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Abstract

A graph is k-choosable if it can be colored whenever every vertex
has a list of at least k available colors. A theorem by Grötzsch [2]
asserts that every triangle-free planar graph is 3-colorable. On the
other hand Voigt [10] gave such a graph which is not 3-choosable. We
prove that every triangle-free planar graph such that 4-cycles do not
share edges with other 4- and 5-cycles is 3-choosable. This strengthens
the Thomassen’s result [8] that every planar graph of girth at least 5
is 3-choosable. In addition, this implies that every triangle-free planar
graph without 6- and 7-cycles is 3-choosable.

1 Introduction

All graphs considered in this paper are simple and finite. The concepts of list
coloring and choosability were introduced by Vizing [9] and independently
by Erdős et al. [1]. A list assignment of G is a function L that assigns to
each vertex v ∈ V (G) a list L(v) of available colors. An L-coloring is a
function ϕ : V (G) →

⋃
v L(v) such that ϕ(v) ∈ L(v) for every v ∈ V (G) and

ϕ(u) 6= ϕ(v) whenever u and v are adjacent vertices of G. If G admits an
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L-coloring, then it is L-colorable. A graph G is k-choosable if it is L-colorable
for every list assignment L such that |L(v)| ≥ k for all v ∈ V (G). Cycles
C1 and C2 in a graph are adjacent if they intersect in a single edge, i.e., if
V (C1) ∩ V (C2) = {u, v} for an edge uv.

Thomassen [7, 8] proved that every planar graph is 5-choosable, and ev-
ery planar graph of girth at least 5 is 3-choosable. Kratochv́ıl and Tuza
[3] observed that every planar triangle-free graph is 4-choosable. On the
other hand, Voigt [10, 11] found a planar graph that is not 4-choosable,
and a triangle-free planar graph that is not 3-choosable. Numerous papers
study additional conditions that force a triangle-free planar graph to be 3-
choosable, see e.g. [4, 6, 12, 13, 14, 15].

In particular, let us point out the result of Li [5], strengthening the result
of Thomassen [8]: every planar triangle-free graph such that no 4-cycle shares
a vertex with another 4- or 5-cycle is 3-choosable. We further improve this
result, only forbidding the 4-cycles sharing an edge with other 4- or 5-cycles:

Theorem 1. Any planar triangle-free graph without 4-cycles adjacent to 4-
and 5-cycles is 3-choosable.

In particular, we obtain:

Corollary 2. Any planar graph without 3-, 6- and 7-cycles is 3-choosable.

This strengthens the results of Lidický [6] that planar graphs without 3-, 6-,
7- and 8-cycles are 3-choosable, and of Zhang and Xu [13] that planar graphs
without 3-, 6-, 7- and 9-cycles are 3-choosable. Theorem 1 also implies the
result of Lam et al. [4] that planar graphs without 3, 5 and 6-cycles are
3-choosable.

2 Proof of Theorem 1

A path of length k (or a k-path) is a path on k + 1 vertices. Using the proof
technique of precoloring extension developed by Thomassen [8], we show the
following extension of Theorem 1:

Theorem 3. Let G be a triangle-free planar graph without 4-cycles adja-
cent to 4- and 5-cycles, with outer face C, and P a path of length at most
three such that V (P ) ⊆ V (C). The graph G can be L-colored for any list
assignment L such that

• |L(v)| = 3 for all v ∈ V (G) \ V (C);

• 2 ≤ |L(v)| ≤ 3 for all v ∈ V (C) \ V (P );
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• |L(v)| = 1 for all v ∈ V (P ), and the colors in the lists give a proper
coloring of the subgraph of G induced by V (P );

• the vertices with lists of size two form an independent set; and

• each vertex with lists of size two has at most one neighbor in P .

Note that we view the single-element lists as a precoloring of the vertices of
P . Also, P does not have to be a part of the facial walk of C, as we only
require V (P ) ⊆ V (C). Theorem 3 has the following easy consequence:

Corollary 4. Let G be a triangle-free planar graph without 4-cycles adjacent
to 4- and 5-cycles, with the outer face bounded by an induced cycle C of
length at most 9. Furthermore, assume that

• if `(C) = 8, then at least one edge of C does not belong to a 4-cycle;
and

• if `(C) = 9, then some two consecutive edges of C do not belong to 4-
and 5-cycles.

Let L be an assignment of lists of size 1 to the vertices of C and lists of size
3 to the other vertices of G. If L prescribes a proper coloring of C, then G

can be L-colored.

