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Abstract

We prove that every connected triangle-free graph on n vertices
contains an induced tree on exp(c

√
log n ) vertices, where c is a positive

constant. The best known upper bound is (2+o(1))
√

n. This partially
answers questions of Erdős, Saks, and Sós and of Pultr.

1 Introduction

For a graph G, let t(G) denote the maximum number of vertices of an induced
subgraph of G that is a tree (i.e., connected and acyclic). There are arbitrary
large graphs G with t(G) ≤ 2, namely graphs in which every connected
component is a clique. To rule out these trivial examples, we need to put
some restrictions on G.

Motivated by study of forbidden configurations in Priestley spaces [1],
Pultr (private communication, 2002) asked how big t(G) can be if G is con-
nected and bipartite. Formally, he was interested about asymptotic proper-
ties of the function

fB(n) = min{t(G) : |V (G)| = n, G connected and bipartite}.

Pultr’s question was the starting point of our work. However, the function
t(G) was studied earlier and in a more general context by Erdős, Saks, and
Sós [2]. They describe the influence of the number of edges of G on t(G)
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and, more to our point, they study how small t(G) can be if ω(G) is given.
They observe that t(G) ≤ 2α(G), and this allows them to use estimates for
Ramsey numbers. This way, they show that for any fixed k > 3 there are
constants c1, c2 such that

c1
log n

log log n
≤ min{t(G) : |V (G)| = n, G 6⊇ Kk} ≤ c2 log n .

For k = 3 the lower bound still applies, but the upper bound obtained
by using Ramsey numbers was only O(

√
n log n) (nowadays this approach

yields O(
√

n log n), due to the improved lower bound on R(k, 3), see [4]). We
concentrate on this case k = 3, that is we put

fT (n) = min{t(G) : |V (G)| = n, G connected and triangle-free}.
Instead of applying Ramsey theory, we approach the problem directly.

It is easy to show that fT (n) ≤ fB(n) = O(
√

n ). The best construction
we are aware of yields fB(n) ≤ (2 + o(1))

√
n; see Section 2. A simple “blow-

up” construction, also presented in Section 2, shows that if fT (n0) <
√

n0 for
some n0, then fT (n) = O(n1/2−ε) for a positive constant ε > 0, and similarly
for fB. Hence, fT (n) either is of order exactly

√
n, or it is bounded above

by some power strictly smaller than 1/2. We conjecture that the second
possibility holds, and that another power of n is a lower bound.

Conjecture 1.1 There are constants 0 < α < β < 1/2, and c1, c2 such that
for all n

c1n
α ≤ fT (n) ≤ fB(n) ≤ c2n

β .

The following lower bound is the main result of this paper.

Theorem 1.2 There is a constant c > 0 such that for all n

fT (n) ≥ ec
√

log n .

We finish the introduction by mentioning further results concerning t(G).
It is interesting to consider the problem of finding induced trees in (sparse)
random graphs. Vega [3] shows that t(Gn,c/n) = Ω(n) a.s.; Palka and
Ruciński [6] prove that t(Gn,c log n/n) = Θ(n log log n/ log n) a.s.

Krishnan and Ochem [5] search for values of fT (n) (for small n) using
a computer; they succeed to find fT (n) for n ≤ 15. They also extend re-
sults of [2] about the decision problem: “given a connected graph G and an
integer t, does G have an induced tree with t vertices?”. Not only this is
NP-complete for general graphs (which is proved in [2]), but it remains NP-
complete even if we restrict to bipartite graphs, or to triangle-free graphs of
maximum degree 4.
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2 Initial observations

Observation 2.1 fB(n) ≤ (2 + o(1))
√

n.

