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Abstract.

In this paper we introduce the concept of distance local connectivity of a

graph. We give several sufficient conditions in terms of the independence

number and of the vertex degrees, and we show a relation between the

distance local connectivity and the hamiltonian index of a graph.

Keywords: Degree condition, Distance local connectivity, Hamiltonian index,

Independence number

AMS Subject Classification (2000): 05C45, 05C35

1 Introduction.

By a graph we mean a simple undirected graph G = (V (G), E(G)). We use [3]

for terminology and notation not defined here. For x, y ∈ V (G), an x, y−path

is a path between vertices x and y in G and distG(x, y) denotes the distance

between x and y in G, i.e. the length of a shortest x, y-path in G. Let dG(x)

denote the degree of a vertex x in G, δ(G) the minimum degree of G, ∆(G)

the maximum degree of G and α(G) the independence number of G. For a

nonempty set U ⊆ V (G), the induced subgraph on U is denoted by 〈U〉. For

x ∈ V (G), G − x denotes the subgraph of G obtained by deleting x and all
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edges adjacent to x. If e ∈ E(G), then G − e denotes the subgraph of G such

that V (G− e) = V (G) and E(G− e) = E(G) \ {e}. If G1, G2 are graphs, then

G = G1 ∪G2 is the graph G = (V, E) such that V = V (G1) ∪ V (G2) and E =

E(G1)∪E(G2), and G1△G2 denotes the graph (G1 ∪G2)− (E(G1)∩E(G2)).

We say that G is claw-free if it does not contain a copy of the graph K1,3 as

an induced subgraph. Let

σk(G) = min{
k

∑

i=1

dG(xi)|{x1, . . . , xk} ⊂ V (G), independent}.

The square of a graph G, denoted by G2, is the graph in which V (G2) = V (G)

and E(G2) = E(G) ∪ {{u, v}, | u, v ∈ V (G), distG(u, v) = 2}. For x ∈ V (G),

we set NG(x) = {y ∈ V (G), xy ∈ E(G)} and NG[x] = NG(x) ∪ {x}. We say

that x is locally connected in G, if 〈NG(x)〉 is connected. We say that G is a

locally connected graph, if every vertex of G is locally connected.

Chartrand and Pippert proved the following Ore-type condition for local con-

nectivity of graphs:

Theorem A [5]. Let G be a connected graph of order n. If

dG(u) + dG(v) >
4

3
(n − 1)

for every pair of vertices u, v ∈ V (G), then G is locally connected.

For x ∈ V (G), let N2(x) be the subgraph induced by the set of edges uv, such

that

min{distG(x, u), distG(x, v)} = 1.

We say that x is an N2-locally connected vertex in G, if N2(x) is connected. We

say that G is N2-locally connected, if every vertex of G is N2-locally connected.

Ryjáček in [12] proved an Ore-type condition for N2-locally connected graphs.

In Section 2 we introduce the concept of distance local connectivity and we

extend these results to distance locally connected graphs.

The following result shows that the concept of local connectivity is closely

related to hamiltonicity.

Theorem B [10]. Let G be a connected locally connected claw-free graph

of order at least 3. Then G is hamiltonian.

2



Motivated by Theorem B, in Section 3 we will prove results on the hamiltonic-

ity in iterated line graphs, whose preimages are distance locally connected or

N2-locally connected. As a motivation we give the following Theorem C.

A closed trail is a connected graph T such that every vertex of T has even

degree. A dominating closed trail (DCT) in a graph G is a closed trail T such

that T is a subgraph of G and each edge of G is dominated by T , i.e. has at

least one end vertex on T . The trivial DCT, i.e., DCT containing only one

vertex, is allowed too.

Harary and Nash-Williams proved the following:

Theorem C [7]. Let G be a graph with at least three edges. Then G has

a DCT if and only if the line graph L(G) of G is hamiltonian.

Paulraja proved the following:

Theorem D [11]. Let G be a connected graph. If every edge of G belongs

to a triangle, then G has a spanning eulerian subgraph.

Theorem E [11]. Let G be a connected claw-free graph such that every

edge of G belongs to a cycle of length at most 5. Then G has a spanning

eulerian subgraph.

Paulraja [11] also conjectured that if every edge of a 2-connected graph G lies

in a cycle of length at most 4 in G, then G has a DCT. Lai [8] showed that

this conjecture is true.

Theorem F [8]. Let G be a 2-connected graph such that every edge of G

lies in a cycle of length at most 4. Then G has a DCT

It is easy to see that a spanning eulerian subgraph is a DCT.

For an integer k ≥ 0, the k-th iterated line graph Lk(G) of a graph G, is

defined recursively by L0(G) = G and Lj(G) = L(Lj−1(G)) for j = 1, . . . , k.

