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Abstract

We relate the existence problem of universal objects to the proper-
ties of corresponding enriched categories (lifts and expansions). Par-
ticularly, extending earlier results, we prove that for every countable
set F of finite structures there exists a (countably) universal struc-
ture U for the class Forbh(F) (of all countable structures omitting
a homomorphism from all members of F). In fact U is the shadow
(reduct) of an ultrahomogeneous structure U

′ (which however, as we
will show, cannot be expressed as Forbh(F ′) for a countable set F ;
this is in a sharp contrast to the case when F is finite). We also put
the results of this paper, perhaps for the first time, in the context of
homomorphism dualities and Constraint Satisfaction Problems.

1 Introduction

A structure A is a pair (A, (Ri
A

; i ∈ I)) where Ri
A

⊆ Aδi (i.e. Ri
A

is a δi-
ary relation on A). The family (δi; i ∈ I) is called the type ∆. The type
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is usually fixed and understood from the context. (Note that we consider
relational structures only, and no function symbols.) If set A is finite we
call A finite structure. A homomorphism f : A → B = (B, (Ri

B
; i ∈ I))

is a mapping f : A → B satisfying for every (x1, x2, . . . , xδi
) ∈ Ri

A
=⇒

(f(x1), f(x2), . . . , f(xδi
)) ∈ Ri

B
, i ∈ I. If f is 1-1, then f is called an em-

bedding. The class of all (countable) relational structures of type ∆ will be
denoted by Rel(∆).

The class Rel(∆),∆ = (δi; i ∈ I), I finite, is fixed throughout this paper.
Unless otherwise stated all structures A,B, . . . belong to Rel(∆). Now let
∆′ = (δ′i; i ∈ I ′) be a type containing type ∆. (By this we mean I ⊆ I ′

and δ′i = δi for i ∈ I.) Then every structure X ∈ Rel(∆′) may be viewed
as structure A = (A, (Ri

A
; i ∈ I)) ∈ Rel(∆) together with some additional

relations Ri
X

for i ∈ I ′ \ I. To make this more explicite these additional
relations will be denoted by X i

X
, i ∈ I ′ \ I. Thus a structure X ∈ Rel(∆′)

will be written as

X = (A, (Ri
A

; i ∈ I), (X i
X
; i ∈ I ′ \ I))

and, by abuse of notation, briefly as:

X = (A, X1
X
, X2

X
, . . . , XN

X
)

We call X a lift of A and A is called the shadow (or projection) of X.
In this sense the class Rel(∆′) is the class of all lifts of Rel(∆). Conversely,
Rel(∆) is the class of all shadows of Rel(∆′). In this paper we will always
consider types of shadows to be finite, however we allow countable types
for the lifts (so I is finite and I ′ countable). Note that a lift is also in the
model theoretic setting called an expansion and a shadow a reduct. (Our
terminology is motivated by a computer science context, see [16].) We will
use letters A,B,C, . . . for shadows (in Rel(∆)) and letters X,Y,Z for lifts
(in Rel(∆′)).

For lift X = (A, X1
X
, . . . , XN

X
) we denote by ψ(X) the relational structure

A i.e. its shadow. (ψ is called the forgetful functor.) Similarly, for a class K′

of lifted objects we denote by ψ(K′) the class of all shadows of structures in
K′.

Given a class K of countable structures, an object U ∈ K is called hom-
universal (or universal) for K (or shortly K-hom-universal or K-universal)
if for every object A ∈ K there exists a homomorphism (or an embedding
A → U).

For a structure A = (A, (Ri
A
, i ∈ I)) the Gaifman graph (in combinatorics

often called 2-section) is the graph G with vertices A and all those edges
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which are a subset of a tuple of a relation of A:

G = (V,E)

where x, y ∈ E iff x 6= y and there exists tuple ~v ∈ Ri
A
, i ∈ I such that

x, y ∈ ~v.
A cut in A is a subset C of A such that the Gaifman graph GA is dis-

connected by removing set C (i.e. if C is graph theoretic cut of GA). By a
minimal cut we always mean an inclusion minimal cut.

