On Parse Trees and Myhill-Nerode—type
Tools for handling Graphs
of Bounded Rank-width*

Robert Ganian and Petr Hlinény*™*

Faculty of Informatics, Masaryk University
Botanickd 68a, 602 00 Brno, Czech Republic

ganian@mail.muni.cz, hlineny@fi.muni.cz

December 8, 2008

Abstract. Rank-width is a structural graph measure introduced by
Oum and Seymour and aimed at better handling of graphs of bounded
clique-width. We propose a formal framework and tools for easy de-
sign of dynamic algorithms running directly on a rank-decomposition
of a graph (on contrary to the usual approach which translates a rank-
decomposition into a clique-width expression, with a possible exponential
jump in the parameter). Our new approach links to a previous work of
Courcelle and Kanté [WG 2007] who first proposed algebraic expressions
with a so-called bilinear graph product as a better way of handling rank-
decompositions.

Keywords: Parameterized algorithm, rank-width, graph colouring,
Myhill-Nerode theorem.

1 Introduction

Most graph problems are known to be N P-hard in general, and yet
a solution to these is needed for practical applications. One com-
mon method to provide such a solution is through restricting the
input graph to have a certain structure. Often the input graphs are
restricted to have bounded tree-width [21] (or branch-width), but
another weaker useful structural restriction has appeared with the
notion of clique-width, defined by Courcelle and Olariu in [9].

Now, many hard graph problems (particularly all those express-
ible in MS; logic, see Section 4) are solvable in polynomial time [8,

* This is the full extended version of a paper presented at IWOCA 2008.
** Both authors are supported by the Institute for Theoretical Computer Science ITI,
project 1IM0545, and the research grant GACR 201/08/0308.

11,18, 14], as long as the input graph has bounded clique-width and
is given in the form of the “decomposition for clique-width”, called
a k-expression. A k-expression is an algebraic expression with the
following four operations on vertex-labeled graphs using k labels:
create a new vertex with label ¢; take the disjoint union of two la-
beled graphs; add all edges between vertices of label ¢ and label j;
and relabel all vertices with label ¢ to have label 5. However, for fixed
k > 3, it is not known how to find a k-expression of an input graph
having clique-width at most k.

Rank-width (see Section 2) is another graph complexity measure
introduced in 2003 by Oum and Seymour [20, 19], aimed at providing
an f(k)-expression of the input graph having clique-width & for some
fixed function f in polynomial time. Furthermore, rank-width can be
computed, together with an optimal decomposition, in time O(n?)
on n-vertex graphs of bounded rank-width [17]. Since, in reality,
clique-width can be up to exponentially larger than rank-width [5],
it now appears desirable to design algorithms running directly on
an optimal rank-decomposition rather than transforming a width-k
rank-decomposition into an f(k)-expression, with f(k) up to 2¥*—1
by [20], cf. also [5].

Unfortunately, the latter goal seems impossible in a direct way
given the rather “strange nature” of a rank-decomposition, and so
one has to look for suitable indirect alternatives. Courcelle and
Kanté [7] in 2007 gave an alternative characterization of a rank-
decomposition using bilinear product terms over multi-coloured
graphs—see Section 2 and particularly Theorem 2. In our view, the
latter characterization can be equivalently formulated in terms of la-
beling parse trees (rank-width parse trees of [13]), which straightfor-
wardly leads to a new Myhill-Nerode-type characterization of finite
state properties of graphs of bounded rank-width in Theorem 3, and
which opens new mathematical ground for easier algorithmic design
in the subsequent sections.

We now outline the structure of our paper: After providing some
technical definitions and basic known results in Section 2, we state
in Section 3 a useful characterization (Theorem 3) of the regular,
i.e. decidable by tree automata, properties of bounded rank-width
graphs. Subsequently in Section 4, we prove that any MS; formula

2

(not neccessarily closed) defines a regular language over “equipped”
bounded rank-width graphs. That, particularly, provides an alter-
native combinatorial proof of Courcelle, Makowsky, and Rotics’ [§]
results.

However, algorithms coming from those generic results are not
much practical since their runtime dependence on the rank-width
could be enormous, see a discussion in Section 5. The advantage of
our approach is that the formal tools we develop here can directly
produce actual algorithms for particular problems on bounded rank-
width graphs with better runtime. We illustrate this in Section 5
with the fast FPT algorithm of Theorem 12 for c-colourability (fixed
¢ > 3), and with the pseudopolynomial algorithm of Theorem 14 for
the chromatic number which outperforms the previous algorithm of
[18] with respect to rank-width.

2 Definitions and Basics

We consider finite simple undirected graphs by default. In this sec-
tion we bring up some (maybe less known) definitions and previous
claims which are the building blocks of our research. We particularly
pay attention to branch- and rank-decompositions of graphs, and
extend their scope to “parse trees” which are more suitable for han-
dling of such decompositions with the tools of traditional automata
theory in coming Sections 3,4.

Branch-width. A set function f : 2 — Z is called symmetric if
f(X)=f(M\ X) for all X C M. A tree is subcubic if all its nodes
have degree at most 3. For a symmetric function f : 2™ — Z on a
finite set M, the branch-width of f is defined as follows.

A branch-decomposition of f is a pair (T,) of a subcubic tree
T and a bijective function p : M — {t : tis a leaf of T'}. For an
edge e of T, the connected components of 7"\ e induce a biparti-
tion (X,Y) of the set of leaves of T. The width of an edge e of a
branch-decomposition (T,) is f(u=*(X)). The width of (T, p) is
the maximum width over all edges of T'. The branch-width of f is
the minimum of the width of all branch-decompositions of f. (If
|M| < 1, then we define the branch-width of f as f(0).)

3

A natural application of this definition is the branch-width of a
graph, as introduced by Robertson and Seymour [21] along with bet-
ter known tree-width, and its natural matroidal counterpart. In that
case we use M = FE(G), and f the connectivity function of G. There
is, however, another interesting application of the aforementioned
general notions, in which we consider the vertex set V(G) = M of a
graph GG as the ground set.

Rank-width. For a graph G, let Ag[U, W] be the bipartite adja-
cency matrix of a bipartition (U, W) of the vertex set V(G) defined
over the two-element field GF(2) as follows: the entry ay ., v € U
and w € W, of Ag[U,W]is 1 if and only if uw is an edge of G. The
cut-rank function pg(U) = pe(W) then equals the rank of Ag[U, W]
over GF(2). A rank-decomposition and rank-width of a graph G is the
branch-decomposition and branch-width of the cut-rank function pg
of G on M = V(G), respectively.

The main reason for the popularity of rank-width over clique-
width is the fact that there are parameterized algorithms for rank-
decompositions [20, 17].

Theorem 1 (Hlinény and Oum [17]). For every fized t there is
an O(n3)-time algorithm that, for a given n-vertex graph G, either
finds a rank-decomposition of G of width at most t, or confirms that
the rank-width of G is more than t.

