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Abstract

Grötzsch’s theorem states that every triangle-free planar graph
is 3-colorable, and several relatively simple proofs of this fact were
provided by Thomassen and other authors. It is easy to convert these
proofs into quadratic-time algorithms to find a 3-coloring, but it is
not clear how to find such a coloring in linear time (Kowalik used a
nontrivial data structure to construct an O(n log n) algorithm).

We design a linear-time algorithm to find a 3-coloring of a given
triangle-free planar graph. The algorithm avoids using any complex
data structures, which makes it easy to implement. As a by-product
we give another simple proof of Grötzsch’s theorem.

1 Introduction

The following is a classical theorem of Grötzsch [6].

Theorem 1.1. Every triangle-free planar graph is 3-colorable.

This result has been the subject of extensive research. Thomassen [14, 15]
found two short proofs and extended the result in many ways. We return to
the various extensions later, but let us discuss algorithmic aspects of The-
orem 1.1 first. It is easy to convert either of Thomassen’s proofs into a
quadratic-time algorithm to find a 3-coloring, but it is not clear how to do
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so in linear time. A serious problem appears very early in the algorithm.
Given a facial cycle C of length four, one would like to identify a pair of
diagonally opposite vertices of C and apply recursion to the smaller graph.
It is easy to see that at least one pair of diagonally opposite vertices on C can
be identified without creating a triangle, but how can we efficiently decide
which pair? If we could test in (amortized) constant time whether given two
vertices are joined by a path of length at most three, then that would take
care of this issue. This can, in fact, be done, using a data structure of Kowa-
lik and Kurowski [8] provided the graph does not change. In our application,
however, we need to repeatedly identify vertices, and it is not clear how to
maintain the data structure of Kowalik and Kurowski in overall linear time.
Kowalik [7] developed a sophisticated enhancement of this data structure
that supported vertex identification, but at the expense of an added log n

factor. Thus he designed an O(n log n) algorithm to 3-color a triangle-free
planar graph on n vertices. We improve this to a linear-time algorithm, as
follows.

Theorem 1.2. There is a linear-time algorithm to 3-color an input triangle-

free planar graph.

To describe the algorithm we exhibit a specific list of five reducible configu-
rations, called “multigrams”, and show that every triangle-free planar graph
contains one of those reducible configurations. Proving this is the only step
that requires some effort; the rest of the algorithm is entirely straightforward,
and the algorithm is very easy to implement. Given a triangle-free planar
graph G we look for one of the reducible configurations in G, and upon finding
one we modify G to a smaller graph G′, and apply the algorithm recursively
to G′. It is easy to see that every 3-coloring of G′ can be converted to a
3-coloring of G in constant time. Furthermore, each reducible configuration
has a vertex of degree at most three, and, conversely, given a vertex of G of
degree at most three it can be checked in constant time whether it belongs to
a reducible configuration. Thus at every step a reducible configuration can
be found in amortized constant time by maintaining a list of candidates for
such vertices. As a by-product of the proof of correctness of our algorithm
we give a short proof of Theorem 1.1.

Let us briefly survey some of the related work. Since in a proof of Theo-
rem 1.1 it is easy to eliminate faces of length four, the heart of the argument
lies in proving the theorem for graphs of girth at least five. For such graphs
there are several extensions of the theorem. Thomassen proved in [14] that
every graph of girth at least five that admits an embedding in the projective
plane or the torus is 3-colorable, and the analogous result for Klein bottle
graphs was obtained in [13]. For a general surface Σ Thomassen [16] proved
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the deep theorem that there are only finitely many 4-critical graphs of girth
at least five that embed in Σ. (A graph is 4-critical if it is not 3-colorable,
but every proper subgraph is.)

None of the results mentioned in the previous paragraph hold without
the additional restriction on girth. Nevertheless, Gimbel and Thomassen [5]
found an elegant characterization of 3-colorability of triangle-free projective-
planar graphs. That result does not seem to extend to other surfaces, but
two of us in joint work with Král’ [3] were able to find a sufficient condition
for 3-colorability of triangle-free graphs drawn on a fixed surface Σ. The
condition is closely related to the sufficient condition for the existence of
disjoint connecting trees in [11]. Using that condition Dvořák, Král’ and
Thomas were able to design a linear-time algorithm to test if a triangle-free
graph on a fixed surface is 3-colorable [3].

If we allow the planar graph G to have triangles, then testing 3-colorability
becomes NP-hard [4]. There is an interesting conjecture of Steinberg stating
that every planar graph with no cycles of length four or five is 3-colorable,
but that is still open. Every planar graph is 4-colorable by the Four-Color
Theorem [1, 2, 10], and a 4-coloring can be found in quadratic time [10]. Any
improvement to the running time of this algorithm would seem to require new
ideas. A 5-coloring of a planar graph can be found in linear time [9].

