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Abstract

We show that every plane graph with maximum face size four
whose all faces of size four are vertex-disjoint is cyclically 5-colorable.
This answers a question of Albertson whether graphs drawn in the
plane with all crossings independent are 5-colorable.

1 Introduction

Coloring of graphs embedded in surfaces, in the plane in particular, attracts
a lot of attention of researchers in graph theory. The famous Four Color
Theorem [4, 22] asserts that every graph that can be drawn in the plane
with no crossings is 4-colorable. It is natural to ask what number of colors is
needed to color graphs that can be embedded in the plane with a restricted
number of crossings. If every edge is crossed by at most one edge (such
graphs are called 1-embeddable and we restrict our attention solely to such
graphs throughout this paper), Ringel [21] conjectured that six colors suffice.
This conjecture was answered in affirmative by Borodin [5, 7].

Albertson [1] considered graphs with even more restricted structure of
crossings. Two distinct crossings are independent if the end-vertices of the
crossed pair of edges are mutually different. In particular, if all crossings are
independent, then each edge is crossed by at most one other edge. Albertson
showed that every graph drawn in the plane with at most 3 crossings is 5-
colorable (note that the complete graph of order five can be drawn in the
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plane with a single crossing) and conjectured [1, 2] that every graph that can
be drawn in the plane with all its crossings independent is 5-colorable. In
this paper, we prove his conjecture.

The coloring problem that we study is closely related to the notion of
cyclic coloring. A coloring of vertices of an embedded graph is cyclic if any
two vertices incident with the same face receive distinct colors. Let us show
how the original problem can be expressed using this notion. Let G be a
plane graph with all its crossings independent. We can assume (by adding
edges if necessary) that all faces of G that do not contain a crossing have size
three and those that contain a crossing have size four. Remove now all edges
that are crossed by another edge. Clearly, a cyclic coloring of the obtained
graph G′ is a proper coloring of the original graph G and vice versa. The
assumption that all crossings of G are independent translates to the fact that
all faces of G′ with size four are vertex disjoint. Hence, our main result can
be stated as follows:

Theorem 1. Let G be a plane graph with faces of size three and four only. If

all the faces of size four are vertex-disjoint, then G is cyclically 5-colorable.

Before we proceed with proving Theorem 1, let us survey known results on
cyclic colorings of plane graphs. Since the maximum face size is a lower bound
on the number of colors needed in a cyclic coloring, it is natural to study
the number of colors needed to cyclically color a plane graph as a function
of its maximum face size ∆∗. If ∆∗ = 3, then the graph is a triangulation
and the optimal number of colors is four by the Four Color Theorem. If
∆∗ = 4, then the optimal number of colors six by results of Borodin [5, 7];
the optimality is witnessed by the prism over K3. For larger values of ∆∗,
the Cyclic Coloring Conjecture of Ore and Plummer [19] asserts that the
optimal number of colors is equal to ⌊3∆∗/2⌋ (the optimality is witnessed
by a drawing of K4 with subdivided edges). After a series of papers [6, 8]
on this problem, the best general bound of ⌈5∆∗/3⌉ has been obtained by
Sanders and Zhao [23]. Amini, Esperet and van den Heuvel [3] cleverly used
a result by Havet, van den Heuvel, McDiarmid and Reed [10, 11] on coloring
squares of planar graphs and showed that the Cyclic Coloring Conjecture is
asymptotically true in the following sense: for every ε > 0, there exists ∆ε

such that every plane graph of maximum face size ∆∗ ≥ ∆ε admits a cyclic
coloring with at most

(

3

2
+ ε

)

∆∗ colors.
There are two other conjectures related to the Cyclic Coloring Conjecture

of Ore and Plummer. A conjecture of Plummer and Toft [20] asserts that
every 3-connected plane graph is cyclically (∆∗+2)-colorable. This conjecture
is known to be true for ∆∗ ∈ {3, 4} and ∆∗ ≥ 18, see [9, 14, 15, 16]. The
restriction of the problems to plane graphs with a bounded maximum face size
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is removed in the Facial Coloring Conjecture [17] that asserts that vertices
of every plane graph can be colored with at most 3ℓ + 1 colors in such a way
that every two vertices joined by a facial walk of length at most ℓ receive
distinct colors. This conjecture would imply the Cyclic Coloring Conjecture
for odd values of ∆∗. Partial results towards proving this conjecture can be
found in [12, 13, 17, 18].

2 Preliminaries

The proof of Theorem 1 is divided into several steps. We first identify config-
urations that cannot appear in a counterexample with the smallest number
of vertices. Later, using a discharging argument, we show that a plane graph
avoiding all these configurations cannot exist. In particular, vertices and
faces of a counterexample are assigned charge whose total sum is negative and
which is redistributed preserving its total sum. Lemmas 11–16 claim that the
final amount of charge of every vertex and every face is non-negative which
excludes the existence of a counterexample and yields a proof of Theorem 1.

We now introduce notation used throughout the paper. Let us start with
some general notation. A vertex of degree d is referred to as a d-vertex and
a face of size d as a d-face. A cyclic neighbor of a vertex v is a vertex lying
on the same face as v and the cyclic degree of v is the number of its cyclic
neighbors.

