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Abstract

We study the problem of scheduling independent unit-time parallel
jobs on hypercubes. A parallel job has to be scheduled between its
release time and deadline on a subcube of processors. The objective
is to maximize the number of early jobs. Jobs’ intervals of feasibility
have to be nested. We provide an polynomial time algorithm for the
problem.

1 Introduction

We study the problem of scheduling unit-time parallel jobs (also called multi-
processor tasks) on a parallel machine with hypercube topology of processor
network. The jobs have to be scheduled between their release times and
deadlines and the goal is to maximize the number of early jobs.

The scheduling of sequential (requiring one machine) unit jobs into time
intervals on one processor in order to maximize the weighted number of early
jobs is one of elemenary scheduling problems. This problem can be easily
solved in polynomial time [1]. Even the generalized problem of scheduling
sequential unit jobs on parallel uniform machines is polynomialy solvable [1].

The next step in the generalization of this problem is the introduction of
parallel jobs. The parallel job variant of the problem requests that several
processors (from the set of identical processors) are assigned to each job
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for a given time. Such variant is strongly NP-complete even in the case of
identical release times and deadlines [3] because tight instances require tight
packing of jobs of common sizes to each timeslot and we can reduce well-
known 3-partition problem to that. We inquire which restricted problems
are polynomially solvable.

Real multiprocessor machines usually have some nontrivial structure. Theo-
retical models for scheduling problems take this into account by assuming a
specific network topology of the processors. Such topology implies restriction
that jobs are allowed to be scheduled only on near processors. The structure
of a multiprocessor network is often modelled using a graph, where graph
vertices represent processors and graph edges represent communication lines
between them. Parallel jobs have to be scheduled on the certain class of con-
nected subgraphs. For example, in the mesh topology the set of processors
forms a rectangular mesh and jobs can by scheduled on subrectangles of that
mesh.

We address the scheduling problem on hypercubes, in which processors are
connected to form a hypercube and jobs can be scheduled on appropriate sub-
hypercubes. Such jobs have a size that is a power of two; therefore, packing
such jobs into timeslots is easy. But still there is no known polynomial algo-
rithm even to decide whether it is possible to schedule all jobs within their
constraints (feasibility testing). Ye and Zhang [6] showed that the maximiza-
tion problem in this model is polynomially solvable if we suppose identical
release times. We will show that the maximization problem is polynomially
solvable in a more general setting, in which we allow different release times,
but we request that jobs’ intervals of feasibility are nested. Time complexity
of our algorithm is O(nlogm),

An even more restricted model is the ‘tall/small’ model, in which only jobs
that request one or all processors are allowed. Baptiste and Schieber [4]
showed that feasibility testing in the ‘tall/small’ model is polynomially solv-
able. The article contains two algorithms for the ‘tall/small’ problem, which
showed to be surprisingly difficult. Note that there is a correctable error
in the proof of the first algorithm [5]. It is an open problem whether the
maximization variant of this problem (denoted as P2|r;;p; = 1;size;| > U;)
is polynomially solvable even for two machines [2], which is a special case of
scheduling problem on hypercubes.



2 Preliminaries

The problem has a parameter m giving the number of processors which is a
power of two. An instance of the problem consists of a set of n jobs. Each job
J has a release time r, a deadline d; and a size s; (the number of requested
processors), which is also a power of two. All jobs have unit processing time,
their release times and deadlines are integers and their sizes are powers of
two. The objective is to find a schedule maximizing a number of processed
jobs — for each processed job J find a timeslot ¢; satisfying r; < t; < d;.
Naturally, the sum of sizes of jobs scheduled in one timeslot must be less or
equal to m.

Instead of bringing a precise definition of what is a schedule consistent with
a hypercube topology we use a stricter concept of aligned schedules. Let
processors are numbered from 0 to m — 1. We define a block of size s (where
s is a power of two) as a set of processors {si, ..., (si + s — 1)} for an integer
i (satisfying 0 < i and si + s < m). We request that a job of size s has to
be scheduled on a block of size s. We use the term aligned schedule for a
schedule satisfying this property.