Our terminology is standard. All graphs in this paper are simple and
paths and cycles have no repeated vertices. By a plane graph we mean a
graph that is drawn in the plane. On several occasions we will be identifying
vertices, but when we do, we will remove the resulting parallel edges. When
this will be done by an algorithm we will make sure that the only parallel
edges that arise will form faces of length two. The detection and removal of
such parallel edges can be done in constant time.

2 Short proof of Grötzsch’s theorem

Let G be a plane graph. By a tetragram in G we mean a sequence (v1, v2, v3,
v4) of vertices of G such that they form a facial cycle in G in the order listed.
We define a hexagram (v1, v2, . . . , v6) similarly. By a pentagram in G we mean
a sequence (v1, v2, v3, v4, v5) of vertices of G such that they form a facial cycle
in G in the order listed and v1, v2, v3, v4 all have degree exactly three. We will
show that every triangle-free planar graph of minimum degree at least three
has a tetra-, penta- or hexagram with certain additional properties that will
allow an inductive argument. But first we need the following lemma.

Lemma 2.1. Let G be a connected triangle-free plane graph, let C be the

facial cycle in G bounding the unbounded face f0 of G, assume that C has
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length at most six, and assume that every vertex of G not on C has degree

in G at least three. If G 6= C, then G has either a tetragram, or a pentagram

(v1, v2, v3, v4, v5) such that v1, v2, v3, v4 6∈ V (C).

Proof. We may assume that G has no separating cycle C ′ of length at most
six, for otherwise we can apply the lemma to C ′ and the subgraph of G

consisting of all vertices and edges drawn in the closed disk bounded by C ′.
We define the charge of a vertex v to be 3 deg(v)− 12, the charge of the face
f0 to be 3|V (C)|+11 and the charge of a face f 6= f0 of length l to be 3l−12.
It follows from Euler’s formula that the sum of the charges of all vertices and
faces is −1.

We now redistribute the charges according to the following rules. Every
vertex not on C of degree three will receive one unit of charge from each
incident face, each vertex on C of degree three will receive three units from
f0, and each vertex of degree two on C will receive five units from f0 and
one unit from the other incident face. Thus the final charge of every vertex
is non-negative.

We now show that the final charge of f0 is also non-negative. Let l denote
the length of C. Then f0 has initial charge of 3l + 11. By hypothesis at least
one vertex of C has degree at least three, and hence f0 sends a total of at
most 5(l−1) + 3 units of charge, leaving it at the end with charge of at least
3l + 11 − 5(l − 1) − 3 ≥ 1.

Since no charge is lost or created, there is a face f 6= f0 whose final charge
is negative. Since f sends at most one unit to each incident vertex, we see
that f has length at most five. Furthermore, if f has length exactly five,
then it sends one unit to at least four incident vertices. None of those could
be a degree two vertex on C, for then f would not be sending anything to
the ends of the common subpath of the boundaries of f and f0. Thus the
vertices of f form the desired tetragram or pentagram.

Let k = 4, 5, 6, and let (v1, v2, . . . , vk) be a tetragram, pentagram or
hexagram in a triangle-free plane graph G. If k = 4 or k = 6, then we say
that (v1, v2, . . . , vk) is safe if every path in G of length at most three with ends
v1 and v3 is a subgraph of the cycle v1v2 · · · vk. For k = 5 we define safety as
follows. For i = 1, 2, 3, 4 let xi be the third neighbor of vi. Then xi 6∈ V (C),
because G is triangle-free. Assume that the vertices x1, x2, x3, x4 are pairwise
distinct and pairwise non-adjacent. Let either i = 2 and j = 1, or i = 3 and
j = 4. Assume that there is no path in G\{v1, v2, v3, v4} of length at most
three from xi to v5, and assume that every path in G\{v1, v2, v3, v4} of length
at most three from xi to xj has length exactly two, and its completion via
the path xjvjvixi results in a facial cycle of G. In those circumstances we
say that the pentagram (v1, v2, . . . , v5) is safe.
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Lemma 2.2. Every triangle-free plane graph of minimum degree at least

three has a safe tetragram, a safe pentagram, or a safe hexagram.

