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Abstract

Zykov designed one of the oldest known family of triangle-free
graphs with arbitrarily high chromatic number. We determine the
fractional chromatic number of the Zykov product of a family of
graphs. As a corollary, we deduce that the fractional chromatic num-
bers of the Zykov graphs satisfy the same recurrence relation as those
of the Mycielski graphs, that is an+1 = an +

1
an
. This solves a conjec-

ture of Jacobs.

1 Introduction

Since trees (connected acyclic graphs) have chromatic number 2, one could
think that if G is a graph that locally looks like a tree (i.e. the size of its
shorter circuit — its girth — is large), then it has low chromatic number.
This was proven to be strongly false by Erdős [1] in 1959, who showed that a
high chromatic number can emerge as a consequence of the global structure
of a graph, as opposed to its local properties. Introducing what is now called
the “deletion method”, Erdős proved, by probabilistic means, the existence of
graphs with arbitrary high girth and chromatic number. Yet, it took almost
ten more years until Lovász [4] managed to design an explicit construction of
such graphs. Another short constructive proof was given in 1979 by Nešetřil
and Rödl [6]. Before Lovász’s result, explicit constructions were only known
for some fixed (small) girth. This is why several constructions of triangle-
free graphs with arbitrary high chromatic number were designed in the 1950s.
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Among them, the most famous is arguably that of Mycielski [5], dating back
to 1955. The Mycielskian M (G) of a graph G with vertex-set {v1, . . . , vn}
is obtained by first replacing every vertex vi by an independent set {v

1
i , v

2
i },

linking vs
i and vt

j if and only if vi and vj are adjacent in G and (s, t) 6= (2, 2).
Next, a new vertex is added and linked to all the vertices v2

1, . . . , v
2
n. Notice

that if G is triangle-free, then so isM (G); moreover, χ(M (G)) = χ(G) + 1.
In 1995, Larsen, Propp and Ullman [3] gave a short and elegant proof that
the fractional chromatic number ofM (G) satisfies the following unexpected
formula.

χf (M (G)) = χf (G) +
1

χf (G)
.

One of the earliest constructions of triangle-free graphs with arbitrary
high chromatic number was found in 1949 by Zykov [8]. For each n ≥ 1, the
Zykov graph Zn is triangle-free and has chromatic number n. Inspired by
the relation for Mycielski’s graphs, Jacobs [2] conjectured that the fractional
chromatic numbers of the Zykov graphs satisfy the same recurrence relation
as the Mycielski graphs.

Conjecture. For every n ≥ 2,

χf(Zn+1) = χf (Zn) +
1

χf (Zn)
.

In this article, we prove Conjecture 1 by proving a more general result
on a product of graphs. Let G1, . . . , Gn be finite graphs. The Zykov product
Z(G1, . . . , Gn) of G1, . . . , Gn is defined as follows.

• Make a disjoint union of all the graphs Gi.

• For each possible choice of (x1, x2, . . . , xn) ∈ V (G1) × V (G2) × . . . ×
V (Gn), add a new vertex x with neighborhood precisely {x1, . . . , xn}.

Thus, Z(G1, . . . , Gn) has
∑n

i=1 |V (Gi)| +
∏n

i=1 |V (Gi)| vertices. Notice
also that the order in which the graphs Gi are numbered makes no difference
in the construction.
It is straightforward to see that if G1, . . . , Gn are all triangle-free, then

so is Z(G1, . . . , Gn). The Zykov graphs is the sequence of graphs (Zn)n≥1

defined by Z1 := K1 and Zn+1 := Z(Z1, . . . , Zn) for n > 1. Similarly to
Mycielski’s graphs, one can check that the chromatic number of Zi is i.
We establish the following result, which implies Conjecture 1.
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Theorem 1. Let G1, . . . , Gn be finite graphs, and set χi := χf(Gi). Suppose
also that the Gi are numbered such that χi ≤ χi+1. Then

χf(Z(G1, . . . , Gn)) = max

(

χn , 2 +
n
∑

i=2

∏

k≥i

(

1 −
1

χi

)

)

. (1)

Before proving Theorem 1, let us see how it implies that Conjecture 1 is
true.

