
A lower bound for scheduling of unit jobs

with immediate decision on parallel machines

Tomáš Ebenlendr∗ Jǐŕı Sgall∗

Abstract

Consider scheduling of unit jobs with release times and deadlines
on m identical machines with the objective to maximize the number
of jobs completed before their deadlines. We prove a new lower bound
for online algorithms with immediate decision. This means that the
jobs arrive over time and the algorithm has to decide the schedule
of each job immediately upon its release. Our lower bound tends to
e/(e− 1) ≈ 1.58 for many machines, matching the performance of the
best algorithm.

1 Introduction

Suppose that we have unit jobs that arrive over time. Each job arrives at
its release time and has a deadline, these times are integers. The goal is
to schedule as many jobs as possible before their deadlines, on m identical
machines. In the online setting, at each time t the algorithm chooses at most
m jobs to be started at time t (among the jobs released before or at t, with a
deadline strictly after t and not scheduled yet). This is a very simple online
problem: At each time t we schedule m jobs with the earliest deadlines. This
generates an optimal schedule.

In this note, we study a modification of this problem called scheduling
with immediate decision, introduced and studied in [5, 4]. In this variant,
the online algorithm has to decide the schedule of the newly released jobs
immediately after they are released. This means that at time t, the schedule
of jobs with release time t is fixed, and even if a job is scheduled to start only
at time t′ > t, its schedule cannot be changed later. Obviously, this is harder

∗Institute of Mathematics, AS CR, Žitná 25, CZ-11567 Praha 1, Czech Republic. Email:
{ebik,sgall}@math.cas.cz

1

for the online algorithm, and, for example, the optimal algorithm described
above does not work in this model.

In [4], Ding et al. presented an online algorithm with immediate decision
with the competitive ratio decreasing to e/(e−1) for m → ∞. It works even
for the more general case when the processing times are equal (but possibly
larger than 1), with the same competitive ratio. This algorithm is actually
very simple: The machines are kept sorted by decreasing completion times,
i.e., the first machine is the one that would complete the currently assigned
jobs latest. The newly released jobs are processed one by one, so that each
job is scheduled on the first machine at the completion time of that machine;
if that would violate the deadline, try the second machine, and so on; if no
machine works, the job is rejected.

The obvious question is: Is there a better algorithm with immediate
decision at least for unit jobs?

Our results. We prove that no algorithm for unit jobs with immediate
decision on m machines has a competitive ratio smaller than

rm =
e

m−1

m

e
m−1

m − m
m+1

.

For m → ∞, rm decreases to e/(e − 1) ≈ 1.582. For m = 2, r2 ≈ 1.678, and
a few more values are listed in Table 1.

Our lower bound shows that the simple algorithm from [4] is optimal at
least in the limit for large m. This is true even for unit jobs, showing that
for scheduling with immediate decision, handling the unit jobs is almost as
hard as scheduling jobs with equal processing times. In most online set-
tings, scheduling unit jobs is significantly easier compared to jobs with equal
processing times, thus we find the new lower bound quite surprising.

Note also that for our problem, as well as for the basic variant without
immediate decision, it is natural that more machines allow algorithms with
better competitive ratio, because it is possible to keep a fraction of machines
available for the jobs that arrive later. In fact, for unit jobs, this can be
formalized: The case of m machines is equivalent to the case of a single
machine with an additional restriction that all release times and all deadlines
are multiples of m. Thus the competitive ratio for m is at least the ratio for
m′ whenever m divides m′.

Previous results. The exact competitive ratio of the algorithm from [4]
with immediate decision is

Rm =
1

1 −
(

m
m+1

)m ,

2

m 2 3 4 5 · · · → ∞

a lower bound with im-
mediate decision, unit jobs
[new result]

1.678 1.626 1.607 1.598 1.582

an algorithm with immedi-
ate decision, equal processing
times [4]

1.8 1.730 1.694 1.672 1.582

a lower bound with immedi-
ate decision, equal processing
times [4]

1.8 − − − 1.333

an algorithm without immedi-
ate decision, equal processing
times [5, 7]

1.5 − − − −

Table 1: Summary of new and previous results.

see Table 1 for a few values. The only previous lower bound for scheduling
of unit jobs with immediate decision is a bound of 1.6 for m = 2 [4].