Our goal is to prove Theorem 1. We assume that the statement of the
theorem is false and consider a counterexample with the smallest number
of vertices; such a counterexample is referred to as minimal, i.e., a minimal
counterexample G is a plane graph with faces of size three and four such that
all 4-faces of G are vertex-disjoint, G has no cyclic 5-coloring and any graph
G′ satisfying assumptions of Theorem 1 with a smaller number of vertices
than G has a cyclic 5-coloring.

A vertex v of a minimal counterexample G is pentagonal if the degree
of v is five, v is incident with no 4-face and every neighbor of v is incident
with a 4-face. A 4-face incident with a neighbor of a pentagonal vertex v is
said to be close to v if it contains an edge between two consecutive neighbors
of v; a 4-face incident with a neighbor of a pentagonal vertex that is not
close is distant. If f is close/distant to a vertex v, then we also say that v is
close/distant to f . A pentagonal vertex is solitary if no 4-face is close to it.

Let v be a pentagonal vertex and v′ a neighbor of it. Let w′ and w′′ be
the common neighbors of v′ and another neighbor of v (see Figure 1). If the
4-face incident with v′ contains both w′ and w′′, then the degree of v′ is five.
If the 4-face contains one of the vertices w′ and w′′, then v′ is said to be
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Figure 1: Examples of a pentagonal vertex v adjacent to a vertex v′ of degree
five, a one-sided vertex and a double-sided vertex (in this order).

one-sided, and if the 4-face incident with v′ contains neither w′ and w′′, then
v′ is double-sided. Observe that if a pentagonal vertex is adjacent to a vertex
of degree five, it must also be adjacent to a double-sided vertex (otherwise,
some of the 4-faces incident with its neighbors would not be vertex-disjoint).

3 Reducible configurations

In this section, we show that a minimal counterexample cannot contain cer-
tain substructures which we refer to as configurations. Let us start with the
following simple observation.

Lemma 2. A minimal counterexample G does not contain a separating cycle

of length two or three.

Proof. Assume that G contains a separating cycle C of length two or three.
Let G′ and G′′ be the subgraphs lying in the interior and the exterior of the
cycle C (including the cycle C itself). If C is of length two, remove one of
the two parallel edges bounding C from G′ and G′′. By the minimality of G,
both G′ and G′′ have a cyclic 5-coloring. The colorings of G′ and G′′ readily
combine to a cyclic 5-coloring of G.

We will use Lemma 2 as follows: if we identify some vertices of a minimal
counterexample, Lemma 2 guarantees that the resulting graph is loopless as
long as every pair of the identified vertices have a common neighbor. Indeed,
if a loop appeared, the two identified vertices with their common neighbor
would form a separating cycle of length three.

We next show that the minimum degree of a minimal counterexample is
at least five.
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Figure 2: A vertex of degree four with five cyclic neighbors and its reduction.

Lemma 3. A minimal counterexample G does not contain a vertex v of

degree four or less.

Proof. If the cyclic degree of v is less than five, let G′ be the graph obtained
by removing v from G and triangulating the new face. By the minimality of
G, G′ has a cyclic 5-coloring. Since the cyclic degree of v is less than five,
this coloring can be extended to a cyclic 5-coloring of the original graph G.
Hence, we can assume that the cyclic degree of v is five. In particular, the
degree of v is four and v is contained in a 4-face (see Figure 2).

Let v1, . . . , v5 be the neighbors of v. By symmetry we can assume that
the 4-face incident with v is vv1v2v3. Let G′ be the graph obtained from G by
removing the vertex v and identifying the vertices v1 and v4 to a new vertex
w, see Figure 2. Note that the vertex w is contained in at most one 4-face
since the 4-face incident with v1 becomes a 3-face in G′. Since the vertices
v1 and v4 have a common neighbor, the graph G′ is loopless by Lemma 2.

By the minimality of G, G′ has a cyclic 5-coloring. Since two of the
neighbors of v (the vertices v1 and v4) are assigned the same color and the
cyclic degree of v is five, the coloring can be extended to a cyclic 5-coloring
of G.

Our next step is to show that all vertices of degree five that appear in a
minimal counterexample must be pentagonal or incident with a 4-face.

Lemma 4. Every vertex v of degree five in a minimal counterexample G is

either pentagonal or incident with a 4-face.

Proof. We proceed as in the proof of Lemma 3. Consider a 5-vertex v incident
with 3-faces only such that one of its neighbors is not incident with a 4-face.
Let v1, . . . , v5 be the neighbors of v and v1 a neighbor not incident with a
4-face. Remove v and identify vertices v1 and v3 (see Figure 3). Since the
vertex v1 is not incident with a 4-face in G, the new vertex is contained in
at most one 4-face. By the minimality of G, the new graph can be cyclically
5-colored and this coloring readily yields a coloring of G.
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Figure 3: A non-pentagonal vertex of degree five incident with no 4-face and
its reduction.
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Figure 4: A reduction of a 4-face with two adjacent 5-vertices.

In the next lemma, we show that no 4-face of a minimal counterexample
contains two adjacent vertices of degree five.

Lemma 5. A minimal counterexample G does not contain a 4-face with two

adjacent vertices of degree five.