Proof. Let G be as stated. If G has a separating cycle of length at most
six, then let us select such a cycle C so that the disk it bounds as small
as possible, and let G′ be the subgraph of G consisting of all vertices and
edges drawn in the closed disk bounded by C. If G has no separating cycle
of length at most six, then let G′ := G and let C be an arbitrary facial
cycle in G of length at most five. It is easy to see that if (v1, v2, v3, v4) is
a tetragram in G, then one of the tetragrams (v1, v2, v3, v4), (v2, v3, v4, v1)
is safe. Thus we may assume that G has no tetragram. From Lemma 2.1
applied to the graph G′ and facial cycle C we deduce that G′ has a pentagram
(v1, v2, v3, v4, v5) such that v1, v2, v3, v4 6∈ V (C). Given the choice of C and
the fact that G has no tetragram, it follows that this pentagram safe, unless
(up to symmetry) there is a path x3abx4 in G\{v1, v2, v3, v4} forming a facial
hexagon x4v4v3x3ab. But then the choice of C implies that (x4, v4, v3, x3, a, b)
is a safe hexagram, as desired.

Proof of Theorem 1.1. Let G be a triangle-free plane graph. We proceed by
induction on |V (G)|. We may assume that every vertex v of G has degree at
least three, for otherwise the theorem follows by induction applied to G\v.
By Lemma 2.2 there is a safe tetra-, penta-, or hexagram (v1, v2, . . . , vk). If
k = 4 or k = 6, then we apply induction to the graph obtained from G by
identifying v1 and v3. It follows from the definition of safety that the new
graph has no triangles, and clearly every 3-coloring of the new graph extends
to a 3-coloring of G. Thus we may assume that (v1, v2, . . . , v5) is a safe
pentagram in G. Let G′ be obtained from G\{v1, v2, v3, v4} by identifying v5

with x2, and x3 with x4. It follows from the definition of safety that G′ is
triangle-free, and hence it is 3-colorable by the induction hypothesis. It is
routine to verify that any 3-coloring of G′ can be extended to a 3-coloring of
G. Thus G is 3-colorable, as desired.

Let us note that the essential ideas of the proof came from Thomassen’s
work [14]. For graphs of girth at least five Thomassen actually proves a
stronger statement, namely that every 3-coloring of an induced facial cycle
of length at most nine extends to a 3-coloring of the entire triangle-free
plane graph, unless some vertex of G has three distinct neighbors on C (and
those neighbors received three different colors). By restricting ourselves to
Theorem 1.1 we were able to somewhat streamline the argument. Another
variation of the same technique is presented in [7].
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3 Graph representation

In the algorithm, we represent the planar graph in the following (standard)
way: Each edge is represented by a pair of opposite directed edges. The
directed edges are partitioned into closed directed walks, forming the bound-
aries of the faces. All these walks are oriented in a consistent way, so that if
a directed edge e belongs to the directed walk bounding a face f , then f is
on the left side of e.

For each directed edge e, we maintain pointers to the corresponding op-
posite edge and to the preceding and following edge of the directed boundary
walk to that e belongs, as well as the two vertices it joins. For each vertex,
we record a pointer to one outgoing edge. It is not necessary to maintain
lists of incoming and outgoing edges, as these are represented implicitly; e.g.,
to list the outgoing edges incident with a vertex v, we take the single outgo-
ing edge e1 that we have recorded, find the opposite edge e′1, take the edge
e2 following e′1 in the directed facial walk, and repeat this process until we
obtain all the edges e1, e2, . . . incident with v.

Suppose that D is a fixed constant (in our algorithm, D = 47). We can
perform the following operations with graphs represented in the described
way in constant time:

• remove an edge

• add an edge, assuming that the edges preceding and following it in the
facial walks are specified

• remove an isolated vertex

• determine the degree of a vertex v if deg(v) ≤ D, or prove that deg(v) >

D

• check whether two vertices u and v such that min(deg(u), deg(v)) ≤ D

are adjacent

• check whether the distance between two vertices u and v such that
max(deg(u), deg(v)) ≤ D is at most two

• determine the length ℓ of a face f incident with an edge e if ℓ ≤ D, or
prove that ℓ > D

• list a subgraph consisting of vertices reachable from a vertex v0 through
a path v0, v1, . . . , vt of length t ≤ D, such that deg(vi) ≤ D for
0 ≤ i < t (but the degree of vt may be arbitrary).
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All the transformations and queries executed in the algorithm can be
expressed in terms of these simple operations.

4 The algorithm

The idea of our algorithm is to find a safe tetragram, pentagram or hexa-
gram γ in G and use it to reduce the size of the graph as in the proof of
Theorem 1.1 above. Finding γ is easy, but the difficulty lies in testing safety.
To resolve this problem we prove a variant of Lemma 2.2 that will guarantee
the existence of such γ with an additional property that will allow testing
safety in constant time. The additional property, called security, is merely
that enough vertices in and around γ have bounded degree. Unfortunately,
the additional property we require necessitates the introduction of another
configuration, a variation of pentagram, called “decagram”. For the sake of
consistency, we say that a monogram in a graph G is the one-vertex sequence
(v) comprised of a vertex v ∈ V (G) of degree at most two.