Few rank-width examples. Any complete graph of more than one
vertex has clearly rank-width 1 since any of its bipartite adjacency
matrices consists of all 1s. It is similar with complete bipartite graphs
if we split the decomposition along the parts. We illustrate the sit-
uation with graph cycles: while C'5 and Cy have rank-width 1, Cj
and all longer cycles have rank-width equal 2. A rank-decomposition
of, say, the cycle Cy is shown in Fig. 1. Conversely, every subcubic
tree with at least 4 leaves has an edge separating at least 2 leaves on
each side, and every corresponding bipartition of C5 gives a matrix
of rank > 2.

One may also mention distance-hereditary graphs, i.e. graphs such
that the distances in any of their connected induced subgraphs are
the same as in the original graph, which have been independently

4

d d c

10
. . (0011) ((1)8(1) i (83) (0110)
(1001) (1001) (1100)
a b e a b

Fig. 1. A rank-decomposition of the graph cycle Cs.

studied, e.g. [4], before. It turns out that distance-hereditary graphs
are exactly the graphs of rank-width one [19], and this simple fact
explains many of their “nice” algorithmic properties.

Labeling parse trees. In a search for a “more suitable form” of
a rank-decomposition, Courcelle and Kanté [7] defined the bilinear
products of multiple-coloured graphs, and proposed algebraic expres-
sions over these operators as an equivalent description of a rank-
decomposition (cf. Theorem 2). Here we introduce (following [13])
the same idea in terms of parse trees which we propose as a more
convenient notation for the results in the next sections.

A (vertex) t-labeling of a graph is a mapping lab: V(G) — 2
where L; = {1,2,...,t} is the set of labels (this notion is exactly
equivalent to multiple-coloured graphs of [7]). Having a graph G with
an (implicitly) associated t-labeling lab, we refer to the pair (G, lab)
as to a t-labeled graph and use notation G. Notice that each vertex
of a t-labeled graph may have zero, one or more labels. So even an
unlabeled graph can be considered as t-labeled with no labels, and
every t-labeled graph is also t’-labeled for all ' > ¢t. We will often
view a t-labeling of G equivalently as a mapping V(G) — GF(2)! to
the binary vector space of dimension ¢ (cf. [7] again).

A t-relabeling is a mapping f : L; — 2%. For a t-labeled graph
G = (G,lab) we define f(G) as the same graph with a vertex t-
labeling lab’ = f o lab. Since lab maps into subsets of L; which
are interpretable as vectors from GF(2)!, the relabeling f in the
composition folab acts as a linear transformation in the vector space
GF(2)*. Informally, f is applied separately to each label in lab(v) and
the outcomes are summed up “modulo 27; such as for lab(v) = {1, 2}
and f(1) = {1,3,4}, f(2) = {1,2,3}, we get f olab(v) = {2,4} =
{1,3,4} r{1,2,3}.

Let ® be a nullary operator creating a single new graph vertex
of label {1}. For t-relabelings fi, f2,9 : Ly — 2% let ®|[g| f1, fo] be
a binary operator, called t-labeling join (as bilinear product of [7]),
over pairs of t-labeled graphs Gy = (Gy,lab') and Gy = (G, lab?)
defined as follows:

(G, lab") ®[g] f1, fa] (Go,lab®) = (H,lab)

where the graph H is constructed from the disjoint union G1U G by
adding all edges uw, u € V(G;) and w € V(Gy) such that |lab'(u) N
g olab*(w)| is odd, and with the new labeling lab(v) = f; o lab'(v)
forv e V(Gy), i =1,2.

d ®[id |-, -]

®[id| id, 1— 0] ®[id|1— 2, id]

®lid| id,1—2]

a b ©a ®b ®c od ®e

Fig. 2. An example of a labeling parse tree which generates a 2-labeled cycle C5, with
symbolic operators at the nodes (id denotes the relabeling preserving all labels).

A t-labeling parse tree T, see also [13, Definition 6.11], is a finite
rooted ordered subcubic tree (with the root degree at most 2) such
that

— all leaves of T contain the ® symbol, and

— each internal node of T contains one of the t-labeling join sym-
bols.

A parse tree T then generates (parses) the graph G which is obtained
by successive leaves-to-root applications of the operators in the nodes
of T'. See Fig. 2,3 for an illustration.

We make two short notes to this definition. First, the role of re-
labeling g in ®|[g| f1, f2] is unavoidable for Theorem 2 to hold true,
but we can sometimes (when needed) avoid it as in Proposition 2
later on. Second, our definition of a parse tree allows a node with
just one descendant, and in such a case the ®[g| f1, fo] operator is
(naturally) applied to the empty graph on the other side.

6

e{1} o o {1} e {1} / c{2})
vy '/;{1}’ b1}
d{2} d
e {1} i/ ¢{2} e c
T bo B a b

Fig. 3. “Bottom-up” generation of C5 by the parse tree from Fig. 2.

JFrom the prior work of Courcelle and Kanté we get a crucial
statement:

Theorem 2 (Rank-width parsing theorem [7]). A graph G
has rank-width at most t if and only if (some labeling of) G can
be generated by a t-labeling parse tree. Furthermore, a width-t rank-
decomposition of G can be transformed into a t-labeling parse tree

on O(|V(G)|) nodes in time O(t* - |V (G)]?).

This statement is equivalent to [7, Theorem 3.4] which reads: G has
rank-width at most t if and only if G is the value of a term over
C; and R;, where C} is the set of t-labeled singletons and R; is the
set of bilinear product forms of rank at most . A bilinear product
® g5 Of [7] is straighforwardly equivalent to our ®[f | g,h] , and a t-
labeled singleton vertex f(®) can be emulated with two nodes—the
® singleton symbol with a ®[0| f,0] “relabeling” parent.

Finally, time complexity bound O(#?-|V(G)|?) for turning a rank-
decomposition into a labeling parse tree is not explicit in [7], but it
easily follows from an independent self-contained proof of Theorem 2
in the first author’s Master thesis [13, Chapter 6].

Remark 1. We suggest that the “nearly linear” term |V (G)|? in the
time complexity of Theorem 2 can be improved to linear |E(G)| if
one carefully reconsiders all the technical details, but that would

7

not be profitable in our context in which we use Theorem 2 together
with Theorem 1 to construct an optimal labeling parse tree of a given
graph G in parameterized O(|V(G)|?) time.

3 Regularity Theorem for Rank-width

The substantial contribution of our paper lies in developing further
new mathematical formalisms for easier handling of certain algo-
rithmic problems on graphs of bounded rank-width. Our ideas are
closely tied with the classical Myhill-Nerode regularity tool in au-
tomata theory—that is possible since our parse trees, for every fixed
t, have nodes with symbols of a finite alphabet and hence can be used
as an input for finite tree automata. Such thinking is not quite new
in theory—it has been inspired by analogous machinery successfully
used in [1] or [10, Chapter 6] (for graphs of bounded tree-width) and
in [16] (for matroids of bounded branch-width) before. The case of
rank-width, however, brings some new obstacles.

We make two simple technical remarks. First, we may need to
interchange the operands of a t-labeling join which itself is not com-
mutative. Since a t-relabeling g is a linear transformation in GF(2)%,
this ¢ is determined by a square binary matrix (cf. also the bilinear
product of [7]), and hence we can define a t-relabeling g7 as the
matrix-transpose of the linear mapping g.