The hamiltonian index of a graph G, denoted h(G), is the smallest integer k

for which Lk(G) is hamiltonian. Chartrand [4] showed that the hamiltonian

index exists for every connected graph that is not a path.

For i a nonnegative integer, let Vi(G) ⊂ V (G) denote the set of vertices such

that Vi(G) = {x, dG(x) = i}. A branch of G is a nontrivial path such that
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- for every internal vertex v, if any, v ∈ V2(G),

- for every end vertex u, u 6∈ V2(G).

Let B(G) denote the set of all branches of G, and let B1(G) denote the subset of

B(G) in which every branch has one end vertex in V1(G). For any subgraphs

H1, H2 of G, let distG(H1, H2) = min{distG(x, y), x ∈ V (H1), y ∈ V (H2)}.

Liu and Xiong characterized graphs with hamiltonian index at most n.

Theorem G [9]. Let G be a connected graph that is not a 2-cycle and

let n ≥ 2 be an integer. Then h(G) ≤ n if and only if EUn(G) 6= ∅, where

EUn(G) denotes the set of those subgraphs H of G which satisfy the following

conditions:

i) every vertex of H has even degree,

ii) V0(H) ⊂
∆(G)
⋃

i=3
Vi(G) ⊂ V (H),

iii) distG(H1, H \ H1) ≤ n − 1 for any component H1 of H ,

iv) |E(b)| ≤ n + 1 for any branch b ∈ B(G) with E(b) ∩ E(H) = ∅,

v) |E(b1)| ≤ n for any branch b1 ∈ B1(G).

2 Distance local connectivity.

Let G be a graph, x ∈ V (G), and let m be a positive integer. The Nm
1 -

neighbourhood of x, denoted by Nm
1 (x), is the set of all vertices y ∈ V (G), y 6=

x, such that distG(x, y) ≤ m. A vertex x is called Nm
1 -locally connected if

〈Nm
1 (x)〉 is connected. A graph G is said to be an Nm

1 -locally connected graph

if every vertex of G is Nm
1 -locally connected.

We prove the following proposition.

Proposition 1. Let G be a graph and m be a positive integer. If G is a

connected Nm
1 -locally connected graph, then G is 2-connected.

Proof. If G is not 2-connected, then G has a cutvertex x. Thus, 〈Nm
1 (x)〉 is a

subgraph of a disconnected graph G−x with at least one vertex in each of the

components of G − x. Hence x is not Nm
1 -locally connected, a contradiction.

2
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We will concentrate on the family of 2-connected graphs only. Let C be a

cycle, x ∈ V (C), and let ~C be an orientation of C. Let x−(i) denote the i-th

predecessor of x on C and x+(i) denote the i-th successor of x on C in the

orientation ~C.

The following lemma shows that an Nm
1 -locally disconnected vertex belongs to

a large induced cycle.

Lemma 1. Let G be a 2-connected graph, x ∈ V (G), and let m be a positive

integer. If x is not Nm
1 -locally connected, then there is an induced cycle C of

length at least 2m + 2 such that, in an orientation of C,

- distG(x−(i), x) = i and distG(x+(i), x) = i, i = 1, . . . , m,

- distG(y, x) > m, for every y ∈ V (C) \ {x, x−(1), . . . , x−(m), x+(1), . . .,

x+(m)}.

Proof. Suppose x ∈ V (G) is not Nm
1 -locally connected. The subgraph

〈Nm
1 (x)〉 consists of at least two components. Let G1 be arbitrary compo-

nent of 〈Nm
1 (x)〉 and G2 be the union of all the other components of 〈Nm

1 (x)〉.

Since G is 2-connected, there is a cycle C containing x, such that x−(1) ∈ G1

and x+(1) ∈ G2 in an orientation of C. Choose C shortest possible with this

property. Since C is shortest possible, distG(x, x+(m)) = distG(x, x−(m)) =

m. Since x is not Nm
1 -locally connected, x−(m)x+(m) 6∈ E(G), implying that

|V (C)| ≥ 2m + 2. It is easy to see that C has the required properties since

otherwise there is a shorter cycle. 2

2.1 Sufficient conditions for distance local connectivity

involving independence number.

Chvátal and Erdős in [6] proved that every k-connected graph with α(G) ≤ k

is hamiltonian. Ainouche, Broersma and Veldman in [1] strenghtened the

Chvátal-Erdős’ theorem for claw-free graphs by showing that a k-connected

claw-free graph G is hamiltonian if α(G2) ≤ k. In this paragraph we prove

similar conditions for distance local connectivity in 2-connected graphs.

