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Abstract

We show that every cubic bridgeless graph with n vertices has at
least 3n/4 − 10 perfect matchings. This is the first bound that differs
by more than a constant from the maximal dimension of the perfect
matching polytope.

1 Introduction

We study the number of perfect matchings in cubic bridgeless graphs, in
which parallel edges are allowed. By a classical theorem of Petersen [11],
every such graph has a perfect matching. In fact, every edge of a cubic
bridgeless graph is contained in a perfect matching, and thus every n-vertex
cubic bridgless graph has at least three perfect matchings. Lovász and Plum-
mer [8, Conjecture 8.1.8] conjectured that the number of perfect matchings
in cubic bridgeless graphs should grow exponentially with n:
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Conjecture 1 (Lovász and Plummer, 1970s). Every cubic bridgeless graph
with n vertices has at least 2Ω(n) perfect matchings.

Conjecture 1 has been verified for several special classes of graphs, one of
them being bipartite graphs. The first non-trivial lower bound on the num-
ber of perfect matchings in cubic bridgeless bipartite graphs was obtained
in 1969 by Sinkhorn [14] who proved a bound of n

2
, thereby establishing a

conjecture of Hall. The same year, Minc [9] increased this lower bound by
2. Then, a bound of 3n

2
− 3 was proven by Hartfiel and Crosby [5]. The

first exponential bound, 6 ·
(

4
3

)n/2−3
, was obtained in 1979 by Voorhoeve [15].

This was generalized to all regular bipartite graphs in 1998 by Schrijver [13]
who thereby proved a conjecture of himself and Valiant [12].

Recently, an important step towards a proof of Conjecture 1 was achieved
by Chudnovsky and Seymour [2] who proved the conjecture for planar graphs.

Theorem 1 (Chudnovsky and Seymour, 2008). Every cubic bridgeless planar
graph with n vertices has at least 2n/655978752 perfect matchings.

Until recently, the only known lower bound on the number of perfect
matchings of a general cubic bridgeless graph was an estimate given by the
dimension of the perfect matching polytope. Edmonds, Lovász, and Pulley-
blank [4] and, independently, Naddef [10], proved that the dimension of the
perfect matching polytope of a cubic bridgeless n-vertex graph is at least
n/4 + 1 which implies:

Theorem 2 (Edmonds, Lovász, and Pulleyblank; Naddef, 1982). Every cu-
bic bridgeless graph with n vertices has at least n/4 + 2 perfect matchings.

An argument based on the dimension of the perfect matching polytope cannot
yield a bound exceeding n/2+2, since the dimension of the perfect matching
polytope is always between n/4+1 and n/2+1 (the upper bound is achieved
by cubic bipartite graphs). In [6], the authors presented an argument based
on the brick and brace decomposition of matching covered graphs, showing
that every n-vertex cubic bridgeless graph G has at least n/2 perfect match-
ings. They also characterized those graphs G with exactly n/2 or n/2 + 1
perfect matchings. Their argument is inductive and uses the characterization
of so-called extremal cubic bricks by de Carvalho et al. [1]. Let us state the
result of [6] precisely:

Theorem 3. Every cubic bridgeless graph G of order n contains at least
n/2 + 1 perfect matchings unless G is the graph obtained from K3,3 by re-
placing all three vertices of one of the two color classes with triangles (see
Figure 1). This exceptional graph contains n/2 perfect matchings. Moreover,
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Figure 1: The only n-vertex cubic bridgeless graph with n/2 perfect match-
ings.

there are only 17 non-isomorphic cubic bridgeless graphs with at most n/2+1
perfect matchings.

In this paper, we show that every n-vertex cubic bridgeless graph has at
least 3n/4 − 10 perfect matchings. We think that the main significance of
the bound lies in the fact that it is the first result asserting that the number
of vertices of the perfect matching polytope of a cyclically 4-edge-connected
cubic graph exceeds its dimension by more than a constant.

One of our tools, similarly as in [6], is the machinery of brick and brace
decompositions of matching covered graphs, which we introduce in the next
section. However, unlike in [6], we have to show that the number of perfect
matchings of cyclically 4-edge-connected graphs exceeds the dimension of the
perfect matching polytope by a linear factor. This is done in Sections 3 and
4. In Sections 5 and 6, the bound is then extended to 3-edge-connected and
eventually to all cubic bridgeless graphs.

2 Notation

In this section, we introduce notation used throughout the paper. If G is
a graph, V (G) denotes the vertex set of G and E(G) denotes its edge set.
R

E(G) is an |E(G)|-dimensional vector space with coordinates corresponding
to the edges of G. If A ⊆ V (G), G[A] stands for the subgraph of G induced
by the vertices of A.

A graph G is k-vertex-connected if G has at least k + 1 vertices, and
remains connected after removing any set of at most k−1 vertices. If {A, B}
is a partition of V (G), the set E(A, B) of edges with one end in A and the
other in B is called an edge-cut or a k-edge-cut of G, where k is the size of
E(A, B). A graph is k-edge-connected if it has no edge-cuts of size less than
k. Graphs that are 2-edge-connected are also called bridgeless. Finally, an
edge-cut E(A, B) is cyclic if the subgraphs induced by A and B both contain
a cycle. A graph G is cyclically k-edge-connected if G has no cyclic edge-cuts
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of size less than k. The following is a useful observation that we implicitly
use in our further considerations:

Observation 4. If G is a graph with minimum degree three, in particular G
can be a cubic graph, then a k-edge-cut E(A, B) such that |A| ≥ k − 1 and
|B| ≥ k − 1 must be cyclic.

We say that a graph G is X-near cubic for a multiset X of positive
integers, if the multiset of degrees of G not equal to three is X. For example,
the graph obtained from a cubic graph by removing an edge is {2, 2}-near
cubic.

If v is a vertex of G, then G \ v is the graph obtained by removing the
vertex v together with all its incident edges. If e is an edge of G, G − e
is the graph obtained from G by removing the edge e and keeping its end
vertices. We also use this notation with e replaced by a set of edges and v
replaced by a set of vertices. If H is a connected subgraph of G, G/H is
the graph obtained by contracting all the vertices of H to a single vertex,
removing arising loops and preserving all parallel edges. An odd minor of G
is a graph obtained by contracting connected subgraphs of G, each having
an odd number of vertices. Observe that if all the degrees of G are odd, then
all the degrees of an odd minor of G are also odd.

A perfect matching of G is a spanning subgraph with all vertices of degree
one. A theorem of Tutte (1947) asserts that G has a perfect matching if and
only if the number of components of G \ S with an odd number of vertices
(also called odd components) is at most |S| for every S ⊆ V (G). One of the
consequences of Tutte’s theorem is that for every edge e of a cubic bridgeless
graph, there is a perfect matching containing e and for every two edges e and
f , there is a perfect matching avoiding both e and f .

2.1 Brick and brace decomposition of graphs

The brick and brace decomposition plays a crucial role in the study of the
structure of perfect matchings in graphs. A graph G is said to be matching
covered if every edge is contained in a perfect matching of G, and it is match-
ing double-covered if every edge is contained in at least two perfect matchings
of G. A theorem of Kotzig (see [8, Section 8.6]) asserts that if a graph G has
a unique perfect matching, then G has a bridge. An immediate consequence
of this theorem is the following proposition:

Proposition 5. Every cyclically 4-edge-connected cubic graph different from
K4 is matching double-covered.
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An edge-cut E(A, B) is tight if every perfect matching contains precisely
one edge of E(A, B). If G is a connected matching covered graph with a
tight edge-cut E(A, B), then G[A] and G[B] are also connected. Moreover,
every perfect matching of G corresponds to a pair of perfect matchings in
the graphs G/A and G/B. Hence, both G/A and G/B are also matching
covered. We say that we have decomposed G into G/A and G/B. If any of
these graphs still have a tight edge-cut, we can keep decomposing it until no
graph in the decomposition has a tight edge-cut. Matching covered graphs
without tight edge-cuts are called braces if they are bipartite and bricks
otherwise, and the decomposition of a graph G obtained this way is known
as the brick and brace decomposition of G.

Lovász [7] showed that the collection of graphs obtained from G in any
brick and brace decomposition is unique up to the multiplicity of edges. This
allows us to speak of the brick and brace decomposition of G, as well as the
number of bricks and the number of braces in the decomposition of G.

A graph is said to be bicritical if G\{u, v} has a perfect matching for any
two vertices u and v. Edmonds et al. [4] gave the following characterization
of bricks:

Theorem 6 (Edmonds et al., 1982). A graph G is a brick if and only if it
is 3-vertex-connected and bicritical.

