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Abstract

A class of simple undirected graphs is small if it contains at most
n!αn graphs with n vertices, for some constant α. We prove that
classes of graphs with expansion bounded by a function f(r) = O(rc)
for any 0 ≤ c < log9 2 ≈ 0.315 are small.

We work with simple undirected graphs, without loops or parallel edges.
A class of graphs is small if it contains at most n!αn different (but not
necessarily non-isomorphic) graphs on n vertices, for some constant α. For
example, the class of all trees is small, as there are exactly nn−2 < n!en trees
on n vertices. Norine et al. [8] showed that all proper minor-closed classes
of graphs are small, answering the question of Welsh [9]. This question was
motivated by the results of McDiarmid et al. [2] regarding random planar
graphs. These results in fact hold for any class of graphs that is small and
addable1. Many naturally defined graph classes are addable (for example,
proper minor-closed classes excluding a 2-connected minor), and this condi-
tion is usually easy to verify. The more substantial assumption thus is that
the class is small. The aim of this paper is to prove that classes of graphs
with expansion bounded by a slowly growing function (f(r) = O(r0.315)) are
small. This generalizes the result of Norine et al. [8], as proper minor-closed
classes have expansion bounded by a constant.

1A class G is addable if

• G ∈ G if and only if every component of G belongs to G, and

• if G1, G2 ∈ G, v1 ∈ V (G1) and v2 ∈ V (G2), then the graph obtained from the
disjoint union of G1 and G2 by adding the edge {v1, v2} belongs to G.
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Let us now recall the notion of classes of graphs with bounded expansion,
as defined by Nešetřil and Ossona de Mendez [6, 3, 4, 5]. The grad2 with rank
r of a graph G is equal to the largest average density of a graph G′ that can
be obtained from G by removing some of the vertices (and possibly edges)
and then contracting vertex-disjoint subgraphs of radius at most r to single
vertices (arising parallel edges are suppressed). The grad with rank r of G
is denoted by ∇r(G). In particular, 2∇0(G) is the maximum average degree
of a subgraph of G. Given a function f : N → R+, a graph has expansion
bounded by f if ∇r(G) ≤ f(r) for every integer r. A class G of graphs has
expansion bounded by f if the expansion of every G ∈ G is bounded by f .
Finally, we say that a class of graphs G has bounded expansion if there exists
a function f such that the expansion of G is bounded by f .

The concept of classes of graphs with bounded expansion proves sur-
prisingly powerful. Many classes of graphs have bounded expansion (proper
minor-closed classes, classes of graphs with bounded maximum degree, classes
of graphs excluding subdivision of a fixed graph, . . . ), and many results for
proper minor-closed classes (existence of colorings, small separators, light
subgraphs, . . . ) generalize to classes of graphs with bounded expansion (pos-
sibly with further natural assumptions). The classes of graphs with bounded
expansion are also interesting from the algorithmic point of view, as the
proofs of the mentioned results usually give simple and efficient algorithms.
Furthermore, fast algorithms and data structures for problems like deciding
whether a graph contains a fixed subgraph, or for determining the distance
between a pair vertices (assuming that the distance is bounded by a fixed
constant), have been derived. The reader is referred to [7] for a survey of the
results regarding the bounded expansion.

1 Lower bound

In this section, we show that the class of graphs with expansion bounded by
the function f(r) = A + Brc is small, for any A, B > 0 and 0 ≤ c < log9 2.
Our proof is inspired by the proof of Norine et al. [8]. The main difference is
that we avoid contracting the edges one by one (which would make us lose
control over the expansion of the graph), instead contracting many edges
at once—this way, the expansion of the graph grows, but slowly enough in
comparison with the decreasing size of the graph, so that we can bound the
number of graphs. Another difference is in the way that we deal with the
case that the graph contains only a few light edges (i.e., edges connecting two
vertices of degree at most d, for some bound d)—while the original approach

2Greatest Reduced Average Density
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would work, it would force us to use too large d in the definition of a light
edge and result in an (exponentially) worse upper bound on the allowed
expansion.