Now let G be a plane graph, let k ∈ {1, 4, 5, 6} and let γ = (v1, v2, . . . , vk)
be a mono-, tetra-, penta-, or hexagram in G. Let C be a subgraph of G.
(For the purpose of this section the reader may assume that C is the null
graph, but in the next section we will need C to be a facial cycle of G.)
A vertex of G is big if it has degree at least 48, and small otherwise. A
vertex v ∈ V (G) is C-admissible if it is small and does not belong to C;
otherwise it is C-forbidden. A pentagram (v1, v2, . . . , v5) is called a decagram

if v5 has degree exactly three (and hence v1, . . . , v5 all have degree three). A
multigram is a monogram, tetragram, pentagram, hexagram or a decagram.
The vertex v1 will be called the pivot of the multigram (v1, v2, . . . , vk). In the
following γ will be a multigram, and we will define (or recall) what it means
for γ to be safe and C-secure. We will also define a smaller graph G′, which
will be called the γ-reduction of G.

If γ is a mongram, then we define it to be always safe, and we say that
it is C-secure if v1 6∈ V (C). We define G′ := G\v1.

Now let γ be a tetragram. Let us recall that γ is safe if the only path in G

of length at most three with ends v1 and v3 is a subgraph of the facial cycle
v1v2v3v4. We say that γ is C-secure if it is safe, v1 is C-admissible and has
degree exactly three, and letting x denote the neighbor of v1 other than v2

and v4, the vertex x is C-admissible, and either v3 is C-admissible, or every
neighbor of x is C-admissible. We define G′ to be the graph obtained from
G by identifying the vertices v1 and v3 and deleting one edge from each of
the two pairs of parallel edges that result.

Now let γ be a decagram, and for i = 1, 2, 3, 4 let xi be the neighbor of
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vi other than vi−1 or vi+1, where v0 means v5. We say that the decagram
γ is safe if x1, x3 are distinct, non-adjacent and there is no path of length
two between them. We say that γ is C-secure if it is safe and the vertices
v1, v2, . . . , v5, x1, x3 are all C-admissible. We define G′ to be the graph ob-
tained from G\{v1, v2, . . . , v5} by adding the edge x1x3.

Now let γ be a pentagram, and for i = 1, 2, 3, 4 let xi be as in the previous
paragraph. Let us recall that the safety of γ was defined prior to Lemma 2.2.
We say that γ is C-secure if it is safe, the vertices v1, v2, . . . , v5, x1, x2, x3, x4

are all C-admissible, either v5 or x2 has no C-forbidden neighbor, and either
x3 or x4 has no C-forbidden neighbor. We define G′ as in the proof of
Theorem 1.1: G′ is obtained from G\{v1, v2, v3, v4} by identifying x2 and v5;
identifying x3 and x4; and deleting one of the parallel edges should x3 and
x4 have a common neighbor.

Finally, let γ be a hexagram. Let us recall that γ is safe if every path of
length at most three in G between v1 and v3 is the path v1v2v3. We say that
γ is C-secure if v1, v3, v6 are C-admissible, v1 has degree exactly three, and
the neighbor of v1 other than v2 or v6 is C-admissible. We define G′ to be
the graph obtained from G be identifying the vertices v1 and v3 and deleting
one of the parallel edges that result.

We say that a multigram γ is secure if it is K0-secure, where K0 denotes
the null graph. This completes the definition of safe and secure multigrams.

Lemma 4.1. Let G be a triangle-free plane graph, let γ be a safe multigram

in G, and let G′ be the γ-reduction of G. Then G′ is triangle-free, and

every 3-coloring of G′ can be converted to a 3-coloring of G in constant time.

Moreover, if γ is secure, then G′ can be regarded as having been obtained

from G by deleting at most 100 edges, adding at most 91 edges, and deleting

at least one isolated vertex.

Proof. The graph G′ is triangle-free, because γ is safe. A simple case-checking
shows that every 3-coloring of G′ can be extended to a 3-coloring of G. If γ

is secure, then every time vertices u and v are identified in the construction
of G′, one of u, v is small. Thus the identification of u and v can be seen as a
deletion of at most 47 edges and addition of at most 47 edges. The theorem
follows by a more careful examination of the construction of G′.

Let G and C be as above. We say that two vertices u, v ∈ V (G) are close

if there exists a path P in G with ends u and v of length at most four such
that every vertex of P (including its ends) is small. Thus for every vertex v

there are at most 1 + 47 + 472 + 473 + 474 vertices that are close to v.
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Lemma 4.2. Given a triangle-free plane graph G and a vertex v ∈ V (G), it

can be decided in constant time whether G has a secure multigram with pivot

v.