Proof. Assume that G contains a 4-face v1v2v3v4 such that the degrees of v1

and v2 are five. Let w be the common neighbor of v1 and v2, w1 and w′

1 the
other neighbors of v1 (named in such a way that w′

1 is a neighbor of v4) and
w2 and w′

2 the other neighbors of v2. See Figure 4.
Let G′ be the graph obtained by removing the vertices v1 and v2 and

identifying the vertices w and v3 and the vertices w1 and v4. Clearly, the
graph G′ is loopless (as the graph G has no separating 3-cycles by Lemma 2)
and all its 4-faces are vertex-disjoint.

By the minimality of G, G′ has a cyclic 5-coloring. Assign the vertices of
G the colors of their counterparts in G′. Next, color the vertex v2: observe
that two of its 6 cyclic neighbors have the same color and one is uncolored.
Hence, v2 can be colored. Since the vertex v1 has 6 cyclic neighbors and two
pairs of its cyclic neighbors have the same color, the coloring can also be
extended to v1.
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Figure 5: A reduction of a 4-face with a vertex of degree five adjacent to a
close pentagonal vertex.

In the next two lemmas, we show that a 4-face of a minimal counterex-
ample cannot contain a vertex of degree at most six adjacent to a close
pentagonal vertex.

Lemma 6. A minimal counterexample G does not contain a vertex of degree

five contained in a 4-face that is adjacent to a close pentagonal vertex.

Proof. Assume that G contains a 4-face v1v2v3v4 such that v1 has degree five
and is adjacent to a close pentagonal vertex v. Let v1, v2, v

′

3, v
′

4, v
′

5 be the
neighbors of v (see Figure 5). Let G′ be the graph obtained by removing the
vertices v and v1 and identifying the vertices v2 and v′

4 and the vertices v4

and v′

5. Since every pair of identified vertices has a common neighbor, G′ is
loopless by Lemma 2. The 4-faces of G′ are also vertex-disjoint.

By the minimality of G, the graph G′ has a cyclic 5-coloring. Assign
the vertices of G the colors of their counterparts in G′. We next color the
vertex v1 with an available color (the cyclic degree of v1 is six, it has a pair of
neighbors colored with the same color and an uncolored neighbor) and then
the vertex v (its cyclic degree is five and it has a pair of neighbors colored
with the same color). The existence of this coloring contradicts that G is a
counterexample.

Lemma 7. A minimal counterexample does not contain a vertex of degree

six contained in a 4-face that is adjacent to a close pentagonal vertex.

Proof. Assume that G contains a 4-face v1v2v3v4 such that v1 has degree six
and is adjacent to a close pentagonal vertex v. Let v1, v2, v

′

3, v
′

4, v
′

5 be the
neighbors of v and w the common neighbor of v1 and v′

5 (since all 4-faces
are vertex disjoint, both faces containing the edge v1v

′

5 have size three and
the vertex w must exist). Also see Figure 6. Let G′ be the graph obtained
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Figure 6: A reduction of a 4-face with a vertex of degree six adjacent to a
close pentagonal vertex.

from G by removing the vertices v and v1 and identifying the vertices v2 and
v′

5 and the vertices v4 and w. Since every pair of identified vertices has a
common neighbor, G′ is loopless by Lemma 2. The 4-faces of G′ are also
vertex-disjoint.

By the minimality of G, the graph G′ has a cyclic 5-coloring. Assign the
vertices of G the colors of their counterparts in G′. We next color the vertex
v1 with an available color (the cyclic degree of v1 is seven, it has two pairs of
neighbors colored with the same color and an uncolored neighbor) and then
the vertex v (its cyclic degree is five and it has a pair of neighbors colored
with the same color). Again, the existence of this coloring contradicts that
G is a counterexample.

By Lemmas 6 and 7, we have:

Lemma 8. Let G be a minimal counterexample and v a pentagonal vertex

with neighbors v1, v2, v3, v4 and v5 in G. If the edge vivi+1 is contained in a

4-face, then the degrees of vi and vi+1 are at least seven.

At the end of this section, we exclude two more complex configurations
from appearing around a pentagonal vertex in a minimal counterexample.
The configurations described in Lemmas 9 and 10 are depicted in Figures 7
and 8, respectively.

Lemma 9. No minimal counterexample contains a pentagonal vertex v with

neighbors v1, . . . , v5 such that for some i ∈ {1, . . . , 5}

1. the degree of vi is six,

2. the vertices vi and vi+1 have a common neighbor w of degree five,

3. the vertices vi and w have a common neighbor w′, and
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Figure 7: The configuration described in Lemma 9. The vertex x is obtained
by identifying vertices drawn with empty circles.

4. the edges viw
′ and vi+1w lie in 4-faces.

Proof. We can assume that i = 1. Let w′′ be the neighbor of w distinct from
v2 that lies on the 4-face incident with w. Remove the vertices v, v1 and w
from G, identify the vertices v2, v5 and w′ to a new vertex x, and add an
edge xw′′. Let G′ be the resulting graph. As any pair of identified vertices
have a common neighbor, the graph G′ \ {xw′′} is loopless by Lemma 2. If
the edge xw′′ were a loop, then the vertices v5 and w′′ would coincide in G′

which would yield a separating 3-cycle v1ww′′ = v5 in G. We conclude that
G′ is loopless. Similarly, all 4-faces of G′ are vertex-disjoint.