It can also be proven that a brace is a bipartite graph such that for any
two vertices u and u′ from the same color class and any two vertices v and v ′

from the other color class, the graph G \ {u, u′, v, v′} has a perfect matching,
see [8].

We finish this subsection with an observation that the brick and brace
decomposition of a bipartite graph contains braces only; we include the proof
of this fact as a demonstration of the just introduced notation.

Proposition 7. If H is a bipartite matching covered graph, then its brick
and brace decomposition consists of braces only.

Proof. We proceed by induction on the size of H. Let U and V be the two
color classes of H. If H has no tight edge-cut, then H is a brace and there
is nothing to prove. Otherwise, let E(A, B) be a tight edge-cut of H. Let
e be an edge of E(A, B). By symmetry, we can assume that e is incident
with a vertex of A ∩ U . Since H contains a perfect matching such that e
is the only edge of E(A, B) in the matching, |A ∩ U | = |A ∩ V | + 1 and
|B ∩ V | = |B ∩ U | + 1. Hence, any matching containing a single edge of the
cut E(A, B), say f , must satisfy that f is incident with a vertex of A ∩ U .
Since E(A, B) is a tight edge-cut, all the edges of E(A, B) join vertices of
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A∩U and B∩V , and so both graphs G/A and G/B are bipartite. The claim
follows by applying the induction to G/A and G/B.

2.2 Perfect matching polytope

Some of our arguments also involve the perfect matching polytopes of graphs.
The perfect matching polytope of a graph G is the convex hull of characteristic
vectors of perfect matchings of G. The sufficient and necessary conditions
for a vector w ∈ R

E(G) to lie in the perfect matching polytope are known [3]:

Theorem 8 (Edmonds 1965). If G is a graph, then a vector w ∈ R
E(G) lies

in the perfect matching polytope of G if and only if the following holds:

(i) w is non-negative,

(ii) for every vertex v of G the sum of the entries of w corresponding to the
edges incident with v is equal to one, and

(iii) for every odd cycle C of G the sum of the entries corresponding to edges
having exactly one vertex on C is at least one.

When G is bipartite, it is clear that condition (iii) is always fulfilled. Hence,
conditions (i) and (ii) are necessary and sufficient for a vertex to lie in the
perfect matching polytope of a bipartite graph G.

The dimension of the perfect matching polytope of a matching covered
graph G can be computed from the brick and brace decomposition of G: Ed-
monds, Lovász, and Pulleyblank [4], and independently Naddef [10], showed
that it is equal to |E(G)|−|V (G)|+1−b(G) where b(G) denotes the number
of bricks in the decomposition.

Let w be a vector lying in the perfect matching polytope of G and E(A, B)
be an edge-cut of G. If the sum of the entries of w corresponding to edges of
E(A, B) is not equal to one, then one of the matchings whose characteristic
vectors convexly combine to w does not contain exactly one edge of the cut.
Hence, E(A, B) cannot be tight. Conversely, if an edge-cut is tight, the
entries corresponding to the edges of the cut of every vector lying in the
perfect matching polytope sum to one. Let us formulate this observation as
a propostion.

Proposition 9. An edge-cut of G is tight if and only if the sum of the entries
corresponding to the edges of the cut is equal to one for every vector lying in
the perfect matching polytope of G.

If G is a cubic bridgeless graph, it is easy to infer from Theorem 8 that
the vector with all entries equal to 1/3 lies in the perfect matching polytope
of G. Hence, every tight cut of a cubic bridgeless graph must have size three
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by Proposition 9. In particular, the brick and brace decomposition of a cubic
bridgeless graph only contains cubic (bridgeless) graphs.

3 Cyclically 5-edge-connected graphs

Our aim in this section is to show that if G is a cyclically 5-edge-connected
cubic graph, and e is an edge of G, then G− e has few bricks in its brick and
brace decomposition, or there exists an edge f so that G−{e, f} is bipartite
and matching covered. This will imply that G has at least 3|V (G)|/4 − 3/2
perfect matchings.

Lemma 10. Let G be a cyclically 5-edge-connected cubic graph, and let
E(U, U ′) be a 5-edge-cut of G. If G/U is matching covered, then it is cycli-
cally 5-edge-connected and 3-vertex-connected.

Proof. Since G is cyclically 5-edge-connected, G[U ] is connected, and so H =
G/U is well-defined. Observe that any cyclic edge-cut of H corresponds to a
cyclic edge-cut of G. Hence, H is cyclically 5-edge-connected. Moreover, it
is a {5}-near cubic graph, and since the minimum degree of H is three, any
edge-cut of size at most two is cyclic. This implies that H is 3-edge-connected.
Also note that H is 2-vertex-connected, otherwise it would contain an edge-
cut of size at most two since the maximum degree of H is five.

We now show that H is 3-vertex-connected, which will establish the
lemma. For the sake of contradiction, assume that H has a vertex-cut of
size two formed by vertices x and y, and let A and B be the components of
H \ {x, y}. If both x and y have degree three, one easily infer a 2-edge-cut.
Hence, we may assume that x has degree five and y has degree three. By the
3-edge-connectivity of H, the graph H \ {x, y} cannot have more than two
components.

A simple check shows that the only {5}-near cubic graph of order at most
four is the graph obtained from K4 by removing an edge, say uv, and doubling
the edges uw and vw, where w is one of the two vertices distinct from u and
v. However, this graph is not matching covered. Since the number of vertices
of H is even, we can assume that H has at least six vertices.

If x and y are joined by an edge, then the number of edges between A or B
and {x, y} must be three. At least one these two edge-cuts is however cyclic;
otherwise, both A and B have order one and the order of H is four. Hence,
the number of edges leaving {x, y} is eight and x and y are non-adjacent.

Neither x nor y is incident with a bigon (an edge with multiplicity two);
otherwise the edges leaving the bigon form a cyclic edge-cut of H of size at
most four. Since the number of edges between A or B and {x, y} must be at
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least three and neither x nor y is incident with a bigon, it follows that both
A and B contain at least two vertices. Hence, the number of edges between
A or B and {x, y} must be at least four since otherwise these edges would
form a cyclic edge-cut of size three in H. Consequently, there are exactly
four edges between A or B and {x, y}, and the sets A and B both contain
exactly two vertices. Since x has degree five and is neither adjacent to y nor
incident to a bigon, this is impossible.

We now prove that under the same assumptions as in the previous lemma,
the brick and brace decomposition of G/U contains exactly one brick.

Lemma 11. Let G be a cyclically 5-edge-connected cubic graph, and let
E(U, U ′) be a 5-edge-cut of G. If G/U is matching covered, then b(G/U) = 1.

Proof. The proof proceeds by induction on the order of H = G/U (G is
fixed). Since H is a {5}-near cubic graph, H is not bipartite. By Lemma 10,
H is cyclically 5-edge-connected and 3-vertex-connected. By Theorem 6, H
is a either a brick (in which case b(H) = 1) or is not bicritical. So we can
focus on the latter case.

Let x and y be the vertices of H such that H \ {x, y} has no perfect
matching. According to Tutte’s Theorem, there exists a set of vertices S of
H \ {x, y} such that H \ (S ∪ {x, y}) has at least |S| + 1 odd components.
Let S ′ = S ∪ {x, y}. Since the number of vertices of H is even, H \ S ′ has
at least |S|+ 2 = |S ′| odd components. As H is {5}-near cubic, the number
of edges leaving S ′ is at most 3|S ′| + 2. In what follows, we distinguish two
cases regarding the sizes of the components in H \ S ′.

Suppose first that all the components of H\S ′ are single vertices of degree
three in H. Then the number of edges between S ′ and H \S ′ is exactly 3|S ′|.
In this case, the vertex of degree five is in S ′ and S ′ contains two vertices
joined by an edge. Observe that H has no matching containing this edge
which contradicts our assumption that H is matching covered.

Suppose now that at least one of the components of H \S ′ is not a single
vertex whose degree is three in H, then the number of edges leaving the
odd components of H \ S ′ is at least 3|S ′| + 2: there are at least five edges
leaving every odd component that is not a single vertex since H is cyclically
5-edge-connected and there are five edges leaving a vertex of degree five in
case this vertex were one of the components of H \S ′. We conclude that the
number of edges between S ′ and H \ S ′ is exactly 3|S ′|+ 2 (and thus S ′ is a
stable set and contains the vertex of degree five), and H \S ′ contains exactly
|S ′| components, |S ′| − 1 of them being isolated vertices and the remaining
one having odd size.
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Figure 2: The only possible odd minor of G− e (G being a cyclically 5-edge-
connected cubic graph) that is a matching covered {4, 4}-near cubic graph
and that is not 3-vertex-connected.

