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Abstract

Let Gk
n be the subgraph of the hypercube Qn induced by levels

between k and n−k, where n ≥ 2k+1 is odd. The well-known middle
level conjecture asserts that Gk

2k+1
is Hamiltonian for all k ≥ 1. We

study this problem in Gk
n for fixed k. It is known that G0

n and G1
n

are Hamiltonian for all odd n ≥ 3. In this paper we prove that also
G2

n is Hamiltonian for all odd n ≥ 5, and we conjecture that Gk
n is

Hamiltonian for every k ≥ 0 and every odd n ≥ 2k + 1.

1 Introduction

Let Gk
n be the subgraph of the n-dimensional hypercube Qn induced by the

vertices in levels between k and n − k, where n ≥ 2k + 1 is odd. The level i
consists of vertices with exactly i 1’s. Note that n is required to be odd in
order to have bipartite classes of equal size in Gk

n.
The well-know middle level conjecture, attributed to Havel [6], asserts

that the graph Gk
2k+1

consisting of two middle levels k and k + 1 of Q2k+1 is
Hamiltonian for all k ≥ 1. This graph is a notorious example of a connected
vertex transitive graph, all of which were conjectured by Lovász [11] to have
Hamiltonian paths.

Despite many attempts, the middle level problem remains open. The
conjecture was verified for k ≤ 11 by Moews and Reid in unpublished work
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in 1990. Then it was extended by Shields, Shields, and Savage [15, 16] also
for 12 ≤ k ≤ 17.

One possible relaxation of this problem is to show that Gk
2k+1

at least
contains long cycles. Savage and Winkler [13] showed that Gk

2k+1
has a cycle

of length at least 0.867|V (Gk
2k+1

)|. The best lower bound by Johnson [9]
shows that Gk

2k+1
is “asymptotically” Hamiltonian: it contains a cycle of

length (1 − o(1))|V (Gk
2k+1

)|. On the other hand, Horák, Kaiser, Rosenfeld,
and Ryjáček [7] showed that Gk

2k+1 has a closed spanning walk in which
every vertex appears at most twice, by proving that the prism over Gk

2k+1
is

Hamiltonian.
Our approach is to study this problem for the graph Gk

n where 0 ≤ k ≤
(n − 1)/2 is fixed. It is well-known that G0

n = Qn is Hamiltonian for every
n ≥ 2. El-Hashash and Hassan [5], and independently (in a more general
setting) Locke and Stong [12] proved that G1

n is Hamiltonian for all odd
n ≥ 3. As a first step towards the general problem, in this paper we prove
that also G2

n is Hamiltonian for all odd n ≥ 5. Now, it becomes naturally to
conjecture:

Conjecture 1. Gk
n is Hamiltonian for every k ≥ 0 and every odd n ≥ 2k+1.

A different approach to generalize the middle level problem was proposed,
as far as we know, independently by Dejter, Cedeno, and Jaurequi [2] and by
Hurlbert [8] who studied Hamiltonian cycles in the graph Hk

n consisting of
level k and n−k of Qn, and edges joining a vertex from level k with a vertex
from level n − k if their Hamming distance (distance in Qn) is n − 2k. In
other words, Hk

n is the cover graph of the ordered set consisting of level k and
n − k of the Boolean lattice Bn with the order inherited from Bn. For other
results on ordered sets obtained by removing selected levels of the Boolean
lattice, called Boolean layer cakes, we refer to a survey of Schmidt [14].

2 Preliminaries

Let [n] denote the set {1, . . . , n}. For a binary vector v ∈ {0, 1}n and i ∈ [n]
we denote by v[i] the i-th coordinate of v. For vectors u, v ∈ {0, 1}n let u⊕v
denote the vector obtained by the coordinate-wise addition modulo 2 of u
and v. The n-dimensional hypercube Qn is a (bipartite) graph with all binary
vectors of length n as vertices and with edges joining every two vertices that
differ in exactly one coordinate, i.e.

V (Qn) = {0, 1}n and E(Qn) = {uv; |∆(u, v)| = 1},
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where ∆(u, v) = {i ∈ [n]; u[i] 6= v[i]}. Thus the distance of vertices u and v
is d(u, v) = |∆(u, v)|. The distance of two edges uv and xy is the minimum
distance between a vertex of uv to a vertex of xy. A vertex v is said to
be even (odd) if it has even (odd) weight. The weight of v is the number
of 1’s in v. Note that vertices of each parity form bipartite classes of Qn.
Consequently, u and v have the same parity if and only if d(u, v) is even.