Proposition 1. Let G1, Gy be t-labeled graphs and g : L, — 2L
be a t-relabeling. If a relabeling g* is given by the transposed linear
mapping of g, then

G1 ®lg] f1, 2] G2 = G2 ®[g" | fa, f1] Gi.

Second, we shortly write ®[g] for ®[g|0,D] where () stands for
the relabeling L; — {0} “forgetting” all vertex labels. The role of
g in ®[g] is rather technical after all, as the next immediate claim
specifies (where id preserves all labels).

Proposition 2. Let G, Gy be t-labeled graphs generated by labeling
parse trees Ty, Ty, and g be a t-relabeling. Then there is a tree Ty
parsing a t-labeled graph G35 (actually unlabeled-equal to Gy) such
that

G ®lg] G, = Gy ®[id] G .

The canonical equivalence. Let II; denote the finite set (alpha-
bet) of all the t-labeling join symbols and ®, and let subsequently
P, C II;* be the class (language) of all valid t-labeling parse trees. If
R, denotes the class of all unlabeled graphs of rank-width at most ¢
and R, is the class of all t-labeled graphs parsed by the trees from P;,
then (Theorem 2) G € R, if and only if G € R, for some t-labeling
G of G.

Let D be any class of graphs, and D; = D N R;. In analogy
to the classical theory of regular languages we define a canonical

equivalence of Dy, denoted by ~p,, as follows: G4 Rt G, for any
G1,Go € Ry if and only if, for all H € R,

Gi®[id He D, <= G,®lid H € D;.

In informal words, the classes of ~p; “capture” all information we
need to know about a t-labeled subgraph G € R, to decide member-
ship in D further on in our parse tree processing (we do not need to
consider arbitrary g of ®[g] in this canonical equivalence thanks to
Proposition 2).

This informal finding can be formalized as follows (cf. [13, Chap-
ter 7]):

Theorem 3 (Rank-width regularity theorem). Lett > 1, D be
a graph class, and Dy = DN'R;. The collection of all those t-labeling
parse trees which generate the members of Dy s accepted by a finite
tree automaton if, and only if, the canonical equivalence ~p, of D,
over Ry is of finite index.

Proof. Our starting point is the classical Myhill-Nerode theorem
for tree automata. Let 2** denote the set of all rooted binary trees
over a finite alphabet Y. For a language A\ C X** we can define a
congruence ~y such that T ~, 15 for T}, T, € X** if, and only if,
Tio, Ue N < T,0, U € X\ where U runs over all special rooted
binary trees over X with one distinguished leaf node z, and T} o, U
results from U by replacing the leaf x with the subtree T;. Then A
is accepted by a finite tree automaton if and only if ~, has finite
index.

In our case X = II;, and X\ are the labeling parse trees of the
members of D,. So, to prove our theorem it is enough to show that
~p. has infinite index if and only if ~, has infinite index.

9

Suppose the former holds, i.e. there are infinitely many Gj € R,
k=1,2,..., such that for all indices ¢ # j there exists Hi,j € R, for
which G; ®[id] Hiyj € D; but Gj ®|id] Efm ¢ Dy, or vice versa. Let
S; be a labeling parse tree of Gj, and ();,; that of Hi7j. We define a
new parse tree U; ; such that the root operator is ®[id | 0, 0] , its left
son is the distinguished leaf x, and its right subtree is); ;. Hence
the special trees U; ; witness that all the parse trees S, k =1,2,...
belong to distinct classes of ~.

Conversely, suppose that the latter holds. So there are infinitely
many trees Sy € I, k =1,2,..., such that for each pair of indices
i # j there exists U; j as above for which S;0,U; ; € A but S;0,U; ; €
A, or vice versa. We may assume without loss of generality that
Si, € P, are valid labeling parse trees for all k. Let G, be the graphs
parsed by Si. Using technical Lemma 1 and Proposition 2, we deduce
that there exist graphs Hiyj such that

— the graph parsed by S; ¢, U;; is equal up to labeling to
Gi ®[1d] Hi,j € Dy,

— and the graph parsed by S; ¢, U;; equals up to labeling
G, ®lid| H;; & D;.

This assertion certifies that the graphs G, indeed belong to distinct

classes of our canonical equivalence ~p ;. |

Lemma 1. Let T be a labeling parse tree generating an unlabeled
graph G, let v be a node of T, and let T, denote the subtree of T
rooted at v. Then there exist a labeling parse tree W and a t-relabeling
¢ such that G = G, ®[{] H, where G, is the t-labeled graph parsed by
T, and H is the t-labeled graph parsed by W. Furthermore, the tree
W does not depend on T,.

Proof. First of all, by switching the subtrees of suitable nodes of T,
as in Proposition 1, we can assume that the node v is on the leftmost
branch of T'. Then we continue by induction on the distance between
v and the root r of T'. If the distance is 1, we are done: we take W
the right subtree of r, and ¢ from the join operator of r. If not, then
we will reduce the distance from the root to v by 1 by using the right
tree rotation (at r) as in Fig. 4.

Indeed, the parse tree T’ obtained from T by the rotation of
Fig. 4 generates the same unlabeled graph G’ = G if we choose:

10

/

®lg'| f1.f2] T T T o ekl

®[g|f17f2] ®[k/|h/17h12]

Fig. 4.

k=id, kK = flog, h =g, and by, = fl og, where fI', i =
1,2, are given by the transposed linear mapping of f;. We leave
the straightforward algebraic verification of this fact to the reader.
(Notice, however, that the vertex labeling of the resulting graph G’
generally cannot be preserved the same as that of GG, and so such a
construction can be used only at the parse-tree root.)

The proof is thus finished by induction. Since, moreover, we have
not used any information about the subtree T, in the construction,
the resulting right subtree W of the root will not depend on 7),. N

Remark 2. Notice that the arguments used in our proof of Theo-
rem 3 do not straightforwardly translate from rank-width (and la-
beling parse trees) to clique-width (and its k-expressions). Quite the
opposite, the “only if” direction of this theorem seems not at all
provable in the above way since one cannot freely choose the “root”
of a k-expression. We consider that another small reason to favor
rank-width over clique-width in CS applications.

3-colourability example. We demonstrate the use of Theorem 3
on graph 3-colourability which is a well-known NP-complete prob-
lem. Let C denote the class of all simple 3-colourable graphs. To
construct a tree automaton accepting the labeling parse trees of the
members of C MRy, it is enough to identify the classes of the canon-
ical equivalence ~¢;. We actually give below finitely many classes
X = {Xo, X1, X, ...} of a refinement of ~¢;, see Proposition 3.

Assume a t-labeled graph G = (G,lab) with a proper 3-
colouring x. Let, for i = 1,2,3, v(G,x) = {lab(u) : v € V(G) A
x(u) = i}. The set 7;(G, x), as a set of vectors in GF(2)!, gen-

11

erates a subspace (v(G,x)) € GF(2)", and we define I'(G, x) =
((n(G, %)), (12(Gx)), (33(G, x)) Finally, X is defined by

— Xo = {G : G is not 3-colourable}, and

— X1, Xy, ..., X are the equivalence classes of ~, where over ¢-
labeled graphs G ~ G5 if and only if it holds {I'(Gy,x) : x is a
proper 3-colouring of G1} = {I'(G3,) : X is a proper 3-colouring
of GQ}

Now, the fact that the 3-colourability problem is efficiently solv-
able (even by a tree automaton) on graphs of bounded rank-width,
follows from Theorems 1 and 3 and the next rather simple statement.
We refer also to further Theorem 12 for a more general result.

