
Planar graphs without 3-,7-, and 8-cycles are

3-choosable ∗
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Abstract

A graph is k-choosable if it can be colored whenever every vertex
has a list of available colors of size at least k. Grötzsch’s theorem
states that every planar triangle-free graph is 3-colorable. However,
Voigt [13] gave an example of such a graph that is not 3-choosable,
thus Grötzsch’s theorem does not generalize naturally to choosability.
We prove that every planar triangle-free graph without 7- and 8-cycles
is 3-choosable.

1 Introduction

All graphs considered in this paper are simple and finite. The concept of list
colorings and choosability was introduced by Vizing [11] and independently
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by Erdős et al. [3]. A list assignment of G is a function L that assigns to
each vertex v ∈ V (G) a list L(v) of colors. An L-coloring is a function λ :
V (G) →

⋃
v L(v) such that λ(v) ∈ L(v) for every v ∈ V (G) and λ(u) 6= λ(v)

whenever u and v are adjacent vertices of G. If G admits an L-coloring then
it is L-colorable. A graph G is k-choosable if, for every list assignment L
with |L(v)| ≥ k for all v ∈ V (G), there exists an L-coloring of G.

Thomassen [9] proved that every planar graph is 5-choosable. Voigt [12]
showed that not all planar graphs are 4-choosable. By 3-degenericity, every
planar triangle-free graph is 4-choosable, and Voigt [13] exhibited an example
of a non-3-choosable triangle-free planar graph.

Sufficient conditions for 3-choosability of planar graphs are studied inten-
sively. We present a table of known results for triangle-free graphs, where
the additional assumptions are given by other forbidden cycle lengths. Many
other criteria, some of them applicable even to graphs with triangles, were
studied, see e.g. [7, 8] for more results in this direction.

3 4 5 6 7 8 9 authors year
× × Thomassen [10] 1995
× × × × Zhang and Xu [15] 2004
× × × × Zhang [14] 2005
× × × Lam, Shiu and Song [5] 2005
× × × Zhang, Xu and Sun [16] 2006
× × × Zhu, Lianying and Wang [17] 2007
× × × × Lidický [6] submitted
× × × Dvořák, Lidický and Škrekovski [2] submitted
× × × This paper

There are many possible combinations of cycles one may try to forbid.
We would like to explicitly mention one:

Problem 1.1. Is there k such that forbidding all odd cycles of length ≤ k is
a sufficient condition for 3-choosability of planar graphs?

Such a condition makes the graph locally bipartite and would strengthen the
result of Alon and Tarsi [1] that every bipartite planar graph is 3-choosable.

We use the following notation. Let G be a plane graph. We denote the
set of its vertices by V (G), the set of its edges by E(G), and the set of its
faces by F (G). A vertex of G is inner, if it does not belong to the outer
face of G. We denote the degree of a vertex v by deg(v). In a plane graph
G, we denote the size of a face f (the length of its facial walk) by `(f). A
vertex of degree d (respectively at least d, respectively at most d) is said to

2



be a d-vertex (respectively a (≥d)-vertex, respectively a (≤d)-vertex ). The
notion of an l-face (respectively an (≥ l)-face, respectively an (≤ l)-face)
is defined analogously regarding the size of a face. Given a graph G and
S ⊆ V (G), let G − S be the graph obtained from G by removing vertices in
S and the edges incident with them. A vertex v and a face f are incident
if v ∈ V (f). Similarly, an edge uv and a face f are incident if uv ∈ E(f).
Faces f1 and f2 are adjacent if they share an edge.

2 Colorings planar graphs without

3-,7-,8-cycles

Our goal is to prove the following theorem.

Theorem 2.1. Every plane graph G without 3-, 7- and 8-cycles is 3-choosable.
Moreover, any precoloring of a 4- or 5-face h can be extended to a list col-
oring of G provided that each vertex not in V (h) has at least three available
colors.