Let 0, 1 ∈ V (Qn) be the vertices of all 0’s and 1’s, respectively. For i ∈ [n]
we denote by ei the vertex containing 1 exactly in the i-th coordinate. Note
that each vertex ei is adjacent to 0. An i-th level of Qn for 0 ≤ i ≤ n is the
set of vertices of weight i. An antipodal vertex to a vertex u ∈ V (Qn) is the
vertex denoted by u such that u[i] = u[i] for all i ∈ [n], that is d(u, u) = n.

If adjacent vertices u and v of Qn differ in the i-th coordinate, then
u ⊕ v = ei and we say that the edge uv ∈ E(Qn) has direction i. By
removing all edges of a fixed direction i ∈ [n], the hypercube Qn is split into
two (induced) subgraphs isomorphic to Qn−1. We say that Qn is split along

the direction i into subcubes Q0
n−1 and Q1

n−1. For a ∈ {0, 1} the subcube Qa
n−1

is induced by all vertices u ∈ V (Qn) with u[i] = a. Furthermore, by splitting
Q0

n−1 and Q1
n−1 along another direction j ∈ [n] \ {i} we obtain four subcubes

Q00
n−2, Q01

n−2, Q10
n−2, and Q11

n−2. Note that for a, b ∈ {0, 1} the subcube Qab
n−2

is induced by all vertices u ∈ V (Qn) with u[i] = a and u[j] = b.
We consider a path P to be a nonempty sequence of distinct vertices such

that every two consecutive vertices are adjacent. If a and b are the first and
the last vertices of P , respectively, we say that P is an ab-path and a, b are
its endvertices. Assume that an ab-path P and an cd-path R are (vertex)
disjoint. If b and c are adjacent, then the concatenation of P and R is an
ad-path. If P contains consecutive vertices x and y such that both x, c and
y, d are adjacent, then by inserting R into P between x and y we obtain an
ab-path containing vertices P ∪ R. A reversed path of an ab-path P is the
ba-path obtained by the reversed sequence.

It is well known that the hypercube Qn for every n ≥ 2 is Hamiltonian and
also Hamiltonian-laceble; that is, there is a Hamiltonian path between every
two vertices of opposite parity. We will also need several simple results on
Hamiltonian cycles and paths in the hypercube with some removed vertices.
The case of one removed vertex was described by Lewinter and Widulski [10].

Proposition 1. If distinct u, v ∈ V (Qn), where n ≥ 2, have the same parity

that is opposite to the parity of x ∈ V (Qn), then Qn−{x} has a Hamiltonian

uv-path.

A similar result holds, up to one exception, for the case of two removed
vertices that are adjacent.
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Figure 1: All configurations (up to isomorphism) in Proposition 2 for n = 3.

Proposition 2. If u, v ∈ V (Qn)\{x, y}, where xy ∈ E(Qn) and n ≥ 2, have

the opposite parity, then Qn − {x, y} has a Hamiltonian uv-path unless:

n = 3, u ⊕ v = x ⊕ y, and d(uv, xy) = 2. (1)

Proof. The exceptional configuration (1) is depicted on Figure 1(a). We
proceed by induction on the dimension n. For n = 2 the statement trivially
holds. For n = 3, aside from the exceptional configuration (1), we have (up
to isomorphism) another three configurations depicted on Figure 1(b)-(d).
Observe that the statement holds for each of them.

For n ≥ 4 we split Qn into two subcubes Q0
n−1 and Q1

n−1 such that
the edge xy belongs to Q0

n−1 or Q1
n−1, and moreover, the vertex v is in the

other subcube than the edge xy. Assume without loss of generality that
xy ∈ E(Q0

n−1) and v ∈ V (Q1
n−1). Considering the position of the vertex u,

we distinguish two cases.

Case 1: u ∈ V (Q1
n−1). Let P1 be a Hamiltonian uv-path of Q1

n−1. We
claim that P1 contains consecutive vertices a and b such that their neighbors
a′ and b′ in Q0

n−1 are distinct from both x and y, and the edge a′b′ ∈ E(Q0
n−1)

does not form the exceptional configuration (1) in Q0
n−1. Since n ≥ 4, the

path P1 contains at least 7 edges. At most 4 of them contain a vertex whose
neighbor in Q0

n−1 is x or y. In addition, at most one of them contains vertices
whose neighbors in Q0

n−1 form the configuration (1). Hence P1 contains at
least 2 edges that satisfy the claim.

Applying induction we obtain a Hamiltonian a′b′-path P0 of Q0
n−1−{x, y}.

By inserting P0 into P1 instead of the edge ab, we have the desired path.