Proposition 3. If Gy and Gy belong to the same class of X, then
Gl %C,t GQ.

Proof. Assume a contradiction — that, up to symmetry, there ex-
ists a t-labeled graph H such that G ®[zd] H is 3-colourable while
Gy ®[id] H is not, yet G1 = (G, lab') and Gy = (G, lab?) belong to
the same class of X'. Choosing any valid 3-colouring x of G; ®[id] H;
we denote by x; and xpy the restrictions of x to the vertices of C_?l
and H, respectively.

Since G and G5 both belong to the same class of X', there must
exist a 3-colouring y, of G such that F(Gl x1) = I'(Ga, x2). Now
we consider a 3-colouring v’ of G ®[id] H with the vertices of G
coloured by y» and the vertices of H coloured by yz. What remains
to argue is that +' is a proper 3-colouring, disproving the initial
assumption.

Consider any colour j € {1,2,3} and a labeling Z C {1...t} of
any j-coloured vertex u in H. There is no labeling Z' € fyj(Gl Xl)
with |Z N Z'| odd since, otherwise, the j-coloured vertex w of Gj,
lab'(w) = Z', would be adjacent to j-coloured u in Gy ®[id] H. And
since ;(G1, Xl) generates the same subspace of GF(2)" as v;(Ga, xa),
it is a matter of elementary linear algebra to verify that there is no
X € (G, x2) with odd |Z N X| either:

(4) Let ¥ be a subspace of GF(2)" generated by y1, ...,y € GF(2)!,
and z € GF(2)". If y;- 2 =0 for i = 1,...,k, then for all z =
a1+ topyr €V wehaver-z =y -2+ -+ oy -2 = 0.

12

No edge between two j-coloured vertices has thus been created in
G ®[id] H. |

More involved and powerful applications of our Theorem 3 can
be found in the coming sections, especially in Section 4.

4 From Regularity to MSO Properties

Monadic second-order (MSO in short) logic is a language particu-
larly suited for description of problems on “tree-like” decompositions
of graphs. Already about 20 years ago it was shown that all MSO
definable properties of incidence graphs can be solved in linear time
if a tree-decomposition of bounded width is given on the input [2,
6]. Analogous statement has been shown by Courcelle, Makowsky,
and Rotics [8] for MSO definable properties of adjacency graphs if
a k-expression (cf. clique-width) of bounded k is given on the input,
and this readily extends to graphs with a given rank-decomposition
of bounded width, e.g. [7, Corollary 3.3].

.From a logic point of view, we consider an adjacency graph as a
relational structure on the ground set V', with one binary predicate
edge(u,v). When the language of MSO logic is applied to such a
graph adjacency structure, one gets a descriptional language over
graphs commonly abbreviated as MS;. For an illustration we show
an MS; expression of the 3-colourability property of a graph:

EIVl,VQ,Vg[Vo (veVivoeVaVoels) A
Nizi s Yo, w (vgVivuw ¢ Vz'\/ﬂedge(v,w))]

It is also common to consider the “counting” version of MSO logic
which moreover has predicates mod, ,(X) stating that |X| mod p =
q.

To avoid possible confusion we remark that the previously men-
tioned stronger MSO language of incidence graphs, abbreviated as
MS,, allows to quantify also over graph edges and their sets. There
are MS, expressible graph properties, e.g. Hamiltonicity, which are
not expressible in MS;, whilst MS, properties cannot be (in general)
efficiently handled on graphs of bounded rank-width.

13

In this section we would like to show that the “MS;”-statement
of Courcelle, Makowsky, and Rotics [8] can also be set up in the
scope of our Rank-width regularity Theorem 3. Briefly saying, we
consider the class F of graphs described by an MS; sentence ¢, and
show by structural induction on ¢ that the canonical equivalence
~r has finite index. The latter actually needs an extension of ~z,
to an equivalence ~J, (see below) allowing for formulas ¢ with free
variables.

This new view shall not only be an elementary combinatorial
alternative to the proof [8] which used MSO interpretation (trans-
duction) of the graphs generated by k-expressions into labeled binary
trees, but also leads to new Theorem 5 which could be of independent
interest (see Remark 3).

Extended canonical equivalence of MS; formulas. We propose
an extension analogous to the previous works [1, 16], but new in the
context of rank-width.

Let Free(¢) = Fr(¢) U FR(¢) be the partition of the free vari-
ables into those Fr = Fr(¢) for vertices and those FR = FR(¢)
for vertex sets. We define a partial equipment signature of ¢ as a
triple o = (Fr, FR,q) where ¢ : Fr — {0,1}. A t-labeled graph
G is o-partially equipped if it has distinguished vertices and vertex
sets assigned as interpretations of the free variables in o. Formally,
for each X € F'R there is a distinguished subset Sx C V(G), and
for each x € Fr such that ¢(x) = 0 there is a distinguished ver-
tex v, € V(G). Nothing is assigned to variables z € Fr such that
q(z) = 1. For o we define a complemented partial equipment signa-
ture o~ = (Fr, FR,q') where ¢'(z) =1 — q(x) for all z € Fr.

See that if H; is o-partially equipped and H, is o~ -partially
equipped, then H = H; ®[g] H, has a full and consistent interpre-
tation for all the free variables of ¢ (hence this H is a logic model of
®). So, we can define equivalence =~ o1 over all t-labeled o-partially
equipped graphs as follows: G Ny (G5 if and only if the following

(Giolid H) | ¢ <= (G2alid H) = ¢

holds for all t-labeled o~ -partially equipped graphs H.
Here we have extended the meaning of ~J, in two directions.
First, by allowing free variables in ¢ we enlarge the studied universe

14

to partially equipped graphs. Second, the universe is further enlarged
by allowing all ¢-labeled underlying graphs — not only those from R;.
Yet we can prove:

Theorem 5. Let t > 1 be fized. Suppose ¢ is a formula in the
language MS1, and o is a partial equipment signature for ¢. Then
~ g, has finite index in the universe of t-labeled o-partially equipped
graphs.

Proof. We retain the notation introduced above. The induction
base is to prove the statement for the atomic formulas in MS;: ¢ =
(v e W), (v =uw), mod,, (W), or edge(u,v). The first three are
all rather trivial cases which we skip here, and we focus on the last
predicate edge(u, v) (since this one actually “defines” the graph we
study).
(6) Suppose ¢ = edge(u,v). Then the index of ~7, is one if q(u)
q(v) =1, two if g(u) = q(v) = 0, and 2" if g(u) = 0 and ¢(v) =
OT Vice versa.

1

In the first case both vertices u,v with a possible edge uv are in-
terpreted in the right-hand graph H, and hence no matter what G
or Gy are, they become equivalent in = ~g; In the second case both
vertices u,v are interpreted in the left-hand graphs G;, and hence
there are exactly two classes formed by those graphs having and
those not having u adjacent to v. It is the third case which interests
us: Recalling the definition of our join operator ®[id], we see that all
information needed to decide whether some u in the left-hand graph
is adjacent to a specific v in the right-hand graph is encoded in the
labeling of u, and hence the 2! possibilities there.

