On Generalized Middle Level Problem*

Petr Gregor ${ }^{\dagger} \quad$ Riste Škrekovski ${ }^{\ddagger}$

February 5, 2009

Abstract

Let G_{n}^{k} be the subgraph of the hypercube Q_{n} induced by levels between k and $n-k$, where $n \geq 2 k+1$ is odd. The well-known middle level conjecture asserts that $G_{2 k+1}^{k}$ is Hamiltonian for all $k \geq 1$. We study this problem in G_{n}^{k} for fixed k. It is known that G_{n}^{0} and G_{n}^{1} are Hamiltonian for all odd $n \geq 3$. In this paper we prove that also G_{n}^{2} is Hamiltonian for all odd $n \geq 5$, and we conjecture that G_{n}^{k} is Hamiltonian for every $k \geq 0$ and every odd $n \geq 2 k+1$.

1 Introduction

Let G_{n}^{k} be the subgraph of the n-dimensional hypercube Q_{n} induced by the vertices in levels between k and $n-k$, where $n \geq 2 k+1$ is odd. The level i consists of vertices with exactly i 1's. Note that n is required to be odd in order to have bipartite classes of equal size in G_{n}^{k}.

The well-know middle level conjecture, attributed to Havel [6], asserts that the graph $G_{2 k+1}^{k}$ consisting of two middle levels k and $k+1$ of $Q_{2 k+1}$ is Hamiltonian for all $k \geq 1$. This graph is a notorious example of a connected vertex transitive graph, all of which were conjectured by Lovász [11] to have Hamiltonian paths.

Despite many attempts, the middle level problem remains open. The conjecture was verified for $k \leq 11$ by Moews and Reid in unpublished work

[^0]in 1990. Then it was extended by Shields, Shields, and Savage [15, 16] also for $12 \leq k \leq 17$.

One possible relaxation of this problem is to show that $G_{2 k+1}^{k}$ at least contains long cycles. Savage and Winkler [13] showed that $G_{2 k+1}^{k}$ has a cycle of length at least $0.867\left|V\left(G_{2 k+1}^{k}\right)\right|$. The best lower bound by Johnson [9] shows that $G_{2 k+1}^{k}$ is "asymptotically" Hamiltonian: it contains a cycle of length $(1-o(1))\left|V\left(G_{2 k+1}^{k}\right)\right|$. On the other hand, Horák, Kaiser, Rosenfeld, and Ryjáček [7] showed that $G_{2 k+1}^{k}$ has a closed spanning walk in which every vertex appears at most twice, by proving that the prism over $G_{2 k+1}^{k}$ is Hamiltonian.

Our approach is to study this problem for the graph G_{n}^{k} where $0 \leq k \leq$ $(n-1) / 2$ is fixed. It is well-known that $G_{n}^{0}=Q_{n}$ is Hamiltonian for every $n \geq 2$. El-Hashash and Hassan [5], and independently (in a more general setting) Locke and Stong [12] proved that G_{n}^{1} is Hamiltonian for all odd $n \geq 3$. As a first step towards the general problem, in this paper we prove that also G_{n}^{2} is Hamiltonian for all odd $n \geq 5$. Now, it becomes naturally to conjecture:

Conjecture 1. G_{n}^{k} is Hamiltonian for every $k \geq 0$ and every odd $n \geq 2 k+1$.
A different approach to generalize the middle level problem was proposed, as far as we know, independently by Dejter, Cedeno, and Jaurequi [2] and by Hurlbert [8] who studied Hamiltonian cycles in the graph H_{n}^{k} consisting of level k and $n-k$ of Q_{n}, and edges joining a vertex from level k with a vertex from level $n-k$ if their Hamming distance (distance in Q_{n}) is $n-2 k$. In other words, H_{n}^{k} is the cover graph of the ordered set consisting of level k and $n-k$ of the Boolean lattice B_{n} with the order inherited from B_{n}. For other results on ordered sets obtained by removing selected levels of the Boolean lattice, called Boolean layer cakes, we refer to a survey of Schmidt [14].

2 Preliminaries

Let $[n]$ denote the set $\{1, \ldots, n\}$. For a binary vector $v \in\{0,1\}^{n}$ and $i \in[n]$ we denote by $v[i]$ the i-th coordinate of v. For vectors $u, v \in\{0,1\}^{n}$ let $u \oplus v$ denote the vector obtained by the coordinate-wise addition modulo 2 of u and v. The n-dimensional hypercube Q_{n} is a (bipartite) graph with all binary vectors of length n as vertices and with edges joining every two vertices that differ in exactly one coordinate, i.e.

$$
V\left(Q_{n}\right)=\{0,1\}^{n} \text { and } E\left(Q_{n}\right)=\{u v ;|\Delta(u, v)|=1\},
$$

where $\Delta(u, v)=\{i \in[n] ; u[i] \neq v[i]\}$. Thus the distance of vertices u and v is $d(u, v)=|\Delta(u, v)|$. The distance of two edges $u v$ and $x y$ is the minimum distance between a vertex of $u v$ to a vertex of $x y$. A vertex v is said to be even (odd) if it has even (odd) weight. The weight of v is the number of 1's in v. Note that vertices of each parity form bipartite classes of Q_{n}. Consequently, u and v have the same parity if and only if $d(u, v)$ is even.

Let $\mathbf{0}, \mathbf{1} \in V\left(Q_{n}\right)$ be the vertices of all 0 's and 1 's, respectively. For $i \in[n]$ we denote by e_{i} the vertex containing 1 exactly in the i-th coordinate. Note that each vertex e_{i} is adjacent to $\mathbf{0}$. An i-th level of Q_{n} for $0 \leq i \leq n$ is the set of vertices of weight i. An antipodal vertex to a vertex $u \in V\left(Q_{n}\right)$ is the vertex denoted by \bar{u} such that $\bar{u}[i]=\overline{u[i]}$ for all $i \in[n]$, that is $d(u, \bar{u})=n$.