Case 2: u ∈ V (Q0
n−1). First we choose a neighbor a ∈ V (Q0

n−1) of u such
that the edge ua does not form the configuration (1). Amongst neighbors of
u in Q0

n−1 at most one is x or y, and at most one forms the configuration
(1). Thus, such neighbor a exists since u has at least 3 neighbors in Q0

n−1.
Applying induction we obtain a Hamiltonian ua-path P0 of Q0

n−1. Let a′ be
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the neighbor of a in Q1
n−1, and let P1 be a Hamiltonian a′v-path of Q1

n−1. By
concatenating P0 and P1, we are finished.

Let us denote by NG(u) the set of neighbors of a vertex u in a subgraph
G of Qn. If G = Qn, the subscript Qn is omitted. Recall that N(0) =
{e1, . . . , en}. For n ≥ 2 and distinct i, j ∈ [n], we define the set

Aij = (N(0) \ {ei, ej}) ∪ (N(ei) \ {ei ⊕ ej}). (2)

Note that Aij contains n − 2 odd vertices and n − 1 even vertices of Qn

including the vertex 0. We continue with a result on Hamiltonicity of Qn in
case of 2n − 3 removed vertices of this set Aij.

Proposition 3. If z ∈ V (Qn) \Aij is odd, n ≥ 2, and z 6= ei where i, j ∈ [n]
are distinct, then Qn − Aij has a Hamiltonian eiz-path.

ei ⊕ ej ei ⊕ ej

1 z = 1

0 ei

z = ej

j

i 0 ei

ej

j

i

Figure 2: The Hamiltonian paths in Proposition 3 for n = 3.

Proof. We proceed by induction on the dimension n. For n = 2 the statement
trivially holds. For n = 3 we have either z = ej or z = 1. The Hamiltonian
paths for both cases are depicted on Figure 2.

For n ≥ 4 we choose k ∈ [n] distinct from i and j, and we split Qn along
the direction k into subcubes Q0

n−1 and Q1
n−1. For A0 = Aij ∩ V (Q0

n−1) and
A1 = Aij ∩ V (Q1

n−1) observe that A0 restricted to n − 1 directions of Q0
n−1

satisfies (2), and A1 = {ek, ei ⊕ ek}. The idea is to apply induction in Q0
n−1

and Proposition 2 in Q1
n−1. We distinguish the following two cases regarding

z; see Figures 3 and 4 for an illustration.

Case 1: z ∈ V (Q0
n−1). Applying induction we obtain a Hamiltonian

eiz-path P0 of Q0
n−1 − A0. Note that P0 goes first from ei to ei ⊕ ej since

ei has no other neighbors in Q0
n−1 − A0. Let a 6= ei be the next vertex on

P0 after ei ⊕ ej, and let u and v be the neighbors of ei ⊕ ej and a in Q1
n−1,

i.e. u = ei ⊕ ej ⊕ ek and v = a ⊕ ek. By Proposition 2 for x = ei ⊕ ek and
y = ek, we obtain a Hamiltonian uv-path P1 of Q1

n−1 − A1. Note that we
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ei ⊕ ej

a v

0 ei

j

i x = ei ⊕ ek y = ek

u = ei ⊕ ej ⊕ ekz

k

Figure 3: The case z ∈ V (Q0
n−1) in Proposition 3 for n = 4.

avoid the exceptional configuration (1) since d(u, x) = 1. By inserting P1

into P0 instead of the edge between ei ⊕ ej and a, we construct the desired
path.

ei ⊕ ej

z

0 ei

j

i x = ei ⊕ ek y = ek

v = ej ⊕ eku = ej

k

Figure 4: The case z ∈ V (Q1
n−1) in Proposition 3 for n = 4.

Case 2: z ∈ V (Q1
n−1). Applying induction we obtain a Hamiltonian path

P0 of Q0
n−1 −A0 between ei and u = ej. By Proposition 2 for x = ei ⊕ ek and

y = ek we obtain a Hamiltonian path P1 of Q1
n−1 − A1 between v = ej ⊕ ek

and z. Note that we avoid the exceptional configuration (1) since d(v, y) = 1.
It remains to concatenate P0 and P1, and we are done.