Lemma 1. A graph G on n vertices contains at most 1 + 4∇0(G)n cliques,
and the bound can be decreased by one if G has at least one edge.

Proof. There exists an ordering v1, . . . , vn of vertices of G such that each
vertex has at most 2∇0(G) neighbors before it in this ordering, i.e., |{vj :
j < i, {vi, vj} ∈ E(G)}| ≤ 2∇0(G) for each i = 1, . . . , n. Suppose that G
has k cliques, including the empty one. Let us count the number of pairs
(C, v), where C is a nonempty clique in G and v is the last vertex of C in the
ordering. On one hand, each nonempty clique has exactly one last vertex,
thus there are k − 1 such pairs. On the other hand, all the cliques in that
v is the last vertex must be subgraphs of the graph induced by v and its
neighbors that precede it in the ordering, thus there are at most 22∇0(G) of
them. It follows that k ≤ 1 + 4∇0(G)n.

Suppose that G has at least one edge. As the density of the graph con-
sisting of a single edge is 1/2, ∇0(G) ≥ 1/2. It follows that we have overes-
timated the contribution of v1 by at least 1, hence k ≤ 4∇0(G)n.

A graph F such that all of its components are stars is called a star forest.
Let C(F ) denote the set of centers of the stars in F (in case that a component
of F consists of a single edge, its center can be chosen arbitrarily). The
vertices of F that do not belong to C(F ) are called ray vertices, and their set
is denoted by R(F ). For an integer d and a vertex v of a graph, let N>d(v)
be the set of neighbors of v whose degree is greater than d.

Lemma 2. For every graph G on n vertices and an integer d > 0, there
exists a set S ⊆ V (G) of vertices of degree at most d and a star forest F ⊆ G
with V (F ) = V (G) \ S, such that if H is the graph obtained from G − S by
contracting the edges of F , then

• |C(F )| ≤ 2∇0(G)
d

n, |E(F )| ≤ 2∇0(G)∇1(G)
d

n, and

• for each v ∈ S, N>d(v) ⊆ C(F ) and N>d(v) induces a clique in H, and

• the degree (in G) of each ray vertex of F is at most d.

Proof. Let X be the set of vertices of G whose degree is greater than d,
|X| ≤ 2∇0(G)n

d
. We say that a set B ⊆ V (G)\X is extending if to each vertex

v ∈ B, we can assign two of its neighbors a(v) and b(v) in X such that

• {a(v), b(v)} 6∈ E(G), and
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• {a(v), b(v)} 6= {a(v′), b(v′)} for v 6= v′, v, v′ ∈ B.

Let Z ⊆ V (G) \X be a maximal extending set, and S = V (G) \ (X ∪Z).
Let G1 be the graph with V (G1) = X and E(G1) = E(G[X])∪{{a(v), b(v)} :
v ∈ Z}. Observe that G1 is obtained from G by removing vertices and edges,
and contracting edges of a star forest F with C(F ) = X and R(F ) = Z (some
of the stars in F may be isolated vertices), thus ∇0(G1) ≤ ∇1(G). Therefore,

|E(F )| = |Z| ≤ |E(G1)| ≤ ∇1(G)|X| ≤ 2∇0(G)∇1(G)n
d

. By the definition of X,
N>d(v) ⊆ X for each v ∈ S, and by the maximality of Z, N>d(v) induces a
clique in G1 ⊆ H .

Let N (f, n) be the number of graphs on n vertices whose expansion is
bounded by a non-decreasing positive function f , and I (f, n) = N (f, n) /n!.
Let f ⋆ be the function defined by f ⋆(x) = f(3x + 1). Note that if the
expansion of a graph G is bounded by f , then the expansion of the graph
obtained from G by contracting a star forest is bounded by f ⋆. Let us recall
the following well-known estimates: k! ≥ (k/e)k and

(

k
m

)

≤ (ek/m)m, valid
for all integers k ≥ m > 0.

