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Introduction

We decided to organize a workshop on enumeration with the aim to put together
a small group of researchers to exchange information on different broad aspects
of enumeration and its relations with graph theory and statistical physics. The
workshop was held in Patejdlova bouda, a small but comfortable lodge located
high up in the Krkonoše mountains above Špindler̊uv Mlýn resort. The lodge
has the Internet, table-tennis, sauna, and a small ski lift: indeed, several par-
ticipants started to ski during the week.

The idea from the beginning was to devote every day to a different topic,
and to have two 90 minutes lectures (blocks of lectures) every day, one in the
morning and the other in the late afternoon. The rest of the day was not
planned.

Another key aspect was that thanks to generous funding from the Depart-
ment of Applied Mathematics, Charles University, Prague, and from the In-
stitute of Theoretical Computer Science, Prague, we could cover all the local
expenses of the participants. 1

Speaking for us (the organizers), we liked the workshop extremely, both
mathematically and socially. A sketch of the math activities during the work-
shop is presented in the following pages.

Martin Klazar and Martin Loebl

1Projects MSM 0021620838 and 1M0545, respectively.
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Chapter 1

Delia Garijo, Jaroslav
Nešetřil and M. Pastora
Revuelta: Homomorphisms
and Polynomial Invariants
of Graphs

This is a short version of the paper Homomorphisms and polynomial invariants
of graphs submitted to the European Journal on Combinatorics, 2007.

Acknowledgments. We are indebted to Andrew Goodall for carefully review-
ing the manuscript and making many valuable suggestions.

1.1 Introduction

Counting homomorphisms between graphs arise in many different areas in-
cluding extremal graph theory, partition functions in statistical physics and
property testing of large graphs. Given two graphs G = (V (G), E(G)) and
H = (V (H), E(H)), a homomorphism of G to H, written as f : G → H, is a
mapping f : V (G) → V (H) such that f(u)f(v) ∈ E(H) whenever uv ∈ E(G).
The number of homomorphisms of G to H is denoted by hom(G,H). This
number, considered as a function of G with H fixed is a graph parameter, that
is, a function of graphs invariant under isomorphisms. A more broader class of
parameters related to homomorphisms has been recently intensively studied in
the context of statistical physics, see for example [5].

The motivation of this paper is to show the usefulness of the homomorphism
perspective in the study of polynomial invariants of graphs. Thus, our main
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contribution is to prove that there exists a strong connection between counting
graph homomorphisms and evaluating polynomials associated with graphs. The
importance of this approach lies on its applicability. For instance, it can put
in a new context some well-known problems such as the uniqueness questions
formulated by Bollobás, Peabody and Riordan in [3].

One of the most studied polynomial invariants in combinatorics is the Tutte
polynomial, or dichromate of [26]. This is an isomorphism-invariant function
from the set of finite multigraphs with loops allowed to Z[x, y] which can be
defined in several ways, see for instance [4, 6, 26]. Throughout this paper, we
shall consider its contraction-deletion formulae. Thus, the Tutte polynomial
of a finite graph G, denoted by T (G;x, y), can be defined by the following
recurrence relations:

1. If G has no edges then T (G;x, y) = 1.

2. T (G;x, y) = T (G − e;x, y) + T (G/e;x, y) provided that e ∈ E(G) is
neither a loop nor a bridge, G−e and G/e denote, respectively, the result
of deleting and contracting the edge e in G.

3. T (G;x, y) = yT (G− e;x, y) whenever e ∈ E(G) is a loop.

4. T (G;x, y) = xT (G/e;x, y) whenever e ∈ E(G) is a bridge.

It is well-known that homomorphisms of a graph G to the complete graph
Kn are just the n−colorings of G (see [12]). In [14], Joyce showed that the
number of homomorphisms of any graph G to a complete graph with non-
multiple edges and p loops at each vertex, is an evaluation of the coboundary
polynomial of G. This polynomial was first defined in [27] as a generalization
of the chromatic polynomial. Since the Tutte polynomial can be regarded as an
extension of the chromatic and the coboundary polynomials, a natural question
arises: can we find other graphs H such that the number of homomorphisms of
any graph G to H is given (up to a determined term) by an evaluation of the
Tutte polynomial of G?

This paper contains two main results. We first prove that every complete
graph with p loops at each vertex and constant multiplicity q at the non-loop
edges can play the role of H, whenever p is different than q. As well as the Tutte
polynomial is an extension of the chromatic and the coboundary polynomials,
this complete graph which we denote by Kp,q

n , is a natural extension of both the
complete graph Kn and the Joyce graph Kp,1

n . Figure 1.1 shows four instances
of this family of graphs.

Our second main result is the characterization, by assuming a local condi-
tion, of those graphs H such that the parameter hom( , H) can be recovered
from the Tutte polynomial. We prove that such graphs are necessarily isomor-
phic to graphs of the familyKp,q

n . The local condition is not too restrictive since

2



(a) (b) (c) (d)

Figure 1.1: (a) K4,0
1 , (b) K0,7

2 , (c) K2,4
3 , (d) K2,1

3 .

it is satisfied by all the multiplicative invariants of graphs that can be deduced
from the Tutte polynomial. This fact underlines the importance of the results
proved in this paper.

The Tutte polynomial extends not only the chromatic and the coboundary
polynomials but also, among others, the flow, the boundary, the transition and
the circuit partition polynomials. Thus, our characterization leads to important
connections between the homomorphism counting and these polynomials, which
have a special role in the field of graph theory. Indeed, the boundary polynomial
was introduced in [27] as a generalization of the flow polynomial, and along with
the coboundary polynomial, has been recently used to obtain new evaluations
of the Tutte polynomial at some points on the hyperbolae Hα = {(x, y)|(x −
1)(y−1) = α} for α ∈ N (see [11]). The transition polynomial arose in [13] as a
tool for summarizing and generalizing a number of results obtained by Martin
[22, 23] and Las Vergnas [18, 19, 20]. It has many interesting applications
in knot theory, see for example [15]. The circuit partition polynomial was
first defined in [7], and was so named in [2]. This polynomial is a simple
transform of the original Martin polynomial, which was developed by Martin in
[22] to study families of cycles in 4−regular Eulerian graphs. Furthermore, the
circuit partition polynomial has surprising applications to many areas including
infrastructure networks and reconstruction of DNA sequences, see for instance
[1].

As an application, we use our characterization to describe in terms of the
homomorphism counting some important evaluations of the Tutte polynomial
in abelian groups and statistical physics. Specifically, we sketch applications
to difference sets in abelian groups, the Potts model, and the random cluster
model in statistical mechanics.

We shall conclude the paper by introducing a new type of uniqueness of
graphs related to the homomorphism counting, which we call coloring unique-
ness, and by showing its relation with Tutte uniqueness and chromatic unique-
ness.

3



1.2 Graph homomorphisms and the Tutte
polynomial

In this section we establish a connection between counting graph homomor-
phisms and evaluating the Tutte polynomial.

We first state some notation that will be used throughout this paper. The
graphs considered are finite and not necessarily simple. Thus, let us denote by
Ω the set of finite multigraphs with loops allowed. The vertex set and edge set
of a graph G are denoted by V (G) and E(G). An edge e ∈ E(G) can be either
a loop uu or a non-loop edge uv with u 6= v. The multiplicity of a non-loop
edge e ∈ E(G) is written as m(e). The set of homomorphisms of a graph G
to a graph H is denoted by Hom(G,H), and its order is hom(G,H). Given
f ∈ Hom(G,H) and e = uv ∈ E(G), we write f(e) = f(u)f(v) ∈ E(H). For
a fixed H ∈ Ω, a constant x that depends on H is written as xH . The graphs
Kp,q

n defined in the previous section verify the following conditions: p, q, n ∈ N,
n ≥ 1 and p, q ≥ 0. When n = 1, we consider q = 0 and p > 0.

One of the most important properties of the Tutte polynomial is the exis-
tence of a contraction-deletion formula. In fact, this polynomial is an example
of Tutte-Grothendieck invariant [6, 27], that is, a function f from the set of
graphs to a fixed commutative ring satisfying the following:

• Contraction-Deletion Formula: f(G) = f(G − e) + f(G/e) when G is
connected and e is neither a loop nor a bridge.

• Multiplicity: the invariant of a graph is the product of the invariants of
its connected components.

• Isomorphism Invariance: the invariants of two isomorphic graphs are the
same.

In [6], Brylawski and Oxley showed that every Tutte-Grothendieck invariant
is essentially an evaluation of the Tutte polynomial.

Theorem 1.2.1. [6] Let f be any function from the set of graphs to a fixed
commutative ring Z[x0, y0, n, a, b] which is multiplicative and isomorphism in-
variant. Further, let f verify the following recurrence relations:

• f(G) = nλ if G has no edges and λ vertices.

• f(G) = af(G− e)+ bf(G/e) provided that e ∈ E(G) is neither a loop nor
a bridge.

• f(G) = x0f(G/e) whenever e ∈ E(G) is a bridge.

• f(G) = y0f(G− e) whenever e ∈ E(G) is a loop.

Then f(G) = ncam−λ+cbλ−cT (G; x0

b ,
y0

a ) where G is a graph with λ vertices, m
edges and c connected components.
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Observe that the parameter hom( , Kp,q
n ) is multiplicative, and

hom(G,Kp,q
n ) = nλ if G is the graph with λ vertices and no edges. Thus, the

following result is the key tool to relate this parameter to the Tutte polynomial.
It defines hom( , Kp,q

n ) in terms of a contraction-deletion formulae.

Lemma 1.2.2. The number of homomorphisms of any graph G to K p,q
n satisfies

the following recurrence relations:

(1) hom(G,Kp,q
n ) = q hom(G − e,Kp,q

n ) + (p − q) hom(G/e,Kp,q
n ) provided

that e ∈ E(G) is neither a loop nor a bridge, G − e and G/e denote,
respectively, the result of deleting and contracting the edge e in G.

(2) hom(G,Kp,q
n ) = p hom(G− e,Kp,q

n ) whenever e ∈ E(G) is a loop.

(3) hom(G,Kp,q
n ) = (p + q(n − 1)) hom(G/e,Kp,q

n ) whenever e ∈ E(G) is a
bridge.

Theorem 1.2.1 and Lemma 1.2.2 imply the following relationship for all
n ≥ 1 (for n = 1, the proof follows by induction on m and by only using
Lemma 1.2.2).

Theorem 1.2.3. For every graph G with λ vertices, m edges and c connected
components, the following holds:

1. hom(G,Kp,q
n ) = nc(p− q)λ−cqm−λ+cT

(
G; p+q(n−1)

p−q
, p

q

)
with q ≥ 1 and p 6=

q.

2. hom(G,Kp,0
1 ) = (p/2)mT (G; 2, 2) with p > 0.

Our next aim is to characterize the graphs H such that the parameter
hom( , H) satisfies a contraction-deletion formula.

Definition 1.2.4. Given H ∈ Ω, a function hH : Ω → Q depending on
H is called local if for every graph G ∈ Ω, and every type of edge e ∈
E(G) (distinguishing between loops, bridges and neither of them) the fractions
hH(G)/hH(G − e) and hH(G)/hH(G/e) do not depend on the choice of G and
e.

Theorem 1.2.5. For every connected graph H ∈ Ω, the following statements
are equivalent:

(1) There exist two rational numbers xH and yH , and a local function hH such
that for every graph G, hom(G,H) = hH(G)T (G;xH, yH).

(2) There exist p, q, n ∈ N with p 6= q such that H ∼= Kp,q
n .
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We conclude this section by establishing a relationship for homomorphisms
of dual graphs.

Proposition 1.2.6. Let G be a planar graph with λ vertices, m edges and c
connected components, and G∗ be its dual graph. Then the following holds:

1. hom(G,Kp,q
n ) =

(
p−q
q

)m

nλ−m−1hom

(
G∗, K

q+ q2n
p−q

,q
n

)
with n > 1 and q +

q2n
p−q ∈ N.

2. hom(G,Kp,0
1 ) = hom(G∗, Kp,0

1 ) with p > 0.

We want to stress that the conditions xq = q + q2n
p−q ∈ N and n > 1 imply

q < p and (x−1)(y−1) > 1. Therefore the previous result provides a connection
between the number of homomorphisms of G and G∗ to Kyq,q

n and Kxq,q
n respec-

tively, for an infinite number of points over the hyperbolae (x− 1)(y − 1) = n.

1.3 Homomorphisms and other polynomial in-
variants of graphs

There are many polynomial invariants that can be recovered from the Tutte
polynomial. Among those, there are some (but not all) that can be related to the
homomorphism counting. In this section, we establish the connections between
the parameter hom( , H) and the boundary, the coboundary, the transition,
and the circuit-partition polynomials. We start by considering the boundary
and the coboundary polynomials which have a special role in the theory of the
Tutte polynomial, see for example [11, 27].

Let G be a graph and ω a fixed orientation of its edges. For every v ∈ V (G),
we can divide the edges incident with v according to the orientation ω into two
sets, ω+(v) and ω−(v), that is the edges directed into the vertex and the edges
directed out of the vertex.

Given an abelian group A of order r, a function f : E(G) → A is called an
A−flow of G with orientation ω if for each vertex v ∈ V (G),

∑

e∈ω+(v)

f(e) =
∑

e∈ω−(v)

f(e).

In particular, a nowhere zero A−flow is a A\{0}−flow.
Let us denote by ΘA(G) the set of A−flows of G. The boundary polynomial,

or bad flow polynomial of [27], is defined as follows.

F (G; r, x) =
∑

f∈ΘA(G)

x|f
−1(0)|

6



where |f−1(0)| is the number of zero-edges in the A−flow f . Clearly this polyno-
mial is an extension of the flow polynomial since it considers not only nowhere-
zero A−flows of a graph G, but also A−flows in which there are i zero-edges
with 1 ≤ i ≤ |E(G)|. Thus, F (G; r, 0) is the flow polynomial of G.