For the sake of simplicity, the set Aij is defined and Proposition 3 is stated
with respect to the vertex 0. However, note that by the automorphism of
Qn, Proposition 3 could be stated more generally for the set A′

ij = Aij ⊕ w
and the endvertices e′i = ei ⊕ w, z′ = z ⊕ w for any w ∈ V (Qn). Typically,
we will apply Proposition 3 in Lemma 1 for w = 1.
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3 Path partition of Qn − {0,1}

Assume that we have 2k distinct vertices a1, . . . , ak and b1, . . . , bk of a sub-
graph G of Qn. We say that G has an aibi-paths partition if V (G) can be
partitioned into k vertex-disjoint paths of G between ai and bi. Note that
this notion generalizes the problem of Hamiltonian paths for more paths
with prescribed endvertices, and it was previously studied for hypercubes by
Caha and Koubek [1], and by Dvořák and Gregor [4] and also in a variation
of faulty vertices [3].

We proceed with a technical, but useful lemma on aibi-paths partition of
Qn − {0, 1}.

Lemma 1. Let n ≥ 3 be odd, k = n−1, {a1, . . . , ak} ⊆ N(0), {b1, . . . , bk} ⊆
N(1) such that a1 = b1 and ai 6= bi for every 1 < i ≤ k. Then Qn − {0, 1}
has an aibi-paths partition.

0

a1

b2 1

a2 b1

Figure 5: The only (up to isomorphism) configuration in Lemma 1 for n = 3.

Proof. For n = 3 there is only one (up to isomorphism) configuration of
sets {a1, a2} ⊆ N(0) and {b1, b2} ⊆ N(1) such that a1 = b1 and a2 6= b2.
This configuration with the aibi-paths partition of Qn −{0, 1} is depicted on
Figure 5.

Now we assume that n ≥ 5. Let a0 and b0 denote the remaining neighbors
of 0 and 1 that are not amongst a1, . . . , ak and b1, . . . , bk, respectively.

Claim 1. The hypercube Qn can be split along two distinct directions d1, d2 ∈
[n] into four subcubes Q00

n−2, Q01
n−2, Q10

n−2, and Q11
n−2 such that

(i) {a0, a1} ⊆ V (Q00
n−2), {b0, b1} ⊆ V (Q11

n−2), and

(ii) {ai, bi} ⊆ V (Q01
n−2) or {ai, bi} ⊆ V (Q10

n−2) for at most one i ∈ [k];

unless n = 5 and ai’s with bi’s comprise the configuration depicted on Fig-

ure 6.
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b3 1

a3

p

a0

b4

b1

b0

b2

0 a1

a4

q

r a2

d1

d2

Figure 6: The only exceptional configuration which does not allow splitting
satisfying conditions (i) and (ii) in Claim 1 for n = 5.

Proof of Claim 1. To satisfy the condition (i), at most 3 directions from
[n] are forbidden for d1 and d2. More precisely, if a0 = ep, b0 = eq, and
a1 = b1 = er, then we satisfy (i) if and only if we choose d1 and d2 from the
set D = [n] \ {p, q, r}. Note that r is distinct from both p and q, but we may
have p = q in general.

In the first step, we choose d1 arbitrarily from D, and we split Qn into
Q0

n−1 and Q1
n−1 along the direction d1. Then we obtain bj ∈ V (Q0

n−1) and
al ∈ V (Q1

n−1) for exactly one j and exactly one l with 1 < j, l ≤ k. Observe

that j 6= l since ai 6= bi for every 1 < i ≤ k. By renaming the vertices we
may assume that j = 2 and l = 3. Thus, we have

b2[d1] = a2[d1] = 0 and a3[d1] = b3[d1] = 1. (3)

To satisfy also (ii), it suffices to choose d2 ∈ D\{d1} such that a2[d2] 6= b2[d2]
or b3[d2] 6= a3[d2]. Since ai and bi differ in exactly n − 2 directions for every
1 < i ≤ k, and by (3), such d2 ∈ D \ {d1} exists if n ≥ 7 or p = q.

Now suppose that n = 5, p 6= q, and for the unique choice of d2 ∈ D\{d1}
we have a2[d2] = b2[d2] and b3[d2] = a3[d2]. Notice that it must be a2[d2] =
b2[d2] = 1 and b3[d2] = a3[d2] = 0. If follows that

a0 = b4 = ep, a1 = b1 = er, a2 = b3 = ed2
, a3 = b2 = ed1

, and a4 = b0 = eq.

This is exactly the configuration which is depicted on Figure 6. Therefore
the claim holds.
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b3 1

a3

a6

a0

b4

b1

b0

b2

0

a1

a4

a5

b5

a2

d1

d2

b6

b∗
1

b∗
5

b∗
6

u

v

w

c∗
6

c∗
5

c∗
1

c1

c5

c6

x

t2

b′
2

= t1

b′
6

b′
5

b′
1

Q10

Q00 Q01

Q11

j

i

Figure 7: The construction of aibi-path partition in Case 1 of Lemma 1.