We suppose a hypercube topology where two processors are connected iff their
numbers in the binary notation differ in exactly one bit. In this topology a
block is a subhypercube and every aligned schedule is also consistent with
such topology. In this article, we will not consider non-aligned schedules
to be valid schedules for this problem. This restriction is without loss of
generality because if we have a set of jobs that are scheduled in one timeslot
and a sum of their sizes is less or equal to m, we can greedily assign blocks
to jobs in order from bigger jobs to smaller ones to get an aligned schedule.
Therefore, the essential difference between scheduling on hypercubes and in
a general case is that sizes of jobs are powers of two.

Besides this, there is another restriction compared to a general case. We
suppose that intervals [r;, d;) are nested; that is, for each two jobs J and J'
either [T‘J,d]) g [TJ/,dJ/), [TJ/,dJ/) g [TJ,dJ) or [T’J,dj) N [le,dj/) = @

For job J, let I; be an interval [r;,d;). We use r(I) and d(I) for bounds of
interval I. Let INT be a set of intervals used in an instance of the problem.
The interval I is a member of INT iff there is job J such that I = I;.

Now we define a tree structure on INT. For intervals I and I’ from INT,
I' is a child of I iff I’ is subinterval of I and there is no interval I” in INT
that is between I and I’ (in the sense of the subinterval ordering). We can
suppose without loss of generality that there is only one maximal interval in
INT so we get a tree and not a forest. (Otherwise we can split the problem



to independent sets of jobs where each set consists of jobs that have to be
scheduled somewhere in one particular maximal interval.)

In the algorithm we use packs, which are essentially sets of jobs with an
additional size attribute. Each pack P contains a set of jobs and has a size
s(P) that is a power of two and is larger or equal than the sum of sizes of
jobs from pack P. Jobs from pack P have to be scheduled together on one
block of size s(P) and no other job may be scheduled on this block. In many
cases we do not distinguish between a job of size s and a pack of size s that
contains just this job.

The algorithm maintains one set S(I) for each vertex I (from INT) of the
tree. These sets contain packs of jobs that are decided to be scheduled during
interval I. At the beginning, these sets are empty. During the run of the
algorithm, new packs are added to these sets, moved from one set to another
set or replaced by bigger packs. We define T'(I) as a set of jobs in packs
in S(I) and U(I) as a union of all T'(I") where I’ is I or a descendant of [
(union over vertices in the subtree).

For each vertex I we define ¢(I) as the sum of sizes of packs in the set S(I),
ie., q(I) = Xpes s(P). We define p(I) as sum of (1) for the subtree of I,
ie., p(I) = Xprernrrcr ¢(I'). We define w([) as a workforce of the interval,
ie., let I = [r,d), then w(I) = (d — r)m. We say that interval [ is full iff
p(I) = w(I) and [ is overfull iff p(I) > w(I).

3 Algorithm

The algorithm runs in rounds. Jobs of the same size are processed during
each round. Let s be the size of jobs processed during current round. In the
first round s = 1, then s is doubled during each transition to the next round,
and s = m in the last round.

Algorithm maintains these invariants:

Invariant 1 In every round for each interval I set S(I) contains only packs
of size s and 2s. At the beginning of a round and during the first phase,
all these packs has size s, at the end of a round all these packs has size 2s.
Accordingly, q(I) is also a multiple of s (or 2s).

Invariant 2 Jobs are not assigned to inappropriate intervals; i.e., for each
interval I and for each job J from T'(I), I is a subinterval of I;.



Invariant 3 Intervals are not overfull; i.e., for each interval I, p(I) < w(I).

During each round there are two phases. During the first phase the algorithm
processes every job of size s in any order. For each job J, if [; and all its
ancestors are not full, then a new pack (of size s) containing job J is created
and inserted to S(I;); otherwise, job J is discarded. By invariants 1 and 3,
if any interval [ is not full, then p(I) + s < w(I); hence, interval I will not
be overfull after inserting job J.