Theorem 1. Let G be a 2-connected graph, m be a positive integer. If

α(G) ≤ m, then G is Nm
1 -locally connected.
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Proof. Suppose that G is not Nm
1 -locally connected, i.e., there is a vertex

x ∈ V (G) which is not Nm
1 -locally connected. By Lemma 1 there is an induced

cycle C in G of length at least 2(m + 1) containing x. Clearly, the cycle C

contains 2m+2
2

= m + 1 independent vertices, which is a contradiction. 2

Now we give sufficient conditions for distance local connectivity in terms of

the independence number of the square of a graph.

Theorem 2. Let m ≥ 2 be an integer and let G be a 2-connected graph such

that, for every vertex x of G:

1) if m ≡ 0(mod 3), then |M | ≤ 2
3
m for every M ⊂ Nm+1

1 (x) such that M

is independent in (G − x)2,

2) if m ≡ 1(mod 3), then |M | ≤ 2
3
(m−1) for every M ⊂

(

Nm+1
1 (x) \ N1

1 (x)
)

such that M is independent in (G − NG[x])2,

3) if m ≡ 2(mod 3), then |M | ≤ 2
3
(m − 2) + 1 for each M ⊂ Nm

1 [x] such

that M is independent in G2.

Then G is Nm
1 -locally connected.

Proof. Suppose that there is a vertex x ∈ V (G) which is not Nm
1 -locally

connected. By Lemma 1 there is an induced cycle C of length at least 2(m+1)

in G containing the vertex x. Since x is not Nm
1 −locally connected, the cycle

C can be chosen such that x−(1) and x+(1) belong to different components of

〈Nm
1 (x)〉.

Now we consider the following cases.

Case 1: m ≡ 0 (mod 3). We choose the following set of vertices of G:

M =
{

x+(1), x+(4), . . . , x+(m−2), x−(1), x−(4), . . . , x−(m−2), x+(m+1)
}

Then no two vertices of M have a common neighbour in G − x, implying

that M is independent in (G − x)2. Since |M | = 2
3
m + 1, we have

α((G − x)2) ≥
2

3
m + 1,

a contradiction.

Case 2: m ≡ 1 (mod 3). We choose the following set of vertices of G:

M =
{

x+(2), x+(5), . . . , x+(m−2), x−(2), x−(5), . . . , x−(m−2), x+(m+1)
}

The set M is independent in (G − NG[x])2, implying

α((G − NG[x])2) ≥
2

3
(m − 1) + 1,

a contradiction.
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Case 3: m ≡ 2 (mod 3). We choose the following set of vertices of G:

M =
{

x+(1), x+(4), . . . , x+(m−1), x−(2), x−(5), . . . , , x−(m)
}

The set M is independent in G2, implying

α(G2) ≥
2

3
(m − 2) + 2,

a contradiction.

2

In fact, in the proof of the previous theorem, we have shown a little more: if x

is not a distance-locally connected vertex in G, then there is a set M ⊂ V (G)

such that

- M is independent in the square of a specific subgraph of G,

- M is a subset of a distance neighbourhood of x.

This yields the following consequence.

Corollary 1. Let m ≥ 2 be an integer, G a 2-connected graph. If x ∈ V (G)

is not Nm
1 -locally connected, then there is a set M ⊂ V (G) such that

1) M is independent in (G − x)2, M ⊂ Nm+1
1 (x) and |M | ≥ 2

3
m + 1, if

m ≡ 0(mod 3),

2) M is independent in (G−NG[x])2, M ⊂
(

Nm+1
1 (x) \ N1

1 (x)
)

and |M | ≥
2
3
(m − 1) + 1, if m ≡ 1(mod 3),

3) M is independent in G2, M ⊂ Nm
1 [x] and |M | ≥ 2

3
(m − 2) + 2, if

m ≡ 2(mod 3).

As an immediate consequence of Theorem 2 we have the following Theorem.

Theorem 3. Let m ≥ 2 be an integer and let G be a 2-connected graph such

that, for every x ∈ V (G),

1) α((G − x)2) ≤ 2
3
m if m ≡ 0 (mod 3),

2) α((G − NG[x])2) ≤ 2
3
(m − 1) if m ≡ 1 (mod 3),

3) α(G2) ≤ 2
3
(m − 2) + 1 if m ≡ 2 (mod 3).

(1)

Then G is Nm
1 -locally connected.
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Let G be a graph with the structure shown in Fig. 1, such that each of the sets

U1, . . . , Um, V1, . . . Vm, W induces a clique of arbitrary order. It is easy to see

that G is not Nm
1 -locally connected and in each of the three cases considered

in the proof of Theorem 3 there is an equality. Thus, the conditions given in

Theorem 3 are sharp.