The aibi-paths partition for this exceptional configuration is also depicted
on Figure 6. So, now we assume that we have splitting of Qn such that
conditions (i) and (ii) hold. Furthermore, by renaming the vertices we may
assume that b2 ∈ V (Q01

n−2) and a3 ∈ V (Q10
n−2). Moreover, by exchanging d1

and d2 we may assume that {ai, bi} ⊆ V (Q01
n−2) for no i ∈ [k], and therefore

a2 /∈ V (Q01
n−2). Thus, by renaming the vertices we have, say a4 ∈ V (Q01

n−2).
The idea of the rest of the proof is to apply induction in Q00

n−2, Proposi-
tion 3 in Q10

n−2 and in Q11
n−2, and Proposition 1 in Q01

n−2, and then glue all the
paths together in order to obtain an aibi-paths partition of Qn − {0, 1}. To
this end, we distinguish two cases regarding whether b3 is in Q10

n−2. But be-
fore, to avoid ambiguity, let us mention that below we write simply {i, j, . . . k}
also for k ≤ j to denote the set {i} ∪ ([k] \ [j − 1]).

Case 1: b3 ∈ V (Q10
n−2). We start with the construction of an a4b4-path

in Q11
n−2 and Q01

n−2. Note that most of the vertices of Q11
n−2 and Q01 are on

this path. See Figure 7 for an illustration. Let i, j ∈ [n] \ {d1, d2} be such
that b4 = ei and b0 = ej. Furthermore, let

B = {bl | l ∈ {1, 5, . . . , k}} and C = {cl = bl ⊕ ei | l ∈ {1, 5, . . . , k}}.
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Note that

NQ11

n−2
(1) = B ∪ {b0, b4} and NQ11

n−2
(b4) = C ∪ {1, b4 ⊕ ej}.

Thus, applying Proposition 3 for the set Aij = B ∪ C ∪ {1}, we obtain a
Hamiltonian b4b0-path P11 of Q11

n−2 − Aij.
Note that the vertex w = b0⊕ed1

is adjacent to b2 in Q01
n−2, and therefore,

w is distinct from a4 but has the same parity as a4 which is opposite to the
parity of b2. So, we may apply Proposition 1 to construct a Hamiltonian
wa4-path P01 of Q01

n−2 − {b2}. By concatenating P11 and P01, we obtain the
reversed a4b4-path.

Second, we construct an a3b3-path in Q10
n−2. Note that most of the vertices

of Q10
n−2 are on this path. Let

B∗ = {b∗l = bl⊕ed2
| l ∈ {1, 5, . . . , k}} and C∗ = {c∗l = b∗l ⊕ei | l ∈ {1, 5, . . . , k}},

and let u = b3 ⊕ ei and v = b3 ⊕ ej. Note that the vertices b3, u, and v in
Q10

n−2 correspond to the vertices 1, b4, and b0 in Q11
n−2. Similarly as above,

observe that

NQ10

n−2
(b3) = B∗ ∪ {u, v} and NQ10

n−2
(u) = C∗ ∪ {b3, u ⊕ ej}.

Hence, applying Proposition 3 for the set A∗

ij = B∗ ∪ C∗ ∪ {b3}, we obtain a
Hamiltonian a3u-path P10 of Q10

n−2 − A∗

ij. By prolonging this path from u to
b3, we have the a3b3-path.

Finally, we construct the remaining paths. Let x = b2 ⊕ ed2
, B′ = {b′l =

b∗l ⊕ ed1
| l ∈ {1, 5, . . . , k}}. Notice that all these vertices are in Q00

n−2, x has
the role of 1 in Q00

n−2 and is adjacent to all vertices of B ′. Furthermore, let
t1, t2 be the remaining two neighbors of x in Q00

n−2 that are not in B′; that

is, t1 = x ⊕ ej = x ⊕ b0 and t2 = x ⊕ ei = x ⊕ b4.
Observe that d(a1, b

′

1) = n−2 since d(a1, b1) = n. So the vertices a1 and b′1
are complementary in Q00

n−2. Similarly, d(al, b
′

l) = n−4 since d(al, bl) = n−2
for every l ∈ {5, . . . , k}. We choose b′2 ∈ {t1, t2} such that also d(a2, b

′

2) =
n− 4. Applying induction we obtain an alb

′

l-paths partition of Q00
n−2 −{0, x}

where l ∈ {1, 2, 5, . . . , k}. Then, we prolong the a2b
′

2-path through x to b2,
and each alb

′

l-path through b∗l , c∗l , and cl to bl for l ∈ {1, 5, . . . , k}. Thus, we
obtain remaining albl-paths.