If adjacent vertices u and v of Q_{n} differ in the i-th coordinate, then $u \oplus v=e_{i}$ and we say that the edge $u v \in E\left(Q_{n}\right)$ has direction i. By removing all edges of a fixed direction $i \in[n]$, the hypercube Q_{n} is split into two (induced) subgraphs isomorphic to Q_{n-1}. We say that Q_{n} is split along the direction i into subcubes Q_{n-1}^{0} and Q_{n-1}^{1}. For $a \in\{0,1\}$ the subcube Q_{n-1}^{a} is induced by all vertices $u \in V\left(Q_{n}\right)$ with $u[i]=a$. Furthermore, by splitting Q_{n-1}^{0} and Q_{n-1}^{1} along another direction $j \in[n] \backslash\{i\}$ we obtain four subcubes $Q_{n-2}^{00}, Q_{n-2}^{01}, Q_{n-2}^{10}$, and Q_{n-2}^{11}. Note that for $a, b \in\{0,1\}$ the subcube $Q_{n-2}^{a b}$ is induced by all vertices $u \in V\left(Q_{n}\right)$ with $u[i]=a$ and $u[j]=b$.

We consider a path P to be a nonempty sequence of distinct vertices such that every two consecutive vertices are adjacent. If a and b are the first and the last vertices of P, respectively, we say that P is an $a b$-path and a, b are its endvertices. Assume that an $a b$-path P and an $c d$-path R are (vertex) disjoint. If b and c are adjacent, then the concatenation of P and R is an $a d$-path. If P contains consecutive vertices x and y such that both x, c and y, d are adjacent, then by inserting R into P between x and y we obtain an $a b$-path containing vertices $P \cup R$. A reversed path of an $a b$-path P is the $b a$-path obtained by the reversed sequence.

It is well known that the hypercube Q_{n} for every $n \geq 2$ is Hamiltonian and also Hamiltonian-laceble; that is, there is a Hamiltonian path between every two vertices of opposite parity. We will also need several simple results on Hamiltonian cycles and paths in the hypercube with some removed vertices. The case of one removed vertex was described by Lewinter and Widulski [10].

Proposition 1. If distinct $u, v \in V\left(Q_{n}\right)$, where $n \geq 2$, have the same parity that is opposite to the parity of $x \in V\left(Q_{n}\right)$, then $Q_{n}-\{x\}$ has a Hamiltonian uv-path.

A similar result holds, up to one exception, for the case of two removed vertices that are adjacent.

Figure 1: All configurations (up to isomorphism) in Proposition 2 for $n=3$.

Proposition 2. If $u, v \in V\left(Q_{n}\right) \backslash\{x, y\}$, where $x y \in E\left(Q_{n}\right)$ and $n \geq 2$, have the opposite parity, then $Q_{n}-\{x, y\}$ has a Hamiltonian uv-path unless:

$$
\begin{equation*}
n=3, u \oplus v=x \oplus y, \text { and } d(u v, x y)=2 . \tag{1}
\end{equation*}
$$

Proof. The exceptional configuration (1) is depicted on Figure 1(a). We proceed by induction on the dimension n. For $n=2$ the statement trivially holds. For $n=3$, aside from the exceptional configuration (1), we have (up to isomorphism) another three configurations depicted on Figure 1(b)-(d). Observe that the statement holds for each of them.

For $n \geq 4$ we split Q_{n} into two subcubes Q_{n-1}^{0} and Q_{n-1}^{1} such that the edge $x y$ belongs to Q_{n-1}^{0} or Q_{n-1}^{1}, and moreover, the vertex v is in the other subcube than the edge $x y$. Assume without loss of generality that $x y \in E\left(Q_{n-1}^{0}\right)$ and $v \in V\left(Q_{n-1}^{1}\right)$. Considering the position of the vertex u, we distinguish two cases.

Case 1: $u \in V\left(Q_{n-1}^{1}\right)$. Let P_{1} be a Hamiltonian $u v$-path of Q_{n-1}^{1}. We claim that P_{1} contains consecutive vertices a and b such that their neighbors a^{\prime} and b^{\prime} in Q_{n-1}^{0} are distinct from both x and y, and the edge $a^{\prime} b^{\prime} \in E\left(Q_{n-1}^{0}\right)$ does not form the exceptional configuration (1) in Q_{n-1}^{0}. Since $n \geq 4$, the path P_{1} contains at least 7 edges. At most 4 of them contain a vertex whose neighbor in Q_{n-1}^{0} is x or y. In addition, at most one of them contains vertices whose neighbors in Q_{n-1}^{0} form the configuration (1). Hence P_{1} contains at least 2 edges that satisfy the claim.

Applying induction we obtain a Hamiltonian $a^{\prime} b^{\prime}$-path P_{0} of $Q_{n-1}^{0}-\{x, y\}$. By inserting P_{0} into P_{1} instead of the edge $a b$, we have the desired path.

Case 2: $u \in V\left(Q_{n-1}^{0}\right)$. First we choose a neighbor $a \in V\left(Q_{n-1}^{0}\right)$ of u such that the edge $u a$ does not form the configuration (1). Amongst neighbors of u in Q_{n-1}^{0} at most one is x or y, and at most one forms the configuration (1). Thus, such neighbor a exists since u has at least 3 neighbors in Q_{n-1}^{0}. Applying induction we obtain a Hamiltonian $u a$-path P_{0} of Q_{n-1}^{0}. Let a^{\prime} be
the neighbor of a in Q_{n-1}^{1}, and let P_{1} be a Hamiltonian $a^{\prime} v$-path of Q_{n-1}^{1}. By concatenating P_{0} and P_{1}, we are finished.

Let us denote by $N_{G}(u)$ the set of neighbors of a vertex u in a subgraph G of Q_{n}. If $G=Q_{n}$, the subscript Q_{n} is omitted. Recall that $N(\mathbf{0})=$ $\left\{e_{1}, \ldots, e_{n}\right\}$. For $n \geq 2$ and distinct $i, j \in[n]$, we define the set

$$
\begin{equation*}
A_{i j}=\left(N(\mathbf{0}) \backslash\left\{e_{i}, e_{j}\right\}\right) \cup\left(N\left(e_{i}\right) \backslash\left\{e_{i} \oplus e_{j}\right\}\right) . \tag{2}
\end{equation*}
$$

Note that $A_{i j}$ contains $n-2$ odd vertices and $n-1$ even vertices of Q_{n} including the vertex $\mathbf{0}$. We continue with a result on Hamiltonicity of Q_{n} in case of $2 n-3$ removed vertices of this set $A_{i j}$.

Proposition 3. If $z \in V\left(Q_{n}\right) \backslash A_{i j}$ is odd, $n \geq 2$, and $z \neq e_{i}$ where $i, j \in[n]$ are distinct, then $Q_{n}-A_{i j}$ has a Hamiltonian $e_{i} z$-path.

Figure 2: The Hamiltonian paths in Proposition 3 for $n=3$.