By the minimality of G, the graph G′ has a cyclic 5-coloring. Assign
vertices of G the colors of their counterparts in G′. The only vertices without
a color are the vertices w, v1 and v which we color in this order. Let us verify
that each of these vertices is cyclically adjacent to vertices of at most four
distinct colors when we want to color it. At the beginning, the vertex w has
six cyclic neighbors, out of which two have the same color (v2 and w′) and one
is uncolored. Next, the vertex v1 has cyclic degree seven but it is adjacent to
a triple of vertices with the same color and an uncolored vertex. Finally, the
cyclic degree of v is five and two of its neighbors have the same color. The
constructed coloring violates our assumption that G is a counterexample.

Lemma 10. No minimal counterexample contains a pentagonal vertex v with

neighbors v1, . . . , v5 such that for some i ∈ {1, . . . , 5}

1. the degree of vi is six,

2. the vertices vi and vi+1 have a common neighbor w of degree six,

3. the vertices vi and w have a common neighbor w′, and
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Figure 8: The configuration described in Lemma 10. The vertex x is obtained
by identifying vertices drawn with empty circles.

4. the edges viw
′ and vi+1w lie in 4-faces.

Proof. We can assume that i = 1. Let w′′, w′′′ and w′′′′ be the neighbors of
w as depicted in Figure 8. Remove the vertices v, v1 and w from G, identify
the vertices v2, v5 and w′ to a new vertex x and identify the vertices w′′ and
w′′′′. Let G′ be the resulting graph. As any pair of identified vertices have
a common neighbor, the graph G′ is loopless by Lemma 2. Moreover, all
4-faces of G′ are vertex-disjoint.

By the minimality of G, the graph G′ has a cyclic 5-coloring. Now assign
vertices of G the colors of their counterparts in G′. The only vertices without
a color are the vertices w, v1 and v which we color in this order. Let us verify
that each of these vertices is cyclically adjacent to vertices of at most four
distinct colors when we want to color it. At the beginning, the vertex w has
seven cyclic neighbors, out of which two pairs have the same color (the pair
v2 and w′, and the pair w′′ and w′′′′) and one neighbor is uncolored. Next, the
vertex v1 has also cyclic degree seven but it is adjacent to a triple of vertices
with the same color and an uncolored vertex. Finally, the cyclic degree of
v is five and two of its neighbors have the same color. Finally, the obtainec
coloring contradicts that G is a counterexample.

4 Discharging rules

The core of the proof is an application of the standard discharging method.
We fix a minimal counterexample and assign each vertex and each face initial
charge as follows: each d-vertex receives d − 6 units of charge and each d-
face receives 2d − 6 units of charge. An easy application of Euler formula
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yields that the sum of initial amounts of charge is −12. The amount of
charge is then redistributed using the rules introduced in this section in such
a way that all vertices and faces have non-negative amount of charge at the
end. Since the redistribution preserves the total amount of charge, this will
eventually contradict the existence of a minimal counterexample.

Let us start presenting the rules for charge redistribution. Rules S1 and
S2 guarantee that the amount of final charge of every vertex incident with
a 4-face is zero (vertices not incident with a 4-face are not affected by Rules
S1 and S2).

Rule S1 Every 5-vertex receives 1 unit of charge from its (unique) incident
4-face.

Rule S2 Every d-vertex, d ≥ 6, sends d − 6 units of charge to its incident
4-face.

A more complex set of rules is needed to guarantee that the amount of
final charge of pentagonal vertices is non-negative. The following notation
is used in Rules P5a–P8+: v is a pentagonal vertex adjacent to a vertex w
incident with a 4-face f distant from v; the neighbors of w incident with f are
denoted w′ and w′′. A vertex w is understood to be one-sided or double-sided
with respect to v. Rules P5a–P7c are illustrated in Figure 9.

Rule PC Every pentagonal vertex receives 1 unit of charge from each close
4-face.

Rule P5a If w has degree five and exactly one of the vertices w′ and w′′

have degree six, then v receives 0.2 units of charge from f .

Rule P5b If w has degree five and both w′ and w′′ have degree at least
seven, then v receives 0.4 units of charge from f .

Rule P6a If w has degree six, exactly one of the vertices w′ and w′′ have
degree five and the other has degree six, then v receives 0.25 units of
charge from f .

Rule P6b If w has degree six and the sum of the degrees of w′ and w′′ is at
least twelve, then v receives 0.5 units of charge from f .

Rule P7a If w is a one-sided vertex of degree seven and both w′ and w′′

have degree five, then v receives 0.3 units of charge from f .

Rule P7b If w is a one-sided vertex of degree seven and at most one of the
vertices w′ and w′′ has degree five, then v receives 0.5 units of charge
from f .
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Figure 9: Illustration of Rules P5a–P7c. The numbers in circles represent
degrees of vertices (plus signs stand for any degree not constrained in another
part of the figure), the 4-face f sending charge is shaded and the pentago-
nal vertex receiving charge is denoted by v. The amount of charge sent is
represented by the number in the middle of the face f .
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Rule P7c If w is a double-sided vertex of degree seven, then v receives 0.5
units of charge from f .

