Preface

This is a collection of abstracts of some of the talks at the Hamiltonian Graph
Theory Workshop, held in Pavlov (Czech Republic) on February 6-9, 2008, to
honor the sixtieth birthday of Professor Zdenék Ryjacek. We hope that all the
participants — especially Zdenék — enjoyed these four days of interesting talks
in the friendly ambience of Hotel Pavlov as much as we did.

The workshop was made possible by the kind support of the following insti-
tutions:

e Department of Mathematics, University of West Bohemia, Pilsen (support
from Research Plan MSM 4977751301 of the Czech Ministry of Education
is gratefully acknowledged),

e Institute for Theoretical Computer Science (supported by Czech Ministry
of Education as project 1M0545),

e Department of Applied Mathematics, Charles University, Prague,
e Union of Czech Mathematicians and Physicists.

We thank all the participants for accepting the invitation to come and con-
tribute to the atmosphere of this event.
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On labelings of disconnected graphs

Martin Baca

TU Kosice
martin.baca®@tuke.sk

A labeling of a graph is any map that carries some set of graph elements to
numbers (usually to the positive integers). If the domain is the vertex-set or the
edge-set, the labelings are called vertex labelings or edge labelings, respectively.
Moreover, if the domain is V(G)UE(G) then the labeling is called total labeling.

Let f be a vertex labeling of a graph GG, we define the edge-weight of uv €
E(G) to be w(uv) = f(u) + f(v). If f is a total labeling, then the edge-weight
of uv is w(uv) = f(u) + f(uv) + f(v).

An (a, d)-edge-antimagic total labeling on a graph with p vertices and ¢ edges
is defined as a one-to-one map taking the vertices and edges onto the integers
1,2,...,p+ q with the property that the edge-weights form an arithmetic se-
quence starting from a and having a common difference d. Such a labeling is
called super if the smallest possible labels appear on the vertices.

A graceful labeling of a (p, q) graph G is an injection h : V(G) — {1,2,...,
q + 1} such that, when each edge wv is assigned the label |h(u) — h(v)|, the
resulting edge labels are distinct. When the graceful labeling h has the property
that there exists an integer A such that for each edge uv either h(u) < A < h(v)
or h(v) < A < h(u), h is called an a-labeling.

We use the connection between a-labelings and edge-antimagic labelings
for determining a super (a,d)-edge-antimagic total labelings of disconnected
graphs.



Colouring and distinguishing edges by
total labellings

Stephan Brandt

TU Ilmenau
stephan.brandt@tu-ilmenau.de

(joint work with Kristina Budajovéd, Jozef Miskuf, Dieter Rautenbach and
Michael Stiebitz)

A total k-labelling of a graph G = (V,FE) is a function f : VU E —
{1,2,...,k}. The weight of an edge uv is w(uwv) = f(u) + f(uwv) + f(v). We
investigate edge-distinguishing total k-labellings, where all edge weights must
be different, and edge-colouring total k-labellings, where the edge weights of
incident edges must be different, i.e. they determine a proper edge colouring of
G. In both cases we try to minimize k.

Let G be a graph with m edges and maximum degree A. In the case of
edge-distinguishing total labellings, our main result is that the natural lower

bound 0 ALl
m + +
>

is tight for all graphs with m > 111000A. Ivanco and Jendrol’ conjecture that
the bound is tight for all G # K.

In the case of edge-colouring total labellings the natural lower bound is
k> (%1 This lower bound cannot be tight in general, but we are not aware
of any graph, where k£ must exceed the lower bound by more than one. Our
main result here is an upper bound of k < % + O(v/Alog A). In both cases we
employ a mixture of graph theoretic and probabilistic methods.
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Sharp upper bounds for the minimum number
of components of 2-factors in claw-free graphs

Hajo Broersma

Durham University
hajo.broersma@durham.ac.uk

(joint work with Daniél Paulusma and Kiyoshi Yoshimoto)