Proof. We proceed by induction on the dimension n. For $n=2$ the statement trivially holds. For $n=3$ we have either $z=e_{j}$ or $z=\mathbf{1}$. The Hamiltonian paths for both cases are depicted on Figure 2.

For $n \geq 4$ we choose $k \in[n]$ distinct from i and j, and we split Q_{n} along the direction k into subcubes Q_{n-1}^{0} and Q_{n-1}^{1}. For $A_{0}=A_{i j} \cap V\left(Q_{n-1}^{0}\right)$ and $A_{1}=A_{i j} \cap V\left(Q_{n-1}^{1}\right)$ observe that A_{0} restricted to $n-1$ directions of Q_{n-1}^{0} satisfies (2), and $A_{1}=\left\{e_{k}, e_{i} \oplus e_{k}\right\}$. The idea is to apply induction in Q_{n-1}^{0} and Proposition 2 in Q_{n-1}^{1}. We distinguish the following two cases regarding z; see Figures 3 and 4 for an illustration.

Case 1: $z \in V\left(Q_{n-1}^{0}\right)$. Applying induction we obtain a Hamiltonian $e_{i} z$-path P_{0} of $Q_{n-1}^{0}-A_{0}$. Note that P_{0} goes first from e_{i} to $e_{i} \oplus e_{j}$ since e_{i} has no other neighbors in $Q_{n-1}^{0}-A_{0}$. Let $a \neq e_{i}$ be the next vertex on P_{0} after $e_{i} \oplus e_{j}$, and let u and v be the neighbors of $e_{i} \oplus e_{j}$ and a in Q_{n-1}^{1}, i.e. $u=e_{i} \oplus e_{j} \oplus e_{k}$ and $v=a \oplus e_{k}$. By Proposition 2 for $x=e_{i} \oplus e_{k}$ and $y=e_{k}$, we obtain a Hamiltonian $u v$-path P_{1} of $Q_{n-1}^{1}-A_{1}$. Note that we

Figure 3: The case $z \in V\left(Q_{n-1}^{0}\right)$ in Proposition 3 for $n=4$.
avoid the exceptional configuration (1) since $d(u, x)=1$. By inserting P_{1} into P_{0} instead of the edge between $e_{i} \oplus e_{j}$ and a, we construct the desired path.

Figure 4: The case $z \in V\left(Q_{n-1}^{1}\right)$ in Proposition 3 for $n=4$.

Case 2: $z \in V\left(Q_{n-1}^{1}\right)$. Applying induction we obtain a Hamiltonian path P_{0} of $Q_{n-1}^{0}-A_{0}$ between e_{i} and $u=e_{j}$. By Proposition 2 for $x=e_{i} \oplus e_{k}$ and $y=e_{k}$ we obtain a Hamiltonian path P_{1} of $Q_{n-1}^{1}-A_{1}$ between $v=e_{j} \oplus e_{k}$ and z. Note that we avoid the exceptional configuration (1) since $d(v, y)=1$. It remains to concatenate P_{0} and P_{1}, and we are done.

For the sake of simplicity, the set $A_{i j}$ is defined and Proposition 3 is stated with respect to the vertex $\mathbf{0}$. However, note that by the automorphism of Q_{n}, Proposition 3 could be stated more generally for the set $A_{i j}^{\prime}=A_{i j} \oplus w$ and the endvertices $e_{i}^{\prime}=e_{i} \oplus w, z^{\prime}=z \oplus w$ for any $w \in V\left(Q_{n}\right)$. Typically, we will apply Proposition 3 in Lemma 1 for $w=\mathbf{1}$.

3 Path partition of $Q_{n}-\{0,1\}$

Assume that we have $2 k$ distinct vertices a_{1}, \ldots, a_{k} and b_{1}, \ldots, b_{k} of a subgraph G of Q_{n}. We say that G has an $a_{i} b_{i}$-paths partition if $V(G)$ can be partitioned into k vertex-disjoint paths of G between a_{i} and b_{i}. Note that this notion generalizes the problem of Hamiltonian paths for more paths with prescribed endvertices, and it was previously studied for hypercubes by Caha and Koubek [1], and by Dvořák and Gregor [4] and also in a variation of faulty vertices [3].

We proceed with a technical, but useful lemma on $a_{i} b_{i}$-paths partition of $Q_{n}-\{\mathbf{0}, \mathbf{1}\}$.

Lemma 1. Let $n \geq 3$ be odd, $k=n-1,\left\{a_{1}, \ldots, a_{k}\right\} \subseteq N(\mathbf{0}),\left\{b_{1}, \ldots, b_{k}\right\} \subseteq$ $N(\mathbf{1})$ such that $a_{1}=\overline{b_{1}}$ and $a_{i} \neq \overline{b_{i}}$ for every $1<i \leq k$. Then $Q_{n}-\{\mathbf{0}, \mathbf{1}\}$ has an $a_{i} b_{i}$-paths partition.

Figure 5: The only (up to isomorphism) configuration in Lemma 1 for $n=3$.
Proof. For $n=3$ there is only one (up to isomorphism) configuration of sets $\left\{a_{1}, a_{2}\right\} \subseteq N(\mathbf{0})$ and $\left\{b_{1}, b_{2}\right\} \subseteq N(\mathbf{1})$ such that $a_{1}=\overline{b_{1}}$ and $a_{2} \neq \overline{b_{2}}$. This configuration with the $a_{i} b_{i}$-paths partition of $Q_{n}-\{\mathbf{0}, \mathbf{1}\}$ is depicted on Figure 5.

Now we assume that $n \geq 5$. Let a_{0} and b_{0} denote the remaining neighbors of $\mathbf{0}$ and $\mathbf{1}$ that are not amongst a_{1}, \ldots, a_{k} and b_{1}, \ldots, b_{k}, respectively.
Claim 1. The hypercube Q_{n} can be split along two distinct directions $d_{1}, d_{2} \in$ $[n]$ into four subcubes $Q_{n-2}^{00}, Q_{n-2}^{01}, Q_{n-2}^{10}$, and Q_{n-2}^{11} such that
(i) $\left\{a_{0}, a_{1}\right\} \subseteq V\left(Q_{n-2}^{00}\right),\left\{b_{0}, b_{1}\right\} \subseteq V\left(Q_{n-2}^{11}\right)$, and
(ii) $\left\{a_{i}, b_{i}\right\} \subseteq V\left(Q_{n-2}^{01}\right)$ or $\left\{a_{i}, b_{i}\right\} \subseteq V\left(Q_{n-2}^{10}\right)$ for at most one $i \in[k]$;
unless $n=5$ and a_{i} 's with b_{i} 's comprise the configuration depicted on Figure 6 .