Rule P8+ If the degree of w is eight or more, then v receives 0.5 units of
charge from f .

The amount of final charge of faces and vertices after redistributing charge
based on the above rules is analyzed in the next two sections.

5 Final charge of faces

In this section, we analyze the final amount of charge of faces in a minimal
counterexample. Since 3-faces do not receive or send out any charge, it is
enough to analyze the final charge of 4-faces. We break down the analysis
into four lemmas that cover all possible cases how a 4-face can look like (up
to symmetry). We start with 4-faces incident with two vertices of degree five.

Lemma 11. Let f = v1v2v3v4 be a 4-face of a minimal counterexample. If

the degrees of v1 and v3 are five, then the final amount of charge of f is

non-negative.

Proof. By Lemma 5, the degree of v2 and v4 is at least six, and by Lemma 8,
no pentagonal vertex is close to f . Let k be the number of vertices of degree
seven or more incident with f . By Rules P5a or P5b, the face f sends
pentagonal vertices adjacent to v1 or v3 at most 2 × k × 0.2 = 0.4k units of
charge. Let di be the degree of a vertex vi, i = 2, 4. If di = 6 for i = 2, 4,
then f sends out no charge to pentagonal vertices adjacent to vi. If di = 7
for i = 2, 4, then the face f sends either 0.3 units of charge to at most
two pentagonal vertices adjacent to vi by Rule P7a or 0.5 units of charge
to a single vertex by Rule P7b; this follows from the fact no two adjacent
neighbors of a vertex vi can be both pentagonal and the common neighbors
of vi and v1 or v3 are not pentagonal by Lemma 6. These two facts also imply
for di > 7 that vi sends to each of at most (di − 3)/2 pentagonal vertices
adjacent to vi 0.5 units of charge by Rule P8+.

Let us summarize. After Rules S1 and S2 apply, the amount of charge of
f is equal to d2 + d4 − 12. We next distinguish several cases based on d2 and
d4:

• If d2 = 6 and d4 = 6, no further charge is sent out and the final charge
of f is zero.
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• If d2 = 6 and d4 = 7 (or vice versa), f sends out at most 0.4 units
of charge to pentagonal vertices adjacent to v1 or v3 and at most 0.6
units of charge to such vertices adjacent to v4. Hence, its final charge
is again non-negative.

• If d2 = 6 and d4 > 7 (or vice versa), f sends out at most 0.4 units of
charge to pentagonal vertices adjacent to v1 or v3 and at most (d4−3)/4
units of charge to such vertices adjacent to v4. Hence, its final charge
is again non-negative.

• If d2 = 7 and d4 = 7, f sends out at most 0.8 units of charge to
pentagonal vertices adjacent to v1 or v3, at most 0.6 units of charge
to pentagonal vertices adjacent to v2 and at most 0.6 units of charge
to pentagonal vertices adjacent to v4. Its final charge is again non-
negative.

• If d2 = 7 and d4 > 7 (or vice versa), f sends out at most 0.8 units of
charge to pentagonal vertices adjacent to v1 or v3, at most 0.6 units of
charge to such vertices adjacent to v2 and at most (d4 − 3)/4 units of
charge to pentagonal vertices adjacent to v4. Hence, its final charge is
again non-negative.

• If d2 > 7 and d4 > 7, the face f sends out at most 0.8 units of charge
to pentagonal vertices adjacent to v1 or v3, and at most (d2 +d4 −6)/4
units of charge to such vertices adjacent to v2 or v4. Hence, its final
charge is again non-negative.

Next, we analyze 4-faces incident with vertices of degree seven or more
only. Note that the bound on the number of pentagonal neighbors of vertices
of a 4-face is also used in Lemmas 13–14 without giving so much details on
its derivation as in the proof of Lemma 12.

Lemma 12. Let f = v1v2v3v4 be a 4-face of a minimal counterexample. If

the degrees of v1, v2, v3 and v4 are at least seven, then the final amount of

charge of f is non-negative.

Proof. Let D be the sum of the degrees of the vertices v1, v2, v3 and v4.
After Rule S2 applies to each of these four vertices, the face f has charge
D − 22. Rules PC, P7a, P7b, P7c and P8+ apply at most (D − 12)/2
vertices. The vertices v1, v2, v3 and v4 have D − 8 neighbors not incident
with the face f counting the common neighbors of them twice. Hence, if the
common neighbors of vi and vi+1 are counted once, there are at most D− 12
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neighbors not incident with f and since no two adjacent vertices can be both
pentagonal, the number of pentagonal neighbors is at most (D − 12)/2.

Rule PC can apply at most 4 times since a single 4-face can be close to
at most 4 pentagonal vertices. Since f can send out at most 0.5 units of
charge by Rules P7a, P7b, P7c and P8+, and it can send out at most 1 unit
of charge by Rule PC, the 4-face f sends out at most the following amount
of charge:

D − 12

2
× 0.5 + 4 × 0.50 =

D

4
− 1 .