The following sufficient condition involving α(G2) is an immediate consequence

of Theorem 3.

Corollary 2. Let G be a 2-connected graph, let m ≥ 2 be an integer. If

α(G2) ≤ 2
3
m − 1, then G is Nm

1 -locally connected.

2.2 Degree conditions for distance local connectivity.

Bondy in [2] proved that if dG(x)+dG(y) ≥ |V (G)| for each pair of nonconsecu-

tive vertices of a k-connected graph G, then α(G) ≤ k. Ore’s degree condition

for hamiltonicity can be found as an consequence of mentioned theorem of

Chvátal and Erdős (see [6]) and the above mentioned theorem of Bondy. In

a similar direction, we present in this paragraph some degree conditions for

distance local connectivity in 2-connected graphs.

Theorem 4. Let G be a 2-connected graph of order n and let m be a positive

integer. If

σm+1(G) ≥
3

2
n − m,

then G is Nm
1 -locally connected.

Proof. Suppose that G is not Nm
1 -locally connected. Then there is a vertex

x such that 〈Nm
1 (x)〉 consists of at least two components. Let G1 denote one

of the components, let G2 denote the union of all the other components. Let

Ui = {xi ∈ V (G1), distG(xi, x) = i}, Vi = {xi ∈ V (G2), distG(xi, x) = i},

i = 1, . . . , m. Let W = {y ∈ V (G), distG(x, y) > m}. Since G is 2-connected,

the sets Ui, Vi are all nonempty. By Lemma 1, there is an induced cycle C

such that V (C) ≥ 2m + 2 and C can be chosen such that C contains a vertex
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of each of the sets Ui, Vi, i = 1, . . . , m. Choose C shortest possible with this

property. The structure of G is shown in Fig. 1. Note that elliptical parts are

not necessarily cliques.
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Fig. 1

Choose vertices w ∈ W , ui ∈ Ui, vi ∈ Vi, i = 1, . . . , m and set

A =







{u1, v1, u3, v3, . . . , um, vm} if m is odd,

{u1, v1, u3, v3, . . . , um−1, vm−1, w} if m is even

and

B =







{x, u2, v2, u4, v4, . . . , um−1, vm−1, w} if m is odd,

{x, u2, v2, u4, v4, . . . , um, vm} if m is even.

Then A, B are disjoint (m+1)-element independent sets on C. For any vertex

z ∈ V (G), z can be a common neighbour of at most two vertices from A, or

from B respectively.

Obviously

dG(u1) ≤ 1 + |U1| − 1 + |U2|, dG(v1) ≤ 1 + |V1| − 1 + |V2|,

dG(u2) ≤ |U1| + |U2| − 1 + |U3|, dG(v2) ≤ |V1| + |V2| − 1 + |V3|,

dG(u3) ≤ |U2| + |U3| − 1 + |U4|, dG(v3) ≤ |V2| + |V3| − 1 + |V4|,
...

...

dG(um) ≤ |Um−1| + |Um| − 1 + |W |, dG(vm) ≤ |Vm−1 + |Vm| − 1 + |W |,
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Hence we have

∑

z∈A

dG(z) ≤



























n − (m + 1) + 1 + |U2| + |V2| + |U4| + |V4| + . . .+

+|Um−1| + |Vm−1| + |W | if m is odd,

n − (m + 1) + 1 + |U2| + |V2| + |U4| + |V4| + . . .+

+|Um| + |Vm| if m is even,

Analogously we have

∑

y∈B

dG(y) ≤



























n − (m + 1) + 1 + |U1| + |V1| + |U3| + |V3| + . . .+

+|Um| + |Vm| if m is odd,

n − (m + 1) + 1 + |U1| + |V1| + |U3| + |V3| + . . .+

+|Um−1| + |Vm−1| + |W | if m is even.

Since 1 + |U1| + |V1| + |U2| + |V2| + . . . + |Um| + |Vm| + |W | = n, we have

∑

z∈A

dG(z) +
∑

y∈B

dG(y) ≤ 2(n − m − 1) + n,

implying

σm+1(G) ≤
3

2
n − m − 1,

a contradiction. 2

Alternatively, from Theorem 3 we can obtain the following degree conditions

for Nm
1 -locally connected graphs. Note that these conditions are incomparable,

i.e., none of Theorems 4 and 5 implies the other one, as will be shown in

Corollary 5.

Theorem 5. Let m ≥ 2 be an integer and let G be a 2-connected graph of

order n such that

1) σ 2

3
m+1(G) ≥ n − 2

3
m + 1 if m ≡ 0 (mod 3),

2) σ 2

3
(m−1)+1(G) ≥ n − 2

3
(m − 1) − 1 if m ≡ 1 (mod 3),

3) σ 2

3
(m−2)+2(G) ≥ n − 2

3
(m − 2) − 1 if m ≡ 2 (mod 3).