Lemma 3. Let f : N → R+ be a non-decreasing function with f(0) ≥ 1/2

and d > 0, n ≥ 4 integers. Let α = 2f(0)(f(1)+1)
d

and k =
⌊

1+α
2

n
⌋

. If α < 1/2,
then

N (f, n) ≤ I(f ⋆, k)
(

42(ed2)d+14f(1)
)n

.

Proof. Let G be a graph with n vertices and expansion bounded by f . Con-
sider S ⊆ V (G) and a spanning forest F ⊆ G − S given by Lemma 2,
|S| ≥ (1 − α)n. Let L1 be the set of vertices of S that do not have any
neighbor of degree at most d, and F ′

1 ⊆ G − L1 a star forest such that each
vertex of F ′ has degree (in G) at most d, S \ L1 ⊆ V (F ′) and each com-
ponent of F ′

1 contains at least one edge. Note that |L1| + |E(F ′
1)| ≥ |S|/2,

hence n − |L1| − |E(F ′
1)| ≤ k. Consider L ⊆ L1 and F ′ ⊆ F ′

1 such that each
component of F ′ contains at least one edge and n − |L| − |E(F ′)| = k. Let
G′ be the graph obtained from G − L by contracting all edges of F ′. Note
that |V (G′)| = n − |L| − |E(F ′)| = k, and the expansion of G′ is bounded
by f ⋆. Furthermore, each vertex obtained by contracting a component of F ′

has degree at most d(d − 1).
We now show that we can obtain a particular graph G′ by this process

only from a limited number of graphs. More precisely, given the graph G′,
the graph G is one of the graphs obtained in the following way:

1. Choose a subset Y of [n] of size k (
(

n
k

)

ways), and identify the set of
vertices of G′ with Y .
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2. Choose the set L ⊆ [n] \ Y (at most 2n ways).

3. For each vertex v ∈ [n] \ (L ∪ Y ) select a vertex i(v) ∈ Y . Let F ′

be the star forest with the edges {v, i(v)} for all such vertices, with
C(F ′) = V (F ′) ∩ Y (at most kn−k−|L| ≤ nn−k−|L| ways). We only
consider the forests F ′ with maximum degree at most d.

4. Let us define i(u) = u for each u ∈ C(F ′). We only consider the
forests F ′ such that the degree (in G′) of each such vertex is at most
d(d − 1). For each vertex v ∈ V (F ′), let P (v) = {x : {i(v), i(x)} ∈
E(G′)}∪{x : i(v) = i(x)}\{v}. We only consider the trees F ′ such that
that |P (v)| ≤ d(d− 1)(d + 1) + (d + 1)− 1 = d3. Choose a subset I(v)

of size at most d from P (v) (at most
(

d
(

d3

d

)

)n

≤
(

d(ed2)d
)n

ways). We

only consider the choices of I such that the neighborhood of v in F ′ is
a subset of I(v), and for each u, v ∈ V (F ′), if u ∈ I(v), then v ∈ I(u).
Let G′′ be the graph with V (G′′) = [n], such that G′′[Y \ V (F ′)] =
G′[Y \ V (F ′)], the neighborhood of each vertex v ∈ V (F ′) consists of
I(v), and the vertices of L are isolated. Consider only the choices that
lead to a graph G′′ with expansion bounded by f .

5. Choose disjoint sets X, Z ⊆ [n]\L, such that the degree of each vertex
of Z in G′′ is at most d (at most 3n ways).

6. For each vertex of Z, choose an edge joining it with a vertex of X, and
let the F be the star forest consisting of these edges (at most dn ways).

7. Let H be the graph obtained from G′′[X ∪Z] by contracting the edges
of F . By Lemma 1, H contains at most 4f(1)n cliques—note that the
estimate is valid even if H has no edges or X = ∅, as f(1) ≥ f(0) ≥ 1/2
and n > 0. For each vertex v ∈ L, choose a clique C in H , and add

edges between v and the vertices of C (at most
(

4f(1)n
)|L| ≤ 4f(1)nn|L|

ways).