Proof. This follows by inspecting the subgraph of G induced by vertices that
are close to v. To test safety we need to check the existence of certain paths
P of bounded length with prescribed ends. However, whenever such a test
is needed every vertex of P , except possibly one, is small. Thus the test can
be carried out in constant time.

Lemma 4.3. Let G and G′ be triangle-free plane graphs, such that for some

pair of non-adjacent vertices u, v ∈ V (G) the graph G′ is obtained from G by

adding the edge uv. Let γ be a secure multigram in exactly one of the graphs

G, G′. Then the pivot of γ is close to u or v in G.

Proof. This follows from the fact that all vertices that impact the security
of a multigram are close to its pivot.

The next theorem will serve as the basis for the proof of correctness of
our algorithm. We defer its proof until the next section.

Theorem 4.4. Every non-null triangle-free planar graph has a secure multi-

gram.

We are now ready to prove Theorem 1.2, assuming Theorem 4.4.

Algorithm 4.5. There is an algorithm with the following specifications:

Input: A triangle-free planar graph.

Output: A proper 3-coloring of G.

Running time: O(|V (G)|).

Description. Using a linear-time planarity algorithm that actually outputs
an embedding, such as [12] or [17], we can assume that G is a plane graph.
The algorithm is recursive. Throughout the execution of the algorithm we
will maintain a list L that will include the pivots of all secure multigrams in
G, and possibly other vertices as well. We initialize the list L to consist of
all vertices of G of degree at most three.

At a general step of the algorithm we remove a vertex v from L. There is
such a vertex by Theorem 4.4 and the requirement that L include the pivots
of all secure multigrams. If v 6∈ V (G), then we go to the next iteration.
Otherwise, we check if G has a secure multigram with pivot v. This can be
performed in constant time by Lemma 4.2. If no such multigram exists, then
we go to the next iteration. Otherwise, we let γ be one such multigram, and
let G′ be the γ-reduction of G. By Lemma 4.1 the graph G′ is triangle-free and
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can be constructed in constant time by adding and deleting bounded number
of edges. For every edge uv that was deleted or added during the construction
of G′ we add to L all vertices that are close to u or v. By Lemma 4.3 this
will guarantee that L will include pivots of all secure multigrams in G′. We
apply the algorithm recursively to G′, and convert the resulting 3-coloring of
G′ to one of G using Lemma 4.1. Since the number of vertices added to L is
proportional to the number of vertices removed from G we deduce that the
number of vertices added to L (counting multiplicity) is at most linear in the
number of vertices of G. Thus the running time is O(|V (G)|), as claimed.

Algorithm 4.5 has the following extension.

Algorithm 4.6. There is an algorithm with the following specifications:

Input: A triangle-free plane graph G, a facial cycle C in G of length at most

five, and a proper 3-coloring φ of C.

Output: A proper 3-coloring of G whose restriction to V (C) is equal to φ.

Running time: O(|V (G)|).

Description. The description is exactly the same, except that we replace
“secure” by “C-secure” and appeal to Lemma 5.1 rather than Theorem 4.4.

5 Proof of correctness

In this section we prove Theorem 4.4, thereby completing the proof of cor-
rectness of the algorithm from the previous section. The theorem will follow
from the next lemma. Unfortunately, for a technical reason we need a small
variation on the notion of C-secure tetragram. Let G be a triangle-free plane
graph, let C be a cycle in G, let H be the subgraph of G consisting of all
vertices and edges of G drawn in the closed disk bounded by C, and let
γ = (v1, v2, v3, v4) be a safe tetragram in H . We say that γ is a C-semigram

if v1 is C-admissible, has degree exactly three and belongs to H , the neighbor
of v1 other than v2 and v4 is also C-admissible, and the edge v3v4 belongs
to C. We say that v3 is the tail of the C-semigram γ. We say that a ver-
tex v ∈ V (G) is a C-appendix if either v ∈ V (H) − V (C) and v is big, or
v ∈ V (C) and v is the tail of some K-semigram in H for some cycle K in H .
If xy is an edge in a plane graph, and f is a face of G incident with y but
not with the edge xy, then we say that f is opposite to xy. Let us emphasize
that this notion is not symmetric in x, y.

Lemma 5.1. Let G be a connected triangle-free plane graph, let C be the fa-

cial cycle bounding the outer face f0, and assume that C has at most six ver-

tices and that |V (G)−V (C)| ≥ 2. Then either G has a C-secure multigram,
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or C has length exactly six and includes at least two distinct non-adjacent

C-appendices.