Similarly, the coboundary polynomial, or monochrome polynomial of [27], is
defined for any abelian group A of order r by

P (G; r, y) =
∑

g∈Cr(G)

y|Γg(G)|

where Cr(G) is the set of vertex r−colorings of G, and Γg(G) is the set of
monochrome edges in a given g ∈ Cr(G), that is, the edges which have endpoints
of the same color. Since the chromatic polynomial only considers proper vertex
r−colorings of a graph, it is clear that P (G; r, 0) is the chromatic polynomial
of G.

The following relationships define the boundary and the coboundary poly-
nomials as evaluations of the Tutte polynomial, up to local functions.

Theorem 1.3.1. [27] For any graph G with λ vertices, m edges and c connected
components the following holds:

(1) F (G; r, x) = (x− 1)m−λ+cT
(
G;x, x−1+r

x−1

)
.

(2) P (G; r, y) = rc(y − 1)λ−cT
(
G; y−1+r

y−1 , y
)
.

We now relate these polynomials to the parameter hom( , H).

Proposition 1.3.2. For every graph G with λ vertices, m edges and c connected
components, the following holds:

(1) hom(G,Kp,q
n ) = nλ−m(p− q)mF

(
G;n, p+q(n−1)

p−q

)
with n > 1 and p 6= q.

(2) hom(G,Kp,q
n ) = qmP (G;n, p/q) with n > 1 and p 6= q.

Theorem 1.3.3. For every connected graph H ∈ Ω, the two following state-
ments are equivalent:

(1) There exist a rational number xH, a positive integer number rH > 1,
and a local function hH satisfying that for every graph G, hom(G,H) =
hH(G)F (G; rH , xH).

(2) There exist p, q, n ∈ N with p 6= q such that H ∼= Kp,q
n .

7



Observe that Theorem 1.3.1 and the connection between the parameter
hom( , H) and the Tutte polynomial, enable us to state and prove a similar
characterization for the coboundary polynomial.
Remark 1. The transition polynomial was first defined in [13] on 4−regular
planar graphs in terms of a weight function A. One can find many interesting
applications of this polynomial mostly in knot theory, see for instance [15].
The Tutte polynomial of a connected planar graph G with set of faces R(G) is
related to the transition polynomial Q(M(G);A, τ) of its medial graph M(G).
This relationship is proved in [13] for special values of µ and δ, and a special
weight function A. It is then given by the following expression,

Q(M(G);A, τ) = δ1−|V (G)|µ1−|R(G)|T
(
G; 1 + δτ

µ , 1 + µτ
δ

)
.

The medial graph M(G) is the planar connected 4−regular graph obtained
from G as follows: The vertices of M(G) correspond to the edges of G and
two vertices of M(G) are joined by an edge if the corresponding edges of G
are neighbors in the cyclic order around the vertex (see Figure 1.2). We do
not go into more details and just state the connection between the transition
polynomial and the parameter hom( , H). This connection is given by the two
following results.

Proposition 1.3.4. Let G be a connected planar graph with λ vertices and m
edges. The number of homomorphisms of G to Kp,q

n with p 6= q and n > 1 is
given by

hom(G,Kp,q
n ) = nm−λ+1(p− q)mδmQ(M(G), A,

√
n) if p− q 6= q

√
n .

hom(G,Kp,q
n ) = (

√
n)λ+1qmδmQ(M(G), A,

√
n) if p− q = q

√
n .

Theorem 1.3.5. For every connected graph H ∈ Ω, the following statements
are equivalent:

1. There exist a constant τH , and a local function hH such that for every
connected planar graph G, hom(G,H) = hH(G)Q(M(G);A, τH).

2. There exist p, q, n ∈ N with p 6= q and n > 1 such that H ∼= Kp,q
n .

Remark 2. We obtain similar results for the circuit partition polynomial which
was first defined in [7] as a generating function for the number of Eulerian
partitions of an Eulerian graph or digraph into s components. This polynomial
is a generalization, for a specific weight function, of one of Jaeger’s transition
polynomials (see [7]). It has many applications to several areas, including non-
mathematical fields (see for instance [1, 2]).
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The Tutte polynomial of a planar graph G with c connected components is

related to the circuit partition polynomial of its directed medial graph
−−−→
M(G)

(see [22, 23]). This relationship is given by the following expression,

j(
−−−→
M(G);x) = xcT (G;x+ 1, y + 1)

The directed medial graph
−−−→
M(G) results from directing the edges of M(G) as

follows. We first color the faces of M(G) black or white, depending on whether
they contain or do not contain, respectively, a vertex of the original graph G.
The edges ofM(G) are directed so that the black face is on the left of an incident
edge (see Figure 1.2). As in Remark 1, we just state the connection between
the circuit partition polynomial and the parameter hom( , H), without going
into more details.

(a) (b) (c)

Figure 1.2: (a) The cycle C4, (b) the medial graph of C4, (c) the directed medial
graph of C4.

Proposition 1.3.6. Let G be a planar graph with λ vertices, m edges and c
connected components. For every q, n ∈ N with q ≥ 1 and n > 1 such that√
n ∈ N, the following holds:

hom
(
G,K(1+

√
n)q,q

n

)
= (

√
n)λqmj(

−−−→
M(G);

√
n).

Theorem 1.2.5 and the connection between the Tutte polynomial and the
circuit partition polynomial, let us prove the following result.

Theorem 1.3.7. Let H ∈ Ω be a connected graph. Suppose that there exist
a constant xH, and a local function hH such that for every planar graph G,

hom(G,H) = hH(G)j(
−−−→
M(G);xH). Then there exist p, q, n ∈ N with p 6= q and

n > 1 such that H ∼= Kp,q
n .

Remark 3. The Penrose polynomial is an instance of graph polynomial that
can not be related to the homomorphism counting by using our technique.
Indeed, this polynomial can be described in terms of a transition polynomial
for specific values of δ, µ and τ (see [13] for more details). Thus, the Penrose
polynomial is defined for τ = −2 and Proposition 1.3.4 considers τ =

√
n > 0.
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1.4 Applications to abelian groups and statis-
tical physics

The aim of this section is to sketch connections between the homomorphism
counting and fundamental evaluations of the Tutte polynomial in abelian groups
and statistical physics. Concretely, we focus on difference sets in abelian groups,
the Potts model and the random cluster model in statistical mechanics.

1.4.1 Difference sets in abelian groups

Let G be a graph with a fixed orientation ω of its edges, and a uniform prob-
ability space of pairs (f1, f2) of functions from E(G) into a subset B of an
abelian group A of order r. A (r, k, l)−difference set in A is a subset B ⊆ A
of k elements with 2 ≤ k ≤ r such that, for all 0 6= a ∈ A there exist l pairs
(b1, b2) ∈ B × B with b1 − b2 = a.

Let AV (G) denote the set of all functions g : V (G) → A, and AE(G) the set
of all functions f : E(G) → A. The boundary operator d∗ : AE(G) → AV (G) is
defined for a given function f : E(G) → A and each vertex v ∈ V (G) by,

d∗f(v) =
∑

e∈ω+(v)

f(e) −
∑

e∈ω−(v)

f(e).

Observe that the kernel of d∗ is the space of the A−flows of G.
In this subsection, we prove that for k > l when B has the property of

being a difference set in A, the event that f1 and f2 have the same boundary
has probability equal, up to a factor, to hom(G,Kp,q

n ) for some values of n, p
and q. The relationship between such probability and the boundary polynomial
is first recalled from [11].

Lemma 1.4.1. [11] If B is a (r, k, l)−difference set then,

Pr(d∗f1 = d∗f2) = k−2mlmF

(
G; r,

k

l

)

where G is a graph with m edges.

This lemma and Proposition 1.3.2 imply the following result.

Proposition 1.4.2. Let A be an abelian group on r elements, B ⊆ A a
(r, k, l)−difference set in A, and q any positive integer number such that
( rl

k−l + 1)q ∈ N. If two functions f1, f2 : E(G) → B are chosen uniformly
at random then:

Pr(d∗f1 = d∗f2) = k−2m(k − l)mr−λq−mhom

(
G,K

( rl
k−l

+1)q,q
r

)

where G is a graph with λ vertices and m edges.

10



Observe that the condition ( rl
k−l + 1)q ∈ N implies k > l. Hence, we can

consider the value q = k − l and the following result is a particular case of the
above-stated proposition.

Corollary 1.4.3. Let B be a (r, k, l)−difference set in A with k > l. If two
functions f1, f2 : E(G) → B are chosen uniformly at random then,

Pr(d∗f1 = d∗f2) = k−2mr−λhom
(
G,K(r−1)l+k,k−l

r

)

where G is a graph with λ vertices and m edges.

Note also that B = A\{0} form a (r, r − 1, r − 2)−difference set. Thus, we
can state the following corollary.

Corollary 1.4.4. Let q be any positive integer number. If two functions f1, f2 :
E(G) → A\{0} are chosen uniformly at random then,

Pr(d∗f1 = d∗f2) = (r − 1)−2mr−λq−mhom
(
G,K(r−1)2q,q

r

)

where G is a graph with λ vertices and m edges.

1.4.2 The Potts model and the Gibbs probability

For the combinatorial analysis of the Potts model on a finite graph G, it is
assumed that the interaction energy, which measures the strength of the in-
teraction between neighbourings pairs of vertices, is constant and equal to J .
Consider that each atom can be in S different states, and denote K = 2βJ
where β is a parameter of the model determined by the temperature. The fol-
lowing relationship between the partition function Z of the Potts model and
the coboundary polynomial of G is proved in [27],

Z(G) = e−K|E(G)|P (G;S, eK).

This relationship and Proposition 1.3.2 lead to the connection between
counting graph homomorphisms and the partition function Z of the Potts
model.

Proposition 1.4.5. Let q be any positive integer number such that eKq ∈ N.
Then,

Z(G) = e−Kmq−mhom
(
G,KeKq,q

S

)

where G is a graph with m edges.
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The random cluster model on a finite graph G can be regarded as the an-
alytic continuation of the Potts model to non-integer S (see [25]). This model
is a correlated bond percolation model in statistical mechanics, introduced by
Fortuin and Kasteleyn in [8] (see also [25, 27]) and defined by a probability dis-
tribution, called the Gibbs probability, as follows. For every subset A ⊆ E(G),

µ(A) = N−1

(∏

e∈A

te

)(∏

e/∈A

(1 − te)

)
Sk(A)

where k(A) is the number of connected components of the graph (V (G), A), the
value te is a probability assigned to every edge e ∈ E(G), S ≥ 0 is a parameter
of the model, and N is the normalizing constant so that

∑
A⊆E(G) µ(A) = 1.

When each of the te are made equal, the Gibbs probability appears as a
two parameter family of probability measure µ = µ(t, S) where 0 ≤ t ≤ 1 and
S > 0. In this case, this probability is essentially an evaluation of the Tutte
polynomial of G (see [27]). Indeed,

µ(A) =

(
t

1−t

)|A|
S−r(A)

(
t

S(1−t)

)r(E(G))

T
(
G; 1 + S(1−t)

t , 1
1−t

)

where r(A) = |V | − k(A) is the rank of A.

We now reformulate this relationship in terms of the homomorphism count-
ing.

Proposition 1.4.6. Let G be a finite graph, and A ⊆ E(G). For every ` ∈ N
such that (1− t)` is a positive integer number, the Gibbs probability is given by

µ(A) =

(
t

1−t

)|A|
S−r(A)+|V (G)|(1 − t)|E(G)|`|E(G)|

hom
(
G,K

`,(1−t)`
S

) .

1.5 Coloring Uniqueness

Since the Tutte polynomial contains a great deal of information about the graph
to which it is associated, a question that arises naturally is whether a graph can
be recovered up to isomorphism from its Tutte polynomial. A graph G is said to
be Tutte-unique if T (G;x, y) = T (H;x, y) implies H ∼= G, for every other graph
H. Tutte uniqueness has been studied for several families of graphs, such as
complete multipartite graphs, wheels, hypercubes (see [24]), locally grid graphs
[9, 21], and hexagonal tilings [10]. In 2000, Bollobás, Peabody and Riordan [3]
conjectured that almost all graphs are Tutte-unique. Since then there has been
little progress on this conjecture.
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The problem of finding graphs determined by polynomial invariants has been
studied also for other polynomials such as the chromatic polynomial [16, 17].
Since the chromatic polynomial of a 2-connected graph can be recovered from its
Tutte polynomial, we obtain that 2−connected chromatically-unique graphs are
Tutte-unique. It is also conjectured that almost all graphs are chromatically-
unique [3]. Following this line of research, we introduce the concept of coloring-
uniqueness.

Definition 1.5.1. A finite graph G is coloring-unique if hom(G,Kp,q
n ) =

hom(H,Kp,q
n ) for all n ≥ 1, p, q ≥ 0 and p 6= q implies H ∼= G, for every

other graph H.

Observe that chromatically-unique graphs are coloring-unique.

Theorem 1.5.2. Let G be a simple, 2−connected graph. If G is coloring-unique
then G is Tutte-unique.

Theorem 1.5.3. If almost all graphs are coloring-unique then almost all graphs
are Tutte-unique.