Proof. The claim follows from Theorem 3 for `(C) = 4. If `(C) ∈ {5, 6, 7},
then let u1w1vw2u2 be an arbitrary subpath of C. Let L′ be the list assign-
ment obtained from L by removing the color L(v) from the lists of vertices
adjacent to v. We also set the lists of w1 and w2 to 2-lists such that the
precoloring of the other vertices of C forces the prescribed color L(w1) on w1

and L(w2) on w2, i.e., L′(w1) = L(w1) ∪ L(u1) and L′(w2) = L(w2) ∪ L(u2).
As all the vertices x with |L′(x)| = 2 are neighbors of a single vertex v, the
graph G− v together with the list assignment L′ satisfies the assumptions of
Theorem 3. It follows that we can L′-color G− v, giving an L-coloring of G.

Let us now consider the case that `(C) = 8, and let C = w1uvw2r1r2r3r4,
where the edge uv does not belong to a 4-cycle. Let us delete vertices u and
v from G, remove the color in L(u) from the lists of neighbors of u and the
color in L(v) from the lists of neighbors of v, and change the list of w1 to
L(w1) ∪ L(r4) and the list of w2 to L(w2) ∪ L(r1), so that the precoloring of
the path P = r1r2r3r4 forces the right colors on w1 and w2. As uv does not
belong to a 4-cycle, the vertices with lists of size two form an independent
set. As C is induced, both w1 and w2 have only one neighbor in the 3-path
P . Let x be a neighbor of u other than v and w1. The vertex x cannot be
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adjacent to both r1 and r4, as the 4-cycle uxr4w1 would be adjacent to a
5-cycle xr1r2r3r4. Similarly, x cannot be adjacent to both r1 and r3 or both
r2 and r4. As G does not contain triangles, x has at most one neighbor in P .
By symmetry, this is also true for the neighbors if v. Therefore, the graph
satisfies assumptions of Theorem 3, and can be colored from the prescribed
lists.

Finally, suppose that `(C) = 9, and let C = w1uvww2r1r2r3r4, where the
edges uv and vw are not incident with 4- and 5-cycles. We argue similarly
as in the previous case. We delete vertices u, v and w from G and remove
their colors from the lists of their neighbors. We also set the list of w1 to
L(w1)∪L(r4) and the list of w2 to L(w2)∪L(r1), so that the precoloring of the
path r1r2r3r4 forces the right colors on w1 and w2. Observe that the resulting
graph satisfies assumptions of Theorem 3, hence it can be colored.

Before we proceed with the proof of Theorem 3, let us describe the no-
tation that we use in figures. We mark the precolored vertices of P by full
circles, the vertices with list of size three by empty circles, and the vertices
with list of size two by empty squares. The vertices for that the size of the list
is not uniquely determined in the situation demonstrated by the particular
figure are marked by crosses.

Proof of Theorem 3. Suppose G together with lists L is the smallest coun-
terexample, i.e., such that |V (G)| + |E(G)| is minimal among all graphs
that satisfy the assumptions of Theorem 3, but cannot be L-colored, and∑

v∈V (G) |L(v)| is minimal among all such graphs. Let C be the outer face of

G and P a path with V (P ) ⊆ V (C) as in the statement of the theorem. We
first derive several properties of this counterexample. Note that each vertex
v of G has degree at least |L(v)|.

Lemma 5. The graph G does not contain separating cycles of length at most
seven. Every edge of each separating 8-cycle K belongs to a 4-cycle lying
inside K. And, at least one of every two consecutive edges of each separating
9-cycle K belongs to a 4- or 5-cycle lying inside K.

Proof. Let K be the separating cycle. We may assume that K is induced,
as otherwise we could consider a shorter separating cycle of length at most
7. Let G1 be the subgraph of G induced by the exterior of K (including K)
and G2 the subgraph of G induced by the interior of K (including K). By
the minimality of G, Theorem 3 holds for G1 and G2 and their subgraphs.
Therefore, there exists a coloring of G1 from the prescribed lists, and this
coloring can be extended to G2 by Corollary 4. This is a contradiction, as G
cannot be colored from the lists.
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Figure 1: A chord of C

A chord of a cycle K is an edge in G joining two distinct vertices of K that
are not adjacent in K. As G does not have triangles and 4-cycles adjacent to
4- and 5-cycles, a cycle of length at most 7 does not have a chord. Therefore,
Lemma 5 implies that every cycle of length at most 7 is a face. Similarly,
a cycle K of length 8 with an edge that does not belong to a 4-cycle in the
interior of K is either an 8-face, or it has a chord splitting it to a 4-face and
a 6-face, or two 5-faces.