Proof. Suppose for a contradiction that the lemma is false, and let G be
a counterexample with |V (G)| minimum. We first establish the following
claim.

(1) If K is an induced separating cycle in G of length at most six such

that the open disk bounded by K includes at least two vertices of G,

then K has length exactly six and includes two distinct non-adjacent

C-appendices.

To prove (1) let K be as stated, and let G′ be the subgraph of G consisting
of all vertices and edges that belong to the closed disk bounded by K. From
the induction hypothesis applied to G′ and K we deduce that either G′ has
a K-secure multigram, or K has length exactly six and includes at least two
different non-adjacent K-appendices u1, u2. Since every K-secure multigram
in G′ is a C-secure multigram in G, we may assume the latter. Now if
ui 6∈ V (C), then ui is big, for otherwise the semigram with ui as tail is a
C-secure tetragram (because K is induced), contrary to the fact that G is
a counterexample to the theorem. Thus ui is a C-appendix, and the same
conclusion follows if ui ∈ V (C). This proves (1).

It follows from (1) that every cycle of length at most five bounds a face,
and that C is an induced cycle. It also follows that every tetragram is safe.

We assign charges to vertices and faces of G as follows. Initially, a vertex v

will receive a charge of 9 deg(v)−36 if v 6∈ V (C), and 8 deg(v)−19 otherwise.
The outer face f0 will receive a charge of zero, and every other face f of length
l will receive a charge of 9l − 36. By Euler’s formula the sum of the charges
is equal to

∑

v 6∈V (C)

9(deg(v) − 4) +
∑

v∈V (C)

(8 deg(v) − 19) +
∑

f 6=f0

9( size(f) − 4)

=
∑

v∈V (G)

9(deg(v) − 4) +
∑

f

9(size(f) − 4) −
∑

v∈V (C)

deg(v) + 8|V (C)| + 36

= 8|V (C)| −
∑

v∈V (C)

deg(v) − 36 ≤ −1,

because all vertices of C have degree at least two, and at least one has degree
at least three by hypothesis. Furthermore,

(2) if at least three vertices of C have degree at least three, then the sum of

the charges is at most −3.
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We now redistribute the charges according to the following rules. The
new charge thus obtained will be referred to as the final charge. We need a
definition first. Let f 6= f0 be a face of G incident with a vertex v ∈ V (C).
If there exist two consecutive edges in the boundary of f such that both are
incident with v and neither belongs to C, then we say that f is a v-interior

face. The rules are:

(A) every face other than f0 sends three units of charge to every incident
vertex v such that either v ∈ V (C) and v has degree two in G, or
v 6∈ V (C) and v has degree exactly three,

(B) every big vertex not on C sends three units to each incident face and
for every C-semigram (v1, v2, v3, v4) it sends three units to the face
bounded by v1, v2, v3, v4,

(C) every vertex v ∈ V (C) sends three units to every v-interior face,

(D) if x ∈ V (G) is C-forbidden, and y is a C-admissible neighbor of x of
degree three, then x sends three units to the unique face opposite to xy,
and one unit to the face opposite to yz for every C-admissible neighbor
z of y of degree three,

(E) every C-forbidden vertex sends five units to every C-admissible neighbor
of degree at least four,

(F) for every C-admissible vertex y of degree at least four that has a C-
forbidden neighbor we select a C-forbidden neighbor x of y and send
one unit to each face opposite to xy, and one unit to the face opposite
to yz for every C-admissible neighbor z of y of degree three.

Since G does not satisfy the conclusion of the theorem, it follows that
every vertex of G has degree at least two, every vertex of degree exactly two
belongs to C, and there are at most four C-semigrams in G. With these facts
in mind we now show that every vertex has non-negative charge. To that end
let v ∈ V (G) have degree d, and assume first that v is C-admissible. If d = 3,
then it starts out with a charge of −9 and receives three from each incident
face by rule (A) for a final total of zero. If d ≥ 4, then v starts out with a
charge of 9d − 36 ≥ 0. If v has no C-forbidden neighbor, then it sends no
charge and the claim holds. Thus we may assume that v has a C-forbidden
neighbor, and let x be such neighbor selected by rule (F). Then v receives at
least five units by rule (E), and sends at most 2d − 3 by rule (F) for a total
of at least 9d − 36 + 5 − (2d − 3) = 7d − 28 ≥ 0. Thus every C-admissible
vertex has non-negative final charge. If v is big, but does not belong to C,

12



then it sends only by rules (B), (D) or (E). It sends at most 3d using the first
clause of rule (B) and at most 12 using the second clause (because there are
at most four C-semigrams), and it sends at most 5d using rules (D) or (E)
for a total final charge of at least 9d−36−3d−12−5d ≥ 0, because d ≥ 48.
Thus we may assume that v ∈ V (C). Then v starts out with 8d − 19 and
sends 3(d − 3) using rule (A) or (C) (if d = 2, then v receives 3 by rule (A);
and otherwise it sends 3(d− 3) by rule (C)) and it sends 5(d− 2) using rule
(D) or (E) for a total of 8d − 19 − 3(d − 3) − 5(d − 2) = 0. This proves our
claim that the final charge of every vertex is non-negative.