Let B be the set of vertices of the only component of H \ S ′ that is
not an isolated vertex and set A = V (H) \ B. As H \ S ′ contains exactly
|S ′| components and S ′ is a stable set, the 5-edge-cut E(A, B) is tight. In
particular, H/B is a bipartite matching covered graph, so b(H/B) = 0 by
Proposition 7. Let A′ be the set of vertices of G corresponding to A, i.e.
H/A = G/A′. The graph H[A] is connected and contains the vertex of
degree five, so H/A = G/A′ is a matching covered graph that satisfies the
induction hypothesis. Since the order of G/A′ = H/A is smaller than that
of G/U = H, the induction yields that b(H/A) = 1. Consequently, b(H) =
b(H/A) + b(H/B) = 1 + 0 = 1.

Using the same approach as in Lemma 10, we now study the connectiv-
ity of a matching covered {4, 4}-near cubic graph obtained from G − e by
contracting some odd components.

Lemma 12. Let G be a cyclically 5-edge-connected cubic graph, e an edge
of G and H an odd minor of G − e. If H is a {4, 4}-near cubic graph, then
H is 2-vertex-connected. Moreover, if H has a 2-vertex-cut and is matching
covered, then H is isomorphic to the graph depicted in Figure 2.

Proof. Since G is cyclically 5-edge-connected, the graph H is cyclically 4-
edge-connected. We first show that we can focus on graphs H of order
six or more. The only {4, 4}-near cubic graphs of order at most four that
are matching covered but not 3-vertex-connected have the cycle C4 as an
underlying simple graph. In that case, H must be either

• the graph obtained from C4 by doubling three distinct edges, or

• the graph obtained from C4 by tripling an edge and doubling the op-
posite one.

Since both these graphs contain a cyclic edge-cut of size at most three, the
order of H is at least six.
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The argument that H is 2-vertex-connected is analogous to that in the
proof of Lemma 10, so we leave the details to the reader. Assume that
H contains a bigon. Since H has order at least six and is cyclically 4-
edge-connected, exactly four edges leave this bigon. Observe that e is not
contained in the corresponding edge-cut in G, since the ends of the bigon
are the two vertices of degree four of H. Hence, the four edges leaving the
bigon correspond to a cyclic 4-edge-cut of G, which is impossible. So we can
assume that H is a simple graph.

Finally, we focus on analyzing vertex-cuts of size two. Let {x, y} be a
2-vertex-cut of H and let C1, . . . , Ck be the k ≥ 2 components of H \ {x, y}.
Since H has no bigons, each of the sets Ci contains at least two vertices.
Hence, the number of edges between Ci and {x, y} is at least four (otherwise,
they would form a cyclic edge-cut of H of size at most three). Consequently,
k = 2 and x and y are non-adjacent vertices of degree four. This implies that
the number of edges between each Ci (i = 1, 2) and {x, y} is precisely four.
Since the edge e corresponds to an edge joining x and y, each of the cuts
E(C1, C2 ∪ {x, y}) and E(C1 ∪ {x, y}, C2) has the same size in H and G. As
G is cyclically 5-edge-connected, both C1 and C2 must contain exactly two
vertices. We conclude that H must be the graph depicted in Figure 2.

In the next lemma, we show that graphs satisfying the assumptions of
Lemma 12 have few bricks in their decomposition.

Lemma 13. Let G be a cyclically 5-edge-connected cubic graph, e an edge
of G and H an odd minor of G − e. If H is a matching covered {4, 4}-near
cubic graph, then b(H) ≤ 2.

Proof. The proof proceeds by induction on the order of the odd minor H of
G− e (G and e are fixed). If H is bipartite, then b(H) = 0 by Proposition 7.
If H is not 3-vertex-connected, then by Lemma 12 it is isomorphic to the
graph depicted in Figure 2 and its brick and brace decomposition consists of
two graphs isomorphic to K4 with a single parallel edge.

Hence, we can assume that H is a 3-vertex-connected non-bipartite graph.
If H is a brick, then b(H) = 1. By Theorem 6, we may assume that H is not
bicritical. Let x and y be two vertices of H such that H\{x, y} has no perfect
matching. Let S be a set of vertices of H\{x, y} such that H\(S∪{x, y}) has
at least |S| + 1 odd components, and let S ′ = S ∪ {x, y}. Since the number
of vertices of H is even, H \ S ′ has at least |S| + 2 = |S ′| odd components.
Based on the degree distribution of H and the fact that G is cyclically 5-
edge-connected, the number of edges leaving S ′ is 3|S ′|, 3|S ′|+ 1 or 3|S ′|+ 2
and H \ S ′ contains precisely |S ′| components (which are all odd) and at
most one of these components is not an isolated vertex. Notice that if all
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the odd components of H \S ′ were isolated vertices, then either H would be
bipartite (which case has already been considered) or S ′ would contain both
vertices of degree four. In the latter case, there would be an edge joining two
vertices of S ′ but such an edge cannot be contained in a perfect matching
of H contrary to our assumption that H is matching covered. We conclude
that H \ S ′ contains precisely one non-trivial odd component B.

Let A = V (H) \ B. We consider three possibilities, regarding whether
the vertices of degree four belong to S ′. If S ′ only contains vertices of degree
three, then there are 3|S ′| edges leaving S ′. In this case, the two vertices of
degree four are in B and E(A, B) is a cyclic edge-cut of size three, which is
impossible. Depending whether S ′ contains one or both vertices of degree
four of H, the number of edges between A and B is four or five. Observe that
in both cases, H/B is bipartite, and hence the edge-cut E(A, B) is tight. By
Proposition 7, this also implies that b(H/B) = 0. Let A′ the set of vertices
of G corresponding to A, i.e. H/A = G/A′. Since E(A, B) is tight, the
graph H/A = (G − e)/A′ is matching covered. If S ′ contains a single vertex
of degree four, then H/A is a {4, 4}-near cubic graph. In this case we apply
induction on H/A. If S ′ contains two vertices of degree four, then E(A, B)
is a cyclic 5-edge-cut and we can apply Lemma 11 on H/A. In both cases,
b(H) = b(H/A) + b(H/B) = b(H/A) ≤ 2.

Lemma 13 has the following corollary:

Lemma 14. Let G be a cyclically 5-edge-connected cubic graph and e an edge
of G. If G − e is matching covered, then b(G − e) ≤ 2.

Proof. Since G is a cyclically 5-edge-connected cubic graph and G − e is
matching covered, we infer that G is not isomorphic to K4. This implies that
G is triangle-free. Hence, the two vertices of degree two of G − e, say u and
u′, have no common neighbor.

Let A be comprised of the vertex u and its two neighbors in G − e and
B = V (G) \ A. Similarly, let A′ be comprised of the vertex u′ and its two
neighbors in G− e and B ′ = V (G) \A′. The cuts E(A, B) and E(A′, B′) are
tight in G − e. Since the sets A and A′ are disjoint, after reducing the tight
edge-cuts E(A, B) and E(A′, B′) of G − e, we obtain two bipartite graphs
of order four and a {4, 4}-near cubic graph. The statement follows from
Proposition 7 and Lemma 13.

We now study the structure of a graph G such that the graph G − e is
not matching covered for some edge e.

Lemma 15. Let G be a cyclically 5-edge-connected cubic graph and e an edge
of G. If G− e is not matching covered, then G contains an edge f such that
G − {e, f} is matching covered and bipartite.
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Proof. Let e = uu′ and H = G − e, and assume that H contains an edge
f = vv′ that is not contained in any perfect matching of H. Hence, H\{v, v ′}
contains a set S of vertices such that the number of odd components of H \S ′

where S ′ = S ∪ {v, v′} is at least |S| + 1. Since the number of vertices of H
is even, the number of the odd components is at least |S| + 2 = |S ′|. Since
v and v′ are both contained in S ′, the number of edges leaving S ′ is at most
3|S ′|−2. Since G is cyclically 5-edge-connected, all the components of H \S ′

are isolated vertices and neither u nor u′ is contained in S ′. This implies that
H ′ = G \ {e, f} is a {2, 2, 2, 2}-near cubic bipartite graph. Denote by U and
V the two color classes of H ′, in such way that {u, u′} ⊆ U and {v, v′} ⊆ V .

We now show that H ′ is matching covered. Let H ′′ be a graph obtained
from H ′ by adding a vertex ve (resp. vf) and joining it by two parallel edges
to each of the end-vertices of e (resp. f). We claim that H ′′ has no edge-cut
of size at most three separating ve and vf . Assume the opposite and let
E(A, B) be such an edge-cut. By symmetry, ve ∈ A and vf ∈ B.