To conclude Case 1, observe (on Figure 7) that all aibi-paths for i ∈ [k]
are vertex-disjoint and they cover all vertices of Qn − {0, 1}.

Case 2: b3 /∈ V (Q10
n−2). The constructions in this case differ only in

small details to the construction in the previous case. However, for the sake
of completeness, we present here the entire argument. First, recall that b0,
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b5 1

a3

a6

a0

b4

b1

b0

b2

0

a1

a4

a5
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a2

d1

d2

b6

b∗
1

b∗
3

b∗
6

u
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w

c∗
6

c∗
3

c∗
1

c1

c3

c6

x

t2

b′
2

= t1

b′
6

b′
5

= b′
3

b′
1

Q10

Q00 Q01

Q11

j

i

Figure 8: The construction of aibi-path partition in Case 2.A of Lemma 1.

b1, b2, and b3 are not in Q10
n−2. Moreover, b4 cannot be in Q10

n−2 since a4

is Q01
n−2 and a4 6= b4. Thus, by renaming the vertices we may assume that

b5 ∈ V (Q10
n−2). Note that it follows that n ≥ 7 in Case 2.

We start with the construction of an a4b4-path in Q11
n−2 and Q01

n−2 which
is completely the same as above. Let i, j ∈ [n] \ {d1, d2} be such that b4 = ei

and b0 = ej. Furthermore, let

B = {bl | l ∈ {1, 3, 6, . . . , k}} and C = {cl = bl ⊕ ei | l ∈ {1, 3, 6, . . . , k}.

Note that
NQ11

n−2
(1) = B ∪ {b0, b4}

and
NQ11

n−2
(b4) = C ∪ {1, b4 ⊕ ej}.

Thus, applying Proposition 3 for the set Aij = B ∪ C ∪ {1}, we obtain a
Hamiltonian b4b0-path P11 of Q11

n−2 −Aij. Second, we apply Proposition 1 to
construct a Hamiltonian path P01 between vertices w = b0 ⊕ ed1

and a4 in
Q01

n−2−{b2}. By concatenating P11 and P01, we obtain the reversed a4b4-path.
Now we distinguish two subcases regarding d(a5, b3).
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Subcase 2.A: d(a5, b3) = n− 2. We construct an a3b3-path in Q10
n−2 and

Q11
n−2. See Figure 8 for an illustration. Again, let

B∗ = {b∗l = bl⊕ed2
| l ∈ {1, 3, 6, . . . , k}} and C∗ = {c∗l = b∗l ⊕ei | l ∈ {1, 3, 6, . . . , k}},

and let u = b5 ⊕ ei and v = b5 ⊕ ej. Similarly as above, observe that

NQ10

n−2
(b5) = B∗ ∪ {u, v} and NQ10

n−2
(u) = C∗ ∪ {b5, u ⊕ ej}.

Hence, applying Proposition 3 for the set A∗

ij = B∗ ∪ C∗ ∪ {b5}, we obtain
a Hamiltonian a3u-path P10 of Q10

n−2 − A∗

ij. By prolonging this path from u
through c∗3 and c3 to b3, we have the a3b3-path.

Finally, we construct the remaining paths. Let x = b2 ⊕ ed2
, B′ = {b′l =

b∗l ⊕ ed1
| l ∈ {1, 3, 6, . . . , k}}. Furthermore, let t1, t2 be the remaining two

neighbors of x in Q00
n−2 that are not in B′; that is, t1 = x ⊕ ej = x ⊕ b0 and

t2 = x ⊕ ei = x ⊕ b4.
Observe that d(a1, b

′

1) = n−2 since d(a1, b1) = n. So the vertices a1 and b′1
are complementary in Q00

n−2. Similarly, d(al, b
′

l) = n−4 since d(al, bl) = n−2
for every 5 < l ≤ k. We put b′5 = b′3. Since d(a5, b3) = n − 2 in this subcase,
we have that d(a5, b

′

5) = n−4. Furthermore, we choose b′2 ∈ {t1, t2} such that
also d(a2, b

′

2) = n − 4. Applying induction we obtain an alb
′

l-paths partition
of Q00

n−2−{0, x} where l ∈ {1, 2}∪{5, . . . , k}. Then, we prolong the a2b
′

2-path
through x to b2, the a5b

′

5-path through b∗3 to b5, and the alb
′

l-path through
b∗l , c∗l , and cl to bl for every l ∈ {1, 6, . . . , k}. Thus, we obtain the remaining
albl-paths.