Figure 6: The only exceptional configuration which does not allow splitting satisfying conditions (i) and (ii) in Claim 1 for $n=5$.

Proof of Claim 1. To satisfy the condition (i), at most 3 directions from $[n]$ are forbidden for d_{1} and d_{2}. More precisely, if $a_{0}=e_{p}, \overline{b_{0}}=e_{q}$, and $a_{1}=\overline{b_{1}}=e_{r}$, then we satisfy (i) if and only if we choose d_{1} and d_{2} from the set $D=[n] \backslash\{p, q, r\}$. Note that r is distinct from both p and q, but we may have $p=q$ in general.

In the first step, we choose d_{1} arbitrarily from D, and we split Q_{n} into Q_{n-1}^{0} and Q_{n-1}^{1} along the direction d_{1}. Then we obtain $b_{j} \in V\left(Q_{n-1}^{0}\right)$ and $a_{l} \in V\left(Q_{n-1}^{1}\right)$ for exactly one j and exactly one l with $1<j, l \leq k$. Observe that $j \neq l$ since $a_{i} \neq \overline{b_{i}}$ for every $1<i \leq k$. By renaming the vertices we may assume that $j=2$ and $l=3$. Thus, we have

$$
\begin{equation*}
b_{2}\left[d_{1}\right]=a_{2}\left[d_{1}\right]=0 \quad \text { and } \quad a_{3}\left[d_{1}\right]=b_{3}\left[d_{1}\right]=1 . \tag{3}
\end{equation*}
$$

To satisfy also (ii), it suffices to choose $d_{2} \in D \backslash\left\{d_{1}\right\}$ such that $a_{2}\left[d_{2}\right] \neq b_{2}\left[d_{2}\right]$ or $b_{3}\left[d_{2}\right] \neq a_{3}\left[d_{2}\right]$. Since a_{i} and b_{i} differ in exactly $n-2$ directions for every $1<i \leq k$, and by (3), such $d_{2} \in D \backslash\left\{d_{1}\right\}$ exists if $n \geq 7$ or $p=q$.

Now suppose that $n=5, p \neq q$, and for the unique choice of $d_{2} \in D \backslash\left\{d_{1}\right\}$ we have $a_{2}\left[d_{2}\right]=b_{2}\left[d_{2}\right]$ and $b_{3}\left[d_{2}\right]=a_{3}\left[d_{2}\right]$. Notice that it must be $a_{2}\left[d_{2}\right]=$ $b_{2}\left[d_{2}\right]=1$ and $b_{3}\left[d_{2}\right]=a_{3}\left[d_{2}\right]=0$. If follows that
$a_{0}=\overline{b_{4}}=e_{p}, a_{1}=\overline{b_{1}}=e_{r}, a_{2}=\overline{b_{3}}=e_{d_{2}}, a_{3}=\overline{b_{2}}=e_{d_{1}}$, and $a_{4}=\overline{b_{0}}=e_{q}$.
This is exactly the configuration which is depicted on Figure 6. Therefore the claim holds.

Figure 7: The construction of $a_{i} b_{i}$-path partition in Case 1 of Lemma 1.

The $a_{i} b_{i}$-paths partition for this exceptional configuration is also depicted on Figure 6. So, now we assume that we have splitting of Q_{n} such that conditions (i) and (ii) hold. Furthermore, by renaming the vertices we may assume that $b_{2} \in V\left(Q_{n-2}^{01}\right)$ and $a_{3} \in V\left(Q_{n-2}^{10}\right)$. Moreover, by exchanging d_{1} and d_{2} we may assume that $\left\{a_{i}, b_{i}\right\} \subseteq V\left(Q_{n-2}^{01}\right)$ for no $i \in[k]$, and therefore $a_{2} \notin V\left(Q_{n-2}^{01}\right)$. Thus, by renaming the vertices we have, say $a_{4} \in V\left(Q_{n-2}^{01}\right)$.

The idea of the rest of the proof is to apply induction in Q_{n-2}^{00}, Proposition 3 in Q_{n-2}^{10} and in Q_{n-2}^{11}, and Proposition 1 in Q_{n-2}^{01}, and then glue all the paths together in order to obtain an $a_{i} b_{i}$-paths partition of $Q_{n}-\{\mathbf{0}, \mathbf{1}\}$. To this end, we distinguish two cases regarding whether b_{3} is in Q_{n-2}^{10}. But before, to avoid ambiguity, let us mention that below we write simply $\{i, j, \ldots k\}$ also for $k \leq j$ to denote the set $\{i\} \cup([k] \backslash[j-1])$.

Case 1: $b_{3} \in V\left(Q_{n-2}^{10}\right)$. We start with the construction of an $a_{4} b_{4}$-path in Q_{n-2}^{11} and Q_{n-2}^{01}. Note that most of the vertices of Q_{n-2}^{11} and Q^{01} are on this path. See Figure 7 for an illustration. Let $i, j \in[n] \backslash\left\{d_{1}, d_{2}\right\}$ be such that $b_{4}=\overline{e_{i}}$ and $b_{0}=\overline{e_{j}}$. Furthermore, let

$$
B=\left\{b_{l} \mid l \in\{1,5, \ldots, k\}\right\} \text { and } C=\left\{c_{l}=b_{l} \oplus e_{i} \mid l \in\{1,5, \ldots, k\}\right\} .
$$

Note that

$$
N_{Q_{n-2}^{11}}(\mathbf{1})=B \cup\left\{b_{0}, b_{4}\right\} \text { and } N_{Q_{n-2}^{11}}\left(b_{4}\right)=C \cup\left\{\mathbf{1}, b_{4} \oplus e_{j}\right\} .
$$

Thus, applying Proposition 3 for the set $A_{i j}=B \cup C \cup\{\mathbf{1}\}$, we obtain a Hamiltonian $b_{4} b_{0}$-path P_{11} of $Q_{n-2}^{11}-A_{i j}$.

Note that the vertex $w=b_{0} \oplus e_{d_{1}}$ is adjacent to b_{2} in Q_{n-2}^{01}, and therefore, w is distinct from a_{4} but has the same parity as a_{4} which is opposite to the parity of b_{2}. So, we may apply Proposition 1 to construct a Hamiltonian $w a_{4}$-path P_{01} of $Q_{n-2}^{01}-\left\{b_{2}\right\}$. By concatenating P_{11} and P_{01}, we obtain the reversed $a_{4} b_{4}$-path.