During the second phase the algorithm processes every vertex in a topological
order, so that every vertex is processed after all of its children. For each
vertex I, by invariant 1, ¢(7) is a multiple of s. If ¢() is an odd multiple of
s, then algorithm looks for any pack in I’, the nearest nonempty (¢(I’) # 0)
ancestor of I, and moves that pack from S(I’) to S(I). The size of the pack
is s, so if there is any nonempty ancestor of I, the algorithm makes ¢(I) to
be an even multiple of s, After that, the algorithm chooses any matching of
the packs in S(I) and replaces each matched two packs (of size s) by one
pack of size 2s containing the jobs from these two packs. If there is an odd
number of packs in S(I) (in the case that all ancestors of I are empty and
previous step does not bring one pack to I), then the remaining one pack is
replaced by a new pack of size 2s containing only the jobs from the replaced
pack; this will increase ¢(I) by s. After this step, all packs in S(I) are of size
2s.

In the last round, instead of the second phase there is a final phase in which
the algorithm processes every vertex I of the tree in a topological order and
for each pack in S(/) (now of size m) it assigns any free timeslot in interval
I. Because of invariant 3, there will be enough of free timeslots.

In Algorithm 1, there is the algorithm written in a pseudocode. The pseu-
docode is written with assumption that (/) and p(I) are computed on the
fly from a data structure holding S(7). In the pseudocode we represent packs
as simple sets, because the size of a pack is known from invariant 1, all sizes
of packs in S(I) change from s to 2s on the line with comment STEP D,
SECOND PART.

4 Proof

Now we prove that the algorithm finds a maximal schedule. There is a
correspondence between a state of the algorithm (all sets S(I), the set D
of discarded jobs and the structure of packs) and a set of constraints on



Algorithm 1

{ INITIALIZATION }
D«
for all T € INT do
S(I) 0
end for
for sin {1,2,4,8,...,m} do

for all Je{Je€ JOBS|s;=s} do{ FIRST PHASE }
if (VWIeINT,I21I;)(p(I)<w(l)) then { STEP A }
S(Iy) < SUL)U{{J}}
else { STEP B }
D — DU{J}
end if
end for

if s <m then { SECOND PHASE }
for all 7 € INT, in the topological order do
if ¢(I) is an odd multiple of s then
let C={I€INT|ID>I;S(I)+#0}
if C#0 then { STEP C }
let I’ = the C-minimum from C
let P = any pack from S(I’)
S(I") — S(I)\ {P)
S(I) «— S(I)u{P}
end if
end if
let S, = 0
while |S(/)| >2 do { STEP D, FIRST PART }
let P, P, = any two packs from S(7)
S(I) — S()\ {Pr, P}
Sneu) — Snew U {Pl U PQ}
end while
S(I) < Spew US(I) { STEP D, SECOND PART }
end for

else { FINAL PHASE }
for all I € INT, in the topological order; P € S(I) do
assign any free timeslot in [ to P
end for
end if
end for




schedules. As the algorithm advances, new constraints appear and the set of
schedules satisfying those constraints shrinks and finally only some maximal
schedules remain. Alternatively, we can suppose that if we start with any
maximal schedule, then during each step of the algorithm we can modify the
schedule (without decreasing its value) to satisfy the new constraints and
finally we get the same schedule as the algorithm returns.

The constraints are:

1. No job in set D is scheduled.
2. For each I, all jobs from T'(I) are scheduled during I.

3. Jobs in each pack P are scheduled in one timeslot and occupy block of

s(P) processors. No other jobs are scheduled in that timeslot on that
block.

We use the term good schedule for a schedule satisfying these constraints
defined by current state of the algorithm.

Lemma 4 During the run of the algorithm, for any interval I and any good
schedule there are exactly p(I)/s blocks (of size s) of processors occupied by
jobs from U(I).

Proof: For every interval I’; there are only packs of size s or 2s in S(I)
with total size of ¢(I"); hence, ¢(I’) is a multiple of s. According to the third
constraint, jobs from these packs (jobs from T'(I")) occupy ¢(I’)/s blocks of
size s. p(I) is a sum of ¢(I") over subtree of I, U(I) is a union of T'(I") over
subtree of [. n

Theorem 5 The algorithm returns a maximal schedule.