Proof: It is enough to take a path with each edge replaced by a complete
bipartite graph. More precisely, we take pairwise disjoint sets Vi (for i =
−(k − 1), . . . , k − 1) such that |Vi| = k − |i|. We let G be the graph with
vertices V =

⋃
|i|<k Vi and all possible edges between Vi and Vi+1 (for i =

−(k − 1), . . . , k − 2).
It is clear that if an induced tree in G contains a vertex from Vi and two

vertices from Vi+1 then it contains no vertex of Vj for j > i + 1; similarly for
i + 1 replaced by i− 1. Therefore any maximum induced tree is one of trees
Ta,b (−(k − 1) ≤ a < b ≤ k − 1 and b − a > 1): it contains all vertices from
two levels, Va and Vb and one vertex from each Vi where a < i < b. It is easy
to compute that such tree contains 2k − 1 vertices out of the |V | = k2; this
proves fB(k2) ≤ 2k − 1. If (k − 1)2 < n ≤ k2 then we take a subgraph of G
to show that fB(n) ≤ 2k − 1 < 2

√
n + 1. 2

Lemma 2.2 (Blow-up construction) Let G be a connected triangle-free
graph and let W ⊆ V (G) be a subset of m vertices (m ≥ 3) such that any
induced tree in G contains at most t vertices of W . Then we have fT (n) =
O(nln(t−1)/ ln(m−1)). The same result holds with “triangle-free” replaced by
“bipartite” and with fT replaced by fB.

Proof: We let W = {w0, . . . , wm−1}, and write r = m− 1 and q = t− 1 to
simplify expressions. As G is triangle-free it follows that t ≥ 3, and so q ≥ 2.

Let T = Tr,l be a rooted tree with l +1 levels (counting root as one level)
in which each non-leaf vertex has r sons. Next, for each vertex v of T we
take a copy Gv of G (so that distinct copies are disjoint). Whenever v is a
non-leaf vertex of T and u is its i-th son, we introduce an edge between wi

in Gv and w0 in Gu; the resulting graph will be called T (G) (see Fig. 1).
Clearly this graph is triangle-free/bipartite if G was triangle-free/bipartite.

Moreover, |V (T (G))| = |V (T )| · |V (G)| and |V (T )| = rl+1−1
r−1

= Θ(rl) (since
l → ∞ and r ≥ 2).

Let S be an induced subtree of T (G) and put

S̄ = {v ∈ V (T ) | Gv contains a vertex of S} .

By construction, S ∩ Gv is a tree in Gv for each v. So the condition on G
implies that each vertex of S̄ has at most t neighbors in S̄. Consequently, we
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have (since q ≥ 2)

|S̄| ≤ 1 +
l∑

i=1

(q + 1)qi−1 ≤ 1 + (q + 1)
ql − 1

q − 1
= Θ(ql) .

Now recall that q, r, and |V (G)| are constants. For a given n, choose
the smallest l such that n ≤ |V (Tr,l(G))|; we have n = Θ(rl). By the above
considerations,

f(n) ≤ f(Tr,l(G)) ≤ |V (G)| · Θ(ql) = Θ(rl logr q) = Θ(nlogr q) ,

which finishes the proof. 2

Corollary 2.3 If fT (n0) <
√

n0 for some n0, then fT (n) = O(n1/2−ε) for a
positive constant ε > 0. (The same is true for fB.)

Proof: Let G be the graph on n0 vertices for which t(G) = t <
√

n0. We
let W = V (G) and m = n0 and apply Lemma 2.2. 2

As mentioned in the introduction, Krishnan and Ochem [5] search for val-
ues of fT (n) using a computer. This was motivated by hope that Corollary 2.3
would apply. It turns out, however, that for small n Observation 2.1 gives
a precise estimate even for fT (n) (e.g., fT (15) = 7); therefore Corollary 2.3
does not apply.

Remark. If we consider the construction from Lemma 2.2 for G = K3,
W = V (G), m = 3, and t = 2 we recover a result of [2] that there is a
graph G containing triangles (but no K4) such that t(G) = O(log n).

3 Lower bound for bipartite graphs

Here we prove a statement weaker than Theorem 1.2—we give a bound on
fB(n) instead of fT (n). The proof is simpler than that of Theorem 1.2 and
it serves as an introduction to it.

We begin with a lemma about selecting induced forests of a particular
kind in a bipartite graph. We introduce some terminology. Let H be a
bipartite graph with color classes A and B. We will think of A as the “top”
class and B as the “bottom” class (in a drawing of G in the plane, say). We
write a = |A| and b = |B|. For a subgraph F of H we write A(F ) = V (F )∩A,
we set a(F ) = |A(F )|, and we define B(F ) and b(F ) similarly.
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Figure 1: Graph T3,2(G) from the proof of Lemma 2.2.