Proof. Suppose that Theorem 2.1 is false, and let G be a minimal counterex-
ample. In case that h is precolored, we assume that h is the outer face of G.
We shall get a contradiction by using the Discharging Method. Here is an
overview of the proof: First we study some reducible configurations. Next,
each vertex and face is assigned an initial charge such that the total charge is
negative. Afterwards, the charge of faces and vertices is redistributed accord-
ing to prescribed rules in such a way that the total charge stays unchanged.
Under the assumption that the reducible configuration are not present in G,
we show that the final charge of each vertex and each face is non-negative,
which contradicts the fact that the total charge is negative.

Reducible configurations. We use the term configuration for a graph
H, possibly with degree constraints on its vertices when considering H as
a potential subgraph of G. We say that a configuration H is reducible if it
cannot appear in the minimal counterexample G.

Lemma 2.2. The following configurations are reducible:

(1) a non-precolored (≤ 2)-vertex v;

(2) an even cycle C2k whose vertices are not precolored and have degree 3;

(3) two 4-cycles v1v2v3v4 and v1v5v6v7 consisting of non-precolored mutu-
ally distinct vertices v1, . . . , v7, such that v1 is a 4-vertex and vi has
degree 3 for 2 ≤ i ≤ 7, see Figure 1.
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Figure 1: A reducible configuration.

Proof. Let L be an arbitrary list assignment of G such that each vertex is
assigned precisely 3 colors. We show that G is L-colorable provided that it
contains one of the three configurations.

If G has a non-precolored 2-vertex v, then by the minimality of G, the
graph G − v is L-colorable. This coloring can be extended to v, since it has
three available colors and at most two neighbors.

Suppose now that G contains an even cycle C, whose vertices are non-
precolored and of degree 3. Observe that every even cycle is 2-choosable (see
also [3]). By the minimality of G, there exists an L-coloring of G−C. Since
each vertex of C has only one neighbor in G − C and C is 2-choosable, we
can extend this coloring to C.

Finally suppose that G contains the third configuration K. Remove this
configuration, and by the minimality of G, L-color G−K. Let L′(v1) = L(v1)
and let L′(vi) be obtained from L(vi) by removing the color of the neighbor of
vi in G−K, for 2 ≤ i ≤ 7. We show that there exists a proper L′-coloring ϕ
of v2, v3 and v4 such that |L′(v1)\{ϕ(v2), ϕ(v4)}| ≥ 2. Consider the following
cases:

• L′(v2) ∩ L′(v4) 6= ∅: Let a be a common color of v2 and v4. We color
v2 and v4 by a, and extend this coloring to v3.

• L′(v2) ∩ L′(v4) = ∅: Then |L′(v2) ∪ L′(v4)| ≥ 4. Hence, there exists a
color a ∈ (L′(v2) ∪ L′(v4)) \ L′(v1). Without loss of generality assume
that a ∈ L′(v2). We assign a to v2, and afterwards L′-color v3 and v4.

Since the 4-cycle v1v5v6v7 is 2-choosable, we can extend this coloring to
an L′-coloring of K, giving an L-coloring of G.

We can assume that the outer face h of G is a precolored 4- or 5-cycle: if
G has no precolored 4- or 5-face, then every vertex has degree ≥ 3 according
Lemma 2.2(1). Euler’s formula implies that G has a 4- or 5-face, so we can
color it.
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We can also assume that G contains no separating 4- or 5-cycle. Other-
wise, if C is such a cycle, then again by the minimality of G, color first the
part of G outside of C, and then extend the coloring of C to the part of G
inside C.

Lemma 2.3. A 4-face f 6= h cannot be adjacent to 5- or 6-face and it cannot
share three edges with other 4-faces. If a 4-face shares edges with two other
4-faces, then they surround a vertex of degree three.

Proof. Let f = v1v2v3v4 be a 4-face sharing at least one edge with a face
f ′ = v1v2u3 . . . ut, where t ∈ {4, 5, 6}. As G has no triangles, u3 6= v4 and
ut 6= v3. If u3 = v3, then deg(v2) = 2, thus v1v2v3 is a part of the boundary of
the outer face h. In this case, we remove v2 and color v4 instead. Therefore,
u3 6= v3, and by symmetry, ut 6= v4.

Suppose that t = 5. If u4 6∈ {v3, v4}, then v1u5u4u3v2v3v4 would be a
7-cycle, and if u4 ∈ {v3, v4}, then G contains a triangle, which is a contra-
diction. Therefore, G does not contain a 4-face adjacent to a 5-face.