If C is a set of vertices then
−→
C will denote a tuple (of length |C|) from

all elements of R. Alternatively,
−→
R is arbitrary linear ordering of R.

By Forbh(F1, . . . ,Ft) we denote the class of all graphs (and more gener-
ally relational structures) A for which there is no homomorphism Fi → A
for every i = 1, . . . , t. Formally Forbh(F1, . . . ,Ft) = {A;Fi 9 A for i =
1, 2, . . . , t}.

This paper is structured as follows:
In Section 2 we prove, extending our earlier paper [13], that for every

countable set F of finite connected structures the class Forbh(F) is the
shadow of an amalgamation class L and, consequently, the Fräıssé limit limL
has as its shadow structure U which is universal for Forbh(F). In [13] we
proved more, for any finite set F , there is a finite set F ′ of lifts such that
actually limL = Forbe(F

′). As remarked at the end of Section 2 this is much
to ask for the countable set F . In Section 3 we review results related to char-
acterizations of the existence of universal objects. We address the following
questions: Given class C decide whether there exists C universal object U.
Given a countable object U decide whether U is universal for a class C (with
further properties). While the embedding universal structures are necessar-
ily countable the finiteness of homomorphism universal structures is a very
interesting problem which leads to homomorphism dualities.

2 Classes omitting countable families of struc-

tures

Let F be a fixed countable set of finite relational structures of finite type ∆.
For construction of universal structure of Forbh(F) we use special lifts, called
F -lifts. The definition of F -lift is easy and resembles decomposition tech-
niques standard in graph theory and thus we adopted similar terminology.
The following is the basic notion:

Definition 2.1 For a relational structure A and minimal cut R in A, a

piece of relational structure A is pair P = (P,
−→
R ). Here P is the structure
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Figure 1: Pieces of the Petersen graph up to isomorphisms (and a permuta-
tions of roots).

induced on A by union of R and vertices of some connected component of

A \R. Tuple
−→
R consist of the vertices of cut R in a (fixed) linear order.

Note that from inclusion-minimality of the cut R follows, that pieces of
a connected structure are always connected structures.

All pieces are thought of as rooted structures: a piece P is a structure

P rooted at
−→
R . Accordingly, we say that pieces P1 = (P1,

−→
R 1) and P2 =

(P2,
−→
R 2) are isomorphic if there is function ϕ : P1 → P2 that is isomorphism

of structures P1 and P2 and ϕ restricted to
−→
R 1 is the monotone bijection

between
−→
R 1 and

−→
R 2 (we denote this ϕ(

−→
R 1) =

−→
R 2).

Observe that for relational trees, pieces are equivalent to rooted branches.
Pieces of the Petersen graph are shown at Fig 2.

Lemma 2.1 Let P1 = (P1,
−→
R 1) be a piece of structure A and P2 = (P2,

−→
R 2)

a piece of P1. If R1 ∩ P2 ⊆ R2, then P2 is also a piece of A.

Proof. Denote by C1 connected component of A \ R1 that produces P1.
Denote by C2 component of P1 \R2 that produces P2. As R1 ∩P2 ⊆ R2 one
can check that then C2 is contained in C1 and every vertex of A connected
by tuple to any vertex of C2 is contained in P1. Thus C2 is also connected
component of A created after removing vertices of R2. �

Fix index set I ′ and let Pi, i ∈ I ′, be all pieces of all relational structures
F ∈ F . Notice that there are only countably many pieces.
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X

A

Z,C

B

Y

Pk

−→
Rk

Figure 2: Construction of amalgam.

Relational structure X = (A, (X i
X
, i ∈ I ′)) is called F-lift of relational

structure A when the arities of relations X i
X
, i ∈ I ′ correspond to |

−→
R i|.