1.6 Concluding Remarks

1. Some of the connections provided in this paper are summarized in the
following table. In particular, those between counting graph homomorphisms
and evaluating polynomials associated with graphs.
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Homomorphisms-Tutte polynomial

hom(G,Kp,q
n ) = nc(p− q)λ−cqm−λ+cT

(
G; p+q(n−1)

p−q , p
q

)

p ≥ 0, q ≥ 1, p 6= q

hom(G,Kp,0
1 ) = (p/2)mT (G, 2, 2) with p > 0

G any graph with
λ vertices, m edges,

c connected components

Homomorphisms-Transition polynomial
hom(G,Kp,q

n ) = nm−λ+1(p− q)mδmQ(M(G), A,
√
n)

if p− q 6= q
√
n

hom(G,Kp,q
n ) = (

√
n)λ+1qmδmQ(M(G), A,

√
n)

if p− q = q
√
n

G connected planar graph
M(G) medial graph

Homomorphisms-Circuit partition polynomial

hom
(
G,K

(1+
√

n)q,q
n

)
= (

√
n)λqmj(

−−−→
M(G);

√
n)

q ≥ 1, n > 1,
√
n ∈ N

G planar graph.
−−−→
M(G)

directed medial graph

Homomorphisms-Boundary polynomial

hom(G,Kp,q
n ) = nλ−m(p− q)mF

(
G;n, p+q(n−1)

p−q

)

p ≥ 0, q ≥ 1, p 6= q

G any graph with
λ vertices, m edges,

c connected components

Homomorphisms-Coboundary polynomial
hom(G,Kp,q

n ) = qmP (G;n, p/q)
p ≥ 0, q ≥ 1, p 6= q

G any graph with
λ vertices, m edges,

c connected components

2. The connection between graph homomorphisms and graph invariants
is well-known and useful. One can here quote not only classical (and not so
classical) results such as those covered in [27] and [12], but also recent works
for reaching an algebraical approach of this connection, see for example [5]. It
is perhaps surprising how tight (in certain very concrete instances) this con-
nection is. This paper shows both the connection in the case of polynomial
invariants, and also its limitations. But perhaps this approach can put in a
new context some well-known problems such as uniqueness questions. How-
ever, Andrew Goodall very recently showed the converse of Theorem 1.5.2:
Every Tutte unique graph is coloring unique. A bit surprisingly, the concepts
of Tutte- and coloring-uniqueness coincide.

3. In proving Theorem 1.2.5 we use the properties of the homomorphism
function hom( , H) for very special graphs only: multiple edges and cycles
(and their minors). Thus, it is sufficient to assume the locality of the function
hH for this small minor closed family.
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Chapter 2

Andrew Goodall: Graph
polynomials and
Tutte-Grothendieck
invariants: an application
of elementary finite Fourier
analysis

The topics covered in this article are as follows. The graph polynomial, Tutte–
Grothendieck invariants, an overview of relevant elementary finite Fourier anal-
ysis, the Tutte polynomial of a graph as a Hamming weight enumerator of
tensions (or flows) of a graph, a family of polynomials containing the graph
polynomial which yield Tutte–Grothendieck invariants in a similar way to it.

Acknowledgments. Supported by the Heilbronn Institute for Mathematical
Research, Bristol.

2.1 Introduction

The graph polynomial is a generalization of the Vandermonde determinant (the
graph polynomial of a complete graph) which was considered by Petersen in the
early days of graph theory. Alon, Tarsi and Matiyasevich in more recent years
have found that it contains a lot of information about the vertex colourings of
a graph. Motivated by their results, which include the fact that the number of
proper 3-colourings of a graph is a simply described function of the coefficients
of its graph polynomial, in this article we consider a family of polynomials
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containing the graph polynomial and ask whether other Tutte–Grothendieck
invariants can be obtained in a similar way as a function of their coefficients.
Our results are obtained by expressing the relevant parameter as the partition
function of a vertex colouring model (such as the Potts model) or, in different
language, the graph parameter obtained from homomorphisms to a weighted
graph.

After introducing the graph polynomial and its relation to proper vertex
colourings, there follows a description of Tutte–Grothendieck invariants and
an overview of the techniques of finite Fourier analysis which will be used to
obtain our results. The notions of tensions and flows of a graph and the view of
the Tutte polynomial as a Hamming weight enumerator are then adumbrated.
We conclude with a characterization of those polynomials which share with the
graph polynomial the property of yielding Tutte–Grothendieck invariants from
their coefficients. More generally, the graph polynomial is seen to belong to a
family of polynomials for which a simple function of their coefficients is equal
to the complete weight enumerator of the set of tensions (or flows) of the graph.

2.2 The graph polynomial

Let G = (V,E) be a graph with some fixed, arbitrary orientation of its edges,

and denote its directed edge set by
−→
E .

Let Q be a finite set of size q. A proper vertex q-colouring using colour set
Q is an assignment of colours (cv : v ∈ V ) ∈ QV such that cu 6= cv whenever
{u, v} ∈ E. The number of proper vertex q-colourings of G is denoted by
P (G; q) (an evaluation of the chromatic polynomial of G at q).

Let x = (xv : v ∈ V ) be a tuple of commuting indeterminates indexed by V
and define the graph polynomial 1 F (G) in C[x] by

F (G;x) =
∏

(u,v)∈−→E

(xu − xv).

Given an assignment of values c = (cv : v ∈ V ) ∈ CV to the indeterminates
x = (xv : v ∈ V ), the graph polynomial takes a non-zero value if and only if
c corresponds to a proper vertex colouring with colour set Q = {cv : v ∈ V }.
Set ζ = e2πi/q. By restricting cv to one of the q points 1, ζ, . . . , ζq−1 on the unit
circle a criterion emerges for the existence of a proper vertex q-colouring of G
in terms of the polynomial F (G;x).

1The graph polynomial has not yet acquired the qualification of a proper name. The ‘Sylvester–Petersen
graph polynomial’ might be a candidate [18, 17]. Matiyasevich analyses the graph polynomial of the line graph of
a cubic plane graph in order to obtain reformulations of the Four Colour Theorem [15]. Alon and Tarsi [2, 3, 20]
interpret its coefficients in terms of orientations; their interpretations in terms of proper vertex colourings will
be described in this section. Ellingham and Goddyn [8] call the graph polynomial the graph monomial averring
that the latter has a less anonynmous character than the former.
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The algebraic variety of points {(cv : v ∈ V ) : cv ∈ {1, ζ, . . . , ζq−1}} cor-
responds to the ideal (xq

v − 1 : v ∈ V ) of the ring C[x]. Denote the graph
polynomial modulo the ideal generated by the polynomials xq

v − 1 by

F (q)(G;x) = F (G;x) mod (xq
v − 1 : v ∈ V ).

By Lagrange interpolation, with sums over (av : v ∈ V ) ∈ {0, 1, . . . , q−1}V ,

F (q)(G;x) =
∑

(av :v∈V )

∏

v∈V

∏

a6=av

xv − ζa

ζav − ζa
F (G; (ζav : v ∈ V ) )

= q−|V | ∑

(av :v∈V )

∏

v∈V

xq
v − 1

ζ−avxv − 1
F (G; (ζav : v ∈ V ) ),

the last line since
∏

a6=av
(ζav − ζa) = ζ(q−1)av

∏
b6=0(1 − ζb) = ζ−avq. The rela-

tionship between coefficients of the polynomial F (q)(G;x) and its evaluations
at points (ζav : v ∈ V ) is exhibited here as a basis change between the basis of

monomials
∏

v∈V x
av
v and the basis of polynomials

∏
v∈V

xq
v−1

ζ−avxv−1 . The connec-
tion is the Fourier transform. This article is an elaboration of this remark.

Alon and Tarsi [3] use the “Combinatorial Nullstellensatz” [1] to prove that
F (q)(G;x) 6= 0 if and only if P (G; q) > 0, and also show that more can be said.

The (squared) `2-norm ‖F (q)(x)‖2
2 of the polynomial F (q)(x) is defined to be

the sum of the absolute squares of its coefficients. That this is a norm includes
the fact that F (q)(G;x) 6= 0 if and only if ‖F (q)(G;x)‖2

2 6= 0.

Theorem 2.2.1. [3] For each q ∈ N,

‖F (q)(G;x)‖2
2 = q−|V |4|E|

∑

c∈{0,1,...,q−1}V

∏

uv∈E

sin2 π(cv − cu)

q
,

the sum being over all vertex colourings of G with colours {0, 1, . . . , q − 1}. In
particular, for q = 3 this is equal to 3|E|−|V |P (G; 3).

For the next theorem we require a further definition. A (q, 1)-flow of G is
a partial orientation of G with the property that at each vertex the number
of edges directed out of v is congruent to the number of edges directed into v
modulo q. (A partial orientation is obtained when some edges of G are assigned
an orientation while the other edges remain undirected.) By referring to the

fixed orientation
−→
E of G, it is possible to use the equivalent definition as an

assignment of values (be : e ∈ E) to the edges of G with the properties that
be ∈ {0, 1,−1} and the net flow (incoming minus outgoing values) at each vertex
is equal to zero modulo q.
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Theorem 2.2.2. [20] For each q ∈ N,

‖F (q)(G;x)‖2
2 = (−1)|E| ∑

(q,1)-flows b

(−2)|E|−|b|,

where |b| = #{e ∈ E : be 6= 0}.
One aim of this article is to reveal the underlying relationship between

Theorems 2.2.1 and 2.2.2 in a more general context. The other is to characterize
those polynomials of the form

∏

(u,v)∈−→E

∑

a,b∈{0,1,...,q−1}
f(a, b)xa

ux
b
v mod (xq

v − 1 : v ∈ V )

whose `2-norm is a Tutte–Grothendieck invariant (such as P (G; q)). The graph
polynomial is the case f(1, 0) = 1, f(0, 1) = −1 and f(a, b) = 0 otherwise,
and Theorem 2.2.1 says that for q = 3 its `2-norm is the Tutte–Grothendieck
invariant 3|E|−|V |P (G; 3).

We begin in Section 2.3 by defining Tutte–Grothendieck invariants and mo-
tivating the search for them.

In Section 2.4 a potted account is given of Fourier analysis on finite Abelian
groups and preparations made for Section 2.5 in which questions are anwered
and our stated aims (more or less) achieved. An expanded version of Section 2.4
can be found in [12], and an even more fulsome presentation is given in [11].
The book [21] is recommended for an introduction to finite Fourier analysis and
its wide range of applications.

2.3 Tutte–Grothendieck invariants

Let G = (V,E) be a graph, loops and parallel edges permitted, with k(G)
components, rank r(G) = |V | − k(G) and nullity n(G) = |E| − r(G).

Deleting an edge e ∈ E gives a graph G\e with one fewer edge than G.
Contracting e gives a graph G/e with one fewer vertex and one fewer edge than
G. Many graph parameters may be recursively defined via contraction-deletion
recurrences.

Definition 2.3.1. A function F from graphs into C[α, β, γ, x, y] is a Tutte–
Grothendieck invariant if it satisfies, for each graph G = (V,E) and any edge
e ∈ E,

F (G) =





γ |V | E = ∅,
xF (G/e) e a bridge,

yF (G\e) e a loop,

αF (G/e) + βF (G\e) e not a bridge or loop.

(2.1)
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See for example the accounts in [22, 5, 10] for an appreciation of the ubiquity
of Tutte–Grothendieck invariants. For A ⊆ E, the subgraph (V,A) is obtained
from G by deleting edges not in A. Given G = (V,E), the rank of the graph
(V,A) is denoted by r(A). A Tutte–Grothendieck invariant is an evaluation of
the Tutte polynomial, defined by

T (G;x, y) =
∑

A⊆E

(x− 1)r(E)−r(A)(y − 1)|A|−r(A). (2.2)

The Tutte polynomial is a rescaling of the Whitney rank polynomial of G
(for which see for example [10]), a generating function for (|A|, r(A)) over all
subgraphs (V,A) ofG. The coefficients of the Tutte polynomial are non-negative
integers (see for example [4, 5]), a fact while not evident from its definition in
equation (2.2) is more readily seen in its alternative formulation as a Tutte–
Grothendieck invariant with α = β = γ = 1.

Theorem 2.3.2. If F is a Tutte–Grothendieck invariant satisfying the equa-
tions (2.1) then

F (G) = γk(G)αr(G)βn(G)T (G;
x

α
,
y

β
).

Example 2.3.3. The monochrome polynomial P (G) = P (G; q, y) (monochro-
mial, bad colouring polynomial, coboundary polynomial, partition function of
the q-state Potts model) is defined by

P (G; q, y) =
∑

c∈QV

y#{(u,v)∈−→E :cu=cv}, (2.3)

where Q is a set of q colours (states) and c = (cv : v ∈ V ) is a vertex colouring
of G using colours from Q. It is easily verified that the function P satisfies

P (G) =





q|V | E = ∅,
(y + q − 1)P (G/e) e a bridge,

yP (G\e) e a loop,

(y − 1)P (G/e) + P (G\e) e not a bridge or loop.

By Theorem 2.3.2,

P (G; q, y) = qk(G)(y − 1)r(G)T (G;
y−1+q

y−1
, y). (2.4)

In particular, the chromatic polynomial P (G; q), counting the number of proper
vertex q-colourings of G, is given by

P (G; q) = qk(G)(−1)r(G)T (G; 1 − q, 0).
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Let Q be a set of size q (later to be an additive Abelian group of order q) and
w = (wa,b) a tuple of complex numbers indexed by (a, b) ∈ Q×Q. Assume that
the edges {u, v} of G = (V,E) have been given an arbitrary, fixed orientation

(u, v). Denote by
−→
E the resulting set of directed edges. Consider the partition

function for a vertex Q-colouring model that assigns a weight wa,b to a directed
edge (u, v) coloured (a, b):

F (G;w) =
∑

c∈QV

∏

(u,v)∈−→E

wcu,cv
=
∑

c∈QV

∏

(a,b)∈Q×Q

w
#{(u,v)∈−→E : (cu,cv)=(a,b)}

a,b . (2.5)

This partition function may be interpreted as the weight of a graph homo-
morphism G → H, where H is the directed graph on vertex set Q and edge
set {(a, b) : wa,b 6= 0}, with edge weights wa,b, i.e., the weighted graph H has
adjacency matrix (wa,b)a,b∈Q. (It is possible to also have vertex weights for H
in addition to its edge weights, but this will not be considered here. See for
example [9, 19] and [13, 7] for more on vertex colouring models and on graph
homomorphisms.)

Theorem 2.3.4. The graphical invariant F (G;w) defined by equation (2.5) is
a Tutte–Grothendieck invariant if and only if there are constants y, w such that

wa,b =

{
w a 6= b,

y a = b.

In this case F (G;w) = F (G;w, y) = qk(G)wn(G)(y − w)r(G)T (G; y−(q−1)w
y−w , y

w). (If

w = 0 then F (G; 0, y) = y|E| and if w = y then F (G; y, y) = q|V |y|E|.)