It also follows that every face of length l ≥ 6 has non-negative final charge,
for every face sends at most three units to each incident vertex and only to
those vertices; thus the final charge is at most 9l − 36 − 3l ≥ 0.

We have thus shown that G has a face f of length at most five with
strictly negative final charge. Clearly f is not the outer face.

(3) No vertex incident with f has degree two.

To prove (3) suppose for a contradiction that a vertex v of degree two is
incident with f . Thus v and the two edges incident with v and f belong to
C. Since G 6= C and f has length at most five we deduce that at least two
vertices incident with f are incident with C and have degree at least three.
Those two vertices do not receive any charge from f , and hence f has length
four, because it has negative charge.

We deduce that f is bounded by a cycle u1u2u3u4, where u1, u2, u3 are
consecutive vertices of C, and u2 has degree two. It follows that u4 6∈ V (C),
because C is induced. Since f has negative charge we find that u4 is small,
and hence C-admissible. Thus the cycle C ′ obtained from C by replacing
the vertex u2 by u4 either has length at most five, or does not have two
distinct non-adjacent C-appendices. It follows from (1) that the open disk
bounded by C ′ includes at most one vertex, and hence it contains exactly
one, because |V (G)| − V (C)| ≥ 2. Let that vertex be v4; then the remaining
vertices of C can be numbered v1, v2, v3 so that the cycle C is u1u2u3v1v2v3

and v4 is adjacent to v1, v3, v4. Then (v4, v1, v2, v3) and (u4, u1, u2, u3) are C-
semigrams with distinct non-adjacent tails, contrary to the assumption that
G is a counterexample to the theorem. This proves (3).

Let uv be an edge of G such that f is opposite to uv. Let us say that
v is a sink if v has degree three and both u and v are C-admissible. Let us
say that v is a source if either v 6∈ V (C) and v is big, or v ∈ V (C) and f is
v-interior. Since v does not have degree two by (3) we deduce that v is a sink
if and only if it receives three units of charge from f by rule (A) and f does
not receive three units by rule (D) from the unique neighbor of v opposite to
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f . Likewise, the vertex v is a source if and only if it sends three units to f

by the first clause of rule (B) or by rule (C). Let s be the number of sources,
and t the number of sinks. Thus the charge of f is at least 9 + 3s − 3t if f

has length five and at least 3s − 3t if f has length four.
Let us assume now that f has length five, and let v1, v2, . . . , v5 be the

incident vertices, listed in order. Since f has negative charge, at least four of
the five incident vertices are sinks, and so we may assume that v1, v2, v3, v4

are sinks. Thus γ = (v1, v2, . . . , v5) is a pentagram. For i = 1, 2, 3, 4 let xi

be the third neighbor of vi. From (1) and the fact that G has no C-secure
tetragram we deduce that the vertices x1, x2, x3, x4 are distinct and pairwise
non-adjacent. If v5 is a sink as well, then it follows from (1) that γ is C-secure
decagram. (If there is a path of length two between x1 and x3, then G has a
separating cycle K of length six such that all vertices of K except possibly
one are C-admissible. Thus the open disk bounded by K includes exactly one
vertex of G, necessarily of degree three. That vertex is x2 and it follows that
x2 is adjacent to x1 and x3, a contradiction.) Thus v5 is not a sink, and hence
the final charge of f is at least −3. It follows that v5 is not a source, which in
turn implies that v5 is C-admissible (because v1 and v4 are C-admissible). We
claim that γ is a safe pentagram. If there exists a path P in G\{v1, v2, v3, v4}
of length at most three with ends x2 and v5, then P can be completed to
a separating cycle K using the path v5v1v2x2. By (1) this cycle bounds an
open disk that contains only the vertex x1, which is impossible, because x1