If A contains both end-vertices of e and B contains both end-vertices of
f , then E(A, B) corresponds to a non-trivial edge-cut of size at most three
of G which violates our assumption that G is cyclically 5-edge-connected.
Hence, we can assume by symmetry that A contains u but not u′. As the
size of E(A, B) is at most three, both v and v′ must be contained in B. Let
us estimate the size of the edge-cut of G corresponding to E(A, B): the two
edges between ve and u′ are not present anymore and but the edge e is now
present. Hence, the size of the corresponding edge-cut of G is at most two.
Since G is cubic, this is also a cyclic edge-cut of size at most two, which
contradicts our assumption that G is cyclically 5-edge-connected.

Since there is no edge-cut of size at most three separating ve and vf in H ′′,
there are four edge-disjoint paths connecting ve and vf by Menger’s theorem.
Consequently, H ′ contains four edge-disjoint paths P1, P2, P3 and P4 joining
the vertices u and u′ to the vertices v and v′. Direct the paths Pi from u and
u′ to v and v′, and consider now the following vector w ∈ R

E(H′):

we =







1/2 if e is directed from U to V ,
1/6 if e is directed from V to U , and
1/3 otherwise.

Observe that H ′ is bipartite and for every vertex x of H ′, the sum of the
entries of w corresponding to the edges incident with x is equal to one.
Hence, w lies in the perfect matching polytope of H ′. Since all the entries of
w are non-zero, the graph H ′ is matching covered.

We now apply Lemmas 14 and 15 to prove the main result of this section.
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Theorem 16. Let G be a cyclically 5-edge-connected cubic graph of order n.
For every edge e of G, the graph G−e has at least n/2−1 perfect matchings.

Proof. Let e be an arbitrary edge of G. If G − e is matching covered, then
b(G − e) ≤ 2 by Lemma 14. Hence, the dimension of the perfect matching
polytope of G− e is at least (3n/2− 1)−n+1− 2 = n/2− 2. Consequently,
G − e has at least n/2 − 1 perfect matchings.

If G−e is not matching covered, then Lemma 15 guarantees the existence
of an edge f such that G \ {e, f} is matching covered and bipartite, in which
case b(G \ {e, f}) = 0 by Proposition 7. Hence, the dimension of the perfect
matching polytope of G \ {e, f} is at least (3n/2− 2)− n + 1 = n/2− 1 and
G − e contains at least n/2 perfect matchings.

This theorem has the following easy consequence on the number of perfect
matchings of cyclically 5-edge-connected cubic graphs.

Corollary 17. Let G be a cubic graph of order n. If G is cyclically 5-edge-
connected, then the number of perfect matchings of G is at least 3n/4− 3/2.

Proof. Let e, e′ and e′′ be the edges incident with an arbitrary vertex v. By
Theorem 16, each of the graphs G− e, G− e′ and G− e′′ has at least n/2− 1
perfect matchings. Since a perfect matching of G is a perfect matching of
exactly two of these three graphs, G has at least 3n/4−3/2 perfect matchings.

4 Cyclically 4-edge-connected graphs

In this section, we prove that cyclically 4-edge-connected cubic graphs have
at least 3n/4 − 9 perfect matchings. Actually, we prove a slightly stronger
version of this result that will be used in the next section.

Theorem 18. Let H be a cyclically 4-edge-connected cubic graph that is
not cyclically 5-edge-connected. If G is a graph of order n obtained from H
by replacing some of its vertices with triangles (possibly, G = H), then G
contains at least 3n/4 − 9 perfect matchings.

Proof. Let E(A′, B′) = {e′1, e
′
2, e

′
3, e

′
4} be a cyclic 4-edge-cut of H. Let a′

i be
the end-vertex of the edge e′i lying in A′. Observe that all the vertices a′

i are
distinct, since otherwise there would be a cyclic edge-cut of size at most three
in H. We claim that the graph H[A′] is connected and bridgeless: If H[A′]
were disconnected, then a proper subset of {e′1, e

′
2, e

′
3, e

′
4} would also be a

cyclic edge-cut which is impossible by our assumption that H is cyclically 4-
edge-connected. If H[A′] has a bridge e′, this bridge must separate in A′ two
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of the vertices a′
1, a

′
2, a

′
3, a

′
4 from the other two (otherwise, H would contain

an edge-cut of size two). Assume that the bridge e′ separates {a′
1, a

′
2} from

{a′
3, a

′
4}. As {e′, e′1, e

′
2} is an edge-cut of H of size three, a′

1 and a′
2 must

coincide (otherwise, this edge-cut is cyclic). Similarly, we infer that a′
3 = a′

4.
This implies that the subgraph H[A′] is just an edge contrary to the fact that
E(A′, B′) is a cyclic edge-cut. Hence, H[A′] and H[B′] are 2-edge-connected.

Observe that E(A′, B′) corresponds to a cyclic 4-edge-cut E(A, B) =
{e1, e2, e3, e4} of G. Let ai and bi be the end-vertex of the edge ei lying in
A and B, respectively. Now, let mA

X , X ⊆ {1, 2, 3, 4}, be the number of
matchings of G[A] that cover all the vertices of G[A] except the vertices ai,
i ∈ X. We use mB

X in an analogous way. To simplify our notation, we further
write mA

13 instead of mA
{1,3}, etc. Clearly, if |X| is odd, then mA

X = mB
X = 0.

As the number of matchings of G is equal to

∑

X⊆{1,2,3,4}

mA
X · mB

X ,

we will estimate the summands to obtain the desired bound. Consider a
permutation {i, j, k, l} of {1, 2, 3, 4} with i < j, and define GA

ij as the graph
obtained from G[A] by adding the edges aiaj and akal. GA

(ij) denotes the

graph obtained from G[A] by introducing two new adjacent vertices, joining
one of them to the vertices ai and aj, and the other one to ak and al. Observe
that GA

12 = GA
34 and GA

(12) = GA
(34).

Since H[A′] is 2-edge-connected, so is the graph G[A]. Hence, the graphs
GA

ij and GA
(ij) are cubic and bridgeless. Consequently, they have a perfect

matching containing any prescribed edge and a perfect matching avoiding
any two prescribed edges. In particular, GA

12 has a matching avoiding the
edges a1a2 and a3a4. Consequently, G[A] has a perfect matching. Since G[A]
is bridgeless, it has at least two perfect matchings by Kotzig’s theorem. We
conclude that mA

∅
≥ 2. Also by Theorem 3, the graphs GA

ij have at least
|A|/2 perfect matchings and the graphs GA

(ij) have at least |A|/2 + 1 perfect
matchings.

If mA
1234 = 0, then the fact that GA

ij has a perfect matching containing
the edge aiaj implies that mA

ij ≥ 1 for every i, j. On the other hand, if
mA

ij = 0 for some i, j and k 6∈ {i, j}, then the fact that GA
(jk) has a perfect

matching containing the added edge incident with ai implies that mA
ik ≥ 1.

We conclude that at least one of the following two possibilities occurs:

Case A: All the quantities mA
ij are non-zero and mA

∅
≥ 2.

Case B: There exist i and j such that the quantities mA
1234, mA

ik and mA
jk are

non-zero for any k 6∈ {i, j}, and mA
∅
≥ 2.
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For every subset X ⊆ {1, 2, 3, 4} such that mA
X ≥ 1, fix a matching MA

X

avoiding the vertices ai, i ∈ X. In addition, fix a second matching MA∗
∅

6= MA
∅

covering all the four vertices ai, i ∈ {1, 2, 3, 4} (such a matching exists as
mA

∅
≥ 2). The fixed matchings of G[A] are referred to as canonical matchings

of G[A] and the other matchings of G[A] are non-canonical. Consider also
the analogous definitions for the matchings of G[B].

Assume first that Case A applies. Consider a non-canonical matching of
G[B] that avoids vertices bi and bj for some i, j ∈ {1, 2, 3, 4}. This matching
can be completed by adding the canonical matching MA

ij and the edges aibi

and ajbj to a perfect matching of G. Similarly, a non-canonical matching
of G[B] covering all the four vertices can be completed by one of the two
canonical matchings MA

∅
and MA∗

∅
of G[A]. We conclude that the number

of perfect matchings of G that are canonical when restricted to G[A] and
non-canonical when restricted to G[B] is at least

mB
12 + mB

13 + mB
14 + mB

23 + mB
24 + mB

34 + 2mB
∅
, (1)

where mB
X denotes the number of non-canonical matchings of G[B] avoiding

{bi, i ∈ X}. On the other hand, if {i, j, k, l} is a permutation of {1, 2, 3, 4},
the number of perfect matchings of GB

(ij) is equal to

mB
ik + mB

il + mB
jk + mB

jl + mB
∅
. (2)

Every graph GB
(ij) has order |B| + 2, so the number of perfect matchings

of GB
(ij) is at least |B|/2 + 1 by Theorem 3 (and thus the number of non-

canonical matchings of G[B] is at least |B|/2 − 5). Summing (2) for (i, j) ∈
{(1, 2), (1, 3), (1, 4)} yields the following estimate:

2mB
12 + 2mB

13 + 2mB
14 + 2mB

23 + 2mB
24 + 2mB

34 + 3mB
∅
≥ 3|B|/2 − 15. (3)

Comparing (1) and (3), we see that the number of perfect matchings of G
that are canonical in G[A] and non-canonical in G[B] is at least 3|B|/4−7.5.