For relational structure A we define canonical lift X = L(A) by putting
(v1, v2, . . . , vl) ∈ X i

X
iff there is homomorphism ϕ from Pi to A such that

ϕ(
−→
R i) = (v1, v2, . . . , vl)

Theorem 2.2 Let F be a countable set of finite connected relational struc-
tures. The class L of all induced (embedding) substructures of lifts L(A),
A ∈ Forbh(F), is a Fräıssé class.

Consequently, there is a generic structure U in L and its shadow ψ(U)
is universal structure for class Forbh(F).

For X ∈ L we denote by W (X) one of structures A ∈ Forbh(F) such
that structure X is induced on X by L(A). W (X) is called a witness of the
fact that X belongs to L.

Proof. By definition the class L is hereditary, isomorphism closed, has a
joint embedding property. L is countable, because there are only countably
many structures in Forbh(F) (because type ∆ is finite) and thus also count-
ably many lifts. To show that L is Fräıssé class it remains to verify that L
has the amalgamation property.

Consider X,Y,Z ∈ L. Assume that structure Z is substructure induced
by both X and Y on Z and without loss of generality assume that X∪Y = Z.

Put
A = W (X)
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B = W (Y)

C = ψ(Z)

Because L is closed under isomorphism, we can still assume that A and
B are vertex disjoint with exception of vertices of C.

Let D be free amalgam of A and B over vertices of C: vertices of D are
A ∪B and there is ~v ∈ Ri

D
iff ~v ∈ Ri

A
or ~v ∈ Ri

B
.

We claim that the structure

V = L(D)

is (not necessarily free) amalgam of L(A), L(B) over Z and thus also amal-
gam of X,Y over Z.

First we show that the substructure induced by V on A is L(A) and that
the substructure induced by V on B is L(B). In the other words no new
tuples to L(A), L(B) (and thus also X and Y) was introduced.

Assume the contrary that there is a new tuple (v1, . . . , vt) ∈ Xk
V

and
among all tuples and possible choices of k choose one with the minimal
number of vertices of the corresponding piece Pk. By symmetry we can
assume that vi ∈ A, i = 1, . . . , t. Explicitely, we assume

that there is homomorphism ϕ from Pk to D such that

ϕ(
−→
Rk) = (v1, v2, . . . vt) /∈ Xk

L(A).

The set of vertices of Pk mapped to L(A), ϕ−1(A), is nonempty, because

it contains all vertices of
−→
Rk. ϕ

−1(B) is nonempty because there is no homo-

morphism ϕ′ from Pk to A such that ϕ′(
−→
Rk) = (v1, v2, . . . vt) (otherwise we

would have (v1, v2, . . . vt) ∈ Xk
L(A)).

Because there are no edges from vertices A\C to vertices B \C in D and
because pieces are connected we also have ϕ−1(C) nonempty. Additionally
the vertices of ϕ−1(C) form a cut of Pk.

Denote by K1,K2, . . .Kl all connected components of substructure in-
duced on Pk \ ϕ−1(A) by Pk. For each component Ki, 1 ≤ i ≤ l there is
vertex cut K ′

i of Pk constructed by all vertices of ϕ−1(A) connected to Ki.
This cut is always contained in ϕ−1(C).

Because Pk is piece of some F ∈ F and because (Ki,
−→
K ′

i) are pieces of Pk,
by Lemma 2.1, they are also pieces of F. We can denote by Pk1

,Pk2
, . . .Pkl

the pieces isomorphic to pieces (K1,
−→
K ′

1), (K2,
−→
K ′

2), . . . (Kl,
−→
K ′

l) via isomor-
phism ϕ1, ϕ2, . . . ϕl.