For the inductive step, we consider that a formula ¢ is created
from shorter formula(s) in one of the following ways: ¢ = =), P A n,
Jvp(v), or AW (W), where v € Fr(v) or W € FR(v) in the latter
cases. One may easily express the V or V symbols using these. The
arguments we are going to give in the rest of this proof are not
completely novel—they are similar to [1] and nearly a translation
of the arguments used in [16, Lemma 6.2] (unfortunately, a simple
reference to that is not enough here)

We assume by induction that ~7, (~,;) has finite index, where
the signature m (p) is inherited from o for Y (for n, see below the
case-by-case details). The first case is quite easy to resolve:

15

(7) If ¢ =), then the equivalence ~ [, is the same as ~7 .
We look at the second, only slightly more involved, case.

(8) Suppose ¢ =¥ An, and let m, p denote the restrictions of signa-
ture o to Free(y), Free(n), respectively. If ~7 , has index p and
%77,75 has index r, then ~7, has index at most p - r.

Consider an arbitrary pair of t-labeled o-partially equipped graphs
G4 #o G, and an associated o~ -partially equipped graph H such
that (G1 ®lid] H) = ¢ but (G, ®[id] H) [~ ¢. Then it has to be
(Gi®lid] H) |= ¢ (or |= 1) but (G2 ®lid] H) [~ ¢ (or [~ 1, resp.).
Hence it immediately holds that G Fot Gy, or Gy #ot G, with
the restricted equipments, and so the equivalence classes of = g1 are
suitable unions of the classes of the “intersection” ~J, N ~,,.

The third case of Jv 1 (v) is technically more complicated, and so
we first deal with the similar but easier fourth case of AW ¥ (W).

(9) Suppose qb = W (W), and let the signature 7 = (Fr, FRU
{W}, q). If =7, has index p, then ~7, has index at most 2F — 1.

Again consider an arbitrary pair of t-labeled o-partially equipped
graphs Gy 27, Gy, and H such that (G ®[id] H) | ¢ but
(Gy ®lid] H) b& ¢. We shortly write G[W = S] for the m-partially
equipped graph obtained from o-partially equipped G by interpret-
ing the variable W as S C V(G). Then our assumption about
G1, Gy means there exist SW C V(Gy) and S}, C V(H) such that
(G1[W = Sw]elid] HIW = Siy]) ¢, whilst (G2[W = Tiv] ®lid
H[W = Sy]) o for all TW C V(Gsq). Hence Gh[W = Sw] 27,

We now, in search for a contradiction, look at the problem from
the other side. Let the equivalence classes of ~J, over t-labeled
m-partially equipped graphs be C!,C2% ... ,CP. For a o-partially
equipped graph G we define a nonempty set Iz(G) C {1,2,...,p}
as follows: i € Iz(G) if and only if GIW = S| € (¢ for some
S C V(G). If there were 2P pa1rw1se incomparable o-partially
equipped graphs in the relation ~7,, then some two of them, say
Gi #3, Ga, would receive Iz(Gy) = Ix(G) by the pigeon-hole
principle. However, from the argument of the previous paragraph
— GH[W = Sw] %], Go[W = Ty for some Sy C V(G1) and all
Tw C V(G3), we conclude that j € Iz(G1) \ I2(G2) where j is such
that G, [W = Sy/| € C7. This contradiction proves (9).

16

(10) Suppose ¢ = Fvp(v), and let signatures 7 = (Fru{v}, FR, ¢)
and p = (Fr U {v}, FR, q) where ¢;(v) = 0 and ¢(v) = 1. If
~, has index p and = i,t has index r, then ~7, has index at
most 2P -r +1 —.

Notice that a p-partial equipment of G does not interpret the vari-
able v in V(G), and so o-partially equipped graph G may be viewed
also as p-partially equipped. Take an arbitrary pair of nonempty
t-labeled o-partially equipped graphs Gh #o G, and H such that
(G ®|id] H) = ¢ but (G, ®[id] H) i ¢. Let z, € V(G1) UV (H) be
an interpretation of the variable v that satisfies 1) over Gy ®[id] H. In
particular, v is false over G, ®[id] H here. If z,, € V(H), then imme-
diately G4 aéd) . Go. Otherwise, z,, € V(G) and we are in a situation
analogous to the first paragraph of (9): (Gi[v =z, ®[id] H) = 1),
whilst (Ga[v = v, ®[id] H) W~ ¢ for all y, € V(Gs).

Again, in search for a contradiction, we look at the problem
from the other side. If there are 2Pr + 2 — r pairwise incompara-
ble o-partially equipped graphs with respect to ~7,, then at least
2Pr +1 —7r = (2P — 1)r + 1 of those graphs are nonempty, and out
of them at least 2P belong to the same equivalence class of &~/ ,. Let
their set be denoted by G (Hence for each pair in G, the latter conclu—
sion of the previous paragraph applies). Considering the equivalence
classes C*,C?,...,CP of =], we again (as in 9) define a nonempty
set Iz(G) C {1,2, ..., p}, for o-partially equipped G, by i € Iz(G)
if and only if G[v = y] € C' for some y € V(G). Then some pair, say
G1,Gy € G, must satisfy I2(G,) = Iz(G5) by the pigeon-hole prin-
ciple. However, that analogously contradicts the latter conclusion of
the previous paragraph.

This contradiction proves (10), and thus the whole theorem. &

Having a closed MS; formula ¢, the associated equipment signa-
ture is always empty and hence we, in conjunction with Theorem 3,
easily conclude:

Corollary 1 (cf. [8,7]). Lett > 1. If F is a graph class definable
in the MS, language, then the language of all those t-labeling parse
trees which generate the members of F N Ry is accepted by a finite
tree automaton.

17

Remark 3. Corollary 1 straightforwardly generalizes also to classes
F4 defined by non-closed MS; formulas ¢ if we extend the universe
to equipped t-labeling parse trees—additional labels are used (in the
leaves) to encode a specific interpretation of the free variables of ¢
in these parse trees.

Solving optimization problems. Unfortunately, direct algorith-
mic applicability of the “MS;” theorem (Corollary 1) is limited to
pure decision problems (like 3-colourability), but many practical
problems are formulated as optimization ones. And the usual way
of transforming optimization problems into decision ones does not
work here since MS; language cannot handle arbitrary numbers.

Nevertheless, there is a known solution. Arnborg, Lagergren,
and Seese [2] (while studying graphs of bounded tree-width), and
later Courcelle, Makowsky, and Rotics [8] (for graphs of bounded
clique-width), specifically extended the expressive power of MSO
logic to define so-called LinEMSO optimization problems, and con-
sequently shown existence of efficient (parameterized) algorithms for
such problems in the respective cases. Briefly saying, LinEMSO prob-
lems allow, in addition to ordinary MSO expressions, to compare
between and optimize over linear evaluational terms.

We can achieve an analogous solution in our framework directly
using Theorem 5. The basic idea is that, in a dynamic processing of
the input labeling parse tree, we can keep track only of suitable “op-
timal” representatives of all possible interpretations of the free vari-
ables in ¢, per each class of the extended canonical equivalence ~7 ;.
We illustrate this idea with the following example.