We first note that for claw-free graphs on n vertices with minimum degree
0 = 2 or 0 = 3 that have a 2-factor we can not do better than the trivial upper
bound 7n/3 on the number of components of a 2-factor. Hence, in order to get a
nontrivial result it is natural to consider claw-free graphs with 6 > 4. Let G be
a non-hamiltonian claw-free graph on n vertices with minimum degree . We
prove the following results, thereby improving known results due to Faudree
et al. and to Gould & Jacobson. If 6 = 4, then G has a 2-factor with at
most (5n — 14)/18 components, unless G belongs to a finite class of exceptional
graphs. If § > 5, then G has a 2-factor with at most (n—3)/(d —1) components.
These bounds are best possible in the sense that we cannot replace 5/18 by a
smaller quotient and we cannot replace 6 — 1 by J.
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Forbidden subgraphs, Hamiltonian properties,
and 2-factors in graphs

Ralph Faudree

University of Memphis
rfaudree@cc.memphis.edu

A survey of results on families of connected forbidden subgraphs that imply
various hamiltonian type properties will be presented. Some corresponding
results on the existence of two-factors will also be presented. Applications of
the Ryjacek closure to results of this type will be featured. Open problems will
be discussed.
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Application of linear algebra for the existence of
homomorphisms with local constraints

Jifl Fiala

Univerzita Karlova, Praha
fiala@kam.mff.cuni.cz

(joint work with Daniél Paulusma and Jan Arne Telle)

We explore the connection between locally constrained graph homomor-
phisms and degree matrices arising from an equitable partition of a graph. We
extend the well-known connection between degree refinement matrices of graphs
and locally bijective graph homomorphisms to locally injective and locally sur-
jective homomorphisms by showing that also these latter types of homomor-
phisms impose a quasiorder on degree matrices and a partial order on degree
refinement matrices. Computing the degree refinement matrix of a graph is
easy, and an algorithm deciding comparability of two matrices in one of these
partial orders could be used as a heuristic for deciding whether a graph G allows
a homomorphism of the given type to H. By using elementary properties of
systems of linear equations we show for local surjectivity and injectivity that
the problem of matrix comparability belongs to the complexity class NP.
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On a problem from the ancient times of
Zdenek’s youth

Dalibor Froncek

University of Minnesota Duluth
dalibor@d.umn.edu

Let G be a simple finite graph and z,y be two independent (i.e., non-
adjacent) vertices. By N§(z,y) we denote the subgraph of G induced by the
set of all vertices adjacent to at least one of x,y.

G is a graph with constant neighborhood of two independent vertices if there
exists a graph H such that N} (z,y) is isomorphic to H for every pair of in-
dependent vertices z,y. It is known (see [1]) that if G has this property, then
diam(G) < 3. On the other hand, no such graph with diam(G) = 3 is known.
Therefore, we may ask the following question.

Problem. Does there exist a graph with constant neighborhood of two indepen-
dent vertices of diameter 3¢

It is easy to show the following;:

Observation. Let G be a graph with constant neighborhood of two independent
vertices and U be the set of all vertices with eccentricity 3. Then |U| > 3. Also,
G cannot contain an induced cycle of length 6 or more.

References

[1] D. Froncek, Graphs with constant neighbourhoods of two independent ver-
tices, Quart. Journ. of Math. Ozford 43 (1992), 313-317.
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Seidel’s switching

Jan Kratochvil

Univerzita Karlova, Praha
honza@kam.mff.cuni.cz

Let G be a graph. Seidel’s switching of a vertex v € Vi results in a graph
called S(G,v) whose vertex set is the same as of G and the edge set is the
symmetric difference of E; and the full star centered in v, i.e.,

Vsiawy = Va
Eswy = (Bg\{zv:ov e Vg})U{azv:z € Vg, x # v, 2v € Eg}.

Graphs G and H are called switching equivalent if G can be transformed into
a graph isomorphic to H by a sequence of Seidel’s switches. It can be easily
seen that only the parity of the number of times a particular vertex is switched
matters. Denote A C Vg the set of vertices which are switched odd number of
times. The resulting switched graph is then

S(G,A) = (Vg,E(;+{5L’y T € A,y c Vg\A}),

and G is switching equivalent to H if and only if H is isomorphic to S(G, A)
for some A C Vi (= denoting the symmetric difference of sets).

The concept of Seidel’s switching was introduced by the Dutch mathemati-
cian J. J. Seidel in connection with symmetric structures, often of algebraic
flavor, such as systems of equiangular lines, strongly regular graphs, or the so
called two-graphs. For more structural properties of two-graphs, cf. [6, 7, §].