A sketch proof only of Theorem 2.3.4 is given.2 The following lemma is the
main tool.

Lemma 2.3.5. If two multisets of complex numbers {u1, u2, . . . , ur} and
{v1, v2, . . . , vr} satisfy

um
1 + um

2 + · · · + um
r = vm

1 + vm
2 + · · · + vm

r , (2.6)

for integers 1 ≤ m ≤ r, then {u1, u2, . . . , ur} = {v1, v2, . . . , vr}.
Proof. By Newton’s relations the first r elementary symmetric functions in
r arguments are determined by the first r power sum symmetric functions.
Equation (2.6) implies that the first r elementary symmetric functions in
u1, u2, . . . , ur coincide with the first r elementary symmetric functions in
v1, v2, . . . , vr. This determines {u1, u2 . . . , ur} and {v1, v2, . . . , vr} as the multi-
set of roots of the same polynomial over C and hence as equal multisets.

2I am grateful to Delia Garijo for alerting me to the fact that I was assuming the truth of something that
required proof (upon which my “iff” was curtailed to an “if”), and also for her description of how she has been
tackling a related, stronger result.
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Proof. (of Theorem 2.3.4.) In one direction, given that xa,b = w for a 6= b
and xa,a = y, the evaluation of the Tutte polynomial follows from that of the
monochrome polynomial given in equation (2.4) in Example 2.3.3 above with
x = y/w.

In the other direction, suppose that there are constants α, β, γ, x, y such
that F (G;w) = F (G) satisfies the relations (2.1) for a Tutte–Grothendieck
invariant. By checking that this is indeed the case for the three families of
graphs Xm, Ym, Zm itemized below the desired conclusion is reached. Each of
these families of graphs possess the following virtues: (i) the graphs obtained
by contracting or deleting an edge are of the same form or belong to one of
the other families, and (ii) it is possible to write down F as given by the parti-
tion function (2.5) as a succinct formula, thereupon to substitute this formula
into the contraction-deletion recurrence of equation (2.1), and finally to use
Lemma 2.3.5.

(1) Ym, 1 ≤ m ≤ q, the graph on one vertex with m loops. F (Y1) =∑
a∈Q xa,a = qy. The relation F (Ym) = yF (Ym−1) = qym is used to

show that xa,a = y for each a ∈ Q.

(2a) Xm, 1 ≤ m ≤ q2, the graph on two vertices connected by m parallel edges.
F (X1) =

∑
a,b∈Q xa,b = qx. The relation F (Xm) = αF (Ym−1)+βF (Xm−1)

for m ≥ 2 is used to show first that {xa,b : a, b ∈ Q} contains at most two
distinct values y, w: there is S with {(a, a) : a ∈ Q} ⊆ S ⊆ Q × Q such
that xa,b = y for (a, b) ∈ S, and xa,b = w otherwise.

(2b) Xn
m, 1 ≤ m ≤ q2, the graph Xm with n edges oriented in one direction,

m − n in the other. That F (Xm) is independent of any orientation of
the edges of Xm (giving a graph Xn

m) is used to show that xa,b = xb,a for
all a, b ∈ Q, i.e., the set S defined in (2a) is closed under the involution
(a, b) 7→ (b, a).

(3) Zm, 1 ≤ m ≤ q, the star graph with m edges (one vertex degree m, and
m vertices degree 1). The relation F (Zm) = xF (Zm−1) = qxm is used to
show that #{b ∈ Q : (a, b) ∈ S} is independent of a, whereby it follows
from (2b) that either S = {(a, a) : a ∈ Q} or S = Q×Q.

Note. The author in retrospect recognizes that a happier choice in the proof
of Theorem 2.3.4 would have been the family of cycles {C1, . . . , Cq} instead
of {X1, . . . , Xq2} ∪ {Y1, . . . , Yq} ∪ {Z1, . . . , Zq}. It transpires that the cycles
together with the various possible orientations of their edges are sufficient
to determine that Tutte–Grothendieck invariants take the form given in the
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statement of Theorem 2.3.4.

We now know how to tell whether a partition function of a vertex Q-
colouring model is a Tutte–Grothendieck invariant or not. In order to look
for Tutte–Grothendieck invariants in graph polynomials of the sort defined in
Section 2.2 we shall use instruments from Fourier analysis, a subject to which
we now turn.

2.4 Fourier analysis on finite Abelian groups

2.4.1 The algebra CQ

Let Q be an additive Abelian group of order q. In later sections Q = Zq, the
integers under addition modulo q.

The set CQ of functions f : Q → C forms a q-dimensional Hermitian inner
product space. The inner product will be denoted by

〈f, g〉 =
∑

a∈Q

f(a)g(a).

The `2-norm is defined by ‖f‖2 = 〈f, f〉 1
2 and defines a metric on the space CQ.

The space CQ has an orthonormal basis of indicator functions {δa : a ∈ Q},

δa(b) =

{
1 a = b,

0 a 6= b.

There are several definitions of multiplication that make CQ an algebra:

• Pointwise product
f · g(a) = f(a)g(a).

• Convolution
f ∗ g(a) =

∑

b∈Q

f(a)g(b− a).

• Cross-correlation
f ? g(a) =

∑

b∈Q

f(a)g(b+ a).

The effect of these operations on the indicator functions is as follows:

δa · δb = δa(b)δa, δa ∗ δb = δa+b, δa ? δb = δb−a.
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The Abelian groupQ has dual group equal to the set of characters ofQ under
pointwise multiplication. For each c ∈ Q, the character χc : Q→ C× is a group
homomorphism: χc(a + b) = χc(a)χc(b) for all a, b ∈ Q. The multiplicative
group of characters of Q is isomorphic to the additive group Q. (This is only
true when Q is a finite Abelian group, and, for the applications later in this
article, is the reason why only finite Abelian groups are considered.)

The set {χc : c ∈ Q} forms an orthogonal basis for CQ, with 〈χa, χb〉 =
qδa(b).

In the algebra CQ,

χa · χb = χa+b, χa ∗ χb = qδa(b)χa = χa ? χb.

Supposing the additive group Q has the further structure of a ring (such
as Zq with addition and multiplication modulo q), a generating character χ
satisfies χa(b) = χ(ab) for all a, b ∈ Q. When Q = Zq, the character χ defined
by χ(a) = e2πia/q (or e2πica/q for any fixed c coprime with q) is a generating
character.

2.4.2 The Fourier transform

The evaluation of the Fourier transform of a function at a point is the projection
of the function onto a character:

f̂(b) = 〈f, χb〉 =
∑

a∈Q

f(a)χb(−a),

i.e.,

f̂ =
∑

b∈Q

f(b)χ−b.

Orthogonality of the basis {χc : c ∈ Q} yields

(i) the Fourier inversion formula,

f(a) = q−1〈f̂ , χ−a〉 = q−1
∑

b∈Q

f̂(b)χb(a),

i.e., the Fourier transform may be regarded as a change of basis from
indicators to characters:

f =
∑

a∈Q

f(a)δa = q−1
∑

b∈Q

f̂(b)χb.

(ii) Plancherel’s formula,

〈f̂ , ĝ〉 = q〈f, g〉,

26



(iii) Parseval’s formula,

‖f‖2
2 = q−1‖f̂‖2

2.

Thus the normalized Fourier transform f 7→ q−
1
2 f̂ is a unitary transfor-

mation, giving an isometry of the metric space CQ.

The Fourier transform is an isomorphism of the algebra (CQ, ∗) with the
algebra (CQ, ·):

f̂ · g = q−1f̂ ∗ ĝ, f̂ ∗ g = f̂ · ĝ, f̂ ? g = f̂ · ĝ, (2.7)

and in particular

f̂ ? f = |f̂ |2

(the finite version of the Wiener-Khintchine formula). That the Fourier trans-
form is an isometry carrying convolution to pointwise multiplication makes it
useful in the analysis of random walks on Cayley graphs on Q, where steps on
the graph correspond to addition of group elements – see for example [21] and
the references therein. To prove the formulae in (2.7) it suffices to determine the
effect of the Fourier transform on basis functions and then appeal to linearity
and distributivity. For example,

δ̂a ? δb = δ̂b−a = χa−b = δ̂a · δ̂b.

For an additive subgroup P of Q, the annihilator of P is defined by

P ] = {b ∈ Q : ∀a∈P χb(a) = 1}.

and is isomorphic to the quotient group Q/P .
Extend the indicator function notation from elements to subsets P ⊆ Q by

setting δP =
∑

a∈P δa.
For our purposes, a key property of the Fourier transform is that

δ̂P = |P |δP ].

By Fourier inversion,

δP ? f(b) = q−1〈δ̂P · f̂ , χ−b〉,

giving the Poisson summation formula

∑

a∈P

f(a+ b) = |P ]|−1
∑

a∈P ]

f̂(a)χb(a).
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2.4.3 The algebra CQn
and the ring C[x]/(xqi−1 : 1 ≤ i ≤ n)

Let Q = Qn denote the n-fold direct product of Q, which is an Abelian group
of order qn and a module over Q. Given that Q is also a ring, put a ring
structure on Qn by defining componentwise multiplication of a = (a1, . . . , an),
b = (b1, . . . , bn) ∈ Qn,

ab = (a1b1, . . . , anbn).

The Hermitian inner product space CQn

is the n-fold tensor product of CQ:
given f1, . . . , fn ∈ CQ define

f1 ⊗ · · · ⊗ fn(a1, . . . , an) = f1(a1) · · · f(an),

and in particular f⊗n(a) = f(a1) · · · f(an).
The characters of Qn are the functions defined by χa = χa1 ⊗ · · · ⊗ χan

.
Define the Euclidean (dot) product by

a · b = a1b1 + · · · + anbn.

If χ a generating character for Q, then χ⊗n is a generating character for Qn:

χa(b) = χ⊗n(ab) = χ(a1b1) · · ·χ(anbn) = χ(a · b).

Given that Q has a generating character, for a submodule P of Qn the annihi-
lator

P] = {b ∈ Qn : ∀a∈P χa(b) = 1}
is equal to the orthogonal submodule

P⊥ = {b ∈ Qn : ∀a∈P a · b = 0}.

The Fourier transform on Qn is given by

̂f1 ⊗ · · · ⊗ fn = f̂1 ⊗ · · · ⊗ f̂n,

and in particular f̂⊗n = f̂⊗n.
It may be helpful to spell out the relationship between polynomials in the

ring C[x]/(xq
i − 1 : 1 ≤ i ≤ n) (where x = (xi : 1 ≤ i ≤ n) is an n-tuple of

commuting indeterminates) and functions in the space CZn
q . The aim of course

is to translate statements about the reduced graph polynomial F (q)(G;x), which

belongs to C[x]/(xq
v − 1 : v ∈ V ), into statements about functions in CZV

q . The
latter space has now the advantage of familiarity and the accoutrements of a
succinct notation.

Take Q = Zq, which has generating character χ(a) = ζa for primitive qth
root of unity ζ.
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The algebra CZn
q is isomorphic to C[x1, . . . , xn]/(x

q
1 − 1, . . . , xq

n − 1) and the
following correspondences obtain:

δa = δa1
⊗ · · · ⊗ δan

with xa =
n∏

i=1

xai

i ,

χa = χa1
⊗ · · · ⊗ χan

with
n∏

i=1

xq
i − 1

ζ−aixi − 1
,

f =
∑

a

f(a)δa with F (x) =
∑

a∈Zn
q

f(a)xa.

Finally,
F (ζa1, . . . , ζan) = f̂(a),

and Lagrange interpolation on points {(ζa1, . . . , ζan) : (a1, . . . , an) ∈ Zn
q} is the

Fourier basis change

∑

a∈Zn
q

f(a)xa = q−n
∑

a∈Zn
q

f̂(a)

n∏

i=1

xq
i − 1

ζ−aixi − 1
.

2.4.4 Weight enumerators and the Tutte polynomial

We finish this section on Fourier analysis with a discussion of the Tutte polyno-
mial as a weight enumerator that gives us the opportuity at the same time to
define flows and tensions of a graph, which definitions are needed for the next
section.

It will be convenient to extend the domain of a function f on elements
a ∈ Qn to subsets P ⊆ Qn, setting

f(P) =
∑

a∈P

f(a).

The Hamming weight of a = (a1, . . . , an) is |a| = #{i : ai 6= 0}. The Hamming
weight enumerator of P is defined to be the the generating function for vectors
in P counted according to their number of zero entries:

∑

a∈P

xn−|a| = (xδ0 + δQ\0)
⊗n(P).

The complete weight enumerator of P keeps account of the number of entries
equal to a given element of Q:

∑

a∈P

∏

a∈Q

x#{1≤i≤n:ai=a}
a =

(∑

a∈Q

xaδa
)⊗E

(P).
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The Hamming weight enumerator is the specialization x0 = x and xa = 1 for
0 6= a ∈ Q.

For a submodule P of Qn,

δ̂P = |P|δP⊥.

The Poisson summation formula

f(P + b) =
1

|P⊥| f̂ · χb(P⊥),

with b = 0 and f = f⊗n gives the duality formula between the complete weight
enumerator of P (with xa = f(a)) and the complete weight enumerator of P⊥

(with xa = f̂(a)). When f = xδ0 + δQ\0 it yields MacWilliams duality formula
for Hamming weight enumerators.

Recall that the graph G = (V,E) has a fixed orientation of its edges, with

directed edge set denoted by
−→
E . Represent this ground orientation as a matrix

γ indexed by V ×E, setting

γv,e =





+1 if e = (u, v) in
−→
E ,

−1 if e = (v, u) in
−→
E ,

0 if e is not incident with v.

A Q-tension of G is a vector a ∈ QE comprising the differences between end-
points in a vertex colouring c ∈ QV , i.e., if e = (u, v) then the Q-tension a
associated with c is defined by

ae =
∑

v∈V

γv,ecv = cv − cu.

A Q-flow of G is a vector b ∈ QE such that, for each vertex v,

∑

e∈E

γv,ebe = 0.