By the assumptions of the lemma, the degree of each vertex vi is at least 7
and thus D ≥ 28. Since D/4 − 1 ≤ D − 22 for D ≥ 28, the final amount of
charge of f is non-negative.

We next analyze 4-faces incident with a single vertex of degree five.

Lemma 13. Let f = v1v2v3v4 be a 4-face of a minimal counterexample. If

the degree of v1 is five and the degree of v3 is at least six, then the final

amount of charge of f is non-negative.

Proof. If all vertices v2, v3 and v4 have degree six, then f can send out 0.25
units of charge by Rule P6a to pentagonal neighbors of v2 and v4 (note that
each of these two vertices has at most one such pentagonal neighbor) and 0.5
units of charge by Rule P6b to a pentagonal neighbor of v3. Observe that
no pentagonal vertex is close to f by Lemma 8. Altogether, f receives no
charge and sends out at most 2 units of charge (one unit by Rule S1 to v1).
Consequently, its final charge is non-negative.

If two of the vertices v2, v3 and v4 have degree six and one has degree
d ≥ 7, then f can send out at most 0.2 units of charge to a pentagonal
neighbor of v1, at most 0.5 units charge to a pentagonal neighbor of each
vertex of degree six, at most 0.5 to at most (d − 3)/2 pentagonal neighbors
of the vertex of degree d and 1 unit of charge to v1. Altogether, it sends out
at most (d− 3)/4 + 2.2 = d/4 + 1.45 units of charge. Since the initial charge
of f amounts to 2 units and f receives d−6 units by Rule S2, its final charge
is non-negative if d ≥ 8 (observe that d/4+1.45 ≤ d−4 for d ≥ 8). If d = 7,
then the face f sends at most 0.6 units of charge to pentagonal neighbors of
the vertex of degree d = 7 (either twice 0.3 units by Rule P7a or 0.5 units by
Rule P7b or P7c). Hence, the charge sent out by f is at most 0.6+2.2 = 2.8
while the initial charge of f equals to 2 units and f gets 1 unit of charge
from the vertex of degree d = 7 by Rule S2.

We now assume that only one of the vertices v2, v3 and v4 have degree
six and the remaining two vertices have degrees d and d′, d ≥ 7 and d′ ≥ 7.
The face f sends out at most 0.40 units of charge to a pentagonal neighbor
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of v1, at most 0.50 units of charge to a pentagonal neighbor of the vertex of
degree six, and at most 0.50 units of charge to each of at most (d+ d′ − 6)/2
pentagonal neighbors of vertices of degree d and d′ unless Rule PC applies.
Rule PC can apply at most once by Lemma 8. Since the initial amount
charge of f is 2, f receives d + d′ − 12 units by Rule S2 and sends out at
most (d + d′ − 6)/4 + 0.90 + 0.50 = (d + d′)/4 − 0.10 units of charge, the
final charge of f is non-negative (note that (d + d′)/4 − 0.10 ≤ d + d′ − 10
for d ≥ 7 and d′ ≥ 7).

It remains to consider the case when all the vertices v2, v3 and v4 have
degree at least seven. Let di be the degree of the vertex vi, i = 2, 3, 4. There
are at most (d2 + d3 + d4 − 9)/2 pentagonal neighbors of the vertices v2, v3

and v4 and Rule PC can apply at most twice. In addition, the face f can
send out 0.4 units of charge to a pentagonal neighbor of a vertex v1 and 1
unit of charge to v1 by Rule S1. Altogether, the amount of charge sent out
by f is at most:

1.4 +
d2 + d3 + d4 − 9

2
× 0.5 + 2 × 0.5 =

d2 + d3 + d4

4
+ 0.15 .

The initial amount of charge of f is 2 units and f receives d2+d3+d4−18 units
of charge by Rule S2 from the vertices v2, v3 and v4. Hence, if d2+d3+d4 ≥ 22,
then the final charge of the face f is clearly non-negative.

If d2 + d3 + d4 = 21, then all the degrees d2, d3 and d4 must be equal to
7. If the vertices v2, v3 and v4 have six pentagonal neighbors, then none of
them is close to f . Hence, Rule PC never applies. We conclude that f sends
out at most the following amount of charge:

1.4 + 6 × 0.5 = 4.4 .

On the other hand, if there are at most five pentagonal neighbors of v2, v3

and v4, Rule PC can apply (at most twice). Hence, the charge sent out by f
is at most:

1.4 + 5 × 0.5 + 2 × 0.5 = 4.9 .

Since the initial amount of charge of f is 2 units and f receives 3 units of
charge from the vertices v2, v3 and v4, its final charge is non-negative.

Finally, we analyze 4-faces incident with vertices of degree six but no
vertices of degree five.

Lemma 14. Let f = v1v2v3v4 be a 4-face of a minimal counterexample. If

the degree of v1 is six and the degrees of v2, v3 and v4 are at least six, then

the final amount of charge of f is non-negative.
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Proof. Let D be the sum of the degrees of the vertices v1, v2, v3 and v4. After
Rule S2 applies to each of these four vertices, the face f has charge D − 22.
We now distinguish several cases based on which vertices vi, i = 1, 2, 3, 4,
have degree six:

• If all vertices vi have degree six, then there is no pentagonal vertex close
to f by Lemma 7. Hence, each vi is adjacent to at most one pentagonal
vertex and f sends 0.5 units of charge by Rule P6b at most four times.
This implies that the final amount of charge of f is non-negative.