A

B

Figure 2: An up-forest

Whenever we say forest we actually mean an induced subgraph of H that
is a forest. An up-forest F is a forest such that every vertex in A(F ) has
degree (in F ) precisely 1 and every vertex in B(F ) has degree (in F ) at least
1.

A matching is a forest F in which all vertices have degrees (in F ) exactly
1.

Lemma 3.1 Let H be a bipartite graph with color classes A and B as above,
let ∆ be the maximum degree of H, and let η ∈ (0, 1) be a real parameter.
Let us suppose that every vertex in A is connected to at least one vertex in
B. Then at least one of the following cases occurs:

(M) There is a matching with at least (1 − η)a edges.

(B) There is an up-forest F with

b(F ) ≥ η

∆3
· a

that is 2-branching, meaning that every vertex in B(F ) has degree at
least 2 in F .
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A

B

Figure 3: An illustration of Lemma 3.1

Proof. Let B′ ⊆ B be the set of vertices of degree 1 in B. If |B′| ≥ (1−η)a
then, clearly, case (M) occurs, so we may assume |B′| < (1−η)a. Let B′′ ⊆ B
consist of all vertices of degree at least 2. Since every vertex in A has degree
at least 1, |E(H \ N(B′))| ≥ ηa, and so |B′′| ≥ (η/∆)a.

Let us set B0 = B′′ and let F0 be an empty graph. Supposing that a
set Bi−1 ⊆ B′′ and an up-forest Fi−1 have already been constructed with
Bi−1 6= ∅, we construct Bi and Fi. We let vi be an arbitrary vertex in Bi−1,
and we let Si be the star formed by vi and all of its neighbors in A. We set
Fi = Fi−1 ∪ Si, we let Ni ⊆ B be the neighborhood of A(Si), and we let Bi

be Bi−1 \Ni. The construction finishes when Bi = ∅, with Fi as the resulting
up-forest.

It is easy to check that this construction indeed yields an up-forest F with
each degree in B(F ) at least 2. We have a(Si) ≤ ∆ and |Ni| ≤ a(Si)(∆−1)+
1, and so in each step, at most |Ni| ≤ ∆(∆−1)+1 ≤ ∆2 vertices are removed
from Bi. Having started with at least (η/∆)a vertices, we can proceed for at
least (η/∆3)a steps, and so the resulting up-forest is as in (B). 2

Now we prove the lower bound

fB(n) ≥ ec
√

log n

for a constant c > 0.
Let G be a given connected bipartite graph. We assume that n = |V (G)|

is sufficiently large whenever convenient. We let t be the “target size” of an
induced tree in G we are looking for; namely, t = ⌈exp(c

√
log n )⌉. If G has

a vertex of degree at least t − 1, then we can take its star for the induced
tree and we are done, so we may assume that the maximum degree satisfies
∆ ≤ t − 2.

Let us fix an arbitrary vertex of G as a root, and let Li be the set of
vertices of G at distance precisely i from the root. All edges of G go between
Li−1 and Li for some i, since an edge within some Li would close an odd
cycle.

We may assume that Lt = ∅, for otherwise G contains an induced path
of length t. Hence there is a k with |Lk| ≥ n/t.
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Let us fix such a k. We are going to construct sets Mi ⊆ Li, i = k, k −
1, . . ., inductively, until we first reach an i with |Mi| = 1 (this happens for
i = 0 at the latest since |L0| = 1). We shall let ℓ be this last i.

Suppose that nonempty sets Mk, Mk−1, . . . , Mi have already been con-
structed, in such a way that the subgraph of G induced by Mk ∪ · · · ∪ Mi is
a forest, each of whose components intersects Mi in at most one vertex. We
are going to construct Mi−1.