When G is planar, Q-flows of G correspond to Q-tensions of the planar dual
graph G∗. In particular, when Q = F2, the F2-flows of G (cycles/ Eulerian
subgraphs) correspond to F2-tensions (cutsets) of G∗.

A nowhere-zero Q-tension is one that takes non-zero values only and arises
from a proper vertex Q-colouring; similarly, a nowhere-zero Q-flow is a flow
takes non-zero values only (and for plane graphs corresponds to a proper face
Q-colouring of the embedded graph).
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If P is the set of Q-tensions of G (of which there are qr(G)) then P⊥ is the set
of Q-flows of G (of which there are qn(G)). With this notation, the monochrome
polynomial is given by

∑

c∈QV

y#{(u,v)∈−→E :cu=cv} = qk(G)
∑

a∈P

y|E|−|a|,

since there are qk(G) vertex Q-colourings yielding any given Q-tension. Con-
sequently, by Example 2.3.3, the Hamming weight enumerator of the set P of
Q-tensions of G is a specialization of the Tutte polynomial:

∑

a∈P

y|E|−|a| = (x− 1)r(G)T (G;
x− 1 + q

x− 1
, x).

By the Poisson summation formula (MacWilliams duality),

(yδ0 + δQ\0)
⊗E(P) = q−n(G)[(y −1 +q)δ0 + (y −1)δQ\0]

⊗E(P⊥).

Putting x = y−1+q
y−1 , the Hamming weight enumerator of the set P⊥ of Q-flows

of G is given by

∑

b∈P⊥

x|E|−|b| = (x− 1)n(G)T (G;x,
x− 1 + q

x− 1
).

A corollary of Theorem 2.3.4 is that if a complete weight enumerator of
Q-tensions (or Q-flows) is a Tutte–Grothendieck invariant (an evaluation of the
Tutte polynomial with a certain simple type of prefactor) then it is in fact
a Hamming weight enumerator. In fact, the proof of Theorem 2.3.4 says the
same is true of any class of graphs that contains multiple loops on one vertex,
multiple parallel edges between two vertices, and stars whose central vertex is
of arbitrary degree. This notably includes the class of planar graphs.

There are nevertheless (infinite) classes of graphs for which an evaluation of
the complete weight enumerator of Q-tensions of G coincides with the value of
a Tutte–Grothendieck invariant and yet is not an evaluation of the Hamming
weight enumerator.

For example, if G = (V,E) is the line graph of a plane cubic graph then a
result ultimately due to Penrose [16] (but see [8] for a full account) is that

∑

c∈ZV
3

0#{(u,v)∈−→E :cu=cv}(−1)#{(u,v)∈−→E :cv−cu=−1} = (−1)|V |P (G; 3),

i.e., the complete weight enumerator of Z3-tensions of G with x0 = 0, x1 =
1, x−1 = −1 is an evaluation of the Tutte polynomial. However, since the class
of line graphs of plane cubic graphs is not closed under deletion or contraction,
one is prevented from calling this a Tutte–Grothendieck invariant.
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2.5 Polynomials akin to the graph polynomial

Suppose F (q)(G;x) ∈ C[xv : v ∈ V ]/(xq
v − 1 : v ∈ V ) is a graph polynomial of

the general form

F (q)(G;x) =
∏

(u,v)∈−→E

∑

(a,b)∈Z2
q

f(a, b)xa
ux

b
v

=
∑

c∈(Z2
q)

E

f⊗E(c)
∏

uv∈E

xcu,e
u xcv,e

v ,

where c = (ce : e ∈ E), ce = (cu,e, cv,e) and f⊗E(c) =
⊗

e∈E f(cu,e, cv,e).
The graph polynomial of Petersen et al. introduced in Section 2.2 is the case
f(1, 0) = 1, f(0, 1) = −1 and f(a, b) = 0 otherwise. (Henceforth the name
“Petersen’s graph polynomial” will be used when it needs to be distinguished.)

In this section we address the following questions:

(A) When is the partition function of the vertex colouring (states) model 3

∑

d∈ZV
q

F (q)(G; (ζdv : v ∈ V ) ) = q|V |[x0]F (q)(G;x)

a Tutte–Grothendieck invariant (an evaluation of the Tutte polynomial)?

(B) When is the squared `2-norm

‖F (q)(G;x)‖2
2 =

∑

a∈ZV
q

∣∣∣[xa]F (q)(G;x)
∣∣∣
2

a Tutte–Grothendieck invariant?

(C) What are the equivalents of Theorems 2.2.1 and 2.2.2 in this more general
case?

By Parseval’s formula,

‖F (q)(G;x)‖2
2 = q−|V | ∑

d∈ZV
q

|F (q)(ζdv : v ∈ V )|2.

3The vertex colouring model assigns weight F (q)(G; (ζdv : v ∈ V ) ) to a given vertex colouring d ∈ ZV
q . In

terms of graph homomorphisms, this vertex colouring model corresponds to considering d as a homomorphism
from G to a weighted directed graph H on vertex set Zq , with an edge (c, d) having weight

∑

a,b

f(a, b)ζac+bd = f̂(c, d).

The total weight of the homomorphism d : G → H is the product of all the weights on (du, dv) for edges (u, v)

of G, i.e., f̂⊗E(c) where c ∈ (Z2
q)

E is defined by (cu,e, cv,e) = (du, dv). The partition function in question (1) is

a sum over all homomorphisms [d, encoded by c ∈ (Z2
q)

E ] weighted in this way.
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where, writing c for the vector with entries (cu,e, cv,e) = (du, dv),

|F (q)(G; ζdv : v ∈ V )|2 = |f̂(c)|2.

Since |f̂ |2 = f̂ ? f , this implies that the `2-norm of F (q)(G;x) is also the constant

term of the polynomial F̃ (q)(G;x) in C[x]/(xq
v − 1 : v ∈ V ) defined by

F̃ (q)(G;x) =
∏

(u,v)∈−→E

f ? f(a, b)xa
ux

b
v.

For example, the `2-norm of the reduced graph polynomial

F (q)(G;x) =
∏

(u,v)∈−→E

(xu − xv) mod (xq
v − 1 : v ∈ V )

is the constant term of the polynomial

|F (q)(G;x)|2 =
∏

|xu − xv|2 =
∏

(xu − xv)(x
−1
u − x−1

v ),

=
∏

(2 − xux
−1
v − x−1

u xv) mod (xq
v − 1 : v ∈ V ).

(This uses the correspondence of the ideal (xq
v − 1 : v ∈ V ) with the algebraic

variety of points (ζdv : v ∈ V ), i.e., indeterminates xv are roots of unity, for
which complex conjugation is the same as taking the multiplicative inverse.)

Let M = {(a, a) : a ∈ Q} be the submodule of Q×Q comprising monochro-
matic pairs. The orthogonal submodule is M⊥ = {(a,−a) : a ∈ Q}. By
Theorem 2.3.4, [x0]F (q)(G;x) is a Tutte–Grothendieck invariant if and only if

there are constants y, w such that f̂ = yδM +wδQ×Q\M . By the above remarks,

‖F (q)(G;x)‖2
2 is a Tutte–Grothendieck invariant if and only if

f̂ ? f = yδM + wδQ×Q\M .

By Fourier inversion, this is the case if and only if f ? f = (y + (q − 1)w)δ0 +
(y − w)δM⊥\0.

Proposition 2.5.1. The constant term of F (q)(G;x) is a Tutte–Grothendieck
invariant if and only if

F (q)(G;x) =
∏

(u,v)∈−→E

[
y+(q−1)w+(y−w)(xq−1

u xv+· · ·+xux
q−1
v )

]
mod (xq

v−1 : v ∈ V ),

in which case

[x0]F (q)(G;x) = (qw)n(G)(y − w)r(G)T (G;
y − (q − 1)w

y − w
,
y

w
).
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For example, when y = 0, w = 1 and q = 3 this says that
∏

(u,v)∈−→E

(2 − xux
2
v − x2

uxv) mod (x3
v − 1 : v ∈ V )

has constant term 3n(G)(−1)r(G)T (G;−2, 0) = 3|E|−|V |P (G; 3).
That the constant term of the polynomial defined in Proposition 2.5.1 is a

Tutte polynomial evaluation can be seen by inspection since, for a, b ∈ Zq,

ζ(q−1)a+b + ζ(q−2)a+2b + · · · + ζa+(q−1)b =

{
−1 a 6= b

q − 1 a = b,

so that in this case

q|V |[x0]F (q)(G;x) =
∑

a∈ZV
q

F (q)(G; (ζav : v ∈ V ) )

=
∑

c∈ZV
q

(qy)#{(u,v)∈−→E :cu=cv}(qw)#{(u,v)∈−→E :cu 6=cv}.

Whereas Proposition 2.5.1 limits the number of graph polynomials which
have a coefficient equal to an evaluation of the Tutte polynomial to a sin-
gle family – giving a rather dull answer to question (A) above – the pos-
sible choices for f defining F (q)(G;x) so that the `2-norm ‖F (q)(G;x)‖2

2 is
a Tutte–Grothendieck invariant are unlimited – making the answer to ques-
tion (B) potentially equally as dull. The criterion |f̂ |2 = yδM + wδQ×Q\M
[or f ? f = (y + (q − 1)w)δ0 + (y − w)δM⊥\0] can be satisfied by taking

f̂ =
∑

a∈Q za,bδ(a,b) for any complex numbers za,b that satisfy |za,a|2 = y if

a = b and |za,b|2 = w otherwise.
Nonetheless, it seems worth describing a family of polynomials which con-

tains Petersen’s graph polynomial as a special case and in some sense naturally
generalizes it. In this family it is also possible to give a meaningful answer to
question (C) asking for equivalents to Theorems 2.2.1 and 2.2.2.

2.5.1 A family of polynomials containing the graph poly-

nomial

Suppose supp(f) ⊆ {(a, b) : a+ sb = t} for some constants s, t ∈ Zq. Then

F (q)(G; (ζdv : v ∈ V ) ) =
∏

(u,v)∈−→E

∑

(a,b)∈Z2
q

f(a, b)ζadu+bdv

=
∑

c∈(Z2
q)

E

f⊗E(c)
∏

uv∈E

ζcu,edu+cv,edv .

34



The equation f(a, b) = f(t − sb, b) =: g(b) defines g ∈ CZq and the sum over
c ∈ (Z2

q)
E can be rewritten as a sum over b ∈ ZE

q . In particular, s = 1 when

the polynomial
∑

a,b f(a, b)xa
ux

b
v is homogeneous.

Given that ae + sbe = t, we have aedu + bedv = (t− sbe)du + bedv = be(dv −
sdu) + tdu. For e = (u, v) ∈ −→

E , define S : ZV
q → ZE

q by

(Sd)e = dv − sdu

and T : ZV
q → ZE

q by
(Td)e = tdu.

For b ∈ ZE
q , the transpose S> is given by

(S>b)v =
∑

e=(u,v)∈−→E

be − s
∑

e=(v,u)∈−→E

be

and
(T>b)v = t

∑

e=(v,u)∈−→E

be.

An important example is when s = 1 (which is the case for Petersen’s graph
polynomial). Here the linear transformation S is the coboundary and S> the
boundary. The submodule ker(S>) comprises the Zq-flows of G and im(S) the
Zq-tensions of G.

We have

F (q)(G;x) =
∏

(u,v)∈−→E

∑

b∈Zq

g(b)xt−sb
u xb

v

=
∑

b∈ZE
q

∏

e=(u,v)∈−→E

g(be)x
t−sbe
u xbe

v

=
∑

b∈ZE
q

g⊗E(b)
∏

v∈V

xS>
b+T>

1

v ,

where 1 is the all-one vector in ZV
q . (T>1 is t times the outdegree score of

−→
E .)

The following theorem provides an answer to the question (A) posed in the
previous section, and more.

Theorem 2.5.2. If S>b = a − T>1 then

[xa]F (q)(G;x) = g⊗E(ker(S>) + b),

a complete coset weight enumerator of ker(S>).

In particular, the coefficient [xT>
1]F (q)(G;x) is an evaluation of the complete

weight enumerator of ker(S>) (and of im(S)).
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For example, in Petersen’s graph polynomial, where g = δ0 − δ1,

[xT>
1]
∏

(u,v)∈−→E

(xu−xv) mod (xq
v−1 : v ∈ V ) =

∑

(q,1)-flows b

0#{e∈E:be=−1}(−1)#{e∈E:be=1},

where a (q, 1)-flow is a Zq-flow taking values only in {0, 1,−1} (and here the
sum need only range over those taking values in {0, 1}).

When s = 1 (for which S is the coboundary, im(S) the set of Zq-tensions,
ker(S>) the set of Zq-flows) and

F (q)(G;x) =
∏

(u,v)∈−→E

∑

b∈Zq

g(b)xt−b
u xb

v,

the coefficient [xT>
1]F (q)(G;x) is an evaluation of the Tutte polynomial if and

only if g = xδ0 + δZq\0 (by Theorem 2.3.4). If g does not take this form then

the coefficient [xT>
1]F (x) is not a Hamming weight enumerator of Zq-flows but

some other specialization of the complete weight enumerator.

To find the `2-norm, observe that, for d ∈ ZV
q ,

F (q)(G; (ζdv : v ∈ V ) ) =
∑

b∈ZE
q

g⊗E(b)ζ(S>
b)·d+T>

1·d

=
∑

b∈ZE
q

g⊗E(b)ζb·Sd+1·Td

= ζ1·Tdĝ⊗E(−Sd),

and
|F (q)(G; (ζdv : v ∈ V ) )|2 = |ĝ⊗E(−Sd)|2 = |ĝ⊗E(Sd)|2.

By Parseval’s formula,

‖F (q)(G;x)‖2
2 = q−|V | ∑

d∈ZV
q

|ĝ⊗E(Sd)|2.

= q−|V || ker(S)|
∑

b∈im(S)

(|ĝ|2)⊗E(b).