Another related and more general model, as we already mentioned, as-
sumes that all jobs have the same processing time p. This is a significantly
harder problem, as the release times and deadlines do not need to be mul-
tiples of p. Thus, for example, a new job can arrive when all the machines
are committed to process other jobs. All the results below are for equal
processing times.

It is known that a greedy algorithm is 2-competitive for any number
of machines and this is optimal among the deterministic algorithms for a
single machine [1]. For a single machine without immediate decision there
also exists a 5/3-competitive randomized algorithm [3] and no better than
4/3-competitive randomized algorithm is possible [6].

For the case of two machines, two 1.5-competitive deterministic algo-
rithms without immediate decision were designed independently in [5, 7].
This competitive ratio is optimal for m = 2 without immediate decision. So,
for m = 2 and equal processing times, immediate decision increases the com-
petitive ratio from 1.5 to 1.8; the lower bound of 1.8 for immediate decision
is from [4].

For m ≥ 3, the algorithm of [4] is the best algorithm currently known
(and in fact the only one better than the 2-competitive greedy algorithm).
We have no better algorithm even without immediate decision for equal pro-

3

cessing times. A standard example gives a lower bound of 4/3 with immedi-
ate decision, as noticed in [4], while for general algorithms the lower bound
approaches 6/5 for large m [5].

Preliminaries and notations. We are given m, the number of the
machines, and n jobs. Each job is described by a pair of numbers: a release
time rj and a deadline dj; these numbers are integers. Each job has a unit
processing time. The goal is to maximize the number of jobs completed by
the deadline (the number of early jobs). We allow the algorithm to reject
some jobs; in fact, w.l.o.g., we restrict ourselves to schedules where each job
is either rejected or completed by its deadline.

In the online version, each job is released at its release time rj, at this
time also its deadline dj becomes known. The algorithm does not know that
the job exists before this time. Moreover, if the online algorithm has the
immediate decision property, it must decide the schedule of the job as soon
as it is released and cannot change this decision later. Unrestricted online
algorithms decide which jobs to start at each time, leaving the remaining jobs
uncommitted. We use the standard competitive analysis: The algorithm is c-

competitive if, for every input, it schedules at least 1/c fraction of the number
of jobs scheduled by the optimum schedule.

We denote the starting time of a job (that is not rejected) by sj. The job
then occupies the time interval [sj, sj +1) on some machine. This means that
each job (that is not rejected) must be scheduled so that rj ≤ sj ≤ dj − 1.
With unit processing times and integral release times, we restrict ourselves
to integral starting times, both for the optimum and the online algorithms
without loss of generality: Whenever non-integral starting times would occur,
we can move the jobs forward one by one to start at bsjc, with no loss
in the performance. Since the jobs are aligned, we do not need to know
which particular machine a job is assigned to. A valid machine assignment
is available if and only if |{j | sj = t}| ≤ m for each time t. Our goal is to
maximize the number of properly scheduled jobs.

2 The idea of the proof

In this section we describe the idea of the lower bound. The exact proof is
given in the next section.

As usual, our lower bound is formulated as an adversary strategy in a
game between a deterministic algorithm and an adversary who has the power
to react to the actions of the algorithm. The adversary releases some jobs
at time t (thus rj = t for these jobs and dj is set by the adversary for each
job independently). Once the jobs are released, the algorithm schedules (or

4

rejects) all these jobs and then the time advances to the next release time
decided by the adversary.

Adversary strategy. The adversary starts with a sufficiently long interval
[0, T). This means that the adversary first releases a few jobs with the release
time 0 and the deadline T . Due to the immediate decision property, the
algorithm has to commit to the schedule of these jobs. By averaging, we
can find a big part of the interval where the algorithm schedules at least the
average number of jobs and such that the adversary can schedule all the jobs
outside of this part. Then the adversary uses the same procedure recursively.

Now we do a few rough calculations to see how this idea gives the lower
bound of e/(e−1), disregarding various rounding issues. So now we describe
the recursive process in more detail. For simplicity, let us also assume that
the algorithm always schedules the released jobs so that they are spread
uniformly over the feasible interval. (Later we show that no other algorithm
performs much better against our adversary.)