Consider any MS; formula ¢(X1,...,X,) and an optimization
problem, say,

(11) MAX X, ... X,CV(G): (X1, Xp) S (X1y -0 Xp)

where f is a linear evaluational function on the elements of
Xi,...X,. Such as,

Y =uX) = Vo,w (v XVw ¢ XV-edge(v,w)) and f(X)=|X]
describes the maximum independent set problem, or
Y =06(X) = Vodw[v e XV(w € XAedge(v,w))] and f(X)=—|X],

18

is the minimum dominating set problem. Further examples like min-
imum independent or connected dominating set problems are easily
possible.

Now we show how Theorem 5 can be employed in solving prob-
lems like (11) via dynamic programming. Let G be an input graph
of rank-width ¢, and T its t-labeling parse tree. We denote by T}, the
subtree below a node x of T, and by G, the t-labeled subgraph of G
parsed by 7.

For any Wy, ..., W, C V(G,), the o-partially equipped graph G,
with interpretation X; = W;, «+ = 1,...,p falls into one of the
(finitely many) ¢ classes of ~7, (Theorem 5). A dynamic algorithm
for solving (11) has to remember just one representative interpreta-
tion (W7,...,WJ) achieving maximum f(X,,...,X,) over the j-th
class of ~7,, for j =1,2,...,£. Thanks to linearity of the objective
function f, and with knowledge of the associated tree automaton
(Remark 3), this information can easily be processed from leaves of
T to the root in total linear time (¢ fixed).

5 Concrete Algorithmic Applications

As already mentioned in the introduction, the driving force of our re-
search is to provide a framework for easier design of efficient parame-
terized algorithms running on a bounded-width rank-decomposition
of a graph. The theory of parameterized complexity [10] defines a
problem to be fixed parameter tractable with respect to an integer
parameter k if it is solvable in time O(f(k)-n°) where c is a constant
and f is any function. The results of Theorem 1, Proposition 3 or
Corollary 1 fall into this framework.

For practical applications it is good to have a “small” function
f in the expression O(f(k) - n¢), while the previous universal Theo-
rem 5 provides f(k) as a tower of exponents generally growing with
quantifier alternation in the formula, cf. (9) and (10). Obviously, we
can hardly expect f to be polynomial for N P-complete problems,
but say, f(k) of order 2P°W(*) (“single-exponential”) with reasonable
coefficients can lead to practically usable algorithms when k& is not
big. In our context, k = t is the rank-width of an input graph, and
the desire is to find FPT algorithms for (some) hard problems with,
at the best, a single-exponential dependency of running time on t¢.

19

This particular question has been, perhaps, the first time explic-
itly asked by Bui-Xuan, Telle and Vatshelle in a [yet unpublished /
unavailable, 2008] manuscript, in which they provide (in a setting
equivalent to prior [7]) two new algorithms for the independent and
dominating set problems which run in time roughly O(29)n) for
graphs with rank-decompositions of width at most ¢.

We remark that it is likely not possible to obtain an FPT al-
gorithm for a hard problem with a single-exponential dependency
on t using clique-width design techniques since [5] the clique-width
parameter can reach up to ©(2%/?), and so one has to work directly
with a rank-decomposition. Although the FPT algorithm for a rank-
decomposition in Theorem 1 has an unspecified dependency on
(at least double-exponential), in practical situations where graphs
of bounded rank-width naturally occur one can hope to obtain such
a decomposition for (almost) free from the specific context. Thus
algorithms which are single-exponential in ¢ are of great interest in-
dependently of Theorem 1.

Graph colourability. The c-colourability problem—whether a
graph has a proper colouring using colours 1,2, ..., c—has already
been mentioned for ¢ = 3 and graphs of rank-width at most ¢ in
Section 3 and in [13]. The results there can be easily generalized
to any fixed ¢ > 3. However, unlike in Section 3 where we have
been satisfied with a conclusion that the c-colourability problem is
solvable by a tree automaton for each fixed t, here we pay close at-
tention to running-time dependency on the parameters ¢ and c. To
actually prove single-exponential dependency on these parameters
with small constants, we employ some techniques of Section 4 and
dynamic programming here.

Theorem 12. Letc > 3 andt > 1. Assume that an input graph G is
given in the form of a t-labeling parse tree T'. Then the c-colourability
problem of G can be solved in time

O (ct? - 2102 |y (@) .

Proof. Let a formula 7n.(Xy,...,X.) express the claim that inde-
pendent sets Xi,..., X, cover all the vertices of a graph H (7, is
an MS; formula, but we do not directly use this fact here). In other

20

words, 7. (x (1), ..., x '(c)) certifies that x : V(H) — {1,...,c} is
a proper c-colouring of H. We now consider a o-partially equipped t-
labeled graph H where o equips the set variables X1, ..., X.in V(H).
For an interpretation X; = W; C V(H),i=1,...,c we (analogously
to the 3-colourability example in Section 3) denote by (y(H, W;))
the subspace of GF(2)" generated by the labelings of the vertices of
W; in H. Then we set I,(H) = ((y(H,Wh)),..., {(y(H,W.))).

By repeating the arguments of the proof of Proposition 3 we
obtain that any two t-labeled o-partially equipped graphs H;, H
satisfy Hy =~ , Hy if I.(H,) = I.(H,). Hence a dynamic algorithm
deciding c-colourability of the input graph G has to remember just a
set M of those c-tuples I'.(H) of subspaces for which there exist inter-
pretations X; = W; C V(H), i = 1,...,c such that n.(Wy,...,W,)
holds true in a particular position H of the parse tree T

Subsequently, the number R(c,t) of distinct I.(H) can be
bounded using the following recurrence [15] for the total number S(t)
of subspaces of GF(2)': S(t+1) =2S(t)+ (2" —1)S(t — 1). ;From
that we routinely get S(t) < 20°/4t%/4 for ¢ > 12, and then

R(C, t) _ S(t)c < 2ct(t—|—1)/4’

According to the detailed description given below, the above set M
can be constructed, at any particular node of 7', from its two tree
descendants in time

(13) O(c-t*) - R(c, t)?,

and so the runtime bound of Theorem 12 follows since 7" has |V (G)|
leaves and O(|V(G)|) internal nodes.

For the sake of completeness we separately state the details of
our dynamic algorithm for the c-colourability problem. Let T}, denote
the subtree at a node z of the input parse tree T, and G, be the
t-labeled subgraph of G parsed by T;.

— For each node z of T" we process information contained in the
set Mr(z) = {I(G.[X1 = x7'(1),.... X1 = x'(o)]) : x
is a proper c-colouring of GZ}.

— If z is a leaf of T', then Mr(z) consists of precisely ¢ elements of

the form (0,. .., (lab(z)),...,0).

21

— Assume an internal node z of T" with the sons x and y (if one of
them does not exist in 7', the analysis is only simpler). Then G, =
G. ®lg| f1, f2) G,. For every I.(G,) € Mr(z) and I.(G,) €
Mr(y), we take ¥J the j-th entry (subspace) in I,(G,) and ¥/
the j-th entry in I.(G,), where j =1,...,c.