As there are N (f ⋆, k) graphs with expansion bounded by f ⋆ on k vertices,

N (f, n) ≤ N (f ⋆, k)

(

n

k

)

(

6d2(ed2)d4f(1)
)n

nn−k

= n!I (f ⋆, k)
nn−k

(n − k)!

(

6d2(ed2)d4f(1)
)n

≤ n!I (f ⋆, k)

(

n

n − k

)n−k
(

6(ed2)d+14f(1)
)n

.
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As α < 1/2 and n ≥ 4, n
n−k

≤ n
n−⌈3n/4⌉ ≤ 7. The claim of the lemma

follows.

Let us now show the main result:

Theorem 4. For any A, B > 0 and 0 ≤ c < log9 2, the class of graphs whose
expansion is bounded by f(r) = A + B · rc is small.

Proof. The claim is trivial if f(0) < 1/2, as the class of graphs bounded by
such a function f contains only edgeless graphs, N ((, f) , n) ≤ 1. There-
fore, assume that f(0) ≥ 1/2. Furthermore, f is non-decreasing, thus we
may apply Lemma 3. Let us consider fixed α, 0 < α < 1/3, and set

d = 6f2(1))
α

≥ 2f(0)(f(1)+1)
α

. In particular, log d ≥ 1, d ≥ log 42, d ≥ log 4 ·f(1),
and (d + 1)(1 + 2 log d) ≤ 6d log d, hence 42(ed2)d+14f(1) ≤ e8d log d. Let

q(x) = x2 log(x + e) and C = 192+48 log(1/α)
α

. Note that

8d log d =
48

α
f 2(1)(log 6 + 2 log f(1) − log α) ≤ Cq(f(1)).

Lemma 3 implies that for any n ≥ 4,

I (f, n)≤ I

(

f ⋆,

⌊

1 + α

2
n

⌋)

(

42(ed2)d+14f(1)
)n ≤ I

(

f ⋆,

⌊

1 + α

2
n

⌋)

eCq(f(1))n.

For a real number x ≥ 4, let I (f, x) = max(8, max4≤n≤x I (f, n)), and for
x < 4, let I (f, x) = 8 (the number of graphs on 3 vertices). Given x ≥ 4
such that I (f, x) 6= 8, there exists n (4 ≤ n ≤ x) such that I (f, x) = I (f, n),
in particular,

I (f, x) ≤ I

(

f ⋆,

⌊

1 + α

2
n

⌋)

eCq(f(1))n ≤ I

(

f ⋆,
1 + α

2
x

)

eCq(f(1))x.

Note that in case that x ≥ 4 and I (f, x) = 8, this inequality holds as

well. Let f0 = f and fi+1 = f ⋆
i for i ≥ 0. Note that fi(d) = 3id + 3i−1

2
, in

particular, fi(1) = 3i+1−1
2

. The recurrence can be expanded to

I (f, x) ≤ 8

t
∏

i=0

eCq(fi(1))( 1+α
2 )

i
x = 8

t
∏

i=0

e
Cq

“

f
“

3i+1
−1

2

””

( 1+α
2 )

i
x
,

where t is the smallest integer such that
(

1+α
2

)t+1
x < 4. Taking the

logarithm of this inequality, we obtain
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log I (f, x) ≤ log 8 + Cx

t
∑

i=0

q

(

f

(

3i+1 − 1

2

)) (

1 + α

2

)i

,

thus the class of graphs with expansion bounded by f is small if

∞
∑

i=0

q

(

f

(

3i+1 − 1

2

)) (

1 + α

2

)i

is finite. If f(r) = A + B · rc with c < log9 2, this is the case if we choose
α < 2

9c − 1.

2 Upper bound

For any fixed d > 2, the results of Bender and Canfield [1] imply that the

number of simple d-regular graphs on n vertices (with dn even) is Ω
(

(nd/2)!
(d!)n

)

.