By the Poisson summation formula, and using im(S)⊥ = ker(S>), | ker(S)| =
q|V |/|im(S)|, we deduce the following, which provides an answer to question (C).

Theorem 2.5.3. If

F (q)(G;x) =
∏

(u,v)∈−→E

∑

b∈Zq

g(b)xt−sb
u xb

v,
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then

‖F (q)(G;x)‖2
2 =

1

|im(S)|
∑

b∈im(S)

|ĝ⊗E|2(b)

=
∑

b∈ker(S>)

(g ? g)⊗E(b),

where as usual S : ZV
q → ZE

q is defined by (Sd)e = dv − sdu for e = (u, v) ∈ −→
E .

Example 2.5.4. Petersen’s graph polynomial modulo (xq
v − 1 : v ∈ V ) has

s = 1 = t, g = δ0 − δ1, g ? g = 2δ0 − δ1 − δ−1. The transformation S : ZV
q → ZE

q

is the coboundary operator, S> the boundary, ker(S>) the set of Zq-flows of G.
This gives Tarsi’s result, Theorem 2.2.2, that the `2-norm of Petersen’s graph
polynomial modulo (xq

v − 1 : v ∈ V ) is equal to

(−1)|E| ∑

b∈{−1,0,1}E∩ker(S>)

(−2)#{e∈E:be=0},

where the sum is over (q, 1)-flows of G.

Example 2.5.5. The polynomial

∏

uv∈E

(xu + xv)

is a generating function for score vectors of orientations of G, and as such its
number of non-zero coefficients turns out to be equal to T (G; 2, 1), the number
of forests of G. (See for example [6]). By Theorem 2.5.3 with g = δ0+δ1, g ?g =
2δ0 +δ1 +δ−1, and the expression of the Tutte polynomial as a Hamming weight
enumerator of flows, when this polynomial is reduced modulo (x3

v − 1 : v ∈ V )
it has `2-norm equal to T (G; 2, 4). Determining how many non-zero coefficients
the polynomial has (its `0-norm) when reduced modulo (xq

v − 1 : v ∈ V ) is
closely related to the notion of Zq-connectedness of a graph as defined in [14].

Theorem 2.3.4 applied to the result of Theorem 2.5.3 has the following
consequence, answering question (B).

Corollary 2.5.6. The `2-norm ‖F (q)(G;x)‖2
2 of the polynomial defined in The-

orem 2.5.3 is an evaluation of the Tutte polynomial T (G;x, y) with (x− 1)(y−
1) = q if and only if s = 1 and g ? g, equivalently |ĝ|2, is constant on Zq \ 0.

We finish with three examples of functions g satisfying the conditions of
Corollary 2.5.6, yielding families of polynomials that have `2-norm equal to a
Tutte–Grothendieck invariant.

A (q, k, `)-difference set in an Abelian group Q is a subset P of size k with
the property that #{a, b ∈ P : a− b = c} = ` for each c ∈ Q \ 0. For example,
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Q \ 0 is a (q, q − 1, q − 2)-difference set: all non-zero c have exactly q − 2 ways
of being written as a− b for a, b ∈ Q \ 0. (Given a ∈ Q \ {0, c} there is a unique
b ∈ Q \ {0, c} with a− b = c.)

Note that a function is constant on non-zero values if and only if the same is
true of its Fourier transform: if f = tδ0 + δQ\0 then f̂ = (t−1+q)δ0 +(t−1)δQ\0.
This fact, together with the equation δP ? δP =

∑
c∈Q #{a, b ∈ P : a− b = c}δc,

implies that the Fourier transform δ̂P ? δP = |δ̂P |2 is constant on Q \ 0 if and
only if P is a (q, k, `)-difference set in Q, i.e., δP ? δP = kδ0 + `δQ\0.

Example 2.5.7. If g = δP for some P ⊆ Zq, or more generally g = δP + rδZq\P
for any constant r, then |ĝ|2 is constant on Zq \ 0 if and only if P is a difference
set in Zq. When P = Zq \0 this is the family of polynomials described in Propo-
sition 2.5.1 whose constant terms were also Tutte–Grothendieck invariants.

A (q, k, `,m)-partial difference set in Q is a subset P of size k with the
property that δP ? δP = kδ0 + `δP\0 +mδQ\(P∪0). For example, a subgroup P of
size k is a (q, k, k, 0)-partial difference set.

Example 2.5.8. If P ⊆ Zq \ 0 and g = δP − δZq\(P∪0) then then |ĝ|2 is constant
on Zq \ 0 iff q is odd and P is a Paley difference set or partial difference set, i.e.
|P | = (q − 1)/2 and

δP ? δP =

{
q−1
2 δ0 + q−5

4 δP + q−1
4 δZq\(P∪0)

q−1
2
δ0 + q−3

4
δZq\0,

according as q ≡ ±1 (mod 4). (For odd prime q, the set of non-zero squares in
Zq is an example of such a P .)

Example 2.5.9. When q is prime and g =
∑

a∈Zq
ψ(a)δa for a multiplicative

character ψ of Z×
q , then |ĝ|2 = qδZq\0, i.e., the polynomial

F (q)(G;x) =
∏

(u,v)∈−→E

∑

b∈Zq

ψ(b)xt−b
u xb

v

has `2-norm q|E|−|V |P (G; q). (The case q = 3 is Petersen’s graph polynomial
reduced modulo (x3

v − 1 : v ∈ V ).)
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Chapter 3

Anna de Mier: Patterns
(mostly crossings and
nestings) in ordered graphs

Several results on the distribution of crossings, nestings, and related patterns
in set partitions have been recently extended to ordered graphs. We survey
these generalizations and explore further relationships between graphs and set
partitions.

Acknowledgments. Supported by the “Ramón y Cajal” programme of the
Spanish Ministry of Science and Technology.

3.1 Introduction and main definitions

An ordered graph is a graph whose set of vertices is [n]; unless otherwise stated,
isolated vertices and multiple edges are allowed. Let mG(i, j) be the number
of edges that join the vertices i and j in the graph G. Given two ordered
graphs G = ([n], EG) and H = ([k], EH), we say that G contains H if there
is an increasing function φ = [k] → [n] such that mH(i, j) ≤ mG(φ(i), φ(j))
for all i, j ∈ [k]. If we ask that equality holds, we say that G contains H as
an induced subgraph. The graph H is referred to as a pattern. If G is a set of
graphs, we denote by EX (H;G) the set of graphs of G that do not contain H;
its cardinality is denoted by ex(H;G). If two graphs H and H ′ are such that
ex(H;G) = ex(H ′;G), we will sometimes say that they are equally restrictive.

The patterns we are mainly interested in here are crossings and nestings.
A crossing (respectively, a nesting) is the graph X2 (resp., N2) on 4 vertices
and having as edges {1, 3} and {2, 4} (resp., {1, 4} and {2, 3}). For a graph G,
let cr(G) and ne(G) be the number of crossings and nestings of G, respectively
(counted taking edge multiplicities into account). A graph is noncrossing (resp.,
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nonnesting) if cr(G) = 0 (resp., ne(G) = 0).
The left-right degree sequence of an ordered graph on [n] is the sequence(

(dl
i, d

r
i )
)
1≤i≤n

, where dl
i (resp., dr

i ) is the left (resp., right) degree of vertex i,

that is, the number of edges that join i to a vertex j with j < i (resp., j > i).
If a graph G has D as its left-right degree sequence, we say that G is a graph
on D. We denote by G(D) the set of all graphs on D.

A P -graph is a graph where dr
i ≤ 1 and dl

i ≤ 1 for all i. The “P” stands
for “partition”, since many results on crossings and nestings in set partitions
are cast in terms of P -graphs through a construction that we will review in
Section 3.3. It is well known that the number of noncrossing P -graphs on n
vertices equals the number of nonnesting P -graphs (see for instance items (pp)
and (uu) in [18, Exercise 6.19]). Actually, it is not hard to prove that the same
holds for any degree sequence D.

It turns out that the equality of the numbers of noncrossing and nonnesting
P -graphs is just a special case of the fact that the joint distribution of the
numbers of crossings and nestings is symmetric, as stated in the next theorem.
A bijective proof of this result in terms of partitions appears in [7].

Theorem 3.1.1. For every degree sequence D ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}∗ the
polynomial ∑

G∈G(D)

xcr(G)yne(G)

is symmetric.

In Section 3.2 we explore if the previous theorem can be extended to arbi-
trary degree sequences; more concretely, we show that the theorem does not
hold in general, but that it does for a class of degree sequences that include
those of P -graphs. In Section 3.3 we consider several possible definitions of pat-
tern containment for set partitions and discuss their relationships. In the last
section we review results that have been extended from P -graphs to arbitrary
graphs through the use of fillings of Ferrers diagrams.

3.2 The numbers of crossings and nestings

The equality between the numbers of noncrossing and nonnesting P -graphs with
a given degree sequence holds also if we consider an arbitrary degree sequence
(see Section 3.4). For simple graphs on n vertices, it is known that among them
there are as many noncrossing as nonnesting (see [10]), but this is no longer
true if we also want to fix the degree sequence (see [14]).

As for the joint distribution, the statistic (cr, ne) is not symmetrically dis-
tributed over the set of graphs G(D) for an arbitrary degree sequence D.
Some examples are the sequences (0, 2), (0, 1), (1, 0), (2, 0) and (0, 1), (0, 2),
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(1, 0), (0, 1), (2, 0), (1, 0). The symmetry does not hold either over the set of
all graphs with a given number of vertices and edges, as can be checked com-
putationally for 5 vertices and 5 edges, for instance.

In this section we present a superclass of P -graphs over which the numbers
of crossings and nestings have a symmetric joint distribution. We start with a
simple observation that will also be used implicitly in Section 3.4.

Let G be a graph on n vertices and let eG(i, j) denote the number of edges
that join vertices i and j. Let k be a vertex of G with dl

k 6= 0, dr
k 6= 0 and define

G′ as the graph on [n+ 1] vertices where for i < j

eG′(i, j) =





eG(i, j) if i < j ≤ k;
eG(i− 1, j − 1) if k < i < j;
eG(i, j − 1) if i < k < j − 1;
0 otherwise.

Graphically, this corresponds to splitting the vertex k into two consecutive
vertices, the first of them joined to the left neighbours of k and the second one
joined to the right neighbours. It is clear that G and G′ have the same numbers
of crossings and nestings, and in fact the same number of occurrences of any
pattern of a more general form, as stated next. We say that a graph is split if no
vertex has simultaneously non-zero left and right degree and if all vertices with
non-zero right degree are smaller than all vertices with non-zero left degree.

Lemma 3.2.1. Let H be a split graph. Then for every pair of graphs G,G′ as
defined above, the numbers of occurrences of H in G and in G′ are equal.

We now show that the distribution of the numbers of crossings and nestings
is symmetric over G(D) if D is a degree sequence where left degrees are at most
one. Graphs with this kind of degree sequence will be called S-graphs (note
that S-graphs are a superset of P -graphs).

Theorem 3.2.1. Let D be a degree sequence with left degrees equal to zero or
one. Then the polynomial ∑

G∈G(D)

xcr(G)yne(G)

is symmetric.

Sketch of the proof. By symmetry we prove the statement for graphs with
right degrees at most one. By Lemma 3.2.1 it is enough to consider degree
sequences D whose elements are in {(d, 0) : d > 0} ∪ {(0, 1)} (isolated vertices
are easy to handle).

We define an involution on the set of graphs on D that interchanges the
numbers of crossings and nestings. We refer to a vertex with right degree
one as an “opener” and to a vertex with non-zero left degree as a “closer”.
First we associate to each graph a sequence of subsets from which we can
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compute the numbers of crossings and nestings. We sweep the graph from
left to right and every time we encounter a closer i, we compute how many
unclosed openers are there to its left; that is opG(i) =

∑
j<i d

r
j − dl

j. Of the

opG(i) openers available, there will be dl
i that are joined to vertex i. Associate

to i the subset χG(i) of [opG(i)] of size dl
i corresponding to the positions of the

vertices that are adjacent to i among the opG(i) openers available (the positions
are counted from left to right). It is easy to determine the numbers of crossings
and nestings of G from the knowledge of the sets χG(i). Then one can show
that to find a graph ϕ(G) where these numbers are interchanged it suffices to
take χϕ(G)(i) = {opG(i) − s+ 1 : s ∈ χG(i)}. 2

The papers [11, 15] contain stronger results about the symmetry of the
distribution of crossings and nestings in P -graphs. In [7] there is an expression
as a continued fraction for the generating function of the numbers of crossings
and nestings in P -graphs. We do not know of any results similar to these for
the class of S-graphs.

3.3 Pattern avoidance in set partitions

In this section we use the S-graphs that appeared in the previous section to
define a new notion of pattern containment for set partitions. We state without
proofs (which are generally easy) some properties of this type of containment
and its relationship with previously existing ones.

Let π = B1|B2| . . . |Bm be a partition of [n] with blocks listed in increasing
order of their smallest elements. For i ∈ [n], denote by Bπ(i) the block of π
containing i. Let σ be a partition of [m]. Our first definition of containment
of partitions is perhaps the most natural one. We say that π contains σ if
there exists an increasing function ϕ : [m] → [n] such that Bσ(i) = Bσ(j) if
and only if Bπ(ϕ(i)) = Bπ(ϕ(j)). This notion has been studied for instance
in [8, 9, 17]. Another definition recently proposed by Sagan [17] asks that
the relative order of the blocks is preserved. The partition π R-contains σ
if there is an increasing function ψ : [m] → [n] such that Bσ(i) = Bσ(j) if
and only if Bπ(ψ(i)) = Bπ(ψ(j)) and min(Bσ(i)) < min(Bσ(j)) if and only
if min(Bπ(ψ(i))) < min(Bπ(ψ(j))). This type of containment is also studied
in [4, 6].