Let us put A = Mi, B = Li−1, and let us consider the bipartite graph H
induced by A∪B in G. Every vertex of A is connected to at least one vertex
in B. We set η = 1

t
and apply Lemma 3.1. This yields an up-forest F in H

as in the lemma. We define Mi−1 = B(F ).
If F is a matching, i.e., case (M) occurred in the lemma, we call the step

from Mi to Mi−1 a matching step. In this case, we have |Mi−1| ≥ (1− 1
t
)|Mi|.

Otherwise, F is a 2-branching forest; then we call the step a branching step
and we have |Mi−1| ≥ |Mi|/(t∆3) ≥ |Mi|/t4.

Suppose that the sets Mk, . . . , Mℓ have been constructed, |Mℓ| = 1. We
claim that the number b of branching steps in the construction is at least
c1

√
log n for a suitable constant c1 > 0. Indeed, there are no more than t

matching steps, and so 1 = |Mℓ| ≥ |Mk|(1 − 1/t)tt−4b ≥ (n/t)e−1/2 · t−4b =
Ω(nt−4b−1). Thus b = Ω(log n/ log t) = Ω(

√
log n ), since t = ⌈exp(c

√
log n )⌉.

It is easy to see that Mk ∪Mk−1 ∪ · · · ∪Mℓ induces a forest in G. We let
T be the component of this forest containing the single vertex of Mℓ. Since
every vertex of Mi−1, ℓ < i ≤ k, has at least one neighbor in Mi, and if the
step from Mi to Mi−1 was a branching step then each vertex of Mi−1 has at
least two neighbors in Mi, it follows that T has at least 2b = exp(Ω(

√
log n ))

vertices. This finishes the proof of the lower bound fB(n) ≥ exp(c
√

log n ).
2

Remark. The above proof may seem wasteful in many respects. However,
the result is tight up to the value of the constant in the exponent if we insist
on selecting an induced tree “growing up” (i.e., made of up-forests for some
choice of root and corresponding sets Li). Indeed, any such induced tree in
the graph Gr in Figure 4 may contain at most two of the r vertices at the
topmost level of the graph. Let us put r = exp(c

√
log n ) and glue copies

of Gr according to the pattern of a complete r-ary tree (as in the proof of
Lemma 2.2), so that the resulting graph has approximately n vertices (that is,
the depth is l = Θ(

√
log n). We obtain a graph with all up-growing induced

trees having size at most 2l = exp(O(
√

log n )).
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Figure 4: Graph G6 in which all “up-growing trees” contain at most two
vertices of the uppermost level.

4 Lower bound for triangle-free graphs

Here we prove Theorem 1.2. The scheme of the proof is very similar to the
proof of the same bound for bipartite graphs in Section 3. We continue using
the definitions and notation from that proof. So we decompose the given
graph into the levels L0, L1, . . . , Lr, r < t. The main difference compared to
the bipartite case is that there may now be edges within the levels Li. We
will need the well-known fact that any graph on n vertices with maximum
degree ∆ contains an independent set of size at least n/(∆+1). We will also
need the following simple modification.

Lemma 4.1 Let Γ be a graph (not necessarily bipartite) on n vertices with
maximum degree ∆, and let η ∈ [0, 1] be a real parameter. Then at least one
of the following two cases occurs:

(IS) Γ contains an independent set with at least (1 − η)n vertices.

(IM) Γ contains an induced matching with at least η
2∆

n edges.

Proof. We repeatedly select edges e1, e2, . . . of Γ; having selected ei, we
delete it and all the neighbors of its endvertices from the current graph. In
each step we delete at most 2∆ vertices, so we either construct an induced
matching as in (IM) or reach an edgeless graph after deleting at most ηn
vertices, hence yielding an induced set as in (IS). 2

Proof of Theorem 1.2. We proceed similarly as in the previous section.
We suppose G is a given triangle-free graph on n vertices (and that n is big
enough), we put t = ⌈exp(c

√
log n )⌉. Again, we may assume t ≤ ∆−2: G is

triangle-free, so a star of a vertex is an induced tree.
As before, we begin by selecting a root vertex and constructing the at

most t levels L0, L1, . . . . We select k such that |Lk| ≥ n/t and we will
construct sets Mk, Mk−1, . . . , Mℓ, such that Mi ⊆ Li, |Mℓ| = 1, in such a
way that their union induces a forest in G. In the induction step, we will
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either construct Mi−1 from Mi, or sometimes we will go down two levels at
once, producing both Mi−1 and Mi−2.