Assume now that Case B applies for i = 1 and j = 2. The number of
matchings of G that are canonical in G[A] and non-canonical in G[B] is at
least

mB
1234 + mB

13 + mB
14 + mB

23 + mB
24 + 2mB

∅
. (4)

The number of perfect matching of GB
13 is equal to the following quantity

which must be at least |B|/2 as argued before:

mB
1234 + mB

13 + mB
24 + mB

∅
≥ |B|/2. (5)

Similarly, we bound the number of perfect matchings of GB
14:

mB
1234 + mB

14 + mB
23 + mB

∅
≥ |B|/2. (6)
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Finally, we estimate the number of perfect matchings of GB
(12):

mB
13 + mB

14 + mB
23 + mB

24 + mB
∅
≥ |B|/2 + 1. (7)

Summing (5), (6) and (7) and subtracting the maximum possible number of
canonical matchings, we obtain

2mB
1234 + 2mB

13 + 2mB
14 + 2mB

23 + 2mB
24 + 3mB

∅
≥ 3|B|/2 − 15. (8)

Comparing (4) and (8), we see that the number of perfect matchings of G
that are canonical in G[A] and non-canonical in G[B] is at least 3|B|/4−7.5.

A completely symmetric argument yields that the number of perfect
matchings of G that are non-canonical in G[A] and canonical in G[B] is
at least 3|A|/4 − 7.5. We now consider matchings of G that are canonical
when restricted to both G[A] and G[B]. If Case A applies to both G[A] and
G[B], there are at least 6+2 · 2 = 10 such perfect matchings of G. If Case A
only applies to one of these two subgraphs, there are at least 4+2 ·2 = 8 such
perfect matchings. Finally, if Case B applies to both G[A] and G[B], there
are at least 2+2·2 = 6 such perfect matchings. In total, the number of perfect
matchings of G is at least 3|A|/4 − 7.5 + 3|B|/4 − 7.5 + 6 = 3n/4 − 9.

5 Cyclically 3-edge-connected graphs

A klee-graph is inductively defined as being either K4, or the graph obtained
from a klee-graph by replacing a vertex by a triangle. Every klee-graph is a
cubic planar brick. Moreover, if G is a graph with an edge-cut E(A, B) such
that both G/A and G/B are klee-graphs, then G is also a klee-graph.

Recall that every edge of a cubic bridgeless graph is contained in at least
one perfect matching. We now prove that if an edge of a 3-edge-connected
cubic graph is contained in only one perfect matching, then the graph is a
klee-graph.

Lemma 19. A 3-edge-connected cubic graph G that is not a klee-graph is
matching double-covered.

Proof. The proof proceeds by induction on the order of G. If G has no cyclic
3-edge-cuts, then it is matching double-covered by Proposition 5 (as G is
not a klee-graph, it is different from K4). Otherwise, let E(A, B) be a cyclic
3-edge-cut of G. Since G is not a klee-graph, at least one of the graphs G/A
and G/B, say G/A, is not a klee-graph. By induction, G/A is matching
double-covered. Since G/B is cubic and bridgeless, it is matching covered.
Hence, every perfect matching of G/A extends to G, and so every edge with
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at least one end-vertex in B is contained in at least two perfect matchings of
G.

If e is an edge with both end-vertices in A, then there exists a perfect
matching of G/B containing e. Since G/A is matching double-covered, this
matching extends in two different ways to a matching of G. Hence, G is
matching double-covered.

In this section, our general strategy to prove that a cyclically 3-edge-
connected cubic graph has many matchings is to split the graph along a
3-edge-cut and then use an inductive argument. If the smaller graphs are
not klee-graphs, every edge of such graphs is in at least two perfect match-
ings and those can be combined to form many different matchings in the
original graph.

Lemma 20. Every n-vertex 3-edge-connected cubic graph G with a 3-edge-
cut E(A, B) such that neither G/A nor G/B is a klee-graph, has at least
3n/4 − 6 perfect matchings.

Proof. Let E(A, B) = {e1, e2, e3}, and let mA
i (resp. mB

i ) be the number of
perfect matchings of G/A (resp. G/B) containing the edge ei. By Lemma 19,
each of mA

i and mB
i is at least two. By Theorem 3, unless G/A is the

exceptional graph from Figure 1,

mA
1 + mA

2 + mA
3 ≥ |B|/2 + 3/2 and mB

1 + mB
2 + mB

3 ≥ |A|/2 + 1/2 .

Since any perfect matching of G/A containing ei combines with a perfect
matching of G/B containing ei to form a perfect matchings of G containing
ei, the number of perfect matchings of G is at least

3
∑

i=1

mA
i mB

i ≥ 2 (|B|/2−5/2)+2 (|A|/2−7/2)+2 ·2 = |A|+ |B|−8 = n−8 .

Since neither G/A nor G/B is a klee-graph, and both A and B have odd
size, |A| ≥ 5 and |B| ≥ 5. Consequently, n = |A|+ |B| ≥ 10 and thus G has
at least n − 8 ≥ 3n/4 − 5.5 perfect matchings.

If G/A is the exceptional graph, then |B| = 11 and mA
1 = mA

2 = mA
3 = 2.

The bound on the number of perfect matchings of G is now

3
∑

i=1

mA
i mB

i ≥ 2 (|A|/2 + 1/2) = |A| + 1 = n − 10 .

Since |B| = 11 and |A| ≥ 5, the number n of vertices of G is at least 16, and
so G has at least n − 10 ≥ 3n/4 − 6 perfect matchings.
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We say that a 3-edge-cut E(A, B) of a cubic graph G is nice, if G/A is
not a klee-graph and at least one of the following holds:

(i) G/B is not a klee-graph;

(ii) |A| ≥ 9;

(iii) |A| ≥ 5 and E(A, B) is not tight;

(iv) |A| = 3, and there are at least two perfect matchings of G containing
all the three edges of E(A, B).

The next lemma shows that if we split the graph along a nice 3-edge-cut,
the general induction will run smoothly.

Lemma 21. Let n be a positive integer, and assume that every 3-edge-
connected cubic graph of order n′ < n has at least 3n′/4 − 9 perfect match-
ings. If G is an n-vertex 3-edge-connected cubic graph with a nice 3-edge-cut
E(A, B), then G also has at least 3n/4 − 9 perfect matchings.

Proof. By the assumption of the lemma, G/A is not a klee-graph. If G/B is
also not a klee-graph, the bound follows from Lemma 20. We now focus on the
remaining three cases and assume that G/B is a klee-graph. By Lemma 19,
the graph G/A is matching double-covered. Since G/A has fewer vertices
than G, by the assumption of the lemma G/A has at least 3|B|/4 + 3/4 − 9
perfect matchings. Since G/B is a klee-graph, we conclude that it is not the
exceptional graph from Figure 1, and thus it has at least |A|/2+ 3/2 perfect
matchings.

Let E(A, B) = {e1, e2, e3}, and let mA
i (resp. mB

i ) be the number of
perfect matchings of G/A (resp. G/B) containing ei, i = 1, 2, 3. The number
of perfect matchings of G containing exactly one edge of the edge-cut E(A, B)
is at least

mA
1 · mB

1 + mA
2 · mB

2 + mA
3 · mB

3 . (9)

As every mA
i is at least two and every mB

i is at least one, the expression
above is at least

(3|B|/4+3/4−13) ·1+2 ·(|A|/2−1/2)+2 ·1 = 3n/4+ |A|/4+3/4−12 (10)

If |A| ≥ 9, then 3n/4 + |A|/4 + 3/4 − 12 ≥ 3n/4 + 12/4 − 12 = 3n/4 − 9.
If |A| ≥ 5 and the edge-cut E(A, B) is not tight, then there exists a perfect
matching not counted in the estimate (10) and thus the number of perfect
matchings is at least 3n/4+|A|/4+3/4−11 ≥ 3n/4−9. Finally, assume that
|A| = 3 and there are at least two perfect matchings containing all the three
edges of E(A, B), i.e., at least two matchings are not counted in (10). Then
the number of perfect matchings of G is at least 3n/4 + |A|/4 + 3/4 − 10 >
3n/4 − 9.
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Let G and H be two disjoint cubic graphs, u a vertex of G incident with
three edges e1, e2, e3, and v a vertex of H incident with three edges f1, f2, f3.
Consider the graph obtained from the union of G\u and H\v by adding an
edge between the end-vertices of ei and fi (1 ≤ i ≤ 3) distinct from u and
v. We say that this graph is obtained by gluing G and H through u and v.
Note that gluing a graph G and K4 through a vertex v of G is the same as
replacing v by a triangle.