Proof: At the beginning, all valid schedules are good. We choose any maxi-
mal schedule. The algorithm does only four kinds of steps (steps A, B, C and
D) that change a state of the algorithm and therefore a set of good schedules.
We show that if we have some maximal schedule that was good before that
step then we can change it to some schedule of the same value that is good
after that step. Therefore, there is a maximal schedule that is good in the
final phase.

Just before the final phase all jobs are either in set D or in T'(I) for some
I. Hence, all good schedules have the same set of scheduled jobs and the
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same value. Therefore, if any maximal schedule is a good schedule, then any
good schedule is maximal and the algorithm in the final phase chooses any
of them.

Step A: The algorithm inserts job J to S(I). Suppose we have some maximal
schedule that is good before this step. Because I is not full and according to
Lemma 4, there is at least one block (of size s) in I in the schedule that does
not contain jobs from U([I). If the block is empty or contains only job K
not yet processed, then we modify the schedule to contain job J in the block
instead of job K. The block cannot contain more jobs not yet processed,
because all jobs smaller than s are already processed and jobs in schedule
are aligned. We inserted job J and removed job K; hence, the resulting
schedule has the same value.

If the block contains jobs from T'(I"), T'(I"), ...where I'; I”, ...are some
ancestors of I, then these jobs are smaller than s and do not overlap the
block. Acording to the third constraint and invariant 1, all these jobs are
part of one pack P (of size s); therefore they are from one T'(I") for one
ancestor I’. We modify the schedule to contain job J instead of pack P
and we recursively use the same argument to show that we can modify the
schedule to contain pack P in another block because I’ (like all ancestors
of I) is also non-full. In both cases the modified schedule is good after this
step.

Step B: The algorithm discards job J. Job J is discarded because some
interval [ is full. By Lemma 4, in any good schedule every block of size s
in interval I contains some jobs from U([I); hence, it cannot contain job .J
(which is of size s). Job J also cannot be scheduled outside of I, because I is
an ancestor of I;. Therefore, any maximal schedule that is good before this
step is also good after this step.

Step C: The algorithm moves pack P from S(I’) to S(I), I’ is the nearest
non-empty ancestor of /. Suppose we have some maximal schedule that is
good before this step. Because ¢(7) is an odd multiple of s (the condition
of using this step) and according to Lemma 4, there are the odd number of
blocks (of size s) in I in the schedule that contain jobs from U(I). Because
s < m (in the last round this step is not used), the total number of blocks in
I is even. Each unprocessed job occupies at least two blocks (hence an even
number of blocks), because this step is used in the second phase when all
jobs of size s (and smaller) are already processed. Therefore, there is a block
in [ that does not contain jobs from U(I) nor unprocessed jobs. Such a block
is empty or contains pack P’ of jobs from S(I”), where I” is an ancestor of I’
or I' = 1" (because all intervals between I and [’ are empty). We can swap



P and P’ in the schedule and the modified schedule has the same value and
is good after this step.

Step D: The algorithm pairs packs of size s from S(/) and replaces them by
packs of size 2s. Suppose we have some maximal schedule that is good before
this step. By invariant 1, there are ¢(I)/s packs in S(I) and because of the
third constraint these packs occupy ¢(I)/s blocks of size s in the schedule.
Let S; is the set of these blocks and S5 is the set of their neighbour blocks
(in the hypercube) except for blocks already in S;. Blocks from Sy cannot
contain jobs from T'(I) (such blocks are in i), jobs from T'(I’) where I’ is
a descendant of I (because packs from S(I’) are already packed to size 2s;
hence, each of them occupies two neighouring blocks of size s), unprocessed
jobs (these are of size at least 2s; hence, each of them occupies also two
neighouring blocks of size s) and discarded jobs (by the first constraint).
Therefore, blocks from Sy can be free or contain packs from S(I’), where I’
is some ancestor of I.