Second, we construct an $a_{3} b_{3}$-path in Q_{n-2}^{10}. Note that most of the vertices of Q_{n-2}^{10} are on this path. Let
$B^{*}=\left\{b_{l}^{*}=b_{l} \oplus e_{d_{2}} \mid l \in\{1,5, \ldots, k\}\right\}$ and $C^{*}=\left\{c_{l}^{*}=b_{l}^{*} \oplus e_{i} \mid l \in\{1,5, \ldots, k\}\right\}$,
and let $u=b_{3} \oplus e_{i}$ and $v=b_{3} \oplus e_{j}$. Note that the vertices b_{3}, u, and v in Q_{n-2}^{10} correspond to the vertices $1, b_{4}$, and b_{0} in Q_{n-2}^{11}. Similarly as above, observe that

$$
N_{Q_{n-2}^{10}}\left(b_{3}\right)=B^{*} \cup\{u, v\} \text { and } N_{Q_{n-2}^{10}}(u)=C^{*} \cup\left\{b_{3}, u \oplus e_{j}\right\} .
$$

Hence, applying Proposition 3 for the set $A_{i j}^{*}=B^{*} \cup C^{*} \cup\left\{b_{3}\right\}$, we obtain a Hamiltonian $a_{3} u$-path P_{10} of $Q_{n-2}^{10}-A_{i j}^{*}$. By prolonging this path from u to b_{3}, we have the $a_{3} b_{3}$-path.

Finally, we construct the remaining paths. Let $x=b_{2} \oplus e_{d_{2}}, B^{\prime}=\left\{b_{l}^{\prime}=\right.$ $\left.b_{l}^{*} \oplus e_{d_{1}} \mid l \in\{1,5, \ldots, k\}\right\}$. Notice that all these vertices are in Q_{n-2}^{00}, x has the role of 1 in Q_{n-2}^{00} and is adjacent to all vertices of B^{\prime}. Furthermore, let t_{1}, t_{2} be the remaining two neighbors of x in Q_{n-2}^{00} that are not in B^{\prime}; that is, $t_{1}=x \oplus e_{j}=x \oplus \overline{b_{0}}$ and $t_{2}=x \oplus e_{i}=x \oplus \overline{b_{4}}$.

Observe that $d\left(a_{1}, b_{1}^{\prime}\right)=n-2$ since $d\left(a_{1}, b_{1}\right)=n$. So the vertices a_{1} and b_{1}^{\prime} are complementary in Q_{n-2}^{00}. Similarly, $d\left(a_{l}, b_{l}^{\prime}\right)=n-4$ since $d\left(a_{l}, b_{l}\right)=n-2$ for every $l \in\{5, \ldots, k\}$. We choose $b_{2}^{\prime} \in\left\{t_{1}, t_{2}\right\}$ such that also $d\left(a_{2}, b_{2}^{\prime}\right)=$ $n-4$. Applying induction we obtain an $a_{l} b_{l}^{\prime}$-paths partition of $Q_{n-2}^{00}-\{\mathbf{0}, x\}$ where $l \in\{1,2,5, \ldots, k\}$. Then, we prolong the $a_{2} b_{2}^{\prime}$-path through x to b_{2}, and each $a_{l} b_{l}^{\prime}$-path through b_{l}^{*}, c_{l}^{*}, and c_{l} to b_{l} for $l \in\{1,5, \ldots, k\}$. Thus, we obtain remaining $a_{l} b_{l}$-paths.

To conclude Case 1, observe (on Figure 7) that all $a_{i} b_{i}$-paths for $i \in[k]$ are vertex-disjoint and they cover all vertices of $Q_{n}-\{\mathbf{0}, \mathbf{1}\}$.

Case 2: $b_{3} \notin V\left(Q_{n-2}^{10}\right)$. The constructions in this case differ only in small details to the construction in the previous case. However, for the sake of completeness, we present here the entire argument. First, recall that b_{0},

Figure 8: The construction of $a_{i} b_{i}$-path partition in Case 2.A of Lemma 1.
b_{1}, b_{2}, and b_{3} are not in Q_{n-2}^{10}. Moreover, b_{4} cannot be in Q_{n-2}^{10} since a_{4} is Q_{n-2}^{01} and $a_{4} \neq \overline{b_{4}}$. Thus, by renaming the vertices we may assume that $b_{5} \in V\left(Q_{n-2}^{10}\right)$. Note that it follows that $n \geq 7$ in Case 2 .

We start with the construction of an $a_{4} b_{4}$-path in Q_{n-2}^{11} and Q_{n-2}^{01} which is completely the same as above. Let $i, j \in[n] \backslash\left\{d_{1}, d_{2}\right\}$ be such that $b_{4}=\overline{e_{i}}$ and $b_{0}=\overline{e_{j}}$. Furthermore, let

$$
B=\left\{b_{l} \mid l \in\{1,3,6, \ldots, k\}\right\} \text { and } C=\left\{c_{l}=b_{l} \oplus e_{i} \mid l \in\{1,3,6, \ldots, k\} .\right.
$$

Note that

$$
N_{Q_{n-2}^{11}}(\mathbf{1})=B \cup\left\{b_{0}, b_{4}\right\}
$$

and

$$
N_{Q_{n-2}^{11}}\left(b_{4}\right)=C \cup\left\{\mathbf{1}, b_{4} \oplus e_{j}\right\} .
$$

Thus, applying Proposition 3 for the set $A_{i j}=B \cup C \cup\{\mathbf{1}\}$, we obtain a Hamiltonian $b_{4} b_{0}$-path P_{11} of $Q_{n-2}^{11}-A_{i j}$. Second, we apply Proposition 1 to construct a Hamiltonian path P_{01} between vertices $w=b_{0} \oplus e_{d_{1}}$ and a_{4} in $Q_{n-2}^{01}-\left\{b_{2}\right\}$. By concatenating P_{11} and P_{01}, we obtain the reversed $a_{4} b_{4}$-path. Now we distinguish two subcases regarding $d\left(a_{5}, b_{3}\right)$.