Then G is Nm
1 -locally connected.

10



Proof. Suppose that G is not Nm
1 -locally connected. There is a vertex x

such that 〈Nm
1 (x)〉 consists of at least two components. Let G1 be the smallest

component of 〈Nm
1 (x)〉, let G2 be the union of all the other components of

〈Nm
1 (x)〉. Let u1 = |V (G1) ∩ NG(x)| and v1 = |V (G2) ∩ NG(x)|. By Lemma

1 there is an induced cycle C of length at least 2(m + 1) in G containing the

vertex x. Since x is not Nm
1 −locally connected, the cycle C can be chosen

such that x−(1) and x+(1) belong to different components of 〈Nm
1 (x)〉.

Case 1: m ≡ 0 (mod 3). By Corollary 1 case 1), there is a set M ⊂ V (G− x)

such that |M | = 2
3
m+1 and M is independent in (G−x)2. Let t = |M |.

The set M can be chosen in the following way: M = {x1, x2 . . . xt},

where x2j−1 = x−(3j−2), x2j = x+(3j−2), j = 1, . . . , m
3
, xt = x+(m+1).

Hence

N1
1 (u) ∩ N1

1 (v) = ∅

for every pair u, v ∈ M . Obviously
∑

xi∈M

dG−x(xi) ≤ (n − 1) −
2

3
m − 1.

The vertex x can be adjacent to at most two vertices of M by the

definition of M . Therefore
∑

xi∈M

dG(xi) ≤ n −
2

3
m,

a contradiction.

Case 2: m ≡ 1 (mod 3). By Corollary 1 case 2), there is a set M ⊂ V (G −

NG[x]) such that |M | = 2
3
(m − 1) + 1 and M is independent in (G −

NG[x])2. Let t = |M |. The set M can be chosen in the following

way: M = {x1, x2 . . . xt}, where x2j−1 = x−(3j−1), x2j = x+(3j−1), j =

1, . . . , m
3
, xt = x+(m+1). Hence

∑

xi∈M

dG−NG[x](xi) ≤ (n − 1 − u1 − v1) −
2

3
(m − 1) − 1.

Each neighbour of x is adjacent to at most one vertex of M by the

definition of M . This yields
∑

xi∈M

dG(xi) ≤ n −
2

3
(m − 1) − 2,

a contradiction.

Case 3: m ≡ 2 (mod 3). By Corollary 1 case 3), there is a set M ⊂ V (G)

such that |M | = 2
3
(m − 2) + 2 and M is independent in G2. Hence

∑

xi∈M

dG(xi) ≤ n −
2

3
(m − 2) − 2,

which is a contradiction again. 2
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Theorem 5 implies the following Dirac-type condition.

Corollary 3. Let m ≥ 2 be an integer and let G be a 2-connected graph of

order n such that

δ(G) ≥















3n
2m+3

− 2m−3
2m+3

if m ≡ 0 (mod 3),
3n

2m+1
− 1 if m ≡ 1 (mod 3),

3n
2m+2

− 2m−1
2m+2

if m ≡ 2 (mod 3).

Then G is Nm
1 -locally connected.

However, from Theorem 4 we obtain the following minimum degree condition.

Corollary 4. Let m be a positive integer and let G be a 2-connected graph

such that

δ(G) ≥
3n

2m + 2
−

m

m + 1
.

Then G is Nm
1 -locally connected.

Comparing Corollary 3 and Corollary 4 we finally obtain the following

Corollary 5. Let m ≥ 2 be an integer, let G be a 2-connected graph of order

n such that

δ(G) ≥







3n
2m+3

− 2m−3
2m+3

if m ≡ 0(mod 3) and n ≥ 8
3
m + 2,

3n
2m+2

− m
m+1

otherwise.

Then G is Nm
1 -locally connected.

Proof.

Case 1: m ≡ 0(mod 3). We have 3n−2m+3
2m+3

< 3n−2m
2m+2

. Thus we obtain

(3n − 2m + 3)(2m + 2) < (3n − 2m)(2m + 3), and hence n > 8
3
m + 2.

Case 2: m ≡ 1(mod 3). We have 3n−2m−1
2m+1

> 3n−2m
2m+2

. Then we obtain

(3n − 2m − 1)(2m + 2) > (3n − 2m)(2m + 1). and hence n > 4
3
m + 2

3
.

Clearly, if G is 2-connected and n < 2m, then G is trivially Nm
1 -locally

connected.