Packs from S(I) and from S(I’) (where I’ is any ancestor of I) can be moved
(in schedule) to any block from S5 = S} U Sy by invariant 2. For each block
of size s in S3, its neighbour is also in S5 and so S3 contains the even number
of blocks. We can think of S3 as it contains at least ¢([)/2s blocks of size 2s.
We modify the schedule by rearranging jobs on blocks from S5 in such a way
that we put newly created packs of size 2s and remaining packs (scheduled
on blocks from S;) to these blocks of size 2s.

If g(I)/s is even, then newly created packs have the same sum of sizes as
source packs and just a rearrangement of jobs in the schedule is enough to
satisfy the new constraint. If ¢(I)/s is odd, then one pack of size s is replaced
by a new pack of size 2s (with the same jobs); therefore, we have to reserve a
block of s free processors. However, ¢(I)/s is odd only when algorithm failed
to bring another pack to I, because all ancestors of I are empty. Therefore,
all blocks from S; are free and there is at least one block from Sy to cover
the increase of the size of the the pack. The modified schedule has the same
value and is good after this step. |

A naive implementation of the algorithm (like the one in Algorithm 1, us-
ing double-linked lists for the representation of sets) has a running time of
O(n?logm), as there are log m iterations of the outer cycle, at most n itera-
tions of the cycle over intervals in INT and O(n) time for tests in step A/B
and C and for the cycle in D.

There are two problematic things in the algorithm — the tests in step A /B and
in step C. Firstly, we examine step A/B. A reasonable representation of S(1)



allows us to query ¢(/) in a constant time, but p(I) is not directly accessible.
Before the first phase, we compute p(I) for each I, which can be done in time
O(n) if computed values for children intervals are used to compute value for
a parent interval. After that, we walk over the tree structure on INT and
before leaving interval I, we process jobs J such that I; = [ and s; = s.
During the walk, we maintain a heap of intervals on a path from the current
interval to the root. We also maintain variable T storing a total size of jobs
accepted so far during this phase. When we enter interval I, we put that
interval to a heap with a key value k(I) < w(I)—p(I)+T. Because we didn’t
processed yet jobs from a subtree of I, p(I) is the value computed before this
phase. For each interval I’ in the heap, k(I') — T = w(I') — p(I"). When
jobs are accepted, then p(I’) increases as well as T" and the equations hold.
To process job J, we just look at the minimum value k,,;, in the heap and
accept (and increase T') when k,,;, > T, otherwise we reject. When leaving
interval I, we remove [ from the heap.

We can see that we use the heap in a LIFO manner. Therefore, we can replace
the heap with a stack and insert interval I to the stack only if k(1) < k. In
that case, k,,;, value is directly accessible on top of the stack, all operations
take constant time and the complete first phase together with computing
p(I) takes time O(n).

An inner cycle in the second phase of the algorithm can be regarded as a
postorder traversal of the tree structure on INT. During the walk, we can
maintain a stack of nonempty vertices on a path from a currently visited
vertex to the root. The stack allows testing the condition in step C and
finding I’ in time O(1). Maintaining the stack during the tree walk obviously
does not worsen its time complexity. The number of moves in step C over
the run of the algorithm is at most the number of all iterations of the cycle
in step D because every move of a pack in step C is followed by a merge of
two packs in step D. The number of packs (and thus the number of moves
in step C and iterations in step D) is at most n. Therefore, all iterations of
the second phase take time O(nlogm).

The final phase of the algorithm takes time O(n). Therefore, such imple-
mentation of the algorithm runs in time O(nlogm).

5 Conclusion

We addressed the scheduling problem of parallel unit jobs with nested inter-
vals on hypercubes to maximize the number of early jobs. We have presented
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the algorithm for the problem running in time O(nlogm). The result is a
generalization of previously published result of D. Ye and G. Zhang [6].

The remaining question is whether this scheduling problem without the
nested intervals restriction (or at least the optimization scheduling of tall/small
jobs) is polynomially solvable. Another interesting question is whether the
approach can be extended to the weighted variant of the problem.
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