Now we use the minimality of the piece Pk. All the pieces Pk, i = 1, . . . , l
have smaller size than Pk (as ϕ−1(C) is a cut of Pk). Thus we have that tuple
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ϕ(Ki) of L(D) is as well a tuple of L(A). Thus there exists homomorphism

ϕ′

i from Ki to D such that ϕ′

i(
−→
K ′

i) = ϕ(
−→
K ′

i) for every i = 1, 2, . . . l.
In this situation we define ϕ′(x) : Pk → A as follows:

1. ϕ′(x) = ϕ′

i(x) when x ∈ Ki for some i = 1, 2, . . . l.

2. ϕ′(x) = ϕ(x).

It is easy to see that ϕ′(x) is homomorphism from Pk to L(A). This is a
contradiction.

It remains to verify that D ∈ Forbh(F). We proceed analogously. As-
sume that ϕ is homomorphism of a F ∈ F to D. Because A,B ∈ Forbh(F),
ϕ must use vertices of C and ϕ−1(C) forms cut of F. Denote by E a min-
imal cut contained in ϕ−1(C). ϕ(E) must contain tuples corresponding to
all pieces of F having E as roots in Z. This is a contradiction with Z ∈ L.

�

For a family of relational structures F denote by Forbe(F) class of all
structures omitting an embedding from all members of F .

In [13] we showed that if the class F is finite and type ∆ is finite then
the class L can be described as class Forbe(F

′) of some finite family F ′ that
can be constructed from the family F . This however holds only for lifts
with finite types. For case of relational system with infinitely many relations
this is not possible: there are even uncountably many relational systems with
single vertex v: every relation may or may not contain tuple (v, v, . . . v). Only
countably many of them can be forbidden in Forbe(F

′) for F ′ countable.

3 Characterization theorems for homomor-

phism and embedding universal graphs

In this section we collect some informations about the existence of universal
objects and their characterizations. This also puts the results of Section 2
and [13] in the new context.

3.1 Embedding universal

The basic problem (due to Lachlan [18], Cherlin et al. [3]) is the character-
ization of those families F of relational structures for which there exists a
universal structure U in class Forbe(F) (of all countable relational structures
omitting embedding from all members of F ∈ F). This is an open problem
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and [5] suggest the possibility that this problem may be undecidable. How-
ever if the universal graph U is demanded to be ω-categorical then [3] proves
that this corresponds exactly to the case when Forbe(F) has finite algebraic
closure. This model theoretic condition leads to a (model theoretic) proof
which was, for the special case of forbidden graph homomorphism greatly
simplified by combinatorial techniques in [13] and this paper. This was in
fact our main motivation for [13].

Let us state the Lachlan—Cherlin problem more explicitly.

Problem 3.1 (Characterization of embedding universal) For which fi-
nite families of finite structures F there exists structure U ∈ Forbe(F) such
that there is embedding from every structure A ∈ Forbe(F) to U (U is em-
bedding universal for class Forbe(F))?.

This problem is still open even for finite families of finite connected struc-
tures. One should note that apart from classes Forbh(F) only handfull pos-
itive examples are known (see [5]). See [9] and [5] for the strongest negative
result. Note also that [3] reduces this problem to the case of monadic lifts
(2-colored) graphs.

3.2 Homomorphism universal structure

We say that class F of structures is homomorphism monotone iff A ∈ F
providing that there is structure B ∈ F and homomorphism B → A.

The existence of countable universal structures in class Forbh(F), or
equivalently existence of countable universal structures in class Forbe(K)
for homomorphism monotone classes K was settled positively:

Theorem 3.1 ([3]) For every homomorphism monotone family F of finite
connected relational structures the class Forbe(F) contains universal graph.

In this paper we proved Theorem 3.1 in context of relational structures and
possibly infinite families F of countable structures by an explicite construc-
tion of lifts.

For countable structures homomorphism, monomorphism and embed-
ding universal structures mostly coincide. This has been proved by [3] for
monomorphism and embedding universal objects. On the other hand the
notions homomorphism universal and embedding universal are clearly differ-
ent. Consider as an example the class of all planar graphs. In this case the
finite homomorphism universal graph exists (the graph K4 is hom-universal
by virtue of 4-color problem) while neither an embedding and also monomor-
phism universal graph exists (see [11]). However in many cases we can prove

8



that not only embedding universal do not exist but even homomorphism uni-
versal do not exist. This is the case e.g. with forbidding C4 – cycle of length
4.