During the process, at time t, the adversary has scheduled all the pre-
viously released jobs before t, while the algorithm has already scheduled x
jobs in the remaining interval [t, T) of length l = T − t. We call [t, T) the
active interval and we say that its density is ρ = x/(ml). Then the adversary
at time t releases εml jobs with deadlines equal to T , for a small ε. The
adversary schedules them before time t′ = t + εl. The density increases to
ρ + ε on [t, T) as well as on the interval [t′, T) (due to the uniform spreading
assumption). The adversary then increases time to t′ and continues until the
density increases to 1.

We express the length l of the active interval as a function of the density
ρ. When ρ increases by ε, then l decreases by εl. Taking ε infinitesimally
small, we get a differential equation dl/dρ = −l. We have the initial condition
l(0) = T , and thus the equation is solved by the function l(ρ) = e−ρ · T . So,
starting with the length T , the adversary ends with an interval of length at
least l = l(1) = T/e, during which all time steps have m jobs scheduled in
the schedule of the algorithm but no jobs in the schedule of the adversary. At
this point, both the adversary and the algorithm have scheduled m(T − l) =
(1−1/e)mT jobs, as all the released jobs exactly fit before the active interval.

Now the adversary simply releases the final batch of lm jobs that cannot
be scheduled outside the active interval. The adversary schedules all of these
jobs while the algorithm has to reject them. The adversary schedules the
total of mT jobs, while the algorithm only (1 − 1/e)mT jobs, yielding the
lower bound of e/(e − 1).

Technical issues. The sketch of the proof above needs to be properly
formalized. In the end, the proof is somewhat technical, as there are many

5

issues that we have to deal with. Here we sketch the main issues and the
ways to solve them.

Finding the dense part. First, we cannot assume that the algorithm spreads
the jobs evenly. We need to find a dense part of a given length on which
we focus in the recursion. This is done essentially by an averaging argu-
ment. Unfortunately, the dense part does not necessarily form a single
interval. Instead, it can be composed of two non-overlapping intervals
(and this is sufficient). This, in turn, makes the recursion more diffi-
cult. The number of intervals increases exponentially. The recursive
procedure arranges them naturally in a tree of nested intervals. At any
time, we have a list of active intervals instead of just one, and we release
jobs corresponding to the interval which starts first. This corresponds
to traversing the tree of intervals in the depth-first order. To analyze
the length of the intervals, however, we always need to argue about the
total length of the intervals on one level of the tree.

Discretization and rounding. We need to argue that by taking a small
ε, the bound obtained from the continuous version of the recursion
can be approximated arbitrarily well. We also need to account for
various rounding errors and the fact that the adversary cannot release
two batches of jobs at the same time. To this end, we use an initial
active interval of length exponential in 1/ε and carefully bound the
errors. In general, we release slightly more jobs than can fit in the
adversary schedule and let the adversary reject some of them, to make
the calculations simpler.

Improving the bound for small m. To improve the bound for small m,
we stop the iterative process at density (m−1)/m instead of 1. Instead
of increasing the density by ε, we increase it by almost 1/m in a single
last phase. Then we present the final set of jobs as m tight jobs for
each time step in the schedule where the density is 1.

Handling the rejected jobs. So far we have assumed that the algorithm
schedules all the released jobs. This is not necessarily true, and with
immediate decision, it may seem that it could possibly be an advan-
tage for an algorithm to reject a job and keep more options for later
steps. However, a simple exchange argument shows that every algo-
rithm can be modified so that no jobs are rejected, unless all machines
are occupied during the whole feasible interval.

Taking all this into account, we give an adversary strategy which for any

6

ε > 0 generates an instance showing that the competitive ratio is at least
e

m−1

m /(e
m−1

m − m
m+1

+ O(ε)).

3 The lower bound

We first define the density and state the lemma which ensures the adversary
to find dense intervals after releasing some jobs.

The density of an interval is defined as the number of jobs scheduled in it
by the adversary, divided by the maximal number of jobs that can fit. Notice
that the density depends on the schedule of the algorithm; in particular, it
may increase during the online process but it can never decrease.

Definition 3.1 Suppose that the algorithm has scheduled x jobs during the

time interval [t1, t2). Then the density of the interval is ρ[t1,t2) = x/(m(t2 −
t1)). For an empty interval, i.e., t2 = t1, we define the density to be 1.

Lemma 3.2 Given an interval [t1, t2) with density ρ and an integer l ≤
t2 − t1, we can find one or two non-overlapping intervals with total length l,
each of them having the density at least ρ.