The other two definitions are in terms of P -graphs and S-graphs. Given a
partition π of [n], let the graph P (π) be the graph on [n] where the subgraph
induced by the elements of each block of π is a monotone path (see Figure 3.1).
We say that π P-contains σ if P (π) contains P (σ) as an induced subgraph.
Similarly, construct the graph S(π) on [n] by taking each block i1 < i2 < · · · < ik
of π and adding the edges {i1, i2}, {i1, i3}, . . . , {i1, ik} (see Figure 3.1). Then
we say that π S-contains σ if S(π) contains S(σ) as an induced subgraph. In
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both definitions we require that the containment is induced to make sure that
elements in different blocks are not mapped to the same block. The notion of P -
contaiment is the one that has been used usually to define crossings and nestings
in partitions. It is easy to show that being noncrossing is equivalent for all four
kinds of containment, but being nonnesting is not (probably this is one of the
reasons that the concept of nonnesting partition is less popular). A partition
?-contains a crossing (respectively, nesting) if it ?-contains the partition 13|24
(resp., 14|23), where ? stands for any of {P,R, S} or for nothing.

�� �� �� �� �	 
� � �� ���� �� �� �� �� �� ��  ! "#

Figure 3.1: The graphs P (π) and S(π) for π = 147|259|3|68.

Proposition 3.3.1. (i) The partition π contains a crossing if and only if it
?-contains a crossing, for any ? ∈ {P,R, S}.

(ii) The numbers of P -nonnesting, R-nonnesting and S-nonnesting partitions
of [n] are all equal to Cn, the n-th Catalan number. The numbers of
P -nonnesting and nonnesting partitions are different.

Observe that part (ii) above does not state that the sets of P -nonnesting
and S-nonnesting partitions are the same, as happens with crossings. Indeed,
the partition 134|25 is S-nonnesting but it does P -contain a nesting. It is
not the case either that the number of partitions containing k crossings is the
same as those P -containing k crossings. By Theorem 3.2.1 we know that for
P -containment and S-containment the distribution of the numbers of crossings
and nestings is symmetric, but the exact values are different; for instance, there
are two partitions of [5] that S-contain two nestings and no crossing but only
one that P -contains two nestings and no crossing. Also, the knowledge of the
degree sequence in the case of P -containment translates to knowing which are
the smallest and largest elements of the blocks, and in the case of S-containment
to knowing for each block the smallest element and the size of the block.

The relationships between the four kinds of containment are as follows.

Proposition 3.3.2. Let π and σ be partitions. Then:

(i) if π P -contains σ, then π contains σ;

(ii) if π S-contains σ, then π R-contains σ;

(iii) if π R-contains σ, then π contains σ.

All these implications are strict and no other implication holds for all π, σ.
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The equivalence between R-containment and S-containment for crossings
and nestings in Propositon 3.3.1 is a particular instance of the following result.

Proposition 3.3.3. Let σ be a partition with k blocks such that the first element
of the i-th block is i, and let π be any partition. Then π R-contains σ if and
only if π S-contains σ.

Therefore, for many patterns R-containment can be expressed as contain-
ment in S-graphs.

3.4 Generalizing from P -graphs

We survey in this section other instances of extensions of a result about P -
graphs to arbitrary graphs. Again, the patterns that have received most at-
tention are related to crossings and nestings. Consider the graphs Xk and Nk

consisting of k pairs of mutually crossing and nested edges, respectively; they
are usually called k-crossings and k-nestings. The following theorem of Chen
et al. [3] has inspired much subsequent research; it was proved in the context
of set partitions but we state it in terms of P -graphs.

Theorem 3.4.1. For every degree sequence D ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}∗ and
for every k, l ≥ 2, ex({Xk, Nl},G(D)) = ex({Xl, Nk},G(D)).

This result cannot be generalized to arbitrary degree sequences (in [13] there
is a counterexample for the case k = 2 and l = 3). It is conjectured also
in [13] that the symmetry holds for S-graphs with n vertices fixing the subset
of vertices that have left degree one (but not fixing right degrees). It seems
that this conjecture has been recently proved [2].

Nevertheless, a weak version of Theorem 3.4.1 holds for all degree sequences.
This result has been obtained by establishing a correspondence between graphs
and fillings of Ferrers diagrams of integer partitions. We refer to [14, Section 3]
for a detailed account of the following discussion. A filling of a Ferrers diagram
consists of assigning a non-negative integer to each cell of the Ferrers diagram.
In particular, matrices can be seen as fillings of rectangular diagrams, and one
can define in a natural way what it means for a filling to contain a given matrix.
Roughly speaking, a filling contains an r× s matrix of zeros and ones if there is
a selection of r rows and s columns of the diagram such that for entries equal
to one in the matrix the corresponding cells in the diagram are non-zero. There
is a bijective correspondence that assigns a filling F (G) of a Ferrers diagram
to each graph G without vertices with both left and right degrees positive.
Under this bijection left degrees (resp., right degrees) are mapped to row (resp.,
column) sums of the filling; also, the sequence of opening and closing vertices
can be recovered from the shape of the diagram. The case where the diagram is
rectangular corresponds to graphs where all opening vertices appear before all
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closing ones, that is, to split graphs. The following theorem says that avoiding
split graphs in ordered graphs and avoiding matrices in fillings of diagrams is
essentially the same problem.

Theorem 3.4.2. Let H and H ′ be two split graphs. Then ex(H;G(D)) =
ex(H ′;G(D)) for all degree sequences D if and only if for each diagram with
prescribed row and column sums there are as many fillings avoiding F (H) as
avoiding F (H ′).

We have that F (Nk) = Ik and F (Xk) = Jk, where Ik and Jk are the identity
and the antiidentity matrices, respectively. In [1] it is shown that Ik and Jk

are equally restrictive for fillings whose row and column sums are equal to one.
This gives a proof of Theorem 3.4.1 when we sum for all values of l. The
papers [12, 14] contain two different proofs that the matrices Ik and Jk are as
hard to avoid in fillings of diagrams with arbitrary but fixed row and column
sums; this immediately gives the following theorem, which in the light of the
previous remarks is the best possible extension of Theorem 3.4.1.

Theorem 3.4.3. For any k and any D, ex(Xk;G(D)) = ex(Nk;G(D)).

This result actually gives infinitely many pairs of graphs that are equally
restrictive, in the following way. Let H be a split graph on [h] and let k be
a positive integer. The graph Xk(H) is the graph on [2k + h] such that the
graph induced by the vertices {k + 1, . . . , k + h} is H and the graph induced
by [k]∪ {k+ h+ 1, . . . , 2k+ h} is Xk; the graph Nk(H) is defined analogously.
We have the following corollary (see [14] for details).

Corollary 3.4.4. For any split graph H, any positive integer k, and any degree
sequence D, we have that ex(Xk(H),G(D)) = ex(Nk(H),G(D)).

In particular, all the graphs Xt(Nk) are as restrictive as the graph Nt+k, and
hence as Xt+k. However, the graph N1(X2) is not as restrictive as the graph
N3 (see [5]). It would be interesting to classify the graphs Nk(Xt) from less to
more restrictive. To our knowledge, there are no other pairs of graphs that are
known to be equally restrictive for all degree sequences.

The above results restricted to S-graphs can be translated as results about
S-containment (and thereby R-containment) of large crossings and nestings
in set partitions. The paper [6] also uses fillings of Ferrers diagrams (but in
a different way) to prove some more general results about R-containment of
patterns related to crossings and nestings.

It is not always the case that if two patterns are equirestrictive with respect
to P -containment they are also for S-containment. An example are the parti-
tions 15|24|36 and 14|26|35 (see [5] and the numbers in the appendix of [6]).

Finally, let us discuss what happens if we restrict to simple graphs. In this
case, we can only fix left degrees (or right degrees, by symmetry) to have that k-
crossings and k-nestings are equally restrictive. The following is a consequence
of Theorem 5.2 of Rubey [16] on fillings of moon polyominoes.
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Theorem 3.4.5. Let L be a sequence and let Gs
L be the set of simple graphs

whose left degrees are given by L. Then for all k ≥ 2, ex(Xk;Gs
L) = ex(Nk;Gs

L).
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Chapter 4

Abstracts of lectures

4.1 Hong Van Le: Lower bounds for determi-
nantal complexity

Abstract. Let P be a polynomial over a vector space F n, where F is a field.
According to a theorem of Valiant if the formula size of P equals m, then there
exists an affine map A : F n → Mat(F, 2m + 2) such that P = A∗(det2m+2),
where det2m+2 is the determinantal polynomial on Mat(F, 2m+ 2). We define
the determinantal complexity cd(P ) to be the smallest numberm such that there
exists an affine map A : F n →Mat(F,m) with the property P = A∗(detm). In
my talk I discuss several ways to obtain a lower bound for the determinantal
complexity of a polynomial P on the vector space over a field F of characteristic
0. In particular I explain the Mignon-Ressayer lower bound cd(Permn) ≥ n2/2,
here Permm denotes the permanent polynomial on Mat(F,m). I also suggest a
geometric way to reformulate the lower bound problem for cd(P ) by associating
P with an point P φ ∈ Sm(Mat(F,m)) and then to verify if this point P φ

lies in an algebraic variety in Sm(Mat(F,m)). Here Sm(Mat(F,m)) denotes
the space of all homogeneous polynomials of degree m on Mat(F,m). This
geometric way is a version of the Mumuley-Sohoni approach to find a lower
bound for the determinantal complexity.

4.2 Martin Klazar: Meanders

Abstract. Meanders are combinatorial structures which can be defined geo-
metrically by closed plane curves intersecting in 2n points a fixed line or more
combinatorially by noncrossing matchings. I will survey some results on enu-
meration of meanders. In particular, I will sketch proofs for lower and upper
bounds on the exponentially growing numbers of meanders.
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4.3 Mihyun Kang, Martin Loebl: The enumer-
ation of planar graphs via Wick’s theorem

Abstract. A seminal technique of theoretical physics called Wick’s theorem
interprets the Gaussian matrix integral of the products of the trace of pow-
ers of Hermitian matrices as the number of labelled maps with a given degree
sequence, sorted by their Euler characteristics. This leads to the map enu-
meration results analogous to those obtained by combinatorial methods. We
survey this classical theorems and present our new results: we show that the
enumeration of the graphs embeddable on a given 2-dimensional surface (a main
research topic of contemporary enumerative combinatorics) can also be formu-
lated as the Gaussian matrix integral of an ice-type partition function. Some of
the most puzzling conjectures of discrete mathematics are related to the notion
of the cycle double cover. We express the number of the graphs with a fixed
directed cycle double cover as the Gaussian matrix integral of an Ihara-Selberg-
type function. (Preprint is available on our webpages.)
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Chapter 5

Problems (and solutions)

5.1 Mihyun Kang: unlabelled planar graphs

Let pn be the number of unlabelled planar graphs on n vertices. One can pose
quite a few problems concerning these numbers.
1. What is the asymptotics of pn as n → ∞? If p(z) =

∑
n≥0 pnz

n, what is the
radius of convergence of p(z)?
2. Is there a polynomial algorithm for computing numbers pn?
3. Is there a polynomial algorithm to sample random unlabelled planar graph?

5.2 Martin Klazar: asymptotics of meanders

Recall that a meander of size n is a pair (M,N) of two noncrossing matchings
on the vertex set [2n] = {1, 2, . . . , 2n} such that M ∪N is a connected 2-regular
graph on [2n] (i.e., a cycle of length 2n). Let mn be the numbers of meanders

with size n. What is the limit limn→∞m
1/n
n ? What is the asymptotics on mn as

n → ∞? Is there a polynomial (i.e., polynomial in n) algorithm for calculating
the function n 7→ mn?

It is not hard to show that the limit µ = limn→∞m
1/n
n exists and is finite.

The best current bounds are 11.380 < µ < 12.901 by Albert and Paterson (J.
Combin. Theory, Ser. A 112 (2005), 250–262).

5.3 Martin Loebl: A polynomial matrix re-
lated to partitions of n

For a partition λ = (λ1 ≥ λ2 ≥ . . . λk ≥ 1) of a number n ∈ N = {1, 2, . . .}
(so λi ∈ N and λ1 + λ2 + · · · + λk = n) and a number l ∈ N, we define the
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polynomial

vλ,l(q) :=

k∏

i=1

(1 + qλi + q2λi + · · · + qlλi) =

k∏

i=1

q(l+1)λi − 1

qλi − 1

with degree ln. Let

V = V (n) :=
(
vλ,l(q)

)
∈ Z[q]P (n)×N

be the p(n)×∞ matrix of these polynomials, where λ ranges over the set P (n)
of p(n) partitions of n and l ranges over N. Are the p(n) rows of V linearly
independent over the field Q?

I am really impressed by a beautiful negative solution of Martin Klazar to this
problem, presented in the next section. I was sure the conjecture was true!!
The conjecture is included in my paper on the q-chromatic function, Advances
in Mathematics 2007.

Let me include here my motivation for posting the problem, and write down
a weaker conjecture which would still serve my purpose; as far as I know,
the method of Martin of the next section is in principle not applicable for its
rejection.

Let G = (V,E) be a graph and n a positive integer. Let V = {1, . . . , n}
and for k ∈ N = {1, 2, . . .} let V (G, k) denote the set of all vertex colourings
s : V → {0, . . . , k − 1} such that s(u) 6= s(v) whenever uv ∈ E. We define the
q-chromatic function as follows.

Mq(G, k) =
∑

s∈V (G,k)

q
∑

v∈V s(v).

Note that Mq(G, k)|q=1 is the classical chromatic polynomial of G. We recall
some notation:

For k ∈ N, let (k)q = qk−1 + · · · + q + 1 denote a quantum integer, with the
convention that (0)q = 0, and let (k)!q =

∏
1≤n≤k(n)q, with the convention that

(0)!q = 1. For 0 ≤ n ≤ k the quantum binomial coefficients are defined by
(
k

n

)

q

=
(k)!q

(n)!q(k − n)!q
.