To conclude Subcase 2.B, observe (on Figure 8) that all aibi-paths for
i ∈ [k] are vertex-disjoint and they cover all vertices of Qn − {0, 1}.

Subcase 2.B: d(a5, b3) = n. In this subcase we have to apply induction
in Q00

n−2 in a different way than in the previous subcase. The reason is that
we need d(a5, b

′

5) = n − 4, so now we cannot put b′5 = b′3 as we did before.
As a consequence, we have to construct also an a3b3-path in Q10

n−2 and Q11
n−2

in a different way. See Figure 9 for an illustration.
Again, let B∗ = {b∗l = bl ⊕ ed2

| l ∈ {0, 1, 6, . . . , k}} and C∗ = {c∗l =
b∗l ⊕ei | l ∈ {0, 1, 6, . . . , k}}, and let u = b5⊕ei, b∗3 = b3⊕ed2

, and c∗3 = b∗3⊕ei.
Similarly as above, observe that

NQ10

n−2
(b5) = B∗ ∪ {u, b∗3} and NQ10

n−2
(u) = C∗ ∪ {b5, c

∗

3}.

Hence, applying Proposition 3 for the set A∗

ij = B∗ ∪ C∗ ∪ {b5}, we obtain a
Hamiltonian a3u-path P10 of Q10

n−2 −A∗

ij. Note that c∗3 is the vertex previous
to u on P10 since u has no other neighbor in Q10

n−2 −A∗

ij than c∗3. By deleting

12
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Figure 9: The construction of aibi-path partition in Case 2.B of Lemma 1.

the vertex u from P10 and prolonging this path from c∗3 through c3 to b3, we
have the a3b3-path.

Finally, we construct the remaining paths. Let x = b2 ⊕ ed2
, B′ = {b′l =

b∗l ⊕ ed1
| l ∈ {1, 3, 6, . . . , k}}. Furthermore, let t1, t2 be the remaining two

neighbors of x in Q00
n−2 that are t1 = x⊕ ej = x⊕ b0 and t2 = x⊕ ei = x⊕ b4.

We put b′5 = t1, so d(a5, b
′

5) = n − 4 since d(a5, b
′

3) = n − 2. We also choose
b′2 ∈ {b′3, t2} such that d(a2, b

′

2) = n − 4.
Again, observe that d(a1, b

′

1) = n − 2 since d(a1, b1) = n, and d(al, b
′

l) =
n − 4 for every l ∈ {1, 2, 5, . . . , k}. Hence, applying induction we obtain an
alb

′

l-paths partition of Q00
n−2 − {0, x} where l ∈ {1, 2, 5, . . . , k}. Then, we

prolong the a2b
′

2-path through x to b2, the a5b
′

5-path through b∗0, c∗0, and u
to b5, and each alb

′

l-path through b∗l , c∗l , and cl to bl for l ∈ {1, 6, . . . , k}.
Therefore, we obtain the remaining albl-paths.

To conclude Subcase 2.B, observe (on Figure 9) that all aibi-paths for
i ∈ [k] are vertex-disjoint and they cover all vertices of Qn − {0, 1}.
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4 Hamiltonicity of G2
n

Recall that G2
n is the graph induced on Qn by levels from 2 to n− 2; that is,

G2

n = Qn − ({0, 1} ∪ N(0) ∪ N(1)).

For our convenience, we use the following notation of vertices in subcubes of
Qn. Assume that Qn is split along two fixed directions d1, d2 ∈ [n] into four
subcubes Q00

n−2, Q01
n−2, Q10

n−2, and Q11
n−2, which are isomorphic to Qn−2. For

w ∈ {00, 01, 10, 11} and x ∈ V (Qn−2) we denote by xw the copy of the vertex
x in the subcube Qw

n−2.

Theorem 1. G2
n is Hamiltonian for every odd n ≥ 5.

Proof. We proceed by induction on n. The statement holds for n = 5 since
G2

5 is the middle level graph which is known to be Hamiltonian [15]. For
n ≥ 7 we split Qn along two arbitrary directions into four subcubes Q00

n−2,
Q01

n−2, Q10
n−2, and Q11

n−2. For w ∈ {00, 11} let Hw denote a copy of G2
n−2 in

Qw
n−2, that is

Hw = Qw
n−2 − ({0w, 1w} ∪ NQw

n−2
(0w) ∪ NQw

n−2
(1w)).