Consider the case that t = 6. If {u4, u5}∩{v3, v4} = ∅, then v1u6u5u4u3v2v3v4

would be an 8-cycle, thus assume that say u4 ∈ {v3, v4}. As G does not
contain triangles, u4 6= v3, and hence u4 = v4. But, the 4-cycle v4v1v2u3

separates v3 from u5, which is a contradiction. It follows that G does not
contain a 4-face adjacent to a 6-face.

Suppose now that t = 4 and that f shares an edge with one more 4-face
f ′′. Assume first that f ′′ = v3v4u5u6. Observe that {u5, u6}∩{v1, v2} = ∅. If
{u5, u6}∩{u3, u4} = ∅, then v1u4u3v2v3u6u5v4 is an 8-cycle, thus assume that
say u5 ∈ {u3, u4}. As G does not contain triangles, u5 6= u4, thus u5 = u3.
However, G then contains a separating 4-cycle u3v2v1v4.

It follows that f ′′ = v1v4u5u6. By symmetry, f does not share the edge
v2v3 with a 4-face, thus f does not share edges with three 4-faces. Also, as G
does not contain 8-cycles, {u5, u6}∩{u3, u4} 6= ∅. Note that u5 6= u3 because
of the separating 4-cycle u3v2v1v4, and u3 6= u4 and u6 6= u3, as G does not
contain triangles. It follows that u4 = u6, thus v1 has degree three and it is
surrounded by 4-faces f , f ′ and f ′′.

Lemma 2.4. No two 5-faces f and f ′ distinct from h are adjacent.

Proof. Let f = v1v2v3v4v5 and f ′ = v1v2u3u4u5. As f, f ′ 6= h, v1 and v2

have degree at least three, thus v3 6= u3 and v5 6= u5. As G does not
contain triangles, v3 6= u5 and v5 6= u3. As v2v3v4v5v1u5u4u3 is not an 8-
cycle, {v3, v4, v5} ∩ {u3, u4, u5} 6= ∅. By symmetry, we may assume that
v4 ∈ {u3, u4}. As G does not contain triangles, v4 6= u3, thus v4 = u4.
However, at least one of 4-cycles u4u3v2v3 or u4u5v1v5 is distinct from h,
contradicting Lemma 2.3.
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Initial charges. We assign the initial charge to each inner vertex v and the
initial charge to each inner face f , respectively, by

ch(v) := 2 deg(v) − 6 and ch(f) := `(f) − 6.

A vertex v of h has initial charge ch(v) := 2 deg(v) − 4 and the outer face h
has initial charge ch(h) := 0.

It is easy to see that every vertex has non-negative initial charge, and
that only the inner (≤ 5)-faces have negative charge. We are interested in
the total amount of charge of G. By Euler’s formula, the total amount of
charge is

∑

v∈V (G)

ch(v) +
∑

f∈F (G)

ch(f) =

=
∑

v∈V (G)

(2 deg(v) − 6) + 2`(h) +
∑

f∈F (G)

(`(f) − 6) + 6 − `(h)

= (4|E(G)| − 6|V (G)|) + (2|E(G)| − 6|F (G)|) + 6 + `(h)

= 6(|E(G)| − |V (G)| − |F (G)|) + 6 + `(h)

= −6 + `(h).

As `(h) ≤ 5, the total charge is negative.

Rules. We use the following discharging rules to redistribute the initial
charge, see Figure 2. A vertex v is big if deg(v) ≥ 4 or it is precolored and
deg(v) = 3.

Rule 1. Let a (≥ 9)-face f share an edge e with a 4-face g 6= h. If g
contains only one big vertex, then f sends charge 1/3 to g through the
edge e.

Rule 2. Let two (≥ 9)-faces f1 and f2 share a 3-vertex v with a 4-face g 6= h
which contains only one big vertex. Let e be the common edge of f1 and
f2 that is incident with v. Then each of f1 and f2 sends charge 1/6 to
g through the edge e.

Rule 3. Let a (≥ 9)-face f share a common edge uv with a 4-face g, which
has no precolored vertex, and deg(v) = 4. Let uvw be a part of the
facial walk of f . If v is the only big vertex of g, then f sends charge
1/6 to g through the edge vw.

