−1(~p))′′, as above. Thus R ≤tt y

′′ so
π(y) ≤tt y

′′.
We next apply strong jump inversion. Let d be some sufficiently high

base degree and let x ≥tt d
′′ ⊕ π(d′′). By strong jump inversion relative to

d, there is a y ≥tt d such that x ≡tt y
′′ ≡tt y ⊕ d′′. By the above paragraph,

π(y) ≤tt y
′′. We then have π(x) ≡tt π(y⊕d′′) ≡tt π(y)⊕π(d′′) ≤tt y

′′⊕x ≤tt x.
We complete the proof by symmetry.

We formalize this argument below.

Theorem 4.3. Let π : Dtt → Dtt be an automorphism. Then there is a
degree b such that for all degrees x ≥tt b we have π(x) = x.

Proof. Let d = π−1(0′′′) and e = π(0′′′). Let b = d′′ ⊕ π(d′′) ⊕ e′′ ⊕ π−1(e′′)
and let x ≥tt b be arbitrary.

Since x ≥tt d
′′, by Corollary 3.7 with base d there is a y ≥tt d such that

x ≡tt y
′′ ≡tt y⊕ d′′. We note π(y) ≥tt π(d) = 0′′′. By Corollary 3.7 with base

0′, there is a Z ≥tt 0′ such that Z ′′ ≡tt π(y).
Let ~p ≤tt Z

′′ and 〈Gn | n ∈ ω〉 be given by Theorem 4.1 with base Z. We
note Z ′′ is Σ0

2(Z) and Z ≤tt ~p , so Z ′′ is Σ0
2(~p). By Theorem 4.2, let q ≤tt ~p

code Z ′′ for ~p and 〈Gn | n ∈ ω〉.
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Since ≤tt is preserved under automorphisms, π−1(q) codes Z ′′ for π−1(~p)
and 〈π−1(Gn) | n ∈ ω〉. By Theorem 4.2, Z ′′ is Σ0

2(π
−1(~p)).

Since ~p ≤tt Z
′′ ≡tt π(y), we have π−1(~p) ≤tt y. Hence Z ′′ is Σ0

2(y). Thus
Z ′′ ≤tt y

′′ so π(y) ≤tt y
′′ ≤tt x (since we chose y and Z such that Z ′′ ≡tt π(y)

and y′′ ≡tt x).
We chose x ≥tt b so we have π(d′′) ≤tt x. Hence π(y) ⊕ π(d′′) ≤tt x so

y⊕d′′ ≤tt π
−1(x). We chose y such that y⊕d′′ ≡tt x so we have x ≤tt π

−1(x).
Thus π(x) ≤tt x.

We have used the fact that x ≥tt d
′′ ⊕ π(d′′) to prove that π(x) ≤tt x.

By symmetry, we can use the fact that x ≥tt e
′′ ⊕ π−1(e′′) to prove that

π−1(x) ≤tt x so x ≤tt π(x). Therefore π(x) = x.

We note that if π is such that π(0′′′) = 0′′′ and π(0(5)) = 0(5) then the base
of the cone is 0(5). In particular, for the structure of the truth-table degrees
with jump, (Dtt,≤tt, ′), every automorphism is fixed on the cone with base
0(5). By using lattice embeddings to work with the structure (Dtt,≤tt, ′)
directly, Kjos-Hanssen [2] proved every automorphism is fixed on the cone
with base 0(4).

Many of the results of Slaman and Woodin [17] which follow from the
fact that every automorphism of the Turing degrees is fixed on a cone can
be modified for the truth-table degrees. For example, let π : Dtt → Dtt be
an automorphism and let b be the base of the cone on which π = id. Then
for any ideal I of Dtt with b ∈ I, the restriction π ↾ I is an automorphism
of I. To prove this, we observe that for any x ∈ I we have x ⊕ b ∈ I and
b ≤tt x ⊕ b. Hence π(x) ≤tt π(x ⊕ b) = x ⊕ b so π(x) ∈ I, and similarly for
π−1.

5 Conclusion

One route for further exploration of the automorphisms of the truth-table
degrees, would be to prove truth-table degree analogues of some of the major
results of Slaman and Woodin [17] on automorphisms of the Turing degrees.
The next major obstacle in doing this is finding a way to code antichains in
the structure Dtt using a finite number of parameters.

Given a countable antichain of truth-table degrees A = 〈An ∈ Dtt | n ∈
ω〉, we wish to find a finite set of parameters ~p ∈ Dtt and a formula ψ in the
language (Dtt,≤tt) such that x ∈ A ⇔ ψ(~p, x). The parameters ~p should at
least be arithmetic in A, and preferably Σ0

n(A) for some low n.
The proof of this statement for the Turing degrees given in Slaman and

Woodin [17] cannot be directly adapted. The proof relies heavily on the fact
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that every Turing degree contains a real which is computable in any infinite
subset of itself. A corresponding fact is false for the truth-table degrees. Kjos-
Hanssen, Merkle, and Stephan [4], building on a result of Miller [8], proved
that a real A computes a diagonally non-computable function if and only if
there is a real B ≤T A such that there is no hyperimmune real C ≥wtt B.
Hence for such a B, given any D ≡tt B we can take an infinite C ⊆ D thin
enough so that C is hyperimmune and conclude D 6≤tt C.

Finding a way to code antichains will likely result in a proof that the
statement “There is a nontrivial automorphism of the truth-table degrees” is
absolute between well-founded models of ZFC. It will also provide a necessary
step in using the methods of Slaman and Woodin [17] to prove truth-table
degree analogues of their other results on automorphisms of the Turing de-
grees.

There are several other open questions we can consider. Sacks [13] proved
that given a Σ0

2 real X ≥T 0′, there is a c.e. real Y such that Y ′ ≡T X. Does
some form of Sacks jump inversion hold for the truth-table degrees: given a
Σ0

2 real X ≥tt 0′, is there a c.e. real Y such that Y ′ ≡tt X ? Can we find
such a Y if we replace the requirement that Y be c.e. with Y ≤tt 0′ or with
Y is ∆0

2 ? Finally, is ≤T definable in (Dtt,≤tt) ?
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