3.3 Finite hom-universal

Question of the existence of finite homomorphism universal object was stud-
ied independently in the context of finite dualities [23].

A finite duality (for structures of given type) is any equation

Forbh(F) = {A;A → D}

where D is finite relational structure and F is s finite set of finite relational
structures. D is called dual of F , the pair (F ,D) is dual pair. For this case
we also say that the class Forbh(F) has finite duality. We have the following:

Theorem 3.2 Following conditions are equivalent:

1. K has finite homomorphism universal D,

2. K has a finite monadic lift K′ which has a finite duality,

Existence of a finite homomorphism universal for Forbh(F) was charac-
terized by Nešetřil and Tardif.

Theorem 3.3 ([23]) For given finite class F of finite relational structures
the class Forbh(F) contains a finite homomorphism universal iff F is a set
of relational trees.

Finite dualities also corresponds to the only first order definable Constraint
Satisfaction Problems (A. Atserias [1], B. Rossman [24], see e.g. [12]).

In the opposite direction, we can ask when given finite D is universal for
some Forbh(F), F finite. Or equivalently if D is dual of some finite set F .
Characterization of all structures that are duals was given by Larose, Loten,
Tardif in [19]. Feder and Vardi [8] provided characterization of all structures
D that are universal for Forbh(F), where F is infinite family of trees.

As the finite dualities are characterized by these results we define more
general restricted version. A C-restricted duality is the following statement:

∀G ∈ C : F 6→ G ⇐⇒ G → D

In the other words, D is an upper bound of set Forbh(F) ∩ C in the
homomorphism order.

As the extremal case we define:
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Definition 3.1 We say that class C has all restricted dualities if for every
finite set F of connected structures we have

G ∈ Forbh(F) ⇐⇒ G → D for every G ∈ C

(or briefly Forbh(F) ∩ C = CSP (D) ∩ C)

Examples of classes with all restricted dualities include: C include planar
graphs, proper minor closed, bounded expansions [20]. The classes was re-
cently characterized by Nešetřil and Ossona de Mendez [20] using limit ob-
jects.

3.4 Monadic lifts

The bound on arity of new relations of the lifts appears in several applica-
tions. Lifts with unary relations lead to homomorphism dualities (Theorem
3.2 while lifts with binary relations to structures similar to Urysohn spaces
[13]. In this section we give characterization of all families F , such that there
exists lift K of class Forbh(F) that K is amalgamation class and in addition
arity of all new relations is 1. Such lifts are called monadic lifts.

Finite relational structure A is called core iff every homomorphism S → S
is surjective. Finite family of finite relational structures is called minimal iff
all structures in F are cores and there is no homomorphism in between two
structures in F .

Observe that for every finite family F ′ of structures that is minimal family
F ′ such that Forbh(F) = Forbh(F

′).
We take time out for a Ramsey-type lemma:

Lemma 3.4 For every n and k there is relational structure S = (S,RS),
with vertices S = S1 ∪ S2 ∪ . . . Sn (sets Si are mutually disjoint) and single
relation RS of arity 2n with the following properties:

1. For every (v1, u1, v2, u2, . . . vn, un) ∈ RS, v1, u1 ∈ S1, v2, u2 ∈ S2,
. . . vn, un ∈ Sn and every vertex appears in this tuple at most once.

2. For every two tuples ~v, ~u ∈ S, ~v 6= ~u, ~v and ~u has at most one common
vertex.

3. For every vertex coloring of S using 2k colors, there is at least one
tuple (v1, u1, v2, u2, . . . vn, un) ∈ RS such that colors of vi and ui are
equivalent for every 1 ≤ i ≤ n.