Colbourn and Corneil [1] (and independently but later Kratochvil et al. [4])
proved that deciding if two graphs are switching equivalent is an isomorphism
complete problem. Several authors asked the question of how difficult it is to
decide if a given graph is switching equivalent to a graph having some prescribed
property (this property becomes the parameter of the problem). So far the only
nontrivial switching NP-complete problem known is switching to a regular graph
4, 5].

An area with irritating open problems is avoiding forbidden induced sub-
graphs. It is still an open problem if there exists a graph H such that switching
to H-free graphs is NP-complete. Here H is a fixed parameter. The complexity
is known only for a few graphs H and in all cases the question turns out poly-
nomially solvable. It is proved in [4] that deciding if a given input graph can be
switched to a Ps-free graph (i.e., a graph not containing and induced copy of the
path on 3 vertices) is polynomially solvable. This means deciding if the input
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graph is switching equivalent to the disjoint union of complete graphs. R. Hay-
ward [2] showed that deciding switching equivalence to triangle-free graphs is
also polynomial.

Another case is added in [3]. This result is particularly suitable to be pre-
sented in the Ryjacek volume, and we wish to add the following theorem to the
pile of birthday presents:

Theorem. It is polynomial to decide if an input graph is switching equivalent
to a claw-free graph.

References
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2]
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Some Ramsey type problems surrounding claw-
free graphs

Jaroslav Nesetril

Univerzita Karlova, Praha
nesetril@kam.mff.cuni.cz

Let G, H be finite graphs. We say that H is vertez- (or edge-) Ramsey for
G if for every partition 4; U Ay of vertices V(H) (or edges E(H)) there exists
an inducd subgraph G’ of H such that V(G') C A; (or E(G") C A;) for either
1=1ori=2.

In the style of Erdés-Rado partiton arrow [1, 2] this is denoted by H —
(G)d (or H — (G)3). One more definition (a key one which took a long time
to crystalize, see e.g. [2]): Let K be a class of finite graphs. We say that K is
vertez-Ramsey (or edge-Ramsey) if for every G € K there exists H € K such
that H — (G)} (or H — (G)3).

Known results for Ramsey classes deal with “rich” classes of graphs. For
example we have

Theorem. The class GRA of all fnite graphs is both vertex- and edge-Ramsey.

Theorem. For any k > 2 is the class FORB(K}) of all Ki-free graphs both
vertex- and edge-Ramsey.

Theorem. The class BIP of all bipartite graphs is edge-Ramsey (and obviously
not vertez-Ramsey).

(For these classical results, see, e.g., the survey [2].)
By specializing to more structures classes of graphs we get several interesting
results and problems. For example we have:

Theorem. The class INT of all interval graphs s vertex-Ramsey but not edge-
Ramsey.

The class UNIINT of all unit interval graphs is both vertex-Ramsey and
edge- Ramsey.

Theorem. The class PERFECT of all perfect graphs is vertex-Ramsey.

It is my old problem to decide whether perfect graphs are edge-Ramsey class.
This is an open problem even after the solution of Perfect Graph conjecture (by
Chudnovsky, Robertson, Seymour and Thomas).
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The classes of bounded degree graphs (and cubic graphs in particular) fail
to be Ramsey. However the class CLAW of all claw free graphs (prominently
treated in this volume) is interesting in this context:

Both principal building clases of the class CLAW, namely the class LINE
of of all line graphs and the class 2IND of all graphs with their independence
number < 2, are vertex-Ramsey. One should note that while the class LINE fails
to be edge-Ramsey, the class 2IND is both vertex- and edge-Ramsey. However
it follows from the Chudnovsky—Seymour characterization of the class CLAW
that this class fails to be even vertex-Ramsey. Are there only finitely many such
examples? More exactly: Is it true that, with finitely many exceptions, for every
claw free graph G there exists a claw free graph H such that H — (G)3?

Let us finish this extended abstract (the proofs of which will of course appear
elsewhere) by mentioning the class TRIANG of triangulated (or rigid circuit
graphs). Here the situation is surprisingly open: The class TRIANG is known
to be neither vertex- nor edge-Ramsey. The difficulty of treating this example
may be related to the above problem for the class PERFECT.