Subcase 2.A: $d\left(a_{5}, b_{3}\right)=n-2$. We construct an $a_{3} b_{3}$-path in Q_{n-2}^{10} and Q_{n-2}^{11}. See Figure 8 for an illustration. Again, let
$B^{*}=\left\{b_{l}^{*}=b_{l} \oplus e_{d_{2}} \mid l \in\{1,3,6, \ldots, k\}\right\}$ and $C^{*}=\left\{c_{l}^{*}=b_{l}^{*} \oplus e_{i} \mid l \in\{1,3,6, \ldots, k\}\right\}$,
and let $u=b_{5} \oplus e_{i}$ and $v=b_{5} \oplus e_{j}$. Similarly as above, observe that

$$
N_{Q_{n-2}^{10}}\left(b_{5}\right)=B^{*} \cup\{u, v\} \text { and } N_{Q_{n-2}^{10}}(u)=C^{*} \cup\left\{b_{5}, u \oplus e_{j}\right\} .
$$

Hence, applying Proposition 3 for the set $A_{i j}^{*}=B^{*} \cup C^{*} \cup\left\{b_{5}\right\}$, we obtain a Hamiltonian $a_{3} u$-path P_{10} of $Q_{n-2}^{10}-A_{i j}^{*}$. By prolonging this path from u through c_{3}^{*} and c_{3} to b_{3}, we have the $a_{3} b_{3}$-path.

Finally, we construct the remaining paths. Let $x=b_{2} \oplus e_{d_{2}}, B^{\prime}=\left\{b_{l}^{\prime}=\right.$ $\left.b_{l}^{*} \oplus e_{d_{1}} \mid l \in\{1,3,6, \ldots, k\}\right\}$. Furthermore, let t_{1}, t_{2} be the remaining two neighbors of x in Q_{n-2}^{00} that are not in B^{\prime}; that is, $t_{1}=x \oplus e_{j}=x \oplus \overline{b_{0}}$ and $t_{2}=x \oplus e_{i}=x \oplus \overline{b_{4}}$.

Observe that $d\left(a_{1}, b_{1}^{\prime}\right)=n-2$ since $d\left(a_{1}, b_{1}\right)=n$. So the vertices a_{1} and b_{1}^{\prime} are complementary in Q_{n-2}^{00}. Similarly, $d\left(a_{l}, b_{l}^{\prime}\right)=n-4$ since $d\left(a_{l}, b_{l}\right)=n-2$ for every $5<l \leq k$. We put $b_{5}^{\prime}=b_{3}^{\prime}$. Since $d\left(a_{5}, b_{3}\right)=n-2$ in this subcase, we have that $d\left(a_{5}, b_{5}^{\prime}\right)=n-4$. Furthermore, we choose $b_{2}^{\prime} \in\left\{t_{1}, t_{2}\right\}$ such that also $d\left(a_{2}, b_{2}^{\prime}\right)=n-4$. Applying induction we obtain an $a_{l} b_{l}^{\prime}$-paths partition of $Q_{n-2}^{00}-\{\mathbf{0}, x\}$ where $l \in\{1,2\} \cup\{5, \ldots, k\}$. Then, we prolong the $a_{2} b_{2}^{\prime}$-path through x to b_{2}, the $a_{5} b_{5}^{\prime}$-path through b_{3}^{*} to b_{5}, and the $a_{l} b_{l}^{\prime}$-path through b_{l}^{*}, c_{l}^{*}, and c_{l} to b_{l} for every $l \in\{1,6, \ldots, k\}$. Thus, we obtain the remaining $a_{l} b_{l}$-paths.

To conclude Subcase 2.B, observe (on Figure 8) that all $a_{i} b_{i}$-paths for $i \in[k]$ are vertex-disjoint and they cover all vertices of $Q_{n}-\{\mathbf{0}, \mathbf{1}\}$.

Subcase 2.B: $d\left(a_{5}, b_{3}\right)=n$. In this subcase we have to apply induction in Q_{n-2}^{00} in a different way than in the previous subcase. The reason is that we need $d\left(a_{5}, b_{5}^{\prime}\right)=n-4$, so now we cannot put $b_{5}^{\prime}=b_{3}^{\prime}$ as we did before. As a consequence, we have to construct also an $a_{3} b_{3}$-path in Q_{n-2}^{10} and Q_{n-2}^{11} in a different way. See Figure 9 for an illustration.

Again, let $B^{*}=\left\{b_{l}^{*}=b_{l} \oplus e_{d_{2}} \mid l \in\{0,1,6, \ldots, k\}\right\}$ and $C^{*}=\left\{c_{l}^{*}=\right.$ $\left.b_{l}^{*} \oplus e_{i} \mid l \in\{0,1,6, \ldots, k\}\right\}$, and let $u=b_{5} \oplus e_{i}, b_{3}^{*}=b_{3} \oplus e_{d_{2}}$, and $c_{3}^{*}=b_{3}^{*} \oplus e_{i}$. Similarly as above, observe that

$$
N_{Q_{n-2}^{10}}\left(b_{5}\right)=B^{*} \cup\left\{u, b_{3}^{*}\right\} \text { and } N_{Q_{n-2}^{10}}(u)=C^{*} \cup\left\{b_{5}, c_{3}^{*}\right\} .
$$

Hence, applying Proposition 3 for the set $A_{i j}^{*}=B^{*} \cup C^{*} \cup\left\{b_{5}\right\}$, we obtain a Hamiltonian $a_{3} u$-path P_{10} of $Q_{n-2}^{10}-A_{i j}^{*}$. Note that c_{3}^{*} is the vertex previous to u on P_{10} since u has no other neighbor in $Q_{n-2}^{10}-A_{i j}^{*}$ than c_{3}^{*}. By deleting

Figure 9: The construction of $a_{i} b_{i}$-path partition in Case 2.B of Lemma 1.
the vertex u from P_{10} and prolonging this path from c_{3}^{*} through c_{3} to b_{3}, we have the $a_{3} b_{3}$-path.

Finally, we construct the remaining paths. Let $x=b_{2} \oplus e_{d_{2}}, B^{\prime}=\left\{b_{l}^{\prime}=\right.$ $\left.b_{l}^{*} \oplus e_{d_{1}} \mid l \in\{1,3,6, \ldots, k\}\right\}$. Furthermore, let t_{1}, t_{2} be the remaining two neighbors of x in Q_{n-2}^{00} that are $t_{1}=x \oplus e_{j}=x \oplus \overline{b_{0}}$ and $t_{2}=x \oplus e_{i}=x \oplus \overline{b_{4}}$. We put $b_{5}^{\prime}=t_{1}$, so $d\left(a_{5}, b_{5}^{\prime}\right)=n-4$ since $d\left(a_{5}, b_{3}^{\prime}\right)=n-2$. We also choose $b_{2}^{\prime} \in\left\{b_{3}^{\prime}, t_{2}\right\}$ such that $d\left(a_{2}, b_{2}^{\prime}\right)=n-4$.