Lemma 6. The graph G is 2-connected.

Proof. Obviously, G is connected. Suppose now that v is a cut vertex of G
and G1 and G2 are nontrivial induced subgraphs of G such that G = G1∪G2

and V (G1) ∩ V (G2) = {v}. Both G1 and G2 satisfy the assumptions of
Theorem 3. If v is precolored, then by the minimality of G there exist L-
colorings of G1 and G2, and they combine to a proper L-coloring of G. If v
is not precolored, then we may assume that P ⊆ G1. An L-coloring of G1

assigns a color c to v. We change the list of v to {c}, color G2 and combine
the colorings to an L-coloring of G.

By Lemma 6, C is a cycle. A k-chord of C is a path Q = q0q1 . . . qk of
length k joining two distinct vertices of C, such that V (C)∩V (Q) = {q0, qk}
(e.g., 1-chord is just a chord).

Lemma 7. The cycle C has no chords.

Proof. Suppose e = uv is a chord of C, separating G to two subgraphs G1

and G2 intersecting in e. If both u and v are precolored, then we L-color G1

and G2 by the minimality of G and combine their colorings. Otherwise, by
symmetry assume that u 6∈ V (P ), and that |V (P )∩V (G1)| ≥ |V (P )∩V (G2)|.
In particular, |(V (P ) ∩ V (G2)) \ {u, v}| ≤ 1. Furthermore, let us choose the
chord in such a way that G2 is as small as possible; in particular, the outer
face of G2 does not have a chord. Let us find an L-coloring of G1 and change
the lists of u and v to the colors assigned to them. If G2 with these new lists
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satisfies assumptions of Theorem 3, then we find its coloring and combine
the colorings to an L-coloring of G, hence assume that this is not the case.

Let X = (V (P ) ∩ V (G2)) \ {u, v}. As G2 does not satisfy assumptions
of Theorem 3, there exists a vertex z with list of size two adjacent to two
precolored vertices. As G is triangle-free, we conclude that X is not empty,
say X = {w} (see Figure 1), and z is adjacent to u and w. As G2 does
not contain chords and separating 4-cycles and z ∈ V (C), G2 is equal to
the cycle uvwz. Since |L(z)| = 2, it holds that |L(u)| = 3. Let c1 be the
color of u in the coloring of G1, and c2 the single color in the list of w.
If L(z) 6= {c1, c2}, then we can color z and finish the coloring of G, hence
assume that L(z) = {c1, c2}. Let c be a color in L(u) \ ({c1}∪L(v)) (this set
is nonempty, as |L(v)| = 1 and |L(u)| = 3).

Let us now color z by c1 and set the list of u to {c}. If G1 with this list
at u satisfies assumptions of Theorem 3, we can color G1, and thus obtain an
L-coloring of G. Since G does not have such an L-coloring, the assumptions
are violated, i.e., either u is adjacent to a vertex of P other than v, or G1

contains a vertex (with list of size two) adjacent to both u and a vertex of
P . This is a contradiction, as G would in both of these cases contain either
a triangle, or a 4- or 5-cycle adjacent to the 4-cycle uvwz.

By the previous lemma, P is a part of the facial walk of C, and C is an
induced cycle.

Lemma 8. `(C) ≥ 8.

Proof. Suppose that `(C) ≤ 7. If V (C) 6= V (P ), then color the vertices of C
properly from their lists. This can be done, as C is chordless and contains at
least one vertex with list of size three. If 5 ≤ `(C) ≤ 7, then the claim follows
from the proof of Corollary 4, as by the minimality of G, all subgraphs of G
satisfy Theorem 3. If `(C) = 4, then we delete one of the vertices of C and
remove its color from the lists of its neighbors. It is easy to verify that the
resulting graph satisfies the assumptions of Theorem 3, hence it has a proper
coloring by the minimality of G. This coloring extends to an L-coloring of
G, which is a contradiction.

Lemma 9. No 4-cycle shares an edge with another 4- or 5-cycle.

Proof. Suppose that C1 = v1v2v3v4 and C2 = v1v2u3 . . . ut are cycles sharing
the edge v1v2, `(C1) = 4 and t = `(C2) ∈ {4, 5}. Note that C1 6= C and
C2 6= C by Lemma 8. By Lemma 5, both C1 and C2 bound a face. If
v3 = u3, then v2 would be a 2-vertex with list of size three. Thus, v3 6= u3

and by symmetry, v4 6= ut. As G does not contain triangles, v3 6= ut and
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Figure 2: Possible 2-chords in G
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Figure 3: A 2-chord of C

v4 6= u3, and in case that t = 5, v3 6= u4 and v4 6= u4. Therefore, C1 and C2

are adjacent, contradicting the assumptions of Theorem 3.