References

[1] R. L. Graham, B. L. Rothschild and J. H. Spencer, Ramsey theory. John
Wiley and Sons, 1980.

[2] J. Nesgettil, Ramsey Theory. In: Handbook of Combinatorics (ed. R. L. Gra-
ham, M. Grotschel, L. Lovész), North-Holland, 1995, pp. 1331-1403.
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Stable properties and around
Zdenek Ryjacek

Zapadoceska univerzita, Plzen
ryjacek@kma.zcu.cz

For a claw-free graph G, cl(G) denotes its closure (obtained by local com-
pletions at locally connected vertices). A class of graphs C is said to be stable
under the closure if G € C = cl(G) € C. A property P is said to be stable in a
stable class C if, for any G € C, G has P < cl(G) has P. A graph invariant 7 is
said to be stable in a stable class C if, for any G € C, 7(G) = 7(cl(G)). In the
talk we survey known results on stability of graph properties under cl(G) and
show some applications of closure techniques using the concept of stability. We
also show some variations of the closure concept and the respective stability
results. As a recent application it is shown (joint work with Petr Vrana) that
every 7-connected claw-free graph is Hamilton-connected.

The following table summarizes known results on stability of graph proper-
ties under cl(G).

Property / invariant Stable | Connectivity
Circumference YES 1
Hamiltonicity YES 1
Having a 2-factor with < k components YES 1
Minimum number of components in a 2-factor | YES 1
Having a cycle cover with < k cycles YES 1
Minimum number of cycles in a cycle cover YES 1
(Vertex) pancyclicity NO any Kk > 2
(Full) cycle extendability NO any K > 2
Length of a longest path YES 1
Traceability YES 1
Having a path factor with < k& components YES 1 (Tshizkal
Min. number of components in a path factor YES 1
Hz.w?ng a path cover with §. k paths YES 1 Tshizukal
Minimum number of paths in a path cover YES 1

NO 3
Homogeneous traceability 777 41<Kk<6

YES 7

NO 3
Hamilton-connectedness 777 4 <Kk<6

YES | 7 [Z.R., Vréna]
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NO 1
Having a Ps-factor 777 2

YES 3 [Kaneko]
Flower property YES 1
Hamiltonian index YES 1
Having hamiltonian prism YES 1 [Cada]
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Closures, cycles and paths

Ingo Schiermeyer

TU Freiberg

schierme@math.tu-freiberg.de

(joint work with Arnfried Kemnitz, Jochen Harant and Akira Saito)

In 1960 Ore proved the following theorem: Let G be a graph of order n.
If d(u) 4+ d(v) > n for every pair of nonadjacent vertices u and v, then G is
hamiltonian. Since then for several other graph properties similar sufficient
degree conditions have been obtained, so called “Ore-type degree conditions”.
In 2000, Faudree, Saito, Schelp and Schiermeyer strengthened Ore’s theorem
as follows: They determined the maximum number of pairs of nonadjacent
vertices that can have degree sum less than n (i.e. violate Ore’s condition)
but still imply that the graph is hamiltonian. In this talk we will show that
for some other graph properties the corresponding Ore-type degree conditions
can be strengthened as well. These graph properties include traceable graphs,
hamiltonian connected graphs, k-leaf connected graphs, pancyclic graphs and
graphs having a 2-factor with two components. Graph closures are computed
to show these results.
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Distance regular square of distance regular
graph

Vladimir Vetchy

Univerzita obrany, Brno
vladimir.vetchy@unob.cz

Given an undirected graph G = (X, E) of diameter D we define R, =
{(z,y);d(z,y) = k}, where d(x,y) is the distance from the vertex x to the
vertex y in the standard graph metric. If (X,R) gives rise to an association
scheme, the graph G is called distance reqular.

Let G = (X, E) be an undirected graph without loops and multiple edges.
The second power (or square of G) is the graph G? = (X, E') with the same
vertex set X and in which mutually different vertices are adjacent if and only
if there is at least one path of the length 1 or 2 in G between them.

The necessary conditions for G to have the square G? distance regular are
found and some constructions of those graphs are solved for distance regular
graphs of diameter D = 3 and for distance regular bigraphs of diameter D =
3,4,5,6and 7.
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