Example: a simple quantum binomial formula

(a− z)(a− qz) . . . (a− qk−1z) =

k∑

i=0

(−1)i

(
k

i

)

q

qi(i−1)/2ak−izi

leads to a well-known formula for the summation of the products of distinct
powers. This gives the q-chromatic function for the complete graph.
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Observation 5.3.1. For k ∈ N, the q-chromatic function of the complete graph
on n ≤ k vertices is given by

Mq(Kn, k) = n!

(
k

n

)

q

qn(n−1)/2

and Mq(Kn, k) = 0 for n > k.

The next theorem provides a natural way to extend the q-chromatic function
from positive integers to real numbers, by extending quantum integers (k)q to

quantum numbers (y)q = qy−1
q−1 for real variables y and q 6= 1 (and (y)1 = y by

continuity, limq→1(y)q = y.)
A graph G = (V,E) is connected if it has a path between any pair of vertices.

If a graph is not connected then its maximum connected subgraphs are called
connected components. If G = (V,E) is a graph and A ⊂ E then let C(A)
denote the set of the connected components of graph (V,A) and c(A) = |C(A)|.
If W ∈ C(A) then let |W | denote the number of vertices of W .

Theorem 5.3.2. For k ∈ N,

Mq(G, k) =
∑

A⊂E

(−1)|A| ∏

W∈C(A)

(k)q|W |.

Proof. We use the principle of inclusion and exclusion (PIE): If {Ie : e ∈ E}
are finite sets indexed by a finite set E and ∩e∈AIe =: IA then

| ∪e∈E Ie| =
∑

1≤a≤|E|
(−1)a−1

∑

A⊂E,|A|=a

|IA|.

The next considerations connect the PIE with the geometric series formula.

Mq(G, k) =
∑

s:V →{0,...,k−1}
q
∑

v∈V s(v) −
∑

s∈∪e∈EIe

q
∑

v∈V s(v),

where Ie, e = uv ∈ E, denotes the set of functions s : V → {0, . . . , k − 1} for
which s(u) = s(v).

By PIE this equals ∑

A⊂E

(−1)|A|∑

s∈IA

q
∑

v s(v) =

∑

A⊂E

(−1)|A|
∏

W∈C(A)

∑

0≤i≤k−1

qi|W | =
∑

A⊂E

(−1)|A|
∏

W∈C(A)

(k)q|W |.
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The following function called dichromate is extensively studied in combina-
torics. It is equivalent to the Tutte polynomial.

B(G, x, y) =
∑

A⊂E

x|A|yc(A).

The formula of Theorem 5.3.2 leads naturally to a definition of q-dichromate.

Definition 5.3.3. For variables x, y with y ∈ R,

Bq(G, x, y) =
∑

A⊂E

x|A| ∏

W∈C(A)

(y)q|W |.

Note that Bq=1(G, x, y) = B(G, x, y) and Mq(G, k) = Bq(G,−1, k) by The-
orem 5.3.2.

Let x1, x2, . . . be commuting indeterminates and let G = (V,E) be a graph.
The q-chromatic function Mq(G, y) restricted to non-negative integer y is the
principal specialization of XG, the symmetric function generalisation of the
chromatic polynomial defined by Stanley:

Definition 5.3.4.

XG(x0, x1, . . . ) =
∑

s∈∪k∈N0V (G,k)

∏

v∈V

xs(v),

the sum over all proper colourings of G by {0, 1, . . .}.
Therefore Mq(G, k) = XG(xi = qi(0 ≤ i ≤ k − 1), xi = 0(i ≥ k)).
Stanley further defined symmetric function generalisation of the bad colour-

ing polynomial:

Definition 5.3.5.

XBG(t, x0, x1, . . . ) =
∑

s:V →{0,1,...}
(1 + t)b(s)

∏

v∈V

xs(v),

where the sum ranges over ALL colourings of G by {0, 1, . . .} and b(s) := |{uv ∈
E : s(u) = s(v)}| denotes the number of monochromatic edges of f .

Noble and Welsh defined the U-polynomial and showed that it is equivalent
to XBG. I. Sarmiento proved that the polychromate defined by Brylawski is
also equivalent to the U-polynomial.

Definition 5.3.6.

UG(z, x1, x2 . . . ) =
∑

A⊂E(G)

x(τA)(z − 1)|A|−|V |+c(A),

where τA = (n1 ≥ n2 ≥ · · · ≥ nl) is the partition of |V | determined by the
connected components of A, x(τA) = xn1

. . . xnl
.
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The following observation is straightforward.

Observation 5.3.7. For k ∈ N,

Bq(G, z − 1, y) = (z − 1)|V |UG(z, x1, x2, . . . )|xi=(z−1)(y)qi
.

On the other hand, it seems plausible that the q-dichromate determines the
U-polynomial. If true, then the q-dichromate would provide a compact repre-
sentation of the multivariate generalisations of the Tutte polynomial mentioned
above.

It is not difficult to observe that the conjecture I posted in the workshop
would imply that the q-dichromate determines the U-polynomial. In fact, the
following weaker conjecture still implies the same statement.

Let τ = (n1 ≥ n2 ≥ . . . nk) be a partition of n. We let w(τ) be the following
function of two variables q, y:

w(τ, q, y) =
k∏

i=1

(y)qni .

Conjecture 5.3.8. Only trivial rational linear combination of w(τ, q, y)’s is
identically zero.

5.4 Martin Klazar: negative solution of the
problem of Martin Loebl for large n

I will prove two results. 1. For n ≥ 34 the answer is negative, the rows of V (n)
are linearly dependent over Q. 2. On the other hand, for n ≤ 6 the rows are
linearly independent.

1. Linear dependence for n ≥ 34. We consider the generating function

Rλ(q, x) :=
∑

l≥0

vλ,l(q)x
l ∈ Z[q][[x]]
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with the entries of the λ-th row as coefficients of xl. We have

Rλ(q, x) =
∑

l≥0

xl
k∏

i=1

1 − qλi(l+1)

1 − qλi
=

k∏

i=1

1

1 − qλi

∑

l≥0

xl
k∏

j=1

(1 − qλj(l+1))

=
k∏

i=1

1

1 − qλi

∑

l≥0

xl
∑

I⊂[k]

(−1)|I |q(l+1)
∑

j∈I λj

=
k∏

i=1

1

1 − qλi

∑

I⊂[k]

(−1)|I |q
∑

j∈I λj

∑

l≥0

(
xq
∑

j∈I λj

)l

=

k∏

i=1

1

1 − qλi

∑

I⊂[k]

(−1)|I |
q
∑

j∈I λj

1 − xq
∑

j∈I λj
.

For further reference we denote

rλ(q) :=

k∏

i=1

1

1 − qλi
.

The roots of the denominator of rλ(q) are the primitive m-th roots of unity
α = exp(2rπi/m), 0 ≤ r < m, (r,m) = 1, m ≤ n, and have multiplicity

s =
∑

i, m|λi

1 ≤
⌊ n
m

⌋
.

Decompositions into partial fractions show that every rλ(q) is a C-linear com-
bination of the rational functions from the set

S := {(1 − αq)−s | α = exp(2rπi/m), 0 ≤ r < m, (r,m) = 1,

1 ≤ s ≤ n/m, 1 ≤ m ≤ n}

(constant term does not occur in any decomposition, so s = 0 may be omitted).
The cardinality of this set is

|S| =
n∑

m=1

ϕ(m)
⌊ n
m

⌋
=

n∑

m=1

ϕ(m)
∑

e, em≤n

1 =
n∑

j=1

∑

m|j
ϕ(m) =

n∑

j=1

j =
(n+ 1)n

2

(we used the identity
∑

m|j ϕ(m) = j). So every Rλ(q, x) is a C-linear combi-

nation of the rational functions from the (n+ 1)2n/2-element set

T := {(1 − αq)−sqt(1 − xqt)−1 | α, s are as in S and 0 ≤ t ≤ n}.

58



If p(n) > (n + 1)2n/2, the number of these linear combinations exceeds the
dimension and there exist numbers αλ ∈ C, λ ∈ P (n), which are not all zero
and such that ∑

λ∈P (n)

αλ ·Rλ(q, x) ≡ 0.

This means that
∑

λ∈P (n)

αλ · vλ,l(q) ≡ 0 for every l ∈ N.

Because vλ,l(q) have integral coefficients, we can in fact take αλ in Q and so in
Z.

As p(n) > (n+ 1)2n/2 for n ≥ 40, for these n the rows of V (n) are linearly
dependent over Q. We can do a little better by noting that only half of the
partial fractions are needed to express the rational functions rλ(q). Since rλ(q)
have real coefficients, the partial fractions (1 − αq)−s and (1 − αq)−s have the
same coefficient in the linear combination expressing rλ(q). We can replace the
set S by the real generating set

S ′ := {(1 − αq)−s + (1 − αq)−s | α, s are as in S}.

Its cardinality is

|S ′| = n+
⌊n

2

⌋
+

1

2

n∑

m=3

ϕ(m)
⌊ n
m

⌋
=
n+ bn/2c + |S|

2
=
n2 + 3n+ 2bn/2c

4

because for m = 1, 2 the m-th primitive roots of unity are real but for m >
2 they come in complex conjugate pairs. Accordingly we get a smaller real
generating set T ′ for Rλ(q, x)’s, with size

|T ′| =
(n+ 1)(n2 + 3n+ 2bn/2c)

4
.

If p(n) > |T ′|, which happens for n ≥ 34, then the rows of V (n) are linearly
dependent over Q.

2. Linear independence for n ≤ 6. For m ≥ 0, the coefficient [qm]vλ,l(q) of
qm in vλ,l(q) is the number of partitions ofm into distinguishable parts λ1, . . . , λk

such that each part λi is used at most l times. If m ≤ l, the restriction on the
multiplicity of parts may be dropped with no effect and the coefficient equals
to the number of all unrestricted partitions of m into distinguishable parts
λ1, . . . , λk. Therefore

[qm]vλ,l(q) = [qm]
1

(1 − qλ1)(1 − qλ2) . . . (1 − qλk)
= [qm]rλ(q) for 0 ≤ m ≤ l.
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It follows that if the rational functions {rλ(q) | λ ∈ P (n)} are linearly indepen-
dent over Q, then so are the rows of V (n). Considering poles, it is not hard to
show that it is so for n ≤ 6. We present the case n = 6, for n ≤ 5 the arguments
are similar and easier.

The partitions of n = 6 are λ = 6, 51, 42, 412, 32, 321, 313, 23, 2212, 214, 16;
p(6) = 11. The corresponding rational functions are

r6(q) = (1 − q6)−1

r51(q) = (1 − q5)−1(1 − q)−1

r42(q) = (1 − q4)−1(1 − q2)−1

r412(q) = (1 − q4)−1(1 − q)−2

r32(q) = (1 − q3)−2

r321(q) = (1 − q3)−1(1 − q2)−1(1 − q)−1

r313(q) = (1 − q3)−1(1 − q)−3

r23(q) = (1 − q2)−3

r2212(q) = (1 − q2)−2(1 − q)−2

r214(q) = (1 − q2)−1(1 − q)−4

r16(q) = (1 − q)−6.

Suppose now that ∑

λ∈P (6)

αλ · rλ(q) ≡ 0

for some αλ ∈ C. We see that quite a few αλ are zero because rλ(q) has a
pole α with multiplicity s and α has pole multiplicity < s in every other rκ(q),
κ 6= λ, with yet undetermined coefficient ακ. We record this by writing “unique
pole ms” if α is a primitive m-th root of unity. Thus α6 = 0 (unique pole
61), α51 = 0 (unique pole 51), α16 = 0 (unique pole 16), α214 = 0 (unique
pole 15), α23 = 0 (unique pole 23), and α32 = 0 (unique pole 32). We are
left with five partitions 42, 412, 321, 313, 2212 and there is no longer unique pole
with maximum multiplicity. To break the impasse we calculate α42 and α412 by
sending q to the two primitive 4-th roots of unity. We have

r42(q) = (1 − q4)−1(1 − q2)−1 ∼ 1/2

1 − q4
if q → ±i

but

r412(q) = (1 − q4)−1(1 − q)−2 ∼ ±i/2
1 − q4

if q → ±i.

Thus
α42 + iα412 = α42 − iα412 = 0

60



and α42 = α412 = 0. Now α2212 = 0 (unique pole 22), α313 = 0 (unique pole
14) and α321 = 0 is forced. Thus all αλ, λ ∈ P (6), are zero. We conclude
that the eleven rows of V (6) are linearly independent over Q. We have proven
stronger result: they remain linearly independent even if the vλ,l(q) in V (6) are
truncated to the powers of q with exponents ≤ l.

5.5 Anna de Mier: Ping-pong ball problem

Suppose we are given three bins A, B, and C and infinitely many (ping-pong)
balls numbered 1, 2, 3, . . . In the first turn we put the balls 1, 2, 3 in bin A, then
we move two of them to bin B and finally one of them to bin C. In subsequent
turns, we put the next three balls in bin A; among all the balls that are now
in this bin, we move two to bin B; finally, we move one of the balls of bin B
to bin C. The ping-pong ball problem asks for the number of different tuples
(An, Bn, Cn) such that An, Bn, Cn are the n-subsets of [3n] that correspond to the
balls present in each bin after n turns (irrespective of the order in which the balls
got to the bins). A simpler question might be to determine if the corresponding
generating function is algebraic or not.

This problem is a particular case of the tennis ball problem with parameters
introduced by the author (SIAM J. Disc. Math. 21 (2007) 130–140). In turn,
the version with parameters generalizes a previous statement with only two bins,
whose associated generating function is algebraic (de Mier and Noy, Theoret.
Comput. Sci. 346 (2005), 254–264). We only know of trivial bounds for the
general case. The first terms of the sequence of the ping-pong ball problem are
6, 63, 856, 13479, 233496, 4324102.
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118 00 Praha 1
CZECH REPUBLIC
E-mail: klazar@kam.mff.cuni.cz

Hong Van Le
Mathematical Institute of the Academy of Sciences of the Czech Republic
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118 00 Praha 1
CZECH REPUBLIC
E-mail: loebl@kam.mff.cuni.cz

Anna de Mier
Departament de Matemàtica Aplicada II
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