Rule 4. A (≥ 9)-face sends charge 1/3 to an adjacent 5-face (distinct from
h) through their common edge e = uv, if u and v are of degree three.
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Rule 5. A 6-face sends charge 1/4 to an adjacent 5-face (distinct from h)
through their common edge e = uv, if u and v are of degree three.

Rule 6. A big vertex v sends charge to an incident 4-face g distinct from
h. If deg(v) = 4 and v is not precolored, or deg(v) = 3 (and v is
precolored), then v sends charge 1. Otherwise v sends charge 4/3 to g.

Rule 7. A big vertex sends charge 1/2 to every adjacent 5- or 6-face distinct
from h.

Note that rules apply simultaneously. Hence, for example Rule 1 and
Rule 2 can both send charge from one face to some other. Also multiplicity
is considered, for example, a face can send charge to another face through
several edges.

1

3

(1)

1

6

1

6
(2)

1

6

(3)

1

3
(4) 4

3

1

2

1

4
(5) 1 1

2

(7)(6)

Figure 2: The discharging rules R1–R7. A black vertex denotes a big vertex,
a white vertex denotes a non-precolored 3-vertex, and a gray vertex can be
of any degree in G. A thick edge is used for transferring charge and a gray
face is a (≥ 9)-face.

Final charges. We use ch∗(x) to denote the final charge of a vertex or face x.
Next we show that the final charge of every vertex and face is non-negative,
thus establishing the theorem.
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Let v be a vertex of degree d of G. If v is not big, then its initial charge
is zero, and no charge is sent or received by it, hence its final charge is zero
as well. Therefore, assume that v is big. If d = 3, then v is incident with h,
hence its initial charge is 2, As v sends charge of at most 1 to each of the
two incident faces distinct from h, its final charge is nonnegative. Therefore,
assume that d ≥ 4.

The vertex v sends charge by Rules 6 and 7 to 4-, 5-, and 6-faces. Let a be
the number of 4-faces distinct from h incident with v. Let b be the number
of 5-faces and 6-faces (other than h) incident with v. The final charge of v is

ch∗(v) ≥ 2d − 6 −
4

3
a −

1

2
b.

If a = 0, then the final charge of v is at least 2d − 6 − 1
2
b ≥ 3d

2
− 6 ≥ 0.

Suppose now that a > 0. A 4-face distinct from h cannot be adjacent to a 5-
or 6-face by Lemma 2.3. Hence if v is not incident with h, there must be at
least two (≥ 7)-faces incident with v, and if v is incident with h, then there
must be at least one (≥ 7)-face incident with v. In both cases, a+ b ≤ d− 2.
The final charge of v is at least 2d−6− 4

3
(a+b) ≥ 2d−10

3
, which is nonnegative

if d ≥ 5.
Finally, consider the case that d = 4. Since a > 0, we have a+ b ≤ 2. If v

is incident with h, then its initial charge is 4, and the final charge is at least
4 − 4

3
(a + b) ≥ 4

3
. If v is not incident with h, then its initial charge is 2, and

it sends at most one to each incident face of length at most 6, thus its final
charge is at least 2 − (a + b) ≥ 0. We conclude that the final charge of each
vertex is nonnegative.

Let f be an arbitrary face of G. If f is the outer face h, then ch∗(h) =
ch(h) = 0. Therefore, we assume that f 6= h. If `(f) ≤ 6, then the boundary
of f is a cycle, thus if f contains a precolored vertex of degree two, then it
contains at least two precolored vertices of degree at least three, and these
two vertices are big. Similarly, if `(f) ≤ 6 and f is incident with a precolored
vertex of degree three, then f contains at least two big vertices. We consider
the following cases regarding `(f):

`(f) ≥ 9: We show that f sends charge of at most 1/3 through each of its
edges. Then,

ch∗(v) ≥ `(f) − 6 −
`(f)

3
≥

2`(f)

3
− 6 ≥ 0.