Again, observe that $d\left(a_{1}, b_{1}^{\prime}\right)=n-2$ since $d\left(a_{1}, b_{1}\right)=n$, and $d\left(a_{l}, b_{l}^{\prime}\right)=$ $n-4$ for every $l \in\{1,2,5, \ldots, k\}$. Hence, applying induction we obtain an $a_{l} b_{l}^{\prime}$-paths partition of $Q_{n-2}^{00}-\{\mathbf{0}, x\}$ where $l \in\{1,2,5, \ldots, k\}$. Then, we prolong the $a_{2} b_{2}^{\prime}$-path through x to b_{2}, the $a_{5} b_{5}^{\prime}$-path through b_{0}^{*}, c_{0}^{*}, and u to b_{5}, and each $a_{l} b_{l}^{\prime}$-path through b_{l}^{*}, c_{l}^{*}, and c_{l} to b_{l} for $l \in\{1,6, \ldots, k\}$. Therefore, we obtain the remaining $a_{l} b_{l}$-paths.

To conclude Subcase 2.B, observe (on Figure 9) that all $a_{i} b_{i}$-paths for $i \in[k]$ are vertex-disjoint and they cover all vertices of $Q_{n}-\{\mathbf{0}, \mathbf{1}\}$.

4 Hamiltonicity of G_{n}^{2}

Recall that G_{n}^{2} is the graph induced on Q_{n} by levels from 2 to $n-2$; that is,

$$
G_{n}^{2}=Q_{n}-(\{\mathbf{0}, \mathbf{1}\} \cup N(\mathbf{0}) \cup N(\mathbf{1})) .
$$

For our convenience, we use the following notation of vertices in subcubes of Q_{n}. Assume that Q_{n} is split along two fixed directions $d_{1}, d_{2} \in[n]$ into four subcubes $Q_{n-2}^{00}, Q_{n-2}^{01}, Q_{n-2}^{10}$, and Q_{n-2}^{11}, which are isomorphic to Q_{n-2}. For $w \in\{00,01,10,11\}$ and $x \in V\left(Q_{n-2}\right)$ we denote by x^{w} the copy of the vertex x in the subcube Q_{n-2}^{w}.
Theorem 1. G_{n}^{2} is Hamiltonian for every odd $n \geq 5$.
Proof. We proceed by induction on n. The statement holds for $n=5$ since G_{5}^{2} is the middle level graph which is known to be Hamiltonian [15]. For $n \geq 7$ we split Q_{n} along two arbitrary directions into four subcubes Q_{n-2}^{00}, $Q_{n-2}^{01}, Q_{n-2}^{10}$, and Q_{n-2}^{11}. For $w \in\{00,11\}$ let H^{w} denote a copy of G_{n-2}^{2} in Q_{n-2}^{w}, that is

$$
H^{w}=Q_{n-2}^{w}-\left(\left\{\mathbf{0}^{w}, \mathbf{1}^{w}\right\} \cup N_{Q_{n-2}^{w}}\left(\mathbf{0}^{w}\right) \cup N_{Q_{n-2}^{w}}\left(\mathbf{1}^{w}\right)\right) .
$$

Initially, applying induction we obtain Hamiltonian cycles C_{1} and C_{2} of H^{00} and H^{11}, respectively. Next, we construct a Hamiltonian cycle C_{3} of $G_{n}^{2} \backslash\left(H^{00} \cup H^{11}\right)$ and finally, we interconnect C_{3} with copies of C_{1} and C_{2} mapped by properly chosen automorphisms of H^{00} and H^{11}.

The construction of C_{3} is as follows. First, we label the neighbors of $\mathbf{0}$ and $\mathbf{1}$ in Q_{n-2} in the following way. Let $p_{i}=e_{i}$ for every $i \in[n-2]$, and let
$q_{1}=\overline{e_{1}}, q_{2}=\overline{e_{4}}, q_{3}=\overline{e_{2}}, q_{n-2}=\overline{e_{3}}$, and $q_{i}=\overline{e_{i+1}} \quad$ for every $4 \leq i \leq n-3$.
Note that $p_{1}=\overline{q_{1}}$ and $p_{i} \neq \overline{q_{i}}$ for every $1<i \leq n-3$. We use corresponding labelings p_{i}^{w} and q_{i}^{w} in Q_{n-2}^{w} for each $w \in\{00,01,10,11\}$.

Hence, by Lemma $1, Q_{n-2}^{01}-\left\{\mathbf{0}^{01}, \mathbf{1}^{01}\right\}$ can be partitioned into $n-3$ vertex-disjoint paths P_{i} between p_{i}^{01} and q_{i}^{01} for $i \in[n-3]$. Similarly, since $p_{2}=\overline{q_{3}}, p_{n-2} \neq \overline{q_{2}}$ and $p_{i} \neq \overline{q_{i+1}}$ for $2<i \leq n-3, Q_{n-2}^{10}-\left\{\mathbf{0}^{10}, \mathbf{1}^{10}\right\}$ can be partitioned into $n-3$ vertex-disjoint paths R_{i} between q_{i+1}^{10} and p_{i}^{10} for $2 \leq i \leq n-3$, and R_{1} between q_{2}^{10} and p_{n-2}^{10}. See Figure 10 for an illustration.

To construct C_{3}, we interconnect paths R_{i} and P_{i} at Q_{n-2}^{11}, and paths P_{i} and R_{i-1} at Q_{n-2}^{00} as follows (here R_{0} means R_{n-3}). The path R_{1} continues from p_{n-2}^{10} through $p_{n-2}^{11}, \mathbf{0}^{11}, p_{1}^{11}$ to the vertex p_{1}^{01} of P_{1}. The path R_{i} for $2 \leq i \leq n-3$ continues from p_{i}^{10} through p_{i}^{11} to the vertex p_{i}^{01} of P_{i}. The

Figure 10: The construction in Theorem 1 with $n=7$.
path P_{1} continues from q_{1}^{01} through $q_{1}^{00}, \mathbf{1}^{00}, q_{n-2}^{00}$ to the vertex q_{n-2}^{10} of R_{n-3}. The path P_{i} for $2 \leq i \leq n-3$ continues from q_{i}^{01} through q_{i}^{00} to the vertex q_{i}^{10} of R_{i-1}. These connections are presented with green color on Figure 10. The choices of endvertices of paths P_{i} 's and R_{i} 's allow these connections which assures that C_{3} is a Hamiltonian cycle of $G_{n}^{2} \backslash\left(H^{00} \cup H^{11}\right)$.