Proof: Let t be the smallest time such that t ≥ t2 − l and ρ[t,t2) ≥ ρ. (Note
that t = t2 is always eligible.) If t = t2 − l, then we have a single dense
interval of length l and we are done.

Otherwise we take [t, t2) as one of the intervals and look for another
interval of length l′ = l − (t2 − t). Let q = d(t − t1)/l

′e − 1; we have q > 0
as l < t2 − t1. By the choice of q, we have t1 + ql′ ≥ t − l′ = t2 − l. Thus
the interval [t1 + ql′, t2) has density less than ρ as otherwise we would choose
t ≤ t1 + ql′. Considering the density of the whole interval, [t1, t1 + ql′) has
density at least ρ. It can be covered by disjoint intervals [t1 +(i−1)l′, t1 + il′)
for i = 1, . . . , q; thus one of these intervals has density at least ρ as well, and
it can be chosen as the desired second interval of length l′. �

Now we are ready to prove the main result.

Theorem 3.3 Let A be a deterministic online algorithm for scheduling unit

jobs with release times and deadlines on m machines with the objective to

maximize the number of accepted jobs. If A satisfies the restriction of imme-

diate decision then its competitive ratio is at least rm = e
m−1

m /(e
m−1

m − m
m+1

).

Proof: We proceed in several major steps roughly following the sketch in
the previous section.

7

Handling rejections. First we observe that any algorithm can be modified
so that no job is rejected, unless all machines are occupied during the whole
feasible interval of that job.

Suppose that the online algorithm A does not satisfy this restriction.
Using A, we construct a new algorithm B which never rejects a job, unless
it has to, and accepts at least the same number of jobs. At a given time, B
schedules all the newly released jobs at the same time and the same machine
as A, if that slot is empty. The remaining jobs, both those rejected by A
and those not yet scheduled by B because the corresponding slot was not
empty, are processed one by one in an arbitrary order. If there is an empty
slot (i.e., a pair of machine and time) during the feasible interval of a job, it
is scheduled to any such slot. Otherwise the job is rejected.

We claim that at any moment, the algorithm B has scheduled a job to
any slot where A has scheduled one. For a given slot, this property can be
violated only at the time when A schedules a job to that slot. However, if B
has this slot still empty, it puts the same job there. Thus, at the end, B has
scheduled at least as many jobs as A.

From now on, we assume that A is the modified algorithm which never
rejects a job unless during its feasible interval all the machines are full. This
is important as our adversary strategy relies on gradually increasing the
density.

An overview of the adversary strategy. Choose k a sufficiently large
integer. Let ε = (m − 1)/(mk) and T = d2k/ε2e.

The adversary starts with one active interval [0, T). Throughout the pro-
cess, the adversary maintains a list of disjoint non-empty active intervals such
that all these intervals start at the current time or later. Upon reaching the
start of the interval, after some action of the adversary (typically releasing
some jobs and waiting for the algorithm to schedule them), the interval is re-
moved from the list and possibly replaced by one or two disjoint subintervals
with strictly larger starting time. Then we let the time advance and continue
the process as long as there is any active interval on the list.

Each interval has a level: The initial interval [0, T) has level 0. Each
subsequent interval created while processing an interval at level i has level
i + 1. During the process we guarantee that each active interval at level i
has density at least iε. The maximal level of an interval is k; at this point
the density is at least (m − 1)/m. Overall, we create and process less than
2k+1 intervals during the whole process.

The action of the adversary at the start time of the interval depends on
the level of the interval. If the level is less than k, the adversary increases the
density as described below, with the exception of the intervals of length at

8

most 2/ε that are ignored. If the level of the processed interval is k, we do a
more complicated phase described later, which guarantees that the algorithm
rejects many jobs; in this case no new interval is introduced.

Increasing the density by ε. Suppose that the first active interval is
[t1, t2) at level i < k. Thus its density is at least ρ[t1,t2) ≥ iε. Denote the
length of the interval by l = t2 − t1. If l ≤ 2/ε, the adversary removes this
interval without any further action.

Otherwise, the adversary submits εlm + m jobs with rj = t1 and dj = t2.
The density ρ[t1+1,t2) increases to at least ρ[t1,t2) + ε ≥ (i + 1)ε after the
algorithm schedules the released jobs, as at most m jobs (old or new) may
be scheduled at time t1.