12



Case 3: m ≡ 2(mod 3). We have 3n−2m+1
2m+2

> 3n−2m
2m+2

and hence 3n − 2m + 1 >

3n − 2m.

2

The conditions in Theorem 4 and in Corollary 4 are sharp for m ≡ 2 (mod 3).

Let k be an arbitrary integer, let m ≡ 2 (mod 3) be a positive integer. Let

U1, U2, U4, U5, U7 . . . Um, V1, V2, V4, V5, V7, . . . Vm be cliques of order k. Let

U3, U6, . . . , V3, V6, . . . , W be cliques of order 1. Construct a graph G by joining

a new vertex x with all vertices of U1 ∪ V1, each vertex of Ui with each vertex

of Ui+1, each vertex of Vi with each vertex of Vi+1, i = 1, . . . , m− 1, and each

vertex of Um ∪ Vm with the vertex of W . Then G is 2k-regular, n = |V (G)| =
4
3
(m + 1)k + 2

3
(m + 1) and σm+1(G) = 2k(m + 1). Clearly

2k(m + 1) =
3

2

[

4

3
(m + 1)k +

2

3
(m + 1)

]

− (m + 1) =
3

2
n − m − 1,

δ(G) = 2k =
3n

2(m + 1)
− 1

and the graph G is not Nm
1 -locally connected.

The conditions in Theorem 5 and Corollary 3 are sharp for m ≡ 2 (mod 3) too.

We consider the same graph G as in the previous example. Clearly

σ 2

3
(m−2)+2(G) =

(

2

3
(m − 2) + 2

)

2k =
4

3
(m + 1)k = n −

2

3
(m + 1) =

= n −
2

3
(m − 2) − 2,

δ(G) =
3n

2(m + 1)
− 1

and the graph is not Nm
1 -locally connected.

13



3 Hamiltonian index.

For any 2-connected graph G, let ℓ(G) denote the smallest integer ℓ such that

every edge of G belongs to a cycle of length at most ℓ. Note that ℓ(G) is

well-defined since if G is 2-connected then every edge of G is in a cycle.

The following theorem is the main result of this section.

Theorem 6. Let G be a 2-connected graph. Then

h(G) ≤















⌊

ℓ(G)−1
2

⌋

for 3 ≤ ℓ(G) ≤ 5,

⌊

ℓ(G)
2

⌋

− 1 for ℓ(G) ≥ 6.

Moreover we prove the following result, showing the relation between hamil-

tonian index and distance local connectivity.

Theorem 7. Let m be a positive integer and let G be a connected Nm
1 -locally

connected graph. Then

h(G) ≤







m for m ∈ {1, 2},

m − 1 for m ≥ 3.

Moreover, if G is connected, N2-locally connected, then h(G) ≤ 1.

For the proofs of Theorem 6 and Theorem 7 we need some auxiliary statements.

Lemma 2. Let G be a 2-connected N2-locally connected graph, let x be a

vertex of G. Then for every pair u, v of neighbouring vertices of x there is an

u, v-path P such that

i) 1 ≤ distG(x, y) ≤ 2 for every y ∈ V (P ),

ii) there is no pair of consecutive vertices on P which are both at distance

exactly 2 from x.

Proof. Since G is 2-connected, there cannot be a vertex of degree 1 in G,

and hence every neighbour of x is in N2(x). By the definition of N2-local

connectivity, any two vertices of N2(x) are connected by a path in N2(x), and,

by the definition of N2(x), each edge of N2(x) has at least one end-vertex at

distance 1 from x. 2

14



Theorem 8. Let G be a 2-connected N2-locally connected graph. Then G

has a DCT.

Proof. If G is a 2-connected N2-locally connected graph, then each edge of

G lies in a cycle of length at most 4. Then, by Theorem F, G has a DCT. 2

The graph in Figure 2 shows that Theorem 8 does not hold if G is not 2-

connected.
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Fig. 2

Lemma 3. Let m ≥ 3 be an integer, let G be a 2-connected graph in which

every edge belongs to a cycle of length at most 2m + 1. Then h(G) ≤ m − 1.

Proof. Suppose that every edge of a 2-connected graph G belongs to a cycle

of length at most 2m + 1. Let H be a subgraph of G such that

i) every vertex of H has even degree in H ,

ii) H contains every vertex xi of G with dG(xi) ≥ 3,

iii) every vertex y of degree two in G has also degree two in H if y ∈ V (H).

It is easy to see that such a graph H exists (consider e.g. V (H) =
∆(G)
⋃

i=3
Vi(G)

and E(H) = ∅). Suppose H is chosen such that

iv) |{v ∈ V (H)|dH(v) > 0}| is maximum,

v) the number of components of H is minimum.