Note that we can assume that |V (P )| = 4, as otherwise we can prescribe
color for more of the vertices of C, without violating assumptions of Theo-
rem 3. Let P = p1p2p3p4. We say that a k-chord Q of C splits off a face
F from G if F 6= C is a face of both G and C ∪ Q. See Figure 2 for an
illustration of 2-chords splitting off a face.

Lemma 10. Every 2-chord uvw of C splits off a k-face F such that

(a) |V (F ) ∩ V (P )| ≤ 2 and {u, w} 6⊆ V (P ),

(b) k ≤ 5, and

(c) if |V (F ) ∩ V (P )| ≤ 1, then k = 4.

In particular, the cycle C has no 2-chord with |L(w)| = 2 and u 6= p2, p3.

Proof. Suppose first that u, w ∈ V (P ). By Lemma 5, the 2-chord uvw

together with a part of P bounds a face K. Color v by a color different from
the colors of u and w, and remove V (K)\{u, v, w} from G, obtaining a graph
G′. Note that a path of length at most three is precolored in G′. Since G
cannot be L-colored, we may assume that G′ does not satisfy assumptions of
Theorem 3, i.e., there exists z with |L(z)| = 2 adjacent to both v and a vertex
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y ∈ V (P ) ∩ V (G′). As G is triangle-free, y 6∈ {u, w}. It follows that yuvz or
ywvz is a 4-face. This is a contradiction, as K would be an adjacent 4-face.
Therefore, {u, w} 6⊆ V (P ), and by symmetry we assume that w 6∈ V (P ).

The 2-chord uvw splits G to two subgraphs G1 and G2 intersecting in
uvw. Let us choose G2 such that |V (P ) ∩ V (G2)| ≤ |V (P ) ∩ V (G1)|, see
Figure 3. Note that |V (P ) ∩ V (G2)| ≤ 2. Let us consider the 2-chord uvw

such that |V (P ) ∩ V (G2)| is minimal, subject to the assumption that G2 is
not a face. By the minimality of G, there exists an L-coloring ϕ of G1. Let
L′ be the list assignment for G2 such that L′(u) = {ϕ(u)}, L′(v) = {ϕ(v)},
L′(w) = {ϕ(w)} and L′(x) = L(x) for x ∈ V (G2) \ {u, v, w}. Let P ′ be the
precolored path in G2 (consisting of u, v, w, and possibly one other vertex
p of P adjacent to u). As C has no chords and G2 is not a face, P ′ is an
induced subgraph. Since G cannot be L-colored, we conclude that G2 cannot
be L′-colored, and thus G2 with the list assignment L′ does not satisfy the
assumptions of Theorem 3. Therefore, there exists a vertex z with |L(z)| = 2,
adjacent to two vertices of P ′.

Since G2 is not a face, Lemmas 5 and 7 imply that z is not adjacent to
both w and p. Similarly, z is not adjacent to both u and w. It follows that z
is adjacent to v and p, and thus |V (P ) ∩ V (G2)| = 2. Since we have chosen
the 2-chord uvw so that |V (P )∩ V (G2)| = 2 is minimal among the 2-chords
for that G2 is not a face, the 2-chord wvz splits off a face F ′ from G. Let
x be the neighbor of z in F ′ other than v. Since |L(z)| = 2, it holds that
|L(x)| = 3. As F ′ is a face, deg(x) = 2, which is a contradiction. It follows
that for every 2-chord, G2 is a face. The choice of G2 establishes (a).

Let wvuv4 . . . vk be the boundary of the face G2. Note that V (P ) ∩
V (G2) ⊆ {u, v4}, and v4, . . . , vk have degree two. If k > 5, then at least
one of v5 and v6 has list of size three, which is a contradiction, proving (b).
Similarly, if |V (F ) ∩ V (P )| ≤ 1 and k = 5, then at least one of v4 and v5

would be a 2-vertex with list of size three, proving (c).
Consider now a 2-chord uvw such that |L(w)| = 2 and u 6∈ {p2, p3}, and

let x be the neighbor of w in G2 distinct from v. As u 6∈ {p2, p3}, no vertex of
V (P )\{u} lies in G2. Therefore, |L(x)| = 3 and deg(x) = 2, a contradiction.
We conclude that no such 2-chord exists.

Let us now consider the 3-chords of C:

Lemma 11. Every 3-chord Q = uvwx of C such that u, x 6∈ {p2, p3} splits
off a 4- or 5-face.