To conclude the proof, we interconnect C_{3} with copies of C_{1} and C_{2}. For two adjacent vertices u and v of Q_{n} we say that u is a light neighbor of v if $w(u)<w(v)$, otherwise u is a heavy neighbor of v. Since $w\left(p_{1}\right)=1$ and $w\left(q_{1}\right)=n-3 \geq 4$, the $p_{1}^{01} q_{1}^{01}$-path $P_{1} \subset C_{3}$ contains a vertex x^{01} such that $w(x)=2$ and x^{01} has a heavy neighbor on P_{1}. Note that the neighbor x^{00} of x^{01} in Q_{n-2}^{00} belongs to C_{1}.

Let y^{00} be one of two neighbors of x^{00} on C_{1}. Observe that y^{00} is a heavy neighbor of x^{00} since $w\left(x^{00}\right)=w(x)=2$ and C_{1} does not visit vertices of weight 1 . Then, let z^{01} be a heavy neighbor of x^{01} on P_{1}. Let i and j be the directions of edges $x^{00} y^{00} \in E\left(C_{1}\right), x^{01} z^{01} \in E\left(C_{3}\right)$, respectively. If $i=j$, then y^{00} and z^{01} are adjacent in G_{n}^{2}, so we can interconnect C_{1} with C_{3} directly by replacing the edges $x^{00} z^{00} \in E\left(C_{1}\right)$ and $x^{01} z^{01} \in E\left(C_{3}\right)$ with $x^{00} x^{01}, z^{00} z^{01} \in E\left(G_{n}^{2}\right)$.

Now we assume $i \neq j$. Thus, we have

Figure 11: The interconnection of the path P_{1} and a copy C_{1}^{*} of the cycle C_{1}.

- $y^{00}[i]=z^{01}[j]=1$, and
- $x^{00}[i]=x^{01}[i]=z^{01}[i]=x^{01}[j]=x^{00}[j]=y^{00}[j]=0$.

Hence, by switching the directions i and j we obtain a bijection π of $V\left(H^{00}\right)$ such that $\pi\left(x^{00}\right)=x^{00}$ and $\pi\left(y^{00}\right)=z^{00}$ where z^{00} is the neighbor of z^{01} in Q_{n-2}^{00}. Moreover, π is an automorphism of H^{00}, and therefore, $C_{1}^{*}=\pi\left(C_{1}\right)$ is a Hamiltonian cycle of H^{00} containing the edge $x^{00} z^{00}$. Therefore, we can interconnect C_{1}^{*} with C_{3} by replacing the edges $x^{00} z^{00} \in E\left(C_{1}^{*}\right)$ and $x^{01} z^{01} \in E\left(C_{3}\right)$ with $x^{00} x^{01}, z^{00} z^{01} \in E\left(G_{n}^{2}\right)$. See Figure 11 for an illustration, where C_{1} is represented by green and C_{1}^{*} by blue color.

To interconnect C_{3} also with a copy of C_{2}, we proceed similarly with the path $R_{1} \subset C_{3}$ in Q^{10} as above. By a proper choice of a vertex x^{10} (with his neighbor z^{10}) on R_{1} and an automorphism of H^{11} which maps an edge of C_{2} to $x^{11} z^{11}$ we easily connect C_{3} and a copy of C_{2}. Therefore, we obtain a Hamiltonian cycle of G_{n}^{2}.

References

[1] R. Caha, V. Koubek, Spanning multi-paths in hypercubes, Discrete Math. 307 (2007), 2053-2066.
[2] I. J. Dejter, W. Cedeno, and V. Jauregui, A note on Frucht diagrams, Boolean graphs and Hamilton cycles, Discrete Math. 114 (1993), 131-135.
[3] T. Dvořák, P. Gregor, Partitions of faulty hypercubes into paths with prescribed endvertices, SIAM J. Discrete Math. 22 (2008), 14481461.
[4] T. Dvořák, P. Gregor, Path partitions of hypercubes, Inform. Process. Lett. 108 (2008), 402-406.
[5] M. El-Hashash, A. Hassan, On the Hamiltonicity of two subgraphs of the hypercube, Congr. Numer. 148 (2001), 7-32.
[6] I. Havel, Semipaths in directed cubes, in M. Fiedler (ed.), Graphs and Other Combinatorial Topics, Teubner, Leipzig, 1983, 101-108.
[7] P. Horák, T. Kaiser, M. Rosenfeld, Z. Ryjáček, The prism over the middle-levels graph is Hamiltonian, Order 22 (1) (2005), 73-81.
[8] G. Hurlbert, The antipodal layers problem, Discrete Math. 128 (1994), 237-245.
[9] J. R. Johnson, Long cycles in the middle two layers of the discrete cube, J. Combin. Theory Ser. A 105 (2) (2004), 255-271.
[10] M. Lewinter, W. Widulski, Hyper-Hamilton laceable and caterpillar-spannable product graphs, Comput. Math. Appl. 34 (1997), 99-104.
[11] L. Lovász, Problem 11, in: Combinatorial Structures and their Applications, Gorden and Breach, 1970.
[12] S. C. Locke, R. Stong, Spanning Cycles in Hypercubes: 10892, Am. Math. Mon. 110 (2003), 440-441.
[13] C. D. Savage, P. Winkler, Monotone Gray code and the middle levels problem, J. Combin. Theory Ser. A 70 (2) (1995), 230-248.
[14] J. Schmidt, Boolean layer cakes. Proceedings ORDAL 96., Theor. Comput. Sci. 217 (1999), 255-278.
[15] I. Shields, C. D. Savage, A Hamilton path heuristic with applications to the Middle two levels problem, Congr. Numer. 140 (1999), 161-178.
[16] I. Shields, B. J. Shields, and C. D. Savage, An update on the middle levels problem, Discrete Math., to appear.

[^0]: *This research was supported by the Czech-Slovenian bilateral grant MEB 090805, by the Czech Ministry of Education project MSM 0021620834, and by the Czech Science Foundation Grant 201/08/P298.
 ${ }^{\dagger}$ Department of Theoretical Computer Science and Mathematical Logic, Charles University, Malostranské nám. 25, 11800 Prague, Czech Republic, gregor@ktiml.mff.cuni.cz.
 ${ }^{\ddagger}$ Department of Mathematics, University of Ljubljana, Jadranska 21, 1000 Ljubljana, Slovenia.