In the next lemma, we characterize the graphs that do not contain nice
3-edge-cuts.

Lemma 22. Let G be a 3-edge-connected cubic graph that is not cyclically
4-edge-connected and that has no nice 3-edge-cut. If G is neither a klee-graph
nor bipartite, then G must be of one of the following forms:

(1) G can be obtained from a cubic brace H by gluing klee-graphs on 4, 6 or
8 vertices through some of the vertices of one of the two color classes of
H;

(2) G has no tight edge-cuts and can be obtained from a cyclically 4-edge-
connected cubic graph by replacing some of its vertices with triangles.

Proof. We assume that G is neither a klee-graph nor a bipartite graph and
distinguish two cases depending whether G has a tight edge-cut or not.

If G has a tight edge-cut, then its brick and brace decomposition is non-
trivial. Every non-trivial brick and brace decomposition of a cubic bridgeless
graph contains a brace (see [6]). If the brick and brace decomposition of G
contains two or more braces, then G has a tight 3-edge-cut E(A, B) such that
neither G/A nor G/B is a brick (again, see [6]). In particular, neither G/A
nor G/B is a klee-graph, and so E(A, B) is a nice edge-cut, which violates
the assumption of the lemma.

We conclude that the brick and brace decomposition of G contains a
single brace H, and that for any tight edge-cut E(A, B) of G, exactly one of
the graphs G/A and G/B is a brick. Observe that all the bricks are glued
through the vertices of the same color class of H. To see this, assume that
for two vertices u and v in different color classes of H, and two bricks H1

containing a vertex u′ and H2 containing a vertex v′, G is obtained from
H by gluing H1 through u and u′ and H2 to v and v′. Let u1, u2, u3 (resp.
v1, v2, v3) be the neighbors of u (resp. v) in H, and let u′

1, u
′
2, u

′
3 (resp.

v′
1, v

′
2, v

′
3) be the neighbors of u′ (resp. v′) in H1 (resp. H2). By definition,

both {uiu
′
i, 1 ≤ i ≤ 3} and {viv

′
i, 1 ≤ i ≤ 3} are tight edge-cuts of G.

Since H1 and H2 are bricks, H1\{u
′
1, u

′
2} and H2\{v

′
1, v

′
2} both have a perfect

matching. Since H is a brace, H\{u1, u2, v1, v2} also has a perfect matching.
These three matchings combine to a perfect matching of G containing all the
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edges uiu
′
i and viv

′
i for 1 ≤ i ≤ 3 which contradicts the fact that the two

edge-cuts were tight.
As for every 3-edge-cut E(A, B), G/A or G/B is a klee-graph, all bricks

of G are klee-graphs. Since E(A, B) is not nice, the “klee-graph” side of the
cut has at most 8 vertices. Hence, all bricks of G are klee-graphs with 4, 6
or 8 vertices, and G is exactly of the first form described in the lemma.

It remains to consider the case that G has no tight 3-edge-cuts. Consider
a 3-edge-cut E(A, B) of G. Since G is not a klee-graph, G/A or G/B, say
G/A, is not a klee-graph. Since G has no nice 3-edge-cut, |A| = 3 and so G[A]
is a triangle. Now observe that every 3-edge-cut in G/A corresponds to a
3-edge-cut in G, and hence, separates a triangle. So we can keep contracting
the original triangles of G to obtain a cyclically 4-edge-connected graph (no
new 3-edge-cut, and hence no triangle, will be created during the process).
We have observed that G can be obtained from a cyclically 4-edge-connected
cubic graph by replacing some of its vertices by triangles.

Let G be a 3-edge-connected cubic graph that is not a klee-graph, such
that every cyclic 3-edge-cut E(A, B) of G separates a triangle (in other words
|A| = 3 or |B| = 3). The core of G, denoted by C(G), is the graph obtained
by contracting every triangle of G. Since all cyclic 3-edge-cuts of G separate
triangles, the graph G can be obtained from its core by replacing some of its
vertices with triangles.

Lemma 23. Let G be a 3-edge-connected cubic graph different from K4

with no nice 3-edge-cut. Assume G was obtained from a cyclically 4-edge-
connected cubic graph by replacing some of its vertices (at least one) by tri-
angles. In particular, G is not a klee-graph. If C(G) is not bipartite, then
C(G) has a cyclic 4-edge-cut, and G has no tight cyclic 3-edge-cut.

Proof. Let H = C(G) and let v be any vertex of H. By the assumption, H is
not bipartite. If the graph H ′ obtained from H by removing v and its three
neighbors has no perfect matching, then there exists S ′ ⊆ V (H ′) such that
H \ S ′ has at least |S ′| + 2 odd components. Let S be the set S ′ enhanced
with the three neighbors of v. Clearly, H \ S has at least |S| = |S ′| + 3 odd
components. Since H is cyclically 4-edge-connected, this implies that all the
odd components of H \ S are isolated vertices and H is bipartite which is
impossible. Hence, H ′ has a perfect matching.

Let u be a vertex of H that is replaced by a triangle T in G and let U
be the set containing u and its three neighbors u1, u2, u3 in H. As proven
in the previous paragraph, H \ U contains a perfect matching and the cut
separating the triangle T is not tight. Hence, no cyclic 3-edge-cut of G is
tight.
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We now show that H has a cyclic 4-edge-cut. If H\U contains two perfect
matchings, then G has two perfect matchings containing all the three edges
of the cut separating T . Since G has no nice 3-edge-cut, this is impossible,
so by Kotzig’s theorem the graph H \ U has a bridge. Let E(A, B) be the
cut of H \ U , that corresponds to this bridge.

Since H is cyclically 4-edge-connected, the set {u1, u2, u3} is a stable set.
If A is comprised of a single vertex, say A = {v}, then v has two common
neighbors with u, say u1 and u2. In particular, H contains the cycle of length
four uu1vu2 which is disjoint from B. If B induces a forest it is easy to see
that |B| = 3 and B induces a path of length two, which together with u3

forms a cycle of length four. Otherwise, B has a cycle. In both cases, H has
a cyclic edge-cut of size four. Since the case |B| = 1 is symmetric, we can
assume that both A and B contain at least two vertices. Since H is cyclically
4-edge-connected, the sizes of the cuts E(A, B ∪ U) and E(A ∪ U, B) are at
least four. Since the number of edges between U and A ∪ B is six, there are
three edges joining U and A and three edges joining U and B.

If |A| ≥ 3, then E(A, B ∪ U) is a cyclic edge-cut of size four. If |A| = 2,
then one of the two vertices of A has two common neighbors with u and H
has a cycle of length four. Again, H has a cyclic edge-cut of size four.

As mentioned in the introduction, Chudnovsky and Seymour [2] proved
that planar cubic bridgeless graphs (and consequently, klee-graphs) have ex-
ponentially many perfect matchings. However, their bound is not too good
for graphs with small number of vertices. In the next lemma, we use the
inductive structure of klee-graphs to provide a better lower bound on their
number of perfect matchings.

Lemma 24. Every n-vertex klee-graph has at least 3n/4 − 6 perfect match-
ings.

Proof. If n ≤ 8, then there is nothing to prove. Hence, we can focus on
klee-graphs of order at least ten.

Let G be a klee-graph and v a vertex of G with neighbors v1, v2 and v3.
The type of v is the 4-tuple (ω; µ1, µ2, µ3) such that the graph G\{v, v1, v2, v3}
contains ω perfect matchings and the graph G \ {v, vi} contains µi perfect
matchings for 1 ≤ i ≤ 3. Observe that there are exactly three non-isomorphic
klee-graphs of order ten; these graphs are depicted in Figure 3(a)–(c), where
the label of each edge represents the number of perfect matchings containing
that edge and the label of a vertex v is the number of perfect matchings in
the graph obtained by removing v and its three neighbors. In particular, the
type of a vertex v is formed by its label and the labels of the three incident
edges.
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Figure 3: (a)–(c) The three non-isomorphic klee-graphs of order ten. (d) The
only 12-vertex klee-graph that cannot be obtained by replacing a vertex by
a triangle in (b) or (c).