Proof. Suppose that Q splits G into two subgraphs G1 and G2 intersecting
in uvwx, such that V (P ) ∩ V (G2) ⊆ {u, x}. Let us L-color G1 and consider
the vertices u, v, w and x of G2 as precolored according to this coloring. If
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ux were an edge, then Q would split off a 4-face. It follows that Q is an
induced path thus this precoloring of Q is proper. Similarly, as Q does not
split off a 5-face, u and x do not have a common neighbor with list of size
two. Neither v nor w is adjacent to a vertex with list of size 2 by Lemma 10.
Therefore, G2 satisfies assumptions of Theorem 3, and the coloring can be
extended to G2, giving an L-coloring of G. This is a contradiction.

Let x1x2x3x4 be the part of the facial walk of C such that x1 is adjacent
to p4 and x2 6= p4. By Lemma 8, {x1, x2, x3, x4} ∩ V (P ) = ∅. Let us now
show a few properties of the vertices x1, x2, x3, x4 and their neighbors.

Lemma 12. Let Q = v0v1 . . . vk be a k-chord starting and ending in vertices
of x1x2x3x4, or a cycle intersecting C in a single vertex x ∈ {x1, x2, x3, x4}.
The following holds (for some i ∈ {1, 2, 3, 4}):

• If `(Q) = 2, then Q = xiv1xi+2 splits off a 4-face.

• If `(Q) = 3, then Q splits off either a 4-face xixi+1v1v2, or a 5-face
xixi+1xi+2v1v2.

• If `(Q) = 4, then Q forms a boundary of a 4-face xiv1v2v3, or splits off
a 5-face xixi+1v1v2v3, or splits off a 6-face xixi+1xi+2v1v2v3.

Proof. By a simple case analysis. The details are left to the reader.

Note also that if Q splits off a face of form xixi+1xi+2v1 . . . vk−1, then
deg(xi+1) = |L(xi+1)| = 2.

Lemma 13. If Q is a k-chord with k ≤ 3, starting in a vertex xi (where
1 ≤ i ≤ 4) and ending in a vertex with list of size two, then k = 3 and Q

bounds a 4-face.

Proof. Let Q = q0q1 . . . qk, where q0 ∈ {x1, x2, x3, x4} and |L(qk)| = 2. By
Lemmas 7 and 10, k > 2. If k = 3, then by Lemma 11, Q splits off a 4- or
5-face. However, the latter is impossible, as |L(q3)| = 2, so the remaining
vertex of the 5-face, whose degree is two, would have a list of size three.

Lemma 14. There is no 2-chord from {p1, p2} to {x1, x2, x3, x4}.

Proof. Suppose Q = pivxj is such a 2-chord, and let K be the cycle formed
by Q and pi . . . p4x1 . . . xj. Note that `(K) ≤ 9. Let us choose Q such that
`(K) is minimal. By Lemma 10, Q splits off a face F such that `(F ) ≤ 5.
Furthermore, if `(K) = 9, then i = 1, and hence |V (P ) ∩ V (F )| = 1. In
that case, the claim (c) of Lemma 10 implies `(F ) = 4. See Figure 4 for
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Figure 4: A 2-chord from p1 or p2 to {x1, x2, x3, x4}

p4 x1 x2 x3

(C1)
p4 x1 x2 x3 x4 x5

(C2)

p4 x1 x2 x3 x4 x5

(C3a)
p4 x1 x2 x3 x4

(C3b)
x5 = p1

p4 x1 x2 x3 x4

(C4)
p4 x1 x2 x3 x4

(C5)

Figure 5: The construction of the set X1

illustration. It follows that the edges piv and vxj are not incident with a 4-
face inside K, and if `(K) = 9, then they are not incident with a 5-face. By
Lemma 5, K is not separating. If `(K) ≤ 7, then K is a face, and deg(v) = 2,
which is a contradiction. Similarly, if `(K) > 7, then K has a chord incident
with v. By the minimality of `(K), v is adjacent to p3 or p4. However, this
contradicts Lemma 10(a).

If both x1 and x2 have lists of size three, then we remove one color from
L(x1) and find a coloring by the minimality of L (note that x1 is not adjacent
to any vertex with list of size two, and has only one neighbor in P , as C does
not have chords). Therefore, exactly one of x1 and x2 has a list of size two.
Let x5 be the neighbor of x4 in C distinct from x3. We now distinguish
several cases depending on the lists of vertices in {x1, x2, x3, x4}, in order to
choose a set X1 ⊆ {x1, x2, x3, x4} of vertices that we are going to color (and
remove).