4. Every vertex of S is contained in at least one tuple of RS.
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Proof. We first construct set system X = (X,M) with following properties:

(a) Every set A ∈ M has precisely 2n elements.

(b) Every two sets A,B ∈ M, A 6= B intersect in at most 1 vertex.

(c) For every vertex coloring of X using at most 2k+n colors there is set
A ∈ M such that all vertices have same color.

Such set system can be constructed easily (see e.g. [22]): Put X =
(
(

N

n−1

)

,M) with {A1, A2, . . . An} ∈ M iff the of union of sets Ai has size n.
It is easy to see that for large enough N the set system X has properties (a)
and (b). Property (c) follows from Ramsey Theorem.

Now assume arbitrary linear ordering ≤X onX. Put S = X×{1, 2, . . . , n},
Si = {(v, i), v ∈ X} for 1 ≤ i ≤ n. Finally put (v1, u1, v2, u2, . . . vn, un) ∈ RS

iff vi = (v′i, i), ui = (u′i, i) for every 1 ≤ i ≤ n, u1, v1, u2, v2, . . . un, vn is
increasing sequence in (X,≤X) and set {v′1, u

′

1, v
′

2, u
′

2, . . . v
′

n, u
′

n} is in M.
We prove that set system S = (S,RS) satisfies 1., 2. and 3. Property

1. follows from construction of S. Because there is 1-1 correspondence in
between tuples in S and sets of X , we have immediately property 2. To
verify property 3. observe that every coloring c of S using 2k colors imply
coloring c′ of X using 2k+n colors: the color of vertex v ∈ X is the sequence
of colors of vertices (v, 1), (v, 2), . . . , (v, n) in S. By (c) there exists a set
A = {a1, a

′

1, a2, a
′

2, . . . an, a
′

n} such that all its vertices get colour (i1, . . . in).
But this in turn means that (ai, i),(a

′

i, i) have the same color in c.
Property 4. is not satisfied by the construction above, it is however obvi-

ous it is possible to remove isolated vertices from structure S. �

Given a relational structure S = (S,RS) with relation RS of arity 2n and

rooted relational structure (A,
−→
R ) of type ∆ with

−→
R = (r1, r

′

1, r2, r
′

2, . . . rn, r
′

n),

we denote by S ∗ (A,
−→
R ) the following relational structure B of type ∆:

B = (RS × A)/ ∼ .

Thus the vertices of B are equivalence classes of equivalence ∼ generated
by the following pairs:

(~v, ri) ∼ (~u, ri) iff ~v2i = ~u2i

(~v, r′i) ∼ (~u, r′i) iff ~v2i+1 = ~u2i+1

(~v, ri) ∼ (~u, r′i) iff ~v2i = ~u2i+1

Denote by [~v, ri] the equivalence class of ∼ containing (~v, ri). We put ~v ∈
Rj

B
iff ~v = ([~u, v1], [~u, v2], . . . [~u, vt]) for some ~u ∈ RS and (v1, v2, . . . vt) ∈ Rj

A
.
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S

X

S ∗ (H,
−→
R )

H

Figure 3: Construction of S and S ∗ (H, ~R).

This construction is commonly used in graph homomorphism context as
indicator construction. It essentially means replacing every tuple of RS by

disjoint copy of A with roots
−→
R identified with vertices of the tuple.

For given vertex v of S ∗ (A,
−→
R ) such that v = [~u, ri] (or v = [~u, r′i]) we

will call vertex v′ = ~u2i (or v′ = ~u2i+1 respectively) the vertex corresponding
to v in S. Note that this give 1–1 correspondence in between vertices of S

and S ∗ (A,
−→
R ) restricted to vertices [~v, ri] and [~v, r′i].

Theorem 3.5 For a minimal family F of relational structures, there is
monadic lift of class Forbh(F) with just finitely many additional relations
that is amalgamation class iff all minimal cuts of F ∈ F consist of 1 vertex.