Proof of Conjecture 1. For n ≥ 1, set f(n) := 2 +
∑n

i=2

∏

k≥i

(

1 − 1
χi

)

. Ob-

serve that f(n) = 2 +
(

1 − 1
χn

)

· (f(n − 1) − 1) for n ≥ 2. We now proceed

by induction on n ≥ 1. First, notice that χ2 = 2 = f(1) > χ1 = 1. Now,
assume that χn = f(n − 1) for some n ≥ 2. Then,

f(n) = 2 +

(

1 −
1

χn

)

· (f(n − 1) − 1)

= χn +
1

χn

.

Thus, χn+1 = f(n) by Theorem 1, and the conclusion follows.

We define the basic concepts in the next section, and then proceed with
the proof of Theorem 1.

2 Notation

If G is a graph, then V (G) is its vertex-set and E(G) is its edge-set. Let
I (G) be the collection of all independent sets of the graph G. A weighting
of a set X ⊆ I (G) is a function w : X → R

+. If v ∈ V (G), then

w[v] :=
∑

I∈X
v∈I

w(I) .

A fractional k-coloring of G is a weighting of I (G) such that

•
∑

S∈I (G) w(S) = k; and

• w[v] ≥ 1 for every v ∈ V (G).
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The fractional chromatic number χf(G) of G is the infimum of all positive
real numbers k for which G has a fractional k-total coloring. In other words,
the fractional chromatic number of G is the optimal value of the following
linear program.

Minimize
∑

S∈I (G)

w(S) where w is a weighting of I (G) satisfying

∀v ∈ V (G), w[v] ≥ 1 .

As is well-known, the fractional total chromatic number of a finite graph is
always a rational number and the infimum is actually a minimum. Observe
that for every graph G, there exists a fractional χf(G)-coloring w of of G
such that w[v] = 1 for every v ∈ V (G). There are other equivalent definitions
of a fractional coloring of a graph, and we refer to the book by Scheinerman
and Ullman [7] for further exposition about fractional colorings (and, more
generally, fractional graph theory).

3 Proof of Theorem 1: Lower Bound

We use the notations from Theorem 1. Further, we set

f(n) := 2 +
n
∑

i=2

∏

k≥i

(

1 −
1

χi

)

for n ≥ 1.
First, χf(G) ≥ χn = χf (Gn) sinceGn is a subgraph ofG = Z(G1, . . . , Gn).

So, we focus on proving that χf (G) ≥ f(n). We assume that n ≥ 2, the re-
sult being trivial if n = 1 (since G contains at least an edge). We start with
the following observation.

Lemma 1. Let G be a graph and w a weighting of X ⊆ I (G). Then, for
every induced subgraph H of G, there exists x ∈ V (H) such that

w[x] ≤
1

χf(H)

∑

S∈X

w(S) .

Proof. Let wH be the weighting ofI (H) defined by wH(I) :=
∑

S∈X

S∩V (H)=I
w(S).

Note that wH(∅) =
∑

S∈X

S∩V (H)=∅
w(S). Moreover, wH [v] = w[v] for every

v ∈ V (H). Set m := minv∈V (H) wH [v]. It suffices to show that m ≤
1

χf (H)

∑

S∈X
w(S).
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The function w′ := 1
m

· wH is a fractional k-coloring of H with k :=
1
m

∑

I∈I (H) wH(I). Thus, k ≥ χf(H). Further,

∑

I∈I (H)

wH(I) =
∑

S∈X

w(S)

by the definition of wH, and hence the conclusion follows.

Let w be a fractional χf(G)-coloring of G and let x1 ∈ V (G1). Set

F1 := {S ∈ I (G) : x1 ∈ S} .

By the definition,
∑

S∈F1

w(S) = w[x] ≥ 1 .