(C1) If |L(x1)| = 2 and |L(x2)| = |L(x3)| = 3 (see Figure 5(1)), then we set
X1 = {x1}.
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xi+1 xi+2
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R(z)

a)

r(z) = xi xi+1 = r(v)
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r(z) = xi
xi+1 xi+2 = r(v)

z v

R(z) = R(v)
c)

r(z) = xm−1
xm xm+1

z

R(z)

d)

Figure 6: The construction of the set X2

(C2) If |L(x1)| = 2, |L(x2)| = 3, |L(x3)| = 2, |L(x4)| = 3 and |L(x5)| = 3
(see Figure 5(2)), then we set X1 = {x1, x2, x3}.

(C3) If |L(x1)| = 2, |L(x2)| = 3, |L(x3)| = 2, |L(x4)| = 3 and |L(x5)| ≤ 2
(see Figure 5(3)), then we set X1 = {x2, x3, x4}.

(C4) If |L(x1)| = 3, |L(x2)| = 2, |L(x3)| = 3 and |L(x4)| = 3 (see Fig-
ure 5(4)), then we set X1 = {x1, x2}.

(C5) If |L(x1)| = 3, |L(x2)| = 2, |L(x3)| = 3 and |L(x4)| = 2 (see Fig-
ure 5(5)), then we set X1 = {x1, x2, x3}.

Let m = max{i : xi ∈ X1}. Note the following properties of the set X1:

• |X1| ≤ 3.

• If |L(xm)| = 2, then m ≤ 3 and |L(xm+1)| = |L(xm+2)| = 3.

• If |L(xm)| = 3, then |L(xm+1)| ≤ 2.

Let F be the set of faces of G incident with the edges of the path induced
by X1 (F = ∅ in the case (C1)). We define a set X2 ⊆ V (G)\V (C), together
with functions r : X2 → X1 and R : X2 → F . A vertex z ∈ V (G) \ V (C)
belongs to X2 if

• z is adjacent to two vertices in X1 (see Figure 6(a) for an example). By
Lemma 12, z lies in a (uniquely determined) 4-face F = xixi+1xi+2z,
where xi, xi+1, xi+2 ∈ X1. We define r(z) := xi and R(z) := F . Or,
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• there exists a path xzvy such that x, y ∈ X1 and v 6∈ {p1} ∪ X1 (see
Figure 6(b), (c) and (d) for examples). If v = xm+1, then by Lemma 10,
the 2-chord xzv splits off a 4-face F . Otherwise the 3-chord xzvy splits
off a 4- or 5-face F by Lemma 12. We define r(z) := x and R(z) := F .
Note that v 6= x1: otherwise, x1 6∈ X1 and we are in case (C3), hence
|L(x1)| = 2 and the 2-chord x1zx would contradict Lemma 10. It
follows that v also belongs to X2, unless v = xm+1.

Let us now show that r(z) and R(z) are well-defined. As a 4-face
cannot be adjacent to a 4- or 5-face and G is triangle-free, z does not
have another neighbor in X1. Also, if there existed another path xzv′y′

with y′ ∈ X1 splitting off a face F ′, then both F and F ′ would be
5-faces; however, that would imply |X1| ≥ 5, which is a contradiction.
Therefore, r and R are defined uniquely. Furthermore, v is the only
neighbor of z in X2, and R(v) = R(z) (assuming that v 6= xm+1).

We now find an L-coloring of X1∪X2 that we aim to extend to a coloring
of G.

Lemma 15. Let H = G[V (P ) ∪ X1 ∪ X2] be the subgraph of G induced by
V (P ) ∪ X1 ∪ X2. There exist an L-coloring ϕ1 of X1 and an L-coloring ϕ2

of X2 such that

• the coloring of H given by ϕ1, ϕ2 and the precoloring of P is proper,

• if |L(xm+1)| ≤ 2, then ϕ1(xm) 6∈ L(xm+1),

• if x1 6∈ X1 (i.e., in the case (C3) of the definition of X1), then L(x1) 6=
L(p4) ∪ {ϕ1(x2)}, and

• if z ∈ X2 is adjacent to xm+1, then |L(xm+1) \ {ϕ1(xm), ϕ2(z)}| ≥ 2.