Each subspace ¥ is recorded by its (arbitrary) basis. With ele-
mentary linear algebra we can check in time O(#?), from g and
the bases of ¥/, Spgj , whether there are points (labelings) Z, € ¥/
and Z, € ¥ with an odd intersection |Z, N g(Z,)|, i.e., by (4),
an edge created between two j-coloured vertices of G, and of G,,.
Then we can compute, from f1, fo and ¥, %], in O(t*) time the
subspace ¥/ = (fi(¥]) U fo(¥])) generated by the labelings of
the j-coloured vertices of GG,. If the odd-intersection tests above
succeed for all j = 1,...,¢, then in time O(ct?) we finally obtain

FC(GZ) - MT(Z)

— Finally, in the root r of T, we simply check whether My (r) is
nonempty.

One small remark is neccessary about accessing the sets Mr(z).
We build in advance an indexing structure consisting of all 2t(¢+1)/2
upper-triangular binary matrices — potential bases of all the sub-
spaces of GF(2)". We let each matrix refer to the first one in the
list which generates the same subspace. Even by brute force this
takes time O(¢32!*1)/2 5(¢)) which is neglectable with respect to
(13). Then we implement the characteristic vector of My(z) as a c-
dimensional bit array addressed via that index, achieving constant
access time to it (modulo handling “big” #*-bit numbers). |

Remark 4. Theorem 12 gives an FPT algorithm which is single-
exponential in the parameter t. That speedup is achieved by the
crucial observation, see in (4), that it is enough to record only the
subspaces generated by the labelings of vertices in each colour class,
and not all the vertex labelings separately (which would lead to triv-
ial double-exponential dependency on t).

Non-FPT (pseudo-polynomial) algorithms. Besides FPT al-

gorithms running in time O(f(k)-n°) for a constant parameter time,
there exist many algorithms in the literature running in time O(n/®*))

22

which also belong to the class P for any one fixed k&, but we better
call these “pseudo-polynomial” to stress the fact that the exponent
of n can grow when choosing different value of k.

Considering as a parameter k the clique-width of a graph G,
where G is given in a form of a clique-width k-expression, there
are known pseudo-polynomial algorithms; e.g. [11] for Hamiltonian
path and various partitioning problems like into cliques, bipartite
cliques, perfect matchings, etc, or [18] for the chromatic number or
edge dominating set problems, or a general framework [14] for many
vertex-partitioning problems. On the other hand, it is now known
[12] that likely no FPT algorithms exist for the edge dominating
set, Hamiltonian cycle or chromatic problems when parameterized
by clique-width (unless FPT=W|1]).

For instance, we take a look at the chromatic number algorithm
of Kobler and Rotics [18] which runs in time O(n/®)) where f(k) =
O(4%). If applied to a graph of rank-width ¢, the runtime bound
would become O(n9®) where g(t) = O(4%). However, by further
extending our formal machinery and reusing the ideas of the proof
of Theorem 12, we can improve the algorithm of [18] to achieve better
running time with respect to the rank-width parameter.

Theorem 14. Assume that an input graph G is given in the form
of a t-labeling parse tree T'. Then the chromatic number of G' can be
determined in time

O (IV(G)[PD) where p(t) = O(21T1/2),

Proof. Considering an arbitrary graph H and a set family N, we
express by v(N) the claim that the sets in A form a partition of
the vertex set V(H) into nonempty(!) independent sets (a proper
colouring of H). v is a second-order formula and so the formal ma-
chinery of Section 4 is not directly applicable. Neverthless, we can
further extend the meaning of the canonical equivalence of Section 4
to cover also this case over t-labeled graphs equipped with N

Consider two set families N' C 2%, N’ C 2Y over disjoint ground
sets X NY =). We call a family M C 2XYY a matching union of
Nand N"if M X =N, MY =N, and | M| = max(|N], IN|)
(where M [X denotes the family of all intersections of X with sets
from M).

23

Then, for any t-labeled graphs Gi, GQ_ and any set families N; C
2Y(Gi),i = 1,2 forming a partition of V(G;), we define (G1,N7) =,
(G2, N3) if and only if |N;| = |N2| and the following

(15) (Gi®lid] H) = v(N] UNj) for some N{ matching
union of Vi, Ny <=
(Go®lid] H) | v(NJUNY;) for some N matching union of N, Ny

holds for all ¢t-labeled graphs H (disjoint from Gy, G5), and all dis-
joint N, N3 € 2VH) such that Ny UNY is a partition of V (H).
See that ~,; captures all information neccessary to decide which
subcolourings of G extend to colourings of any larger G ®[id] H,
where N extends existing colour classes of G into H and N7, gives
new colour classes exclusive to H.

For W C V(H) we recall the subspace (y(H,W)) of GF(2)!
generated by the labelings of the vertices of W in H, and we define
a multiset Ty(H,N') = {(y(H,W)) : W € N'}. The crucial finding,
actually inspired by the colouring algorithm in [18], now reads:

(16) For any t-labeled graphs G,Gy and any N; C 2V § =
1,2 such that G; E v(N;), it holds (Gi, V1) =~,; (G2, No)
if F#(Gl,Nl) = F#(GQ,NQ).

To prove this claim, we assume Iy (G, N}) = I'w(Ga, N3) and,
cf. (15), (Gi®lid] H) E v(N] UN). Since N7 = M UN is
a partition of the vertices of Gy ®[id] H, for all possible matching
unions N3, for claiming v(A;") it suffices to verify that all W € N3
are independent in the graph G, ®[id] H. That is trivial if W €
Ny or W € Ny. Otherwise, we consider any bijection b : N7 —
Ny preserving (v(G1, W)) = (y(Gy,b(W))) for all W € Nj, and

accordingly choose
Ny={W: W=0b(UIV(G))U (U IV(H),UeN\N }.
By (4), W € Nj induces an edge between G, and H in Gy ®[id] H

if and only if the corresponding U € N] does that in G| ®[id] H.
Therefore, for our choice of matching union Ny, all W € N are also

independent and (16) follows.

Recall that G, denotes the labeled graph parsed by the subtree
of the input parse tree T" rooted at z € V(7). Thanks to (16), a

24

dynamic algorithm for the chromatic number of G has to remember
only the set Mr(2) of those multisets Iy (G, N) coming from proper
colour partitions N of V(G,), at any particular node z of T'. This
information is trivial to construct at each leaf of T

Consider a node z with the sons x and y (if one of them does
not exist in 7', the analysis is irrelevant). Every colour partition of
G, = G, ®[g| f1, fo] G, uniquely determines colour partitions of
V(G,) and of V(G,). So to utilize the definition of Iy, we define
a matching union signature D{ (depending on the “join” relabeling
g): D{ is the bipartite graph on the vertex set SUS where S is the
family of all subspaces of GF(2)!, and ¥¥’' € § x S is an edge of Dy
iff no labeling Z € ¥ has an odd intersection with any g(Z'), Z' € ¥'.
Each edge of Df has, moreover, an integer weight (starting from 0).