Proof. Construction of lifted class L in proof of Theorem 2.2 adds relations
of arities corresponding to the sizes of minimal cuts of F ∈ F so in one
direction Theorem proceede directly from the proof of Theorem 2.2.

In the opposite direction fix class F , a relational structure F ∈ F and
minimal cut C = {1, 2, . . . n} of structure F of size n > 1. Assume, for
contrary, existence of class of lifts K such that K is an amalgamation class,
all new relations are monadic and shadow of K is Forbh(F). Denote by k
the number of new relations.

For brevity, assume that F\C has two connected components. Denote by

P1 = (P1,
−→
R 1) and P2 = (P2,

−→
R 2) the pieces generated by C such that

−→
R 1 =

−→
R 2 = {r1, r2, . . . rn}. For 3 and more pieces we can proceed analogously.
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Now we construct relational structure H as follows:

H = (P1 × {1}) ∪ (P2 × {2})

and put
((v1, 1), . . . (vt, 1)) ∈ Ri

H
iff (v1, . . . vt) ∈ Ri

P1

((v1, 2), . . . (vt, 2)) ∈ Ri
H

iff (v1, . . . vt) ∈ Ri
P2

with no other tuples. In other words, H is disjoint union of P1 and P2. We
will consider H rooted by tuple

−→
R = ((r1, 1), (r1, 2), (r2, 1), (r2, 2), . . . , (rn, 1), (rn, 2)).

Take relational structure S from Lemma 3.4 and put D = S ∗ (H,
−→
R ).

Construction for pieces of 5-cycle is shown at Figure 3.4. For vertex v ∈ S
denote by m(v) the vertex of D corresponding to v (if it exists) or arbitrary
vertex of D otherwise.

Relational structure D consists of disjoint copies of structures Pi (pieces
of F) with vertices from cut C identified. Denote by f homomorphism D → F
mapping every vertex (~v, (a, t)) ∈ D to a ∈ F .

First, we prove that D ∈ Forbh(F). Assume, for contrary, that there is
homomorphism ϕ : F → D. By composition we have that ϕ ◦ f is homomor-
phism F → F. Because F is core, we also know that ϕ ◦ f is surjective and
thus also automorphism.

It follows that ϕ is injective and thus that
ϕ(F) must use vertices from both copy of P1 and P2 (otherwise ϕ ◦ f(F )

would be proper subset of F ). Because there is at least one (relational) cycle
of F using 2 vertices of cut C and because all copies of pieces Pi in D are
overlapping in at most one vertex of C, we have fewer cycles in the image
ϕ(F) in D than in F itself, an contradiction with existence of homomorphism
ϕ.

There is also no homomorphism F′ → D for any F′ ∈ F ,F′ 6= F because
composing such homomorphism with f would lead to homomorphism F′ → F
that does not exist.

Take generic lift U ∈ K (i.e. U is Fräıssé limit of K). Let ϕ′′ be an
embedding ϕ′′ : D → ψ(U) (ψ(U) is shadow of U). Denote by c(v) the set
of all new monadic relations of lift U associated with vertex ϕ′′(v). Obviously
c is 2k coloring of D. Every vertex of S corresponds to unique vertex of D
and thus also we get 2k coloring of S.

Subsequently there is monochromatic tuple ~v = {u1, v1, u2, v2, . . . un, vn} ∈
RS and thus also tuple m(~v) of vertices of D such that the relations added by
lift K are equivalent on ϕ′′(m(ui)) and ϕ′′(m(vi)), i = 1, . . . n. Lift U induce
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on both {ϕ′′(m(u1)), ϕ
′′(m(u2)), . . . , ϕ

′′(m(un))} and {ϕ′′(m(v1)), ϕ
′′(m(v2)),

. . . , ϕ′′(m(vn))} same lift X. (X is lift of relational structure induced by F on
C.) Subsequently there is partial isomorphism of U mapping ϕ′′(m(ui)) →
ϕ′′(m(vi)). From genericity of lift U this partial isomorphism extends to au-
tomorphism of lift U and from construction of relational system D it sends
roots of image of piece P1 to roots of image of piece P2 and thus shadow of
U contains copy of F ∈ F , a contradiction.