Proof. Suppose first that there exists z ∈ X2 adjacent to xm+1. Note that z is
unique, m ≥ 2 and R(z) = xm−1xmxm+1z is a 4-face. As G does not contain
a 2-vertex with list of size three, |L(xm)| = 2 and |L(xm−1)| = |L(xm+1)| = 3.
This happens only in the cases (C2) and (C4) of the definition of X1, thus
x1 ∈ X1 and m ≤ 3. Furthermore, xm−1 is the only neighbor of z in X1 and
z is not adjacent to any other vertex of X2. As R(z) is a 4-face and G does
not contain 4-cycles adjacent to 4- or 5-cycles, z is not adjacent to p3 and
p4. By Lemma 14, z is not adjacent to p1 and p2, either, thus any choice of
the color for z is consistent with the precoloring of P . Let us distinguish the
following cases:
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• If L(z) ∩ L(xm) 6= ∅, then choose c ∈ L(z) ∩ L(xm) and let ϕ1(xm) =
ϕ2(z) = c.

• If L(z) 6= L(xm+1), then choose ϕ2(z) ∈ L(z) \ L(xm+1) and ϕ1(xm) ∈
L(xm) arbitrarily.

• Finally, consider the case that L(z) ∩ L(xm) = ∅ and L(z) = L(xm+1),
i.e., the lists of xm and xm+1 are disjoint. We choose ϕ1(xm) ∈ L(xm)
and ϕ2(z) ∈ L(z) arbitrarily.

On the other hand, suppose that no vertex of X2 is adjacent to xm+1. If
|L(xm+1)| = 2, then choose ϕ1(xm) ∈ L(xm) \ L(xm+1). Otherwise, choose
ϕ1(xm) ∈ L(xm) arbitrarily (in case that m = 1, choose a color different from
the one in L(p4))

In both of these cases, the precoloring of xm (and possibly z) can be
extended to a proper coloring ψ of the subgraph induced by {x1, . . . , xm, z}
consistent with the precoloring of P . We fix ϕ1 as the restriction of ψ to X1.

Let us now construct (the rest of) the coloring ϕ2. Consider a vertex
u ∈ X2 that is not adjacent to xm+1. As u 6∈ V (C), it holds that |L(u)| = 3.
If u has no neighbor in X2, then it has two neighbors r(u), x ∈ X1 and R(u)
is a 4-face. We claim that u has no neighbor pi ∈ V (P ). Otherwise, we
obtain i ≥ 3 by Lemma 14. By Lemma 10, the 2-chord piur(u) splits off a
4- or 5-face. This face shares an edge with R(u), which is a contradiction.
Therefore, any choice of ϕ2(u) ∈ L(u) \ {ϕ1(x), ϕ1(r(u))} is consistent with
the precoloring of P .

Finally, suppose that u has a neighbor w ∈ X2. As we argued in the
definition of X2, each of u and w has exactly one neighbor in X1, and u

and w do not have any other neighbors in X2. Also, w is not adjacent to
xm+1, as otherwise G would contain a triangle or two adjacent 4-cycles. By
Lemma 10(a), each of u and w has at most one neighbor in P . If one of them
does not have any such neighbor, then we can easily color u and w, hence
assume that piu and pjw are edges. By Lemma 14, i, j ≥ 3. Without loss
on generality, j = 3 and i = 4. This is a contradiction, as the 4-face p3p4uw

shares an edge with R(u).

Consider the colorings ϕ1 and ϕ2 constructed in Lemma 15. Let G′ =
G− (X1 ∪X2) and let L′ be the list assignment such that L′(v) is obtained
from L(v) by removing the colors of the neighbors of v in X1 and X2 for
v 6= x1, and L′(x1) = L(x1) if x1 6∈ X1. Suppose that G′ with the list
assignment L′ satisfies assumptions of Theorem 3. Then there exists an L′-
coloring ϕ of G′, which together with ϕ1 and ϕ2 gives an L-coloring of G:
this is obvious if x1 ∈ X1. If x1 6∈ X1, then |L(x1)| = 2, and L(p4) ⊆ L(x1)

13



by the minimality of G (otherwise, we could remove the edge p4x1). By the
choice of ϕ1, it holds that ϕ1(x2) 6= ϕ(x1). Since no other vertex of X may
be adjacent to x1 by Lemmas 7 and 10, ϕ together with ϕ1 and ϕ2 is a proper
coloring of G. As G is a counterexample to Theorem 3, it follows that L′

violates assumptions of Theorem 3, i.e.,

(a) a vertex v ∈ V (G′) with |L′(v)| = 2 is adjacent to two vertices of P ; or

(b) |L′(v)| ≤ 1 for some v ∈ V (G′) \ V (P ); or

(c) two vertices u, v ∈ V (G′) with |L′(u)| = |L′(v)| = 2 are adjacent.

Let us now consider each of these possibilities separately.