Let v be a vertex of type (ω; µ1, µ2, µ3) in the klee-graph G. The vertex v
is said to be an A-vertex if ω = 1 and µi = 1 for a single index i ∈ {1, 2, 3}; v
is a B-vertex if ω = 1 and µi > 1 for every i ∈ {1, 2, 3} and v is a C-vertex if
ω > 1 and µi = 1 for exactly two indices i ∈ {1, 2, 3}. A vertex is dangerous
if at least three of the values ω, µ1, µ2 and µ3 are equal to one. A vertex
v is good if it is neither a A-, B-, C-vertex nor a dangerous vertex. In the
following, G4v denotes the graph obtained from G by replacing v with a
triangle. The number of perfect matchings in G is denoted by m(G).

Let G be a klee-graph and v a vertex of G of type (ω; µ1, µ2, µ3). As
illustrated in Figure 4, the types of the three new vertices in G4v are

(µ1; µ1 + ω, µ2, µ3), (µ2; µ1, µ2 + ω, µ3), and (µ3; µ1, µ2, µ3 + ω) .

In particular, m(G4v) = m(G) + ω. Finally, consider a vertex v ′ 6= v and
observe that if the type of v′ in G is (ω′; µ′

1, µ
′
2, µ

′
3) and its type in G4v is

(ω′′; µ′′
1, µ

′′
2, µ

′′
3), then ω′′ ≥ ω′ and µ′′

i ≥ µ′
i for every i ∈ {1, 2, 3}. Hence, if v′

is an A-vertex in G, it is an A-vertex, a B-vertex or a good vertex in G4v.
If v′ is a B-vertex in G, it is a B-vertex or a good vertex in G4v. If v ′ is
a C-vertex in G, then it is a C-vertex or a good vertex in G4v. Finally,
if v′ is a good vertex in G, it remains good in G4v. This implies that a
vertex is dangerous in G4v only if it was dangerous in G. Since no graph in
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Figure 3(a)–(c) contains a dangerous vertex, no klee-graph of order at least
12 contains a dangerous vertex.

µ1

µ1 +ω

µ2µ3
ω

µ3µ2

µ1

µ2

µ3

µ2 +ω

µ1
µ3 +ω

Figure 4: The types of the three new vertices in G4v.

For any klee-graph G with α A-vertices and β B-vertices, let M(G) =
m(G) − α − β/2. The core of our proof is the following claim proven by
induction on n.

Claim. For any n-vertex klee-graph G, n ≥ 10, distinct from the one in
Figure 3(a), it holds M(G) ≥ 3n/4 − 6.

If n = 10, then G is one of the graphs depicted in Figures 3(b) and 3(c), and

M(G) =

{

6 − 2 − 2/2 = 3
6 − 0 − 3/2 = 4.5

}

≥ 3 · 10/4 − 6 .

The only 12-vertex klee-graph that cannot be obtained by replacing a vertex
with a triangle in one of the graphs depicted in Figures 3(b) and 3(c) is the
graph in Figure 3(d). For this graph, we have

M(G) = 10 − 4 − 6/2 = 3 ≥ 3 · 12/4 − 6 .

All other n-vertex klee-graphs G with n ≥ 12 can be obtained by replacing a
vertex v by a triangle w1w2w3 in a klee-graph G′ that satisfies the assumptions
of the claim. Clearly, the number n′ of vertices of G′ is n−2. By the induction,
we assume that M(G′) ≥ 3n′/4 − 6.

We now distinguish four cases based on the type of v; note that v cannot
be dangerous as argued earlier. Observe that if an A- or B-vertex becomes
good, or if an A-vertex becomes a B-vertex, then −α − β/2 increases. So
we can assume without loss of generality that every A-vertex and B-vertex
distinct from v remains an A-vertex and B-vertex, respectively.
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• v is an A-vertex: Since v is an A-vertex, m(G) = m(G′) + 1. One of the
vertices w1, w2 and w3 is a B-vertex, and the other two vertices are
good. Hence, α decreases by 1 and β increases by 1, and so −α − β/2
increases by 1/2. We conclude that

M(G) = M(G′) + 1 + 1/2 ≥ 3n′/4 − 6 + 3/2 = 3n/4 − 6 .

• v is a B-vertex: Since v is a B-vertex, it holds that m(G) = m(G′) + 1.
All the vertices w1, w2 and w3 are good, so β decreases by one and
−α − β/2 increases by 1/2. We conclude that

M(G) = M(G′) + 1 + 1/2 ≥ 3n′/4 − 6 + 3/2 = 3n/4 − 6 .

• v is a C-vertex: It is easy to see that in any klee-graph of order at least 12,
any C-vertex has type (ω, µ, 1, 1), where both ω and µ are at least five.
Hence it holds that m(G) ≥ m(G′) + 5. Two vertices among w1, w2

and w3 are A-vertices and the last one is a C-vertex. Hence, −α− β/2
decreases by two. We again conclude that

M(G) ≥ M(G′) + 5 − 2 ≥ 3n′/4 − 6 + 3 ≥ 3n/4 − 6 .

• v is good: At most one of the vertices w1, w2 and w3 is a B-vertex and the
remaining vertices are good. Hence, −α − β/2 decreases by at most
1/2. Since m(G) ≥ m(G′) + 2, it holds that

M(G) ≥ M(G′) + 2 − 1/2 ≥ 3n′/4 − 6 + 3/2 = 3n/4 − 6 .

This finishes the proof of the claim.
We have shown that M(G) ≥ 3n/4 − 6 for every n-vertex klee-graph G

with n ≥ 10 distinct from the graph in Figure 3(a) which has 7 ≥ 3 ·10/4−6
perfect matchings. In particular, the number of perfect matchings of any
n-vertex klee-graph is at least 3n/4 − 6.

As mentioned in the introduction, cubic bridgeless bipartite graphs are
known to have an exponential number of perfect matchings. We can derive
the following more modest result, which will be sufficient for our purpose.

Lemma 25. Every n-vertex cubic bipartite graph has at least 3n/2−9 perfect
matchings.

24



n = 2k 6 8 10 12 14 16
g(k) 4 6 8 11 15 20
f(k) 6 9 12 17 23 30

3n/2 − 9 0 3 6 9 12 15

Table 1: The minimum number f(k) of distinct perfect matchings of a cubic
bipartite with 2k vertices and the claimed bound 3n/2 − 9.

Proof. Let g(3) = 4, and set g(k) = d4g(k − 1)/3e for any k ≥ 4. Also, let
f(k) = d3g(k)/2e. It can be shown that every cubic bridgeless graph with
2k vertices has at least f(k) perfect matchings, see [6, 8]. The values of f(k)
for small k can be found in Table 1. If n ≤ 12, the statement of the lemma
holds by inspecting the values of f(k). For k = 7, g(k) ≥ 2k. Using the
definition of g(k), an easy argument by induction on k shows that g(k) ≥ 2k
for all k ≥ 7. Hence, f(k) ≥ 3g(k)/2 ≥ 3k = 3n/2 and the statement of the
lemma follows.

We are know ready to prove the main result of this section.

Theorem 26. Every n-vertex 3-edge-connected cubic graph has at least 3n/4−
9 perfect matchings.

Proof. The proof proceeds by induction on the order n of G. If n ≤ 12, then
there is nothing to prove since the bound claimed in the theorem is negative.
Fix n ≥ 14, and assume that we have proven the statement of the theorem
for all n′ < n. If G is cyclically 4-edge-connected, then G has at least 3n/4−9
perfect matchings by Theorem 18. If G has a nice cyclic 3-edge-cut, then G
has at least 3n/4−9 perfect matchings using Lemma 21. If G is a klee-graph
or a bipartite graph, Lemmas 24 and 25 yield the desired lower bound on the
number of perfect matchings of G. Otherwise, G is of one of the two forms
given in Lemma 22. We deal with each of these cases separately:

• G can be obtained from a cubic brace H by gluing klee-graphs on 4, 6 or
8 vertices through some of the vertices of one of the two color classes
of G: Let N be the order of H. The number of perfect matchings of H
is at least 3N/2 − 9 by Lemma 25 and H is matching double-covered
by Lemma 19. Let Nk be the number of vertices of H through which a
klee-graph of order k ∈ {4, 6, 8} is glued. Observe that

N4 + N6 + N8 ≤ N/2 and n = N + 2N4 + 4N6 + 6N8 .