• If three vertices vi have degree six, then there is again no pentagonal
vertex close to f by Lemma 7. Let d be the degree of the vertex with
degree seven or more. Such vertex is adjacent to at most (d − 3)/2
pentagonal vertices and each other vertex to at most one pentagonal
vertex. Hence, f sends out at most (d − 3)/4 + 3/2 = d/4 + 3/4 units
of charge. Since its charge after applying Rule S2 was D − 22 = d − 4
and d ≥ 7, its final amount of charge is non-negative.

• It two vertices vi have degree six, then there is at most one pentagonal
vertex close to f . The charge is sent by f to at most (D − 12)/2
pentagonal vertices and at most once by Rule PC. Hence, the total
amount of charge sent out is at most

D − 12

2
× 0.5 + 0.5 =

D

4
− 2.5 .

Since D ≥ 26 and the charge of f after applying Rule S2 is at D − 22,
the final amount of charge of f is non-negative.

• If v1 is the only vertex vi with degree six, the charge is sent by f to at
most (D − 12)/2 pentagonal vertices and at most twice by Rule PC.
Hence, the total amount of charge sent out is at most

D − 12

2
× 0.5 + 2 × 0.5 =

D

4
− 2 .

Since D ≥ 27 and the charge of f after applying Rule S2 is at D − 22,
the final amount of charge of f is non-negative.

6 Final charge of vertices

A minimal counterexample has no vertices of degree four or less by Lemma 3.
The amount of final charge of vertices that are not pentagonal is non-negative:
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Figure 10: Notation used in the proof of Lemma 15.

vertices incident with a 4-face have zero final charge since only Rule S1 or
S2 can apply to them and other non-pentagonal vertices keep their original
(non-negative) charge since none of the rules applies to them (note that
every vertex of degree five is either pentagonal or incident with a 4-face by
Lemma 4).

Hence, we can focus on the amount of final charge of pentagonal vertices.
Pentagonal vertices that are not solitary receive 1 unit of charge from a
close 4-face by Rule PC and thus their final charge is non-negative. We now
analyze the amount of charge of solitary pentagonal vertices and start with
those adjacent to a vertex of degree five.

Lemma 15. Every solitary pentagonal vertex v adjacent to a vertex of degree

five has non-negative final charge.

Proof. Let v1, . . . , v5 be the neighbors of v and fi the 4-face containing the
vertex vi, i = 1, . . . , 5. By symmetry, we can assume that the degree of v2 is
five. Since no two 4-faces share a vertex, v has a double-sided neighbor vk.
Note that k 6= 2 and the 4-face fk sends 0.5 units of charge to v (either by
Rule P7c or Rule P8+).

Let w1 be the common neighbor of v1 and v2 and w3 the common neighbor
of v2 and v3 (see Figure 10). Since the degree of v2 is five, the degrees of
w1 and w3 are at least six by Lemma 5. If the degree of w1 is six, then the
degree of v1 is at least seven by Lemma 10 and the 4-face f1 sends v at least
0.3 units of charge. Similarly, if the degree of w3 is six, then the 4-face f3

sends v at least 0.3 units of charge. On the other hand, if the degree of at
least one of the vertices w1 and w3 is bigger than six, then v receives at least
0.2 units of charge from the 4-face f2, and if the degrees of both w1 and w3

are bigger than six, then v receives at least 0.4 units of charge from f2.
We conclude that if k 6∈ {1, 3}, then v receives 0.5 units of charge from fk

and at least 0.4 units of charge from the faces f1, f2 and f3. In particular, the
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final charge of v is non-negative unless v receives exactly 0.4 units of charge
from the faces f1, f2 and f3 altogether. In such case, v receives 0.4 units of
charge from f2, which implies that the degrees of w1 and w3 are more than
six, and no charge is sent from f1 or f3, which implies that the degrees of v1

and v3 are six and the degrees of their neighbors on f1 and f3 are five. Let
us analyze this case in more detail. By symmetry, we can assume that k = 5.
Let w4 be the common neighbor of v3 and v4. Since f3 sends no charge, the
degree of w4 is five. Hence, the degree of v4 is at least seven by Lemma 9.
Consequently, the face f4 sends v at least 0.3 units of charge. Altogether, v
receives 0.4 units of charge from f2, at least 0.3 units of charge from f4 and
0.5 units of charge from f5 and its final charge is non-negative. We have just
shown that if k 6∈ {1, 3}, then the final charge of v is non-negative.

In the rest, we assume that k = 1 and one of the following two cases
applies (otherwise, the faces f2 and f3 send together at least 0.5 units of
charge to v and the final charge of v is non-negative). The other cases are
excluded by Lemmas 5 and 10.

• The 4-face f2 sends v no charge and the 4-face f3 sends 0.3
units of charge.