We show that H satisfies all conditions of Theorem G.

a) Clearly H satisfies condition i) of Theorem G.

b) It is easy to see that V0(H) ⊂
∆(G)
⋃

i=3
Vi(G) and

∆(G)
⋃

i=3
Vi(G) ⊂ V (H). Hence

H satisfies condition ii) of Theorem G.
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c) We show that distG(H1, H \H1) ≤ m−2 for every component H1 of H .

Let, to the contrary, H1 be a component of H such that distG(H1, H \

H1) ≥ m − 1. Since G is 2-connected, there are at least two vertex-

disjoint paths P1, P2 between H1 and H \ H1. Choose P1 shortest pos-

sible. Among all the paths which are vertex-disjoint with P1 we choose

the path P2 shortest possible. Clearly P1 and P2 are both branches of

G and they are both of length at least m− 1. Let xi = V (H1)∩ V (Pi),

yi = V (H \ H1) ∩ Pi, i = 1, 2. The paths P1, P2 can be chosen in such

a way that the vertices y1, y2 belong to one component of H \ H1. We

consider the following cases:

- If H1 and H \ H1 are both trivial, then we can construct a sub-

graph H ′ by adding the paths P1 and P2 to H . Clearly H ′ satisfies

all conditions i), ii), iii) and H ′ contains more vertices of degree

at least 2 than H , a contradiction with iv).

- Suppose at least one of components of H is nontrivial. By sym-

metry we suppose H \H1 is nontrivial. The paths P1 and P2 can

be chosen such that y1 6= y2. If distG(x1, x2) + distG(y1, y2) ≥ 4,

then any cycle containing an edge of P1 has length at least 2m+2,

since P2 is shortest possible. This is a contradiction. Hence

distG(x1, x2) + distG(y1, y2) ≤ 3. Since H1 is connected, there is

a x1, x2-path P in H1. Since y1 and y2 belong to one component

of H , there is a y1, y2-path Q. For the case x1 = x2, or y1 = y2

respectively, we consider the trivial path P , or Q.

Let U1 = {v ∈ V (H); v is an internal vertex of P or Q with

dG(v) = 2}. Since distG(x1, x2) + distG(y1, y2) ≤ 3, |U1| ≤ 2.

Let H ′ = (P1∪P2∪ (H△(P ∪Q)))−U1. First suppose that none

of the paths P, Q is trivial. Then |U1| < 2. Since the number of

all internal vertices of P1∪P2 of degree 2 is greater than |U1|, the

subgraph H ′ contains more vertices of degree at least two than

H , a contradiction with iv).

Finally we suppose that one of the paths P, Q, say P , is trivial.

If |U1| < 2, then H ′ contains more vertices of degree at least

two than H , a contradiction with iv). Hence |U1| = 2. Clearly

E(Q) ⊂ E(H). The subgraph H ′ contains the same number of

vertices of degree at least two as subgraph H , but H ′ has less

components than H , a contradiction with v).
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Hence we have shown that H satisfies condition iii) of Theorem G.

d) We show that |E(b)| ≤ m for any branch b ∈ BH , where BH = {b ∈

BG|E(b) ∩ E(H) = ∅}. Let to the contrary, P be a branch of length

at least m + 1 such that none of the edges of P belongs to H . Let

x1, x2 denote the end-vertices of P . Let Q denote a shortest x1, x2-

path in G \ P . If |E(Q)| > m, then any cycle containing an edge of

P has length at least 2m + 2, since Q is shortest possible. This is a

contradiction. Hence Q has length at most m. Let G1 = H△Q and

U1 = {v ∈ V (H)| v is an internal vertex of Q and dG(v) = 2}. Clearly

|U1| < m − 2. Then H ′ = (G1 ∪ P ) − U1 contains more vertices of

degree at least two than H , a contradiction with iv). Hence H satisfies

condition iv) of Theorem G.

e) It is easy to see that there is no branch b ∈ B1 in a 2-connected graph.

Hence H satisfies condition v) of Theorem G.

The subgraph H ∈ EUn for n = m − 1, hence h(G) ≤ m − 1. 2

Proof of Theorem 6.

1) If ℓ(G) = 3 then, by Theorem D, G has a DCT. Then, by Theorem C,

L(G) is hamiltonian.

2) If ℓ(G) ≥ 7 is an odd integer, then h(G) ≤
⌊

ℓ(G)
2

⌋

− 1 by Lemma 3. If

ℓ(G) ≥ 6 is an even integer, then every edge of G belongs to a cycle of

length at most ℓ(G) + 1 and, by Lemma 3, h(G) ≤
⌊

ℓ(G)
2

⌋

− 1 again.