(a) A vertex v ∈ V (G′) with |L′(v)| = 2 is adjacent to two vertices of P . By
Lemmas 7 and 10(a), this is not possible.

(b) |L′(v)| ≤ 1 for some v ∈ V (G′) \ V (P ). If |L(xm+1)| = 2, then xm+1

does not have a neighbor in X2 by Lemma 10 and hence |L′(xm+1)| = 2
by the choice of ϕ1. If |L(xm+1)| = 3, then the choice of ϕ1 and ϕ2

according to Lemma 15 ensures |L′(xm+1)| ≥ 2. Therefore, v 6= xm+1.

Since G has neither chords nor 2-chords starting in X1 and ending in
a vertex with list of size two, it holds that |L(v)| = 3. Therefore, v has
at least two neighbors u1, u2 ∈ X1 ∪ X2. If at least one of u1 and u2

belonged to X1, then v would be included in X2, hence we may assume
that u1, u2 ∈ X2.

Consider the path xiu1vu2xj, where xi = r(u1) and xj = r(u2). We
may assume that i ≤ j. The cycle xi . . . xju2vu1 has length at most six,
thus it bounds a face F . Note that i = j, as each of R(u1) and R(u2)
shares at least one edge with the path induced by X1 and F 6= R(u1) 6=
R(u2) 6= F . Therefore, F is a 4-face sharing an edge with 4-face R(u1)
(and also with R(u2)), which is a contradiction. Therefore, |L′(v)| ≥ 2
for every v ∈ V (G′) \ V (P ).

(c) Two vertices u, v ∈ V (G′) with |L′(u)| = |L′(v)| = 2 are adjacent. As
the vertices with lists of size two form an independent set in G, we may
assume that |L(u)| = 3. Let y1 be a neighbor of u in X1 ∪X2.

Consider first the case that |L(v)| = 2. If u 6∈ V (C), then by Lemma 10,
y1 6∈ V (C), and thus y1 ∈ X2 and vuy1r(y1) is a 3-chord. By Lemma 13,
this 3-chord splits off a 4-face F . Note that F 6= R(y1), as u 6∈ X2.
This is impossible, as the 4-face F would share an edge with R(y1).
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Therefore, u ∈ V (C), and hence v 6= x1. If y1 ∈ X2, then uy1r(y1) is
a 2-chord, and by Lemma 10, it splits off a 4-face adjacent to R(y1),
which is again a contradiction. Assume now that y1 ∈ X1. As C does
not have chords, it follows that y1 = xm and u = xm+1. However, in
that case v = xm+2 and |L(xm+2)| = 2, which contradicts the choice of
X1.

Consider now the case that |L(v)| = 3. Let y2 be a neighbor of v in
X1 ∪X2. As u, v 6∈ X2, at least one of y1 and y2, say y1, belongs to X2.
Let us consider the possibilities y2 ∈ X1 and y2 ∈ X2 separately:

• y2 ∈ X1: The cycle formed by r(y1)y1uvy2 and a part of the path
x1x2x3x4 between r(y1) and y2 has length at most six, thus it
bounds a face F . Note that R(y1) shares an edge with F . Let
k1 and k2 be the number of edges that R(y1) and F , respectively,
share with the path induced by X1, k1 ≥ `(R(y1)) − 3 ≥ 1 and
k2 = `(F ) − 4 ≥ 0. Since |X1| ≤ 3, it holds that k1 + k2 ≤ 2.
If k1 = 1, then R(y1) is a 4-face. Since 4- and 5-faces cannot be
adjacent to R(y1), we obtain `(F ) ≥ 6. It follows that k2 ≥ 2,
which is a contradiction. Similarly, if k1 = 2, then F cannot
be a 4-face, hence `(F ) ≥ 5 and thus k2 ≥ 1. This is again a
contradiction.

• y2 ∈ X2: Let F be the cycle bounded by r(y1)y1uvy2r(y2) and the
part of the path x1x2x3x4 between r(y1) and r(y2). As `(F ) ≤
7, F bounds a face. Note that R(y1) 6= R(y2) and `(R(y1)) =
`(R(y2)) = 4, as each of R(y1) and R(y2) shares an edge with the
path induced by X1. Since F shares edges with both R(y1) and
R(y2), `(F ) ≥ 6. It follows that F shares at least one edge with
the path induced by X1 as well. However, this is impossible, since
|X1| ≤ 3.

Therefore, the assumptions of Theorem 3 are satisfied by G′ and L′. We
conclude that we can find a proper coloring ofG, which contradicts the choice
of G as a counterexample to Theorem 3.
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