Let l′ = de−εle be the desired length of the dense subintervals. Note
that we use a factor of e−ε in place of 1 − ε in the intuitive description;
this approximation is good for small ε and makes it possible to bound the
error from discretization. Using elementary calculus we verify that 1−e−x ≥
x(1 − x) for all x, and we obtain

l − l′ > (1 − e−ε)l − 1 ≥ ε(1 − ε)l − 1. (1)

In particular, we have l > l′ due to our restriction l > 2/ε and ε < 1/2
(which can be guaranteed by taking a large k).

Now the adversary applies Lemma 3.2 to find one or two disjoint subinter-
vals of [t1 + 1, t2) with total length l′ = dle−εe with density at least (i + 1)ε;
we can apply the lemma to this shorter interval as l′ < l. These one or
two intervals are added to the list of active intervals, and [t1, t2) is removed.
Note that the new active intervals are at level i+1 and they have the density
(i + 1)ε required for this level.

The adversary schedules (l−l′)m of the new jobs during [t1, t2) but outside
the new active intervals and rejects the remaining jobs (if any). Using (1), it
follows that the number of jobs rejected by the adversary is at most

εlm + m − (l − l′)m ≤ εlm + m − (ε(1 − ε)lm − m) = 2m + ε2lm. (2)

The final phase (at level k). In the remaining case, the first active
interval is [t1, t2) at level k. Denote its length by l = t2 − t1. Note that the
density is at least (m − 1)/m.

The adversary releases dlm/(m + 1)e jobs with rj = t1 and dj = t2.
Considering the total number of jobs and the fact that at most m jobs may be
scheduled during each time step, it follows that after the algorithm schedules
the new jobs, there are at least dlm/(m + 1)e − 1 time steps in the interval
[t1 + 1, t2) where the algorithm scheduled m jobs. The adversary chooses

9

exactly dlm/(m + 1)e − 1 of these full time steps, and for each chosen time
step [t, t + 1), it releases m tight jobs with rj = t and dj = t + 1. All these
jobs are rejected by the algorithm.

The adversary schedules the jobs released at t1 during [t1, t2) but outside
the new active intervals. The number of available time steps is

l −

⌈

lm

m + 1

⌉

+ 1 =

⌊

l

m + 1

⌋

+ 1 ≥

⌈

l

m + 1

⌉

,

thus no job is rejected. The tight jobs are then scheduled during their cor-
responding time steps, so the adversary does not reject any of these jobs,
either.

Bounding the competitive ratio. To bound the competitive ratio, we
first bound the number of jobs rejected by the adversary and by the algorithm
A; we denote these by Radv and RA, respectively.

Let L be the total length of the intervals at level k. The total length of
all intervals that are removed because they are too short, over all levels, is
at most 2k · 2/ε. The total length of the remaining intervals decreases by at
most a factor of e−ε at each level. Thus the overall length is at least

L ≥ e−kεT −
2k+1

ε
= e−

m−1

m T −
2k+1

ε
.

At a level smaller than k, using (2), the adversary rejects at most 2m
jobs per interval plus ε2lm for each interval of length l. Since the intervals
at the same level are disjoint, their total length is at most T for each level.
No jobs are rejected at level k. Thus, overall, the number of jobs rejected by
the adversary is at most

Radv ≤ 2m · 2k + k · ε2mT = 2m · 2k + ε(m − 1)T ≤ 3ε · mT,

where the last inequality follows by our choice of T .
The algorithm A rejects jobs at the level k, for an interval of length l it

rejects at least lm2/(m + 1) − m jobs. Since there are at most 2k intervals
at the level k, the number of rejected jobs is at least

RA ≥
m2

m + 1
L − m2k ≥

m

m + 1
e−

m−1

m · mT −
m2k+1

ε
− m2k

≥

(

m

m + 1
e−

m−1

m − 3ε

)

mT,

where the last inequality follows by our choice of T again.

10

The competitive ratio is at least (n − Radv)/(n − RA), where n is the
number of released jobs. As the ratio is larger than 1, the bound decreases
with n, and we need to upper bound n. Using a simple fact that the adversary
schedules at most mT jobs, we have n ≤ mT + Radv. Thus the competitive
ratio is at least

n − Radv

n − RA

≥
mT

mT + Radv − RA

≥
mT

mT + 3ε · mT − (m
m+1

e−
m−1

m − 3ε)mT
=

1

1 − m
m+1

e−
m−1

m + 6ε
.