3) If ℓ(G) = 5, then the statement follows from Lemma 3 since every edge

of G belongs to a cycle of length at most 7. Hence h(G) ≤ 2 =
⌊

ℓ(G)−1
2

⌋

.

4) If ℓ(G) = 4, then the statement follows from Theorem F. 2

Lemma 4. If G is a connected Nm
1 -locally connected graph, then ℓ(G) ≤

2m + 1 and G is 2-connected.

Proof. By Proposition 1, G is 2-connected. If there is an edge xy in G

such that xy does not belong to a cycle of length at most 2m + 1, then x

is not Nm
1 -locally connected, implying that G is not Nm

1 -locally connected, a

contradiction. Therefore every edge of G belongs to a cycle of length at most

2m + 1. 2

17



Proof of Theorem 7.

Let G be a connected Nm
1 -locally connected graph. By Proposition 1, G is

2-connected. If G is N2-locally connected, then by Theorem 8 G has a DCT.

By Theorem C, h(G) ≤ 1.

If G is Nm
1 -locally connected for m a positive integer, then the statement of

this Theorem follows from Theorem 6 and Lemma 4. 2

The conditions in Theorem 6 are sharp except possibly for the case ℓ(G) = 4

and for the case ℓ(G) = 5.

If ℓ(G) = 3, then a sharpness example for Theorem 6 is the graph K1,1,n (see

Fig. 3). Note that this graph is not hamiltonian for n ≥ 3. For ℓ(G) ≥ 6

we set m to be the smallest positive integer such that ℓ(G) ≤ 2m + 1. Then

the sharpness example is the following. Consider two vertices x, y and three

vertex-disjoint x, y-paths, one of length m and two others of length m or m+1.

It is easy to see that

- G is 2-connected,

- every edge of G belongs to a cycle of length at most 2m + 1,

- hG = m − 1.

•

•

• • •. . .

Fig. 3
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The conditions in Theorem 7 are sharp except possibly for the case of N2
1 -local

connectivity.

If m = 1, then a sharpness example is the graph K1,1,n, n ≥ 3. Note that the

graph K1,1,n is locally connected but not hamiltonian. Clearly, this graph is

also N2-locally connected, thus K1,1,n is the sharpness example for the case N2-

local connectivity too. If m ≥ 3, then a sharpness example is the following. We

consider two vertices x, y and three vertex-disjoint x, y-paths, one of length m,
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and two others of length m+1. It is easy to see that G is Nm
1 -locally connected

and hG = m − 1.

For the cases of N2
1 -local connectivity and ℓ(G) = 5 we are not able to find

the sharpness example. We believe that Theorem 6 and Theorem 7 can be

improved in these cases.

Conjecture 1. Let G be a connected N2
1 -locally connected graph. Then G

has a DCT.

The following conjecture is an immediate consequence of Conjecture 1.

Conjecture 2. Let G be a connected N2
1 -locally connected graph. Then

h(G) ≤ 1.

Lai proved that any 2-connected graph G in which every edge belongs to a

cycle of length at most 4 contains a DCT. The next conjecture could be a

strengthening of the previous one and also of the theorem of Lai.

Conjecture 3. Let G be a 2-connected graph such that every edge of G

belongs to a cycle of length at most 5. Then h(G) ≤ 1.

The following theorems for claw-free graphs suggest that the previous conjec-

tures could be true. Note that the line graph of a graph is claw-free.

Theorem 9. Let G be a connected claw-free graph such that every edge of

G belongs to a cycle of length at most 5. Then h(G) ≤ 1.

Proof. It is an immediate consequence of Theorem E and Theorem C. 2

Theorem 10. Let G be a connected claw-free graph, let m be a positive

integer. If G is Nm
1 -locally connected, then h(G) ≤ m − 1.

Proof.

1) If G is a connected, locally connected claw-free graph, then G is hamil-

tonian by Theorem B.

2) If G is a connected, N2
1 -locally connected claw-free graph, then, by

Lemma 4 and Theorem 9, h(G) ≤ 1.

3) The case m ≥ 3 is an immediate consequence of Theorem 7.

2

19



References

[1] Ainouche A., Broersma H.J., Veldman H.J.: Remarks on Hamiltonian

properties of claw-free graphs.

Ars Combinatoria 29C (1990), 110-121.

[2] Bondy J.A.: Properties of graphs with constraints on degrees.

Stud. Sci. Math. Hungar. 4 (1969), 473-475.

[3] Bondy J.A., Murty U.S.R.: Graph Theory with Applications.

Macmillan, London and Elsevier (1976).

[4] Chratrand G.: On hamiltonian line graphs.

Trans. Amer. Math. Soc. 134 (1968), 559-566.

[5] Chartrand G., Pippert R.E.: Locally connected graphs.
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