In this case, the degrees of both w1 and w3 are six and v3 is a one-sided
vertex with degree seven with both neighbors on f3 of degree five. In
particular, the common neighbor w4 of v3 and v4 lies in the face f3 and
it has degree five. By Lemma 9, the degree of v4 is at least seven and
thus the 4-face f4 sends at least 0.3 units of charge to v. In total, v
receives 0.5 units of charge from f1, 0.3 units of charge from f3 and at
least 0.3 units of charge from f4. We conclude that the final charge of
v is non-negative.

• The 4-face f2 sends 0.2 or 0.4 units of charge and the 4-face f3

sends no charge.

In this case, v3 has degree six and its common neighbor w4 with the
vertex v4 has degree five and lies on the face f3. Lemma 9 now implies
that the degree of v4 is at least seven. Hence, the face f4 sends at least
0.3 units of charge to v. Summarizing, v receives 0.5 units of charge
from f1, at least 0.2 units of charge from f2 and at least 0.3 units of
charge from f4 which makes its final charge non-negative.

• The 4-face f2 sends 0.2 units of charge and the 4-face f3 sends

0.25 units of charge.

In this case, v3 has degree six and its common neighbor w4 with the
vertex v4 has degree five or six and lies on the face f3. Lemmas 9 and 10
yield that the degree of v4 is at least seven. This implies that the face
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Figure 11: Notation used in the first part of the proof of Lemma 16.

f4 sends at least 0.3 units of charge to v. We conclude that v receives
0.5 units of charge from f1, 0.2 units of charge from f2, 0.25 units of
charge from f3 and at least 0.3 units of charge from f4, and the final
charge of v is non-negative.

It remains to analyze solitary pentagonal vertices adjacent to no vertices
of degree five.

Lemma 16. Every solitary pentagonal vertex v adjacent to no vertex of

degree five has non-negative final charge.

Proof. Let v1, . . . , v5 be the neighbors of v and f1, . . . , f5 the 4-faces incident
with the neighbors of v as in the proof of Lemma 15. If v receives charge
from at least four of the faces f1, . . . , f5, then it receives at least 1 unit of
charge in total and its final charge is non-negative. Hence, we can assume
that v does not receive charge from two of the faces, by symmetry, from the
face f1 and the face f2 or f3. Note that if v receives no charge from the face
fi, then vi has degree six and both its neighbors on fi must have degree five.

Let us first assume that the vertex v receives no charge from the faces
f1 and f2. The situation is depicted in Figure 11; note that the vertices v1

and v2 cannot have a common neighbor of degree five on a face f1 or f2 by
Lemma 9. Observe that there must be a double-sided vertex vk, k ∈ {3, 4, 5}.
By Lemma 9, the degrees of the vertices v3 and v5 are at least seven. Hence,
if k = 4, v receives at least 0.3 units of charge from the faces f3 and f5 and
0.5 units of charge from f4, and its final charge is non-negative.

We now assume that k = 5 and the face f3 sends only 0.3 units of charge to
v (otherwise, v receives 0.5 units of charge from f3 and its final charge is non-
negative). Hence, v3 is a one-sided vertex of degree seven and the common
neighbor w of v3 and v4 has degree five and lies on f3. Consequently, the
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degree of v4 is at least seven by Lemma 9. We conclude that v receives 0.3
units of charge from f3, at least 0.3 units of charge from f4 and 0.5 units of
charge from f5. Again, the final charge of v is non-negative.

We have ruled out the case that there would be two adjacent neighbors
of v whose 4-faces sent no charge to v. Hence, it remains to analyze the case
when the faces f1 and f3 send no charge to v. We claim that the face f2

sends 0.5 units of charge to v. This clearly holds if v2 is double-sided or its
degree is at least eight. If the degree of v2 is six, then f2 sends 0.5 units
of charge unless the neighbors of v2 on f2 have degrees five and six. Such
configurations are excluded by Lemmas 9 and 10. Finally, if v2 is one-sided
and its degree is seven, then f2 sends 0.5 units of charge to v unless both
the neighbors of v2 on f2 have degree five. One of these neighbors is also a
neighbor of v1 or v3 which is impossible by Lemma 10.

We have shown that v receives 0.5 units of charge from f2. Since v receives
in addition at least 0.25 units of charge from each of the faces f4 and f5, its
final charge is non-negative.

Lemmas 11–16 now yield Theorem 1 as explained in Section 2.

7 Final remarks

If G is a plane graph with faces of size three only, then Four Color Theo-
rem implies that G is cyclically 4-colorable. Our theorem asserts that every
plane graph with faces of size three and four such that all faces of size four
are vertex-disjoint is cyclically 5-colorable. It is natural to ask whether the
following might be true:

Problem 1. Every plane graph G with maximum face size ∆∗ such that all

faces of size four or more are vertex-disjoint is cyclically (∆∗ + 1)-colorable.

Let us remark that it is quite easy to see that such graphs G are (∆∗+3)-
colorable. Indeed, adding a clique to every face of size four or more results in
a graph with average degree less than ∆∗ + 3. After removing a vertex from
G that has degree less than ∆∗+3 in the modified graph and adding edges to
G in such a way that big faces are still vertex-disjoint and all vertices lying
on a common face in G lie on a common face in the new graph, induction can
be applied to the new graph which yields the proof of the claimed bound.
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