Let us estimate the number of perfect matchings of G in more detail.
We count in how many ways perfect matchings of H extend to the glued
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klee-graphs. There is a unique extension of each perfect matching of
H to a glued klee-graph of order 4. Since the edges incident with
every vertex of a klee-graph of order six are contained in 1, 1 and 2
perfect matchings respectively and H is matching double-covered, at
least two perfect matchings extend to a glued klee-graph of order six
in two different ways. Hence, any such gluing increases the number of
perfect matchings by at least two. Similarly, the edges incident with
every vertex of a klee-graph of order eight are contained in 1, 1 and 3 or
1, 2 and 2 perfect matchings which implies that at least two matchings
of H extend to a glued klee-graph of order eight in three different ways
or at least four matchings of H extend in two different ways. In both
cases, the number of perfect matchings is increased by four.

Using Lemma 25, we conclude that the number of perfect matchings of
G is at least

3
2
N − 9 + 2N6 + 4N8 ≥ 3

4
N + 3 (N4+N6+N8)/2 + 2N6 + 4N8 − 9

≥ 3n/4 − 9 ,

as desired.

• G has no tight edge-cuts and it can be obtained from a cyclically 4-edge-
connected cubic graph by replacing some of its vertices with triangles:
If H = C(G) has a cyclic 4-edge-cut, Theorem 18 yields the desired
bound. If H has no cyclic 4-edge-cut, then H is a bipartite cyclically
5-edge-connected cubic graph by Lemma 23. By Proposition 9, H is a
brace. In particular, it is possible to remove two vertices from each of
the two colors classes of H and the graph still has a perfect matching.

Let N be the number of vertices of H and Ni, i = 1, 2, be the number
of vertices of each of the two color classes of H that are replaced by
triangles in G. Observe that n = N + 2N1 + 2N2, N1 ≤ N/2 and
N2 ≤ N/2. We can assume without loss of generality that 1 ≤ N1 ≤ N2,
since otherwise this would bring us to the previous case (replacing a
vertex v by a triangle is the same as gluing a K4 through v).

By Lemma 25, H has at least 3N/2− 9 perfect matchings and each of
these matchings corresponds to a perfect matching of G which contains
only one edge of each 3-edge-cut separating a triangle. Now, take
two vertices u, v in different color classes of H, such that u and v
are replaced by two triangles Tu and Tv in G. Let H ′ be the graph
obtained from H by removing two neighbors of u and two neighbors
of v. Since H is a brace, H ′ has a perfect matching. This perfect
matching corresponds to a perfect matching of G containing the three
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edges leaving Tu, the three edges leaving Tv, and only one edge of each
3-edge-cut separating a different triangle. Hence, G contains at least
3N/2 − 9 + N1N2 perfect matchings.

Since n = N +2N1 +2N2, proving that G has at least 3n/4− 9 perfect
matchings is equivalent to proving that N1 + N2 ≤ N

2
+ 2

3
N1N2. If

N1 = 1 then

N1 + N2 = N2/3 + 1 + 2
3
N1N2 ≤ N/2 + 2

3
N1N2

since N ≥ dn/3e ≥ 5. On the other hand, if N1 ≥ 2 then

N1 + N2 ≤ N/2 + (N1 + N2)/2 ≤ N/2 + N1N2/2 .

This finishes the proof of Theorem 26.

6 Bridgeless graphs

In this section, we prove our main result on the number of perfect matchings
of cubic bridgeless graphs. Before we do so, we need an auxiliary lemma:

Lemma 27. Let G be a cubic bridgeless graph with a 2-edge-cut. For every
edge e of G, there are at least three perfect matchings avoiding e.

Proof. Let E(A, B) be an edge-cut of G of size two and let GA and GB be
the cubic bridgeless graphs obtained from G[A] and G[B] by joining the two
vertices of degree two with an edge. The added edges are denoted by eA and
eB. If e ∈ E(A, B), then G has at least four perfect matchings avoiding e as
any of at least two perfect matchings of GA avoiding eA combines with any
of at least two perfect matchings of GB avoiding eB to a perfect matching of
G avoiding e.

We now assume that e 6∈ E(A, B). By symmetry, let e be in G[A]. Recall
that in a cubic bridgeless graph, it is possible to find a perfect matching
avoiding any two given edges. Thus, the graph GA contains at least two
perfect matchings avoiding e and at least one such matching also avoids eA.
Any perfect matching of GA avoiding both e and eA can be extended to B in
two different ways and any perfect matching of GA avoiding e and containing
eA can be extended to B in at least one way. Altogether, G contains at least
three perfect matchings avoiding e as desired.

We are now ready to prove the main result:

Theorem 28. Every cubic bridgeless graph G with n vertices has at least
3n/4 − 10 perfect matchings.
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Proof. The proof proceeds by induction on the number of vertices of G. If
G is 3-edge-connected, the bound follows from Theorem 26. Otherwise, take
a 2-edge-cut E(A, B) of G such that A is minimal with respect to inclusion.
Let GA and GB be the cubic bridgeless graph obtained from G[A] and G[B]
by adding edges eA and eB between the two vertices of degree two. Clearly,
GA is 3-edge-connected and contains at least 3|A|/4 − 9 perfect matchings
by Theorem 26. Also note that GA contains at least two perfect match-
ings avoiding eA, and similarly GB contains at least two perfect matchings
avoiding eB.

Suppose first that the edge eA is contained in two perfect matchings.
Fix two perfect matchings of GA containing eA and two perfect matchings
avoiding eA. Each of |B|/2 perfect matchings of GB can be extended to
G[A] in at least two different ways using the fixed matchings (note that, by
Theorem 3, if |B| 6= 12, GB has at least |B|/2 + 1 perfect matchings and if
|B| = 2, GB has |B|/2+2 = 3 perfect matchings). On the other hand, every
of at least 3|A|/4−9−4 = 3|A|/4−13 perfect matchings of GA distinct from
the fixed ones can be extended to G[B]. Hence, unless |B| = 2 or |B| = 12
the number of perfect matchings of G is at least

3|A|/4 − 13 + 2 · (|B|/2 + 1) = 3n/4 + |B|/4 − 11 ≥ 3n/4 − 10 .

If |B| = 2, the number of perfect matchings of G is at least

3|A|/4 − 13 + 2 · (|B|/2 + 2) ≥ 3n/4 − 9 ,

and if |B| = 12, the number of perfect matchings of G is at least

3|A|/4 − 13 + 2 · |B|/2 = 3n/4 + |B|/4 − 13 = 3n/4 − 10 .

Suppose now that GA has a single matching containing the edge eA. We
distinguish two cases regarding whether GB is 3-edge-connected. If GB is 3-
edge-connected and eB is contained in at least two perfect matchings, then we
apply the same arguments as in the previous paragraph and the result follows.
Hence, we can assume that eB is contained in a single perfect matching of GB.
Consequently, by Theorem 3 there are at least |A|/2−1 perfect matchings of
GA avoiding eA and at least |B|/2− 1 perfect matchings of GB avoiding eB.
Fix two matchings of GA that avoid eA and two matchings of GB that avoid
eB, and call these four matchings canonical. Every non-canonical matching
of GA avoiding eA combines with a canonical matching of GB avoiding eB,
and vice-versa. Hence, the number of perfect matchings of G is at least

2(|A|/2 − 3) + 2(|B|/2 − 3) + 2 · 2 = n − 8 ≥ 3n/4 − 9 .
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The only remaining case is when GB is not 3-edge-connected and the
edge eA is contained in a single matching of GA. By Lemma 27, GB has at
least three matchings avoiding eB. Fix one matching of GA containing eA,
one matching of GA avoiding eA and three matchings of GB avoiding eB.
Again, we call these five perfect matchings canonical. By induction, GB has
at least 3|B|/4− 10 perfect matchings, each of which can be combined with
a canonical perfect matching of GA to form a perfect matching of G. Since
eA is contained in a single matching of GA, there exist at least |A|/2 − 2
matchings of GA (distinct from the canonical ones) avoiding eA. Each of
them can be combined with one of the three canonical matchings of GB to
form a perfect matching of G. Note that |A|/2 − 2 ≥ |A|/4 if |A| ≥ 8.
If |A| ∈ {4, 6}, then by Theorem 3, GA has at least |A|/2 − 1 matchings
distinct from the two canonical ones, and again |A|/2 − 1 ≥ |A|/4. Finally,
if |A| = 2, then GA has |A|/2 = 1 perfect matching distinct from the two
canonical ones. In all cases, GA has at least |A|/4 perfect matchings distinct
from the two canonical matchings of GA. We conclude that the number of
perfect matchings of G is at least

3 · |A|/4 + 3|B|/4 − 10 = 3n/4 − 10 .

This finishes the proof of the theorem.
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