�

Note that for infinite type of lift the question is trivial: take universal struc-
ture U ∈ Forbh(F) and construct lift X with ω extended unary relations.
Then chose arbitrary order of vertices v1, v2, . . . of U and put (vi) ∈ Xj

X
iff

i = j. Shadow of X is universal for class Forbh(F) and because X has no
partial isomorphisms expect for identity, trivially Age(X) is amalgamation
class.

More complicated application of Ramsey theory leads to the following
strenghtening:

Theorem 3.6 ([13]) For a minimal family F of relational structures, there
is lift of class Forbh(F) with just finitely many additional relations of arity
at most n that is amalgamation class iff all minimal cuts of F ∈ F consist
of at most n vertices.

3.5 Lifted classes with free amalgamation

Explicit construction of the lifts provided by Theorem 2.2 allows more insight
into their structure. In this section we give an answer to problem of Asterias
(private communication) whether there always exists lift of class Forbh(F)
with free amalgamation property. The answer is negative in general, we can
however precisely characterize families F with this property.

We say that structure is irreducible if it does not have a cut (alternatively,
any two distrinct vertices are contained in a tuple of A).

Theorem 3.7 Let F by a minimal family of finite connected relational struc-
tures. Then the following staements are euivalent:

1. There exists class K′ such that:

(a) K′ is amalgamation class,

(b) K′ is closed for free amalgamation,

(c) shadow of K′ is Forbh(F).
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2. Every minimal cut in F ∈ F induces an irreducible subsystem.

Proof. For 2. =⇒ 1. it suffices to verify that for such classes F the amalgam
V constructed in proof of Theorem 2.2 is free amalgam of X and Y over Z.
The amalgam is constructed as L(D), where D is free amalgam of shadows of
X,Y,Z. Now for every tuple ~v ∈ X i

V
we have homomorphism ϕ : Pi → D.

Because Pi induce on vertices
−→
R i an irreducible relational structure, the map

must correspond to shadow of A or B and thus there are no new edges in V.
In the opposite direction, assume that F and class K′ satisfying (a), (b)

and (c) are given.

Define class K
′

as the class of all A ∈ K′ and where for each tuple ~v ∈ X i
A

the relational structure induced by ψ(A) on ~v is irreducible.

We claim that K
′

also satisfy (a), (b) and (c). Assume the contrary.
Then, for some i, there is A ∈ K′ and ~v ∈ X i

A
such that structure induced

by ψ(A) on ~v is reducible and there is no B ∈ K
′

such that shadow of A is
same as shadow of B. Without loss of generality we can assume that A is
counterexample with minimal amount of tuples. Denote by v1, v2 subsets of
vertices of ~v such that free amalgamation of structures induced on v1 and v2

by structure ψ(A) over vertices v1 ∪ v2 is equivalent to structure induced on
~v by structure ψ(A).

Now construct B as free amalgam of structure induced on (A \ v) ∪ v1

and on (A \ v) ∪ v2 by A over vertices v1 ∩ v2. Because K′ is amalgamation
class, we have B ∈ K′. Shadow of B is equivalent to shadow of A and either
B ∈ K

′

or B is smaller counterexample, a contradiction with minimality of
A.

Now take F ∈ F such that there is vertex minimal cut C and structure
C induced on C by F is not irreducible. By Theorem 3.6 we know that arity
of lift K

′

must be at least |C|. While the lift K
′

can have unbounded arity,

from the fact that images of C are reducible, the arity of lift K
′

on images
of C strictly smaller than C. The proof of Theorem 3.6 (which is similar to
proof of Theorem 3.5) only deals with extended tuples on images of cuts C
and thus we have a contradiction. �
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