For a sufficiently large k, we have ε arbitrarily small, and thus the lower
bound approaches the claimed bound of

rm =
1

1 − m
m+1

e−
m−1

m

=
e

m−1

m

e
m−1

m − m
m+1

,

and the proof is complete. �

4 Conclusions

With immediate decision, our lower bound still leaves a gap for small m, for
scheduling unit jobs. It gives an intuition what is needed for an algorithm to
perform better than the algorithm of [4]: If a number of jobs with the same
deadline is released, they should be spread uniformly between the release time
and the deadline, and not packed starting from the release time. However,
it seems quite hard to define and analyze such an algorithm once there are
many different deadlines.

It is interesting to consider randomized algorithms instead of determin-
istic ones. Our problem can be viewed as a special case of online bipartite
matching (matching jobs to slots in the schedule). Thus there exists an
e/(e − 1)-competitive algorithm. (A simplified proof and further references
can be found in [2]. Their proof actually gives only an asymptotic result, but
a simple padding argument proves the bound of e/(e − 1) for any instance.)
Our lower bound can be modified to yield a lower bound of e/(e − 1) for
randomized algorithms for any number of machines m. Since it is based on
averaging arguments, it can be used for a randomized algorithm if we sim-
ply replace density by expected density. The only change that is needed is
that we omit the last phase which is used to improve the deterministic lower
bound for small m. We postpone the details to the journal version of this
paper.

11

More fundamental problem in this area is to close the gap for general
algorithms. It is quite surprising that for m ≥ 3 we have no algorithms that
would go beyond the immediate decision restriction.

Acknowledgments

We are grateful to an anonymous referee to draw our attention to the ran-
domized case. We thank Marek Chrobak and Rob van Stee for pointers and
discussions regarding online matching.

Partially supported by Institutional Research Plan No. AV0Z10190503,
by Inst. for Theor. Comp. Sci., Prague (project 1M0545 of MŠMT ČR), and
grant IAA1019401 of GA AV ČR.

References

[1] S. K. Baruah, J. Haritsa, and N. Sharma: On-line scheduling to

maximize task completions. J. Comb. Math. Comb. Comput., 39 (2001),
pp. 65–78. A preliminary version appeared in Proc. 15th Real-Time Sys-
tems Symp., IEEE, 1994, pp. 228–236.

[2] Benjamin E. Birnbaum, Claire Mathieu: On-line bipartite match-

ing made simple. SIGACT News 39 (2008): pp. 80-87.

[3] M. Chrobak, W. Jawor, J. Sgall, and T. Tichý: Online schedul-

ing of equal-length jobs: Randomization and restarts help. SIAM J. Com-
put., 36 (2007), pp. 1709-1728. A preliminary version appered in Proc.
31st International Colloquium on Automata, Languages, and Program-
ming (ICALP), vol. 3142 of Lecture Notes in Comput. Sci., Springer,
2004, pp. 358–370.

[4] J. Ding, T. Ebenlendr, J. Sgall and G. Zhang: Online schedul-

ing of equal-length jobs on parallel machines. In Proc. 15th European
Symp. on Algorithms (ESA), vol. 4698 of Lecture Notes in Comput. Sci.,
Springer, 2007, pp. 427-438.

[5] J. Ding and G. Zhang: Online scheduling with hard deadlines on par-

allel machines. In Proc. 2nd International Conf. on Algorithmic Aspects
in Information and Management (AAIM), vol. 4041 of Lecture Notes in
Comput. Sci., Springer, 2006, pp. 32–42.

[6] S. A. Goldman, J. Parwatikar, and S. Suri: Online scheduling

with hard deadlines. J. Algorithms, 34 (2000), pp. 370–389.

12

[7] M. H. Goldwasser and M. Pedigo: Online, non-preemptive schedul-

ing of equal-length jobs on two identical machines. In Proc. 10th Scan-
dinavian Workshop on Algorithm Theory (SWAT), vol. 4059 of Lecture
Notes in Comput. Sci., Springer, 2006, pp. 113–123. To appear in ACM
Transactions on Algorithms.

13