Having two multisets I, I'5 of subspaces of GF'(2)!, and a suit-
ably weighted signature Df as above; a D{-matching union I} of
I7 and Iy, with fq, fo relabelings, is obtained iteratively as follows:
For every edge ¥W, of positive weight m in D?, the multiplicity
of ¥, in I}, i = 1,2 is reduced by m, and the combined subspace
(f1(¥1) U f2(Ws)) is added to I again with multiplicity m. Remain-
ing elements of I, I, (with multiplicities) are copied to I at the
end. The whole operation is defined only if each vertex of Dy sat-
isfies that the sum of weights of its incident edges is at most its
multiplicity in I3 or I, respectively.

Now we easily conclude:

(17) A subspace I, belongs to Mp(z) if and only if I, is obtained as
a Dj-matching union of some I, € My (z) and some I, € Mr(y),
for a suitably weighted matching union signature DY,

So, finally, while (16) specifies what information we keep in dy-
namic processing of the input parse tree T, latter (17) shows how
to process this information. Such a dynamic algorithm then runs in
time O(p(G,t)? - q(G,t) - S(t)* - t3 - |V(G)|), where p(G,t) denotes
the number of possible distinct 'y (G, N), and ¢(G, t) stands for the
number of distinct weightings of the matching union signature DY.

For simplicity, we provide only short arguments giving rather
weak (but sufficient) bounds on p, g here: p(G,t) can be bounded
from above by |V (G)|*® where S(t) < 2(¢+D/4 (for ¢t > 12) is the
number of distinct subspaces of GF(2)" estimated in the proof of

25

Theorem 12—consider that the multiplicity of any subspace in the
multiset [y (H, ') is at most the number of nonempty colour classes.
With analogous arguments we also get ¢(G,t) < |V(H)|*®*. These
estimates then lead to a runtime bound of order |V (G)[P®) where
p(t) <28(t) + S(t)* + o(t?) + 1 = O(S(t)?) = O(2!+1/2), i

6 Concluding Notes

We have provided a wide range of formal mathematical tools for con-
structing dynamic algorithms on graphs with bounded-width rank-
decompositions in our paper. The employed mathematical formalism
is, we believe, close also to the theoretical computer science commu-
nity and suitable for designing actual algorithms. This paper elabo-
rates on the ideas of Courcelle and Kanté [7] as well as allows better
interpretation of their results. Although our examples of actual al-
gorithms focused on graph colourability, the provided tools can, of
course, be used for handling many other properties and problems in
a similar manner.

For instance, among other things, we would like to suggest that
Theorem 14 can straightforwardly be extended to compute the chro-
matic polynomial of input graphs of bounded rank-width with about
the same time complexity, a task that has been done with respect to
clique-width using more complicated tools in [3].

Generally, it is an interesting question (to which we do not have
an answer right now) whether Theorem 5 and ideas of (11) could
be used to give FPT algorithms for problems beyond the scope of
the LinEMSO properties [8] and of the vertex-partitioning frame-
work [14]. Yet another suggestion of a future research would be to try
to identify a fragment of MS; logic for which there exist FPT algo-
rithms with a single-exponential dependency on the rank-width pa-
rameter. Design of such algorithms appears significantly more com-
plicated than an analogous task for the tree-width parameter.

Notice, finally, in Section 5 that it is sometimes possible to find
(even exponentially) better algorithms by properly utilizing dynamic
programming and providing better representations of the actual
equivalence classes characterizing the problem in our framework.
Such a phenomenon deserves further study, too.

26

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Abrahamson, K.A. and Fellows, M.R.: Finite Automata, Bounded Treewidth, and
Well-Quasiordering. In: Graph Structure Theory, Contemporary Mathematics 147.
American Mathematical Society (1993) 539-564.

Arnborg, S., Lagergren, J., and Seese, D.: Problems easy for Tree-decomposible
Graphs. In: Proc. 15th Collog. Automata, Languages and Programming. Volume
317 of Lecture Notes in Comput. Sci., Springer, Berlin (1988) 38-51.

Averbouch, 1., Godlin, B., Makowsky, J.A., and Rotics, U.: Computing graph
polynomials on graphs of bounded clique-width . In: Graph-theoretic concepts in
computer science. Volume 4271 of Lecture Notes in Comput. Sci., Springer, Berlin
(2006) 191-204.

Bandelt, H.-J. and Mulder, H.M.: Distance-hereditary graphs. J. Combin. Theory
Ser. B 41(2) (1986) 182—208.

Corneil, D.G. and Rotics, U.: On the relationship between cliquewidth and
treewidth. STAM J. Comput. 34(4) (2005) 825-847.

B. Courcelle: The monadic second-order logic of graphs I. Recognizable sets of
Finite Graphs. Information and Computation 85 (1990) 12-75.

Courcelle, B. and Kanté, M.M.: Graph Operations Characterizing Rank-Width
and Balanced Graph Expressions. In: Graph-theoretic concepts in computer sci-
ence. Volume 4769 of Lecture Notes in Comput. Sci., Berlin, Springer (2007) 66-75.
Courcelle, B., Makowsky, J.A., and Rotics, U.: Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2) (2000)
125-150.

Courcelle, B. and Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Appl. Math. 101(1-3) (2000) 77-114.

Downey, R.G. and Fellows, M.R.: Parameterized complezity. Monographs in Com-
puter Science. Springer-Verlag, New York, 1999.

Espelage, W., Gurski, F., and Wanke, E.: How to solve NP-hard graph problems on
clique-width bounded graphs in polynomial time. In: Graph-theoretic concepts in
computer science. Volume 2204 of Lecture Notes in Comput. Sci., Berlin, Springer
(2001) 117-128.

Fomin, F., Golovach, P., Lokshtanov, D. and Saurabh, S.: Clique-width: On the
Price of Generality. To apprear in the Proceedings of SODA 2009, ACM.
Ganian, R.: Automata formalization for graphs of bounded rank-width. Master
thesis. Faculty of Informatics of the Masaryk University, Brno, Czech republic
(2008).

Gerber, M.U. and Kobler, D.: Algorithms for vertex-partitioning problems on
graphs with fixed clique-width. Theoret. Comput. Sci. 299(1-3) (2003) 719-734.
Goldman, J. and Rota, G.-C.: The number of subspaces of a vector space. In:
Recent Progress in Combinatorics, ed. W.T. Tutte. Academic Press (1969) 75-83.
Hlinény, P.: Branch-width, parse trees, and monadic second-order logic for ma-
troids. J. Combin. Theory Ser. B 96(3) (2006) 325-351.

Hlinény, P. and Oum, S.: Finding Branch-decomposition and Rank-decomposition.
SIAM J. Comput. 38 (2008) 1012-1032.

Kobler, D. and Rotics, U.: Edge dominating set and colorings on graphs with fixed
clique-width. Discrete Appl. Math. 126(2-3) (2003) 197-221.

Oum, S.: Rank-width and vertex-minors. J. Combin. Theory Ser. B 95(1) (2005)
79-100.

27

20.

21.

Oum, S. and Seymour, P.: Approximating clique-width and branch-width. J. Com-
bin. Theory Ser. B 96(4) (2006) 514-528.

Robertson, N. and Seymour, P.: Graph minors. X. Obstructions to tree-
decomposition. J. Combin. Theory Ser. B 52(2) (1991) 153-190.

28