is not adjacent to x2. In order to complete the proof that γ is safe it suffices
to consider, by symmetry, a path in G\{v1, v2, v3, v4} of length at most three
with ends x1 and x2. This path can be completed via the path x2v2v1x1 to
a cycle K ′. Since v1 and v2 have degree three, and x1 is not adjacent to x2,
we deduce that K ′ is a facial cycle. Since x1 is not adjacent to x2 we may
assume that K ′ has length six; let its vertices in order by x1v1v2x2ab. Then
(v1, v2, x2, a, b, x1) is a C-secure hexagram in G, a contradiction. This proves
our claim that γ is a safe pentagram. We have already established that the
vertices v1, v2, . . . , v5, x1, x2, x3, x4 are C-admissible. If xi has a C-forbidden
neighbor for some i ∈ {1, 2, 3, 4}, then f receives one unit of charge either
from that neighbor by rule (D) if xi has degree three, or from xi by rule (F)
otherwise. If v5 has a C-forbidden neighbor, then it sends one unit of charge
to f by rule (F). Thus at most two vertices among v5, x1, x2, x3, x4 have a
C-forbidden neighbor, and hence it follows that either γ, or (v4, v3, v2, v1, v5)
is a C-secure pentagram, a contradiction.

Thus we have shown that f has length four. Let v1, v2, v3, v4 be the
incident vertices listed in order. Since f has negative charge at least 3s− 3t,
we may assume that v1 is a sink and v3 is not a source. Since v3 is not a source
and (v1, v2, v3, v4) is not a C-secure tetragram, (3) implies that exactly one of
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v2v3, v3v4 is an edge of C, and hence we may assume the latter. In particular,
v2 6∈ V (C). Since we have shown that every tetragram is safe it follows that
γ = (v1, v2, v3, v4) is a C-semigram. It is possible that (v2, v1, v4, v3) is also a
C-semigram, in which case f has charge at least −6; otherwise it has charge
at least −3. Thus we have shown that

(4) the charge of every face is at least −3 times the number of C-semigrams

its incident vertices give rise to.

It follows that there are no big vertices, for every big vertex sends three
units per C-semigram to the corresponding face by the second clause of rule
(B).

Let v be the neighbor of v1 other than v2 and v4. If v has no C-forbidden
neighbor, then γ is a C-secure tetragram, a contradiction. Thus v has a
neighbor u ∈ V (C). This has two implications. First, v sends one unit to f

by rule (D), which was not accounted for in (4), and hence the constant −3
in (4) is improved to −2. Second, since v3, v4, u ∈ V (C) have degree at least
three, the total charge is at most −3 by (2). We deduce that G has at least
two C-semigrams.

Let us go back to the C-semigram γ for a little while. Let C, C1, C2 be the
three cycles in the graph consisting of C and the path uvv1v4, numbered so
that v3 belongs to C2. We claim that C2 has length at least seven. To prove
this claim we note that by (1) the cycle C2 has length at least six. Assume
that C2 has length exactly six. Then the open disk it bounds contains v2

and no other vertex of G. It follows that v2 has degree three, and its third
neighbor is u. Since v has degree at least three, it is incident with an edge
belonging to the open disk bounded by C1. If such an edge is a chord, say
vw, then we have determined G completely, and the C-semigram (v1, v, w, v4)
shows that w is a C-appendix, a contradiction. Thus the cycle C1 is also
separating. By (1) the open disk it bounds includes exactly one vertex,
a degree three neighbor of v. This determines G completely, and we see
that the two neighbors of v4 on C are distinct non-adjacent C-appendices, a
contradiction. This proves our claim that C2 has length at least seven. Thus
C1 has length at most five, and hence it bounds a face. Since u is not a
C-appendix (because there are no two distinct non-adjacent C-appendices)
it follows that C1 has length exactly five. Thus u and v4 have a common
neighbor of degree two on C, say z. Let f(γ) denote the face bounded by
C1.

The face f(γ) starts out with a charge of 9, sends three units to each of
v1, v, z by rule (A), and receives one either from v3 by rule (D), or from v2 by
rule (F) for a total of +1. We will use this +1 to partially offset the negative

15



charge of f . To do that we notice that since every two distinct C-appendices
are adjacent we have f(γ) 6= f(γ′) for every two distinct C-semigrams γ, γ′.
It follows that there are at most two distinct C-semigrams. On the other
hand, the C-semigram γ contributes −2 toward f and +1 toward f(γ), for
a grand total of −1, and the same applies to every other C-semigram. Since
the total charge is at most −3, there are at least three C-semigrams, a
contradiction.

Proof of Theorem 4.4. Let G be a triangle-free planar graph. We may as-
sume that G is actually drawn in the plane. If G has a vertex of degree
two or less, then it has a secure monogram, and so we may assume that G

has minimum degree at least three. It follows that G has a facial cycle C of
length at most five. Let H be the component of G containing C. We may
assume that C bounds the outer face of H . Since H has minimum degree
at least three and is triangle-free it follows that V (H) − V (C) has at least
two vertices. By Lemma 5.1 H has a C-secure multigram; but any C-secure
multigram in H is a secure multigram in G, as desired.
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