We begin by selecting Mk as an independent set in the subgraph induced
by Lk. By the fact mentioned before Lemma 4.1 we may assume |Mk| ≥
|Lk|/t ≥ n/t2.

We suppose that Mi has already been constructed so that each component
of the forest induced by Mk ∪ · · · ∪ Mi intersects Li in at most one vertex
(and, in particular, Mi is an independent set). Now we proceed as in the
proof in Section 3: We let A = Mi, B = Li−1, and we consider the bipartite
graph H induced by A ∪ B in G. We apply Lemma 3.1 to H with η = 1

t
,

obtaining an up-forest F . We set M ′
i−1 = B(F ); this is not yet the final Mi

since there may be edges on M ′
i−1.

If case (B) occurred in Lemma 3.1, we have |M ′
i−1| ≥ |Mi|/t4. We let

Mi−1 be an independent set of size |M ′
i |/(∆ + 1) ≥ |Mi|/t5 in the subgraph

induced by M ′
i−1. We call this step a branching step.

If case (M) occurred in Lemma 3.1, we have |M ′
i−1| ≥ (1 − 1

t
)|Mi|. Then

we apply Lemma 4.1 with η = 1
t

to the graph Γ induced in G by M ′
i−1. If

case (IS) applies in that lemma, we let Mi−1 be the independent set of size
at least (1− 1

t
)|M ′

i−1| ≥ (1− 1
t
)2|Mi|; we call this step a matching step. Both

the matching step and the branching step go one level down, from i to i− 1.
If case (IM) applies in Lemma 4.1, we define Mi−1 as the vertex set of

the induced matching from the lemma. In this case we have |Mi−1| ≥ (1 −
1
t
)|Mi|/t2. Note that this Mi−1 does not satisfy the inductive assumption (it

is not an independent set). We are also going to construct Mi−2 in the same
step, thus going from i to i− 2. To obtain Mi−2, we define another auxiliary
bipartite graph, which we again call H to save letters. The bottom color
class B is Li−2, and the top color class A is obtained by contracting the edges
induced by Mi−1. More formally, we set A = {uu′ ∈ E(G) : u, u′ ∈ Mi−2},
B = Li−2, and E(H) = {{uu′, v} : u, u′ ∈ A, v ∈ B, uv ∈ E(G) or u′v ∈
E(G)}. (Note that in this definition it can not happen that both uv and
u′v are edges of G, as G is triangle-free.) We apply Lemma 3.1 with η = 1

2
,

say, to H . In both of cases (M) and (B) we obtain an up-forest F in H with
b(F ) ≥ |Mi−1|/(32t3) (we note that |A| = 1

2
|Mi−1| and that H has maximum

degree no larger than 2t). We set M ′
i−2 = B(F ), and finally, we select Mi−2 as

an independent set of size at least |M ′
i−2|/t in the subgraph induced by M ′

i−2.
Since G is triangle-free, one can check that Mk ∪ · · · ∪ Mi−1 ∪ Mi−2 induces
a forest. We have |Mi−2| ≥ |Mi−1|/32t4 ≥ |Mi| · (1 − 1

t
)/32t6 ≥ |Mi|/t7. We

call this step from Mi to Mi−2 a double-step.
By calculation similar to that in Section 3, we find that the number b of

branching steps and double-steps together is at least Ω(
√

log n ). We again
claim that the component of the forest induced by Mk ∪ · · · ∪Mℓ containing
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the single vertex of Mℓ has at least 2b vertices. Indeed, if Mi was obtained
from Mi+1 by a branching step, then each vertex of Mi has at least two
successors in Mi+1. If Mi was obtained from Mi+2 by a double-step, then
each vertex v of Mi has at least one succesor in Mi+1, this is connected by an
edge to precisely one other vertex of Mi+1, and both of these vertices have
one neighbor in Mi+2; consequently v has at least two successors in Mi+2.
Theorem 1.2 is proved. 2
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