Let e = uv be an edge of f and let g be the face incident with e distinct
from f . If g = h, then no charge is sent through e, hence assume that
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g 6= h. Note that if f sends charge through e only once, then this
charge is at most 1/3. We consider the following subcases regarding
the size of g:

• `(g) = 4 and g is incident with only one big vertex: f sends
charge 1/3 to g through e by R1. The face f can send more
charge through e only by rule R3. Then, we may assume that v is
a 4-vertex, vw is an edge of f and it is incident with some 4-face
g′ for which v is also the only big incident vertex, and no vertex
of g′ is precolored. As v is the only big vertex of g, no vertex
of g is precolored as well. But then g and g′ form a reducible
configuration, by Lemma 2.2(3).

• `(g) = 4 and g is incident with more than one big vertex: then
the charge is sent through e only by R3, for the total of at most
1/6 + 1/6 = 1/3.

• `(g) = 5: In this case, f sends either at most 1/3 through e by
rule R4 (if both u and v have degree three) or at most twice 1/6
by R3 (if u or v have degree four).

• `(g) = 6: The face f sends at most twice 1/6 through e by rule
R3.

• `(g) ≥ 9: The charge of 1/6 is sent at most twice through e by
rules R2 or R3.

This case analysis establishes the claim.

`(f) = 6: By Lemma 2.2(2), f cannot consist of non-precolored vertices of
degree three, thus f contains a big vertex v. The face f receives 1/2
from v by Rule 7, and at most twice sends 1/4 by Rule 5 (as two 5-
faces distinct from h cannot share an edge and f contains a big vertex).
Therefore, ch∗(f) ≥ 0 + 1/2 − 2/4 = 0.

`(f) = 5: The face f has initial charge −1 and it sends no charge. By Lem-
mas 2.3 and 2.4, f is not adjacent to any face of length at most 5
distinct from h. We consider several possibilities regarding the number
of big vertices incident with f .

If f contains at least two big vertices, then Rule 7 applies twice, and
thus ch∗(f) ≥ −1 + 2/2 = 0.

If f contains one big vertex v, then no vertex of f except possibly for
v is precolored. Note that Rule 7 applies once. Moreover, f contains
three edges whose endvertices are non-precolored vertices of degree 3.
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The charge is received by f through these three edges by Rules 4 and
5. Thus, ch∗(f) ≥ −1 + 1/2 + 3/4 > 0.

If f is incident with no big vertex, then all its vertices are of degree
3 and are not precolored. Then, f receives charge by Rules 4 and 5
through each incident edge, and ch∗(f) ≥ −1 + 5/4 > 0.

`(f) = 4: By Lemma 2.2(2), the face f must contain a big vertex. If f con-
tains at least two big vertices, then Rule 6 applies twice, and ch∗(f) ≥
−2 + 2 = 0. Therefore, we may assume that f is incident with ex-
actly one big vertex v. In particular, no vertex of f other than v is
precolored, and if v is precolored, then deg(v) ≥ 4.

If at most one edge of f is shared with another 4-face, then at least three
edges of f are incident with faces of degree at least 9. After applying
Rule 6 and three times Rule 1, we obtain ch∗(f) ≥ −2+1+3/3 = 0. By
Lemma 2.3, the 4-face f cannot share three edges with other 4-faces.
Therefore, we may assume that f shares exactly two edges with other
4-faces f1 and f2, and the three 4-faces surround a 3-vertex y. Note
that v 6= y, otherwise v is precolored and hence f contains at least two
big vertices.

If v is incident with f1 or f2, then Rule 6, twice Rule 1 and twice Rule 2
apply and ch∗(f) ≥ −2 + 1 + 2/3 + 2/6 = 0. Now assume that v is not
adjacent to any of the other two 4-faces. If v is precolored or deg(v) ≥ 5,
then Rule 6 and twice Rule 1 apply and ch∗(f) ≥ −2 + 4/3 + 2/3 = 0.
Finally, if v is a non-precolored 4-vertex, then Rule 6, twice Rule 1, and
twice Rule 3 apply, and we infer that ch∗(f) ≥ −2+1+2/3+2/6 = 0.
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[2] Z. Dvořák, B. Lidický, and R. Škrekovski, On 3-choosability of plane
graphs without 3-, 6- and 7-cycles, manuscript, 2008.
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