Initially, applying induction we obtain Hamiltonian cycles C1 and C2 of
H00 and H11, respectively. Next, we construct a Hamiltonian cycle C3 of
G2

n \ (H00 ∪ H11) and finally, we interconnect C3 with copies of C1 and C2

mapped by properly chosen automorphisms of H00 and H11.
The construction of C3 is as follows. First, we label the neighbors of 0

and 1 in Qn−2 in the following way. Let pi = ei for every i ∈ [n − 2], and let

q1 = e1, q2 = e4, q3 = e2, qn−2 = e3, and qi = ei+1 for every 4 ≤ i ≤ n − 3.

Note that p1 = q1 and pi 6= qi for every 1 < i ≤ n− 3. We use corresponding
labelings pw

i and qw
i in Qw

n−2 for each w ∈ {00, 01, 10, 11}.
Hence, by Lemma 1, Q01

n−2 − {001, 101} can be partitioned into n − 3
vertex-disjoint paths Pi between p01

i and q01
i for i ∈ [n − 3]. Similarly, since

p2 = q3, pn−2 6= q2 and pi 6= qi+1 for 2 < i ≤ n − 3, Q10
n−2 − {010, 110} can

be partitioned into n − 3 vertex-disjoint paths Ri between q10
i+1 and p10

i for
2 ≤ i ≤ n−3, and R1 between q10

2 and p10
n−2. See Figure 10 for an illustration.

To construct C3, we interconnect paths Ri and Pi at Q11
n−2, and paths Pi

and Ri−1 at Q00
n−2 as follows (here R0 means Rn−3). The path R1 continues

from p10
n−2 through p11

n−2, 011, p11
1 to the vertex p01

1 of P1. The path Ri for
2 ≤ i ≤ n − 3 continues from p10

i through p11
i to the vertex p01

i of Pi. The

14
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Figure 10: The construction in Theorem 1 with n = 7.

path P1 continues from q01
1 through q00

1 , 100, q00
n−2 to the vertex q10

n−2 of Rn−3.
The path Pi for 2 ≤ i ≤ n−3 continues from q01

i through q00
i to the vertex q10

i

of Ri−1. These connections are presented with green color on Figure 10. The
choices of endvertices of paths Pi’s and Ri’s allow these connections which
assures that C3 is a Hamiltonian cycle of G2

n \ (H00 ∪ H11).
To conclude the proof, we interconnect C3 with copies of C1 and C2. For

two adjacent vertices u and v of Qn we say that u is a light neighbor of v
if w(u) < w(v), otherwise u is a heavy neighbor of v. Since w(p1) = 1 and
w(q1) = n − 3 ≥ 4, the p01

1 q01
1 -path P1 ⊂ C3 contains a vertex x01 such that

w(x) = 2 and x01 has a heavy neighbor on P1. Note that the neighbor x00 of
x01 in Q00

n−2 belongs to C1.
Let y00 be one of two neighbors of x00 on C1. Observe that y00 is a heavy

neighbor of x00 since w(x00) = w(x) = 2 and C1 does not visit vertices of
weight 1. Then, let z01 be a heavy neighbor of x01 on P1. Let i and j
be the directions of edges x00y00 ∈ E(C1), x01z01 ∈ E(C3), respectively. If
i = j, then y00 and z01 are adjacent in G2

n, so we can interconnect C1 with
C3 directly by replacing the edges x00z00 ∈ E(C1) and x01z01 ∈ E(C3) with
x00x01, z00z01 ∈ E(G2

n).
Now we assume i 6= j. Thus, we have
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Q00
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C∗

1

x01x00

z00 z01

P1

Q01

Figure 11: The interconnection of the path P1 and a copy C∗

1 of the cycle C1.

• y00[i] = z01[j] = 1, and

• x00[i] = x01[i] = z01[i] = x01[j] = x00[j] = y00[j] = 0.

Hence, by switching the directions i and j we obtain a bijection π of V (H00)
such that π(x00) = x00 and π(y00) = z00 where z00 is the neighbor of z01 in
Q00

n−2. Moreover, π is an automorphism of H00, and therefore, C∗

1 = π(C1)
is a Hamiltonian cycle of H00 containing the edge x00z00. Therefore, we
can interconnect C∗

1 with C3 by replacing the edges x00z00 ∈ E(C∗

1 ) and
x01z01 ∈ E(C3) with x00x01, z00z01 ∈ E(G2

n). See Figure 11 for an illustration,
where C1 is represented by green and C∗

1 by blue color.
To interconnect C3 also with a copy of C2, we proceed similarly with the

path R1 ⊂ C3 in Q10 as above. By a proper choice of a vertex x10 (with his
neighbor z10) on R1 and an automorphism of H11 which maps an edge of
C2 to x11z11 we easily connect C3 and a copy of C2. Therefore, we obtain a
Hamiltonian cycle of G2

n.
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