It follows that the class of 3-regular graphs (whose expansion is bounded by
f(n) = 3 · 2n−1) is not small. We can improve this observation slightly in the
following way: for a non-decreasing positive function g : N → N , let Gg be
the class of graphs such that G ∈ Gg if and only if there exists a 4-regular3

graph H such that G is obtained from H by subdividing each edge of H
by g(|V (H)|) vertices. Let N(g, n) be the number of graphs in Gg with n
vertices, and N4(n) the number of 4-regular graphs with n vertices, N4(n) =

Ω
(

(2n)!
24n

)

= Ω
(

(n!)2

7n

)

. If n = k(1 + 2g(k)), then N(g, n) ≥
(

n
k

)

N4(k)(n − k)!

—we choose the vertices of a 4-regular graph H , order the remaining n − k
vertices arbitrarily, and distribute them to the edges of H according to some
canonical ordering of E(H). In particular, N(g, n) ≥ n!N4(k)/k! = Ω

(

n!k!
7k

)

.
If k log k = ω(n), this implies that Gg is not small. We can achieve this by
choosing a function g(x) = o(log x).

Note that for any t ≥ 0 and a graph H with 2k edges, ∇t(H) ≤
√

k
for any t—a minor with at most 2

√
k vertices has maximum degree at most

2
√

k, while a minor with more than 2
√

k vertices has average degree at most
2·2k
2
√

k
≤ 2

√
k. Consider a graph G ∈ Gg with n = k(1 + 2g(k)) vertices,

obtained from a 4-regular graph H on k vertices. A subgraph of G of radius

r corresponds to a subgraph of H of radius at most
⌈

r
g(k)+1

⌉

, thus ∇r(G) ≤
∇⌈ r

g(k)+1⌉(H) ≤ min
(√

k, 6 · 3 r
g(k)+1

)

. Therefore, if h is the function that

3We could also use 3-regular graphs in the same construction, but the obtained bound
would be similar and by using 4-regular graphs, we avoid the need to require that the
number of vertices is even.
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bounds the expansion of Gg, then h(r) ≤
√

kr, where kr is the solution to the

equation 6 · 3
r

g(kr)+1 =
√

kr.

Theorem 5. There exists a constant c > 0 such that the class of graphs with
expansion bounded by the function f(r) = c · e

√
r log(r+e) is not small.

Proof. Let g(k) = log k
log log k

= o(log k). As we observed, Gg is not small, thus it
suffices to show that it has expansion bounded by f .

Consider first the function f1 = e
√

r log(r+e). We show that there exists r0

such that for all r > r0,
√

kr ≤ f1(r), hence f1(r) ≥ ∇r(G) for all r > r0

and G ∈ G: the inequality
√

kr ≤ f1(r) is equivalent to 6 · 3
r

g(f2
1
(r))+1 ≤ f1(r).

However,

6 · 3
r

g(f2
1
(r))+1 ≤ 6 · 3

r log log f2
1 (r)

log f2
1
(r) ≤ 6 · 3

√
r

log log f2
1 (r)

log(r+e) = 6 · 3
√

r log(r+e)
log log f2

1 (r)

log2(r+e) .

As limr→∞
log log f2

1 (r)

log2(r+e)
= 0, there exists r0 such that for r > r0, 6·3

r

g(f2
1 (r))+1 ≤

f1(r).
Since the maximum degree of graphs in Gg is 4, ∇r(G) ≤ 4 · 3r−1 for any

G ∈ Gg. It follows that the expansion of Gg is bounded by c · e
√

r log(r+e),
where c = 4 · 3r0.

3 Conclusions

Significantly improving the constant log9 2 ≈ 0.315 would require a new idea;
ideally, we would like to decrease the size of the graph about d = ∇0(G) times,
instead of roughly twice, in each iteration of the recurrence. However, this
appears hard to achieve if no or only a few vertices have degree approximately
d. Nevertheless, we propose the following conjecture. A class of graphs has
subexponential expansion if its expansion is bounded by a function f with
log log f(r)

log r
= o(1).

Conjecture 1. Any class of graphs with subexponential expansion is small.

This is motivated by the fact that classes of graphs with subexponen-
tial expansion have separators of sublinear size (Nešetřil and Ossona de
Mendez [4]), indicating that some kind of structure appears in such classes.
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