Applying Lemma 1 with H := G2 and X := F1, we deduce that there exists
x2 ∈ V2 such that

∑

S∈F1

x2∈S

w(S) ≤
1

χ2

∑

S∈F1

w(S) ,

and hence

∑

S 6∈F1

x2∈S

w(S) ≥ 1 −
1

χ2

∑

S∈F1

w(S) .

Thus, setting
F2 := {S ∈ I (G) : S ∩ {x1, x2} 6= ∅} ,

it follows that
∑

S∈F2

w(S) ≥ 1 +

(

1 −
1

χ2

)

∑

S∈F1

w(S) .

In a recursive way and by the exact same argument, we can construct xi ∈ Vi

and
Fi = {S ∈ I (G) : S ∩ {x1, . . . , xi} 6= ∅}

for i ≤ n, such that

∑

S∈Fk

w(S) ≥ 1 +

(

1 −
1

χk

)

∑

S∈Fk−1

w(S) .
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Thus, we deduce that

∑

S∈Fn

w(S) ≥ 1 +
n
∑

i=2

∏

k≥i

(

1 −
1

χi

)

= f(n) − 1 .

Now, consider the vertex x ∈ V (G) the neighborhood of which is precisely
{x1, . . . , xn}. An independent set of G that contains x cannot be in Fn. Since
w[x] ≥ 1, we infer that

∑

I∈I (G)

w(I) ≥
∑

I∈Fn

w(I) + w[x] ≥ f(n) .

Hence, χf (G) ≥ f(n), as wanted.

4 Proof of Theorem 1 : Upper Bound

Again, we follow the notation of Theorem 1 and let

f(n) := 2 +
n
∑

i=2

∏

k≥i

(

1 −
1

χi

)

. For convenience, we set Vi := V (Gi) for i ∈ {1, 2, . . . , n}. Further, let V0

be the vertices of G not in ∪n
i=1Vi. Recall that V0 is an independent set and

there are no edges between Vi and Vj if i 6= j and i, j ∈ {1, . . . , n}. Therefore,
every maximal independent set S of G is determined by its intersection with
the sets Vi for i ∈ {1, . . . , n}, since S ∩ V0 is then composed of the vertices
of V0 with no neighbors in any set S ∩ Vi for i ∈ {1, . . . , n}.
To prove the upper bound, we define a weighting w of I (G) of total

weight max(χn, f(n)). To this end, only a subfamily of the maximal stable
sets of G will be assigned a positive weight by w.
For i = {1, . . . , n} we define the collection Fi of stable sets of G by

Fi := {S ∈ I (G) : ∀ j ∈ {1, . . . , n}, S ∩ Vj = ∅ if and only if j < i} .

Let

F :=

n
⋃

i=1

Fi .

We first define a weighting p of F as a product of weightings of each graph
Gi. For each i ∈ {1, 2, . . . , n}, set Ii := I (Gi) and let wi be a fractional
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χi-coloring of Gi such that wi[v] = 1 for every v ∈ Vi. (Note that wi(∅) = 0.)
We define pi : Ii → R

+ by pi(S) := ci(S)/χi if S 6= ∅ and pi(∅) := 1. Thus,
∑

S∈Ii\{∅}

pi(S) = 1

and

∀x ∈ Vi, pi[x] =
1

χi

.

We now define p as

p : F −→ R+

S 7−→
n
∏

i=1

pi(S ∩ Vi) .

The next lemma states some useful properties of p.

Lemma 2. Let i, j ∈ {1, . . . , n}. The weighting p satisfies the following.

(i)
∑

S∈Fi

p(S) = 1 .

(ii) For each x ∈ Vj, if i ≤ j then

∑

S∈Fi
x∈S

p(S) =
1

χj

.

If i > j, this sum is equal to zero since none of the elements of Fi

intersects Vj.

(iii) For each (x1, x2, . . . , xn) ∈ V1 × V2×, . . . × Vn,

∑

S∈Fi

S∩{x1,x2,...,xn}=∅

p(S) =
∏

k≥i

(

1 −
1

χk

)

.

Proof of Lemma 2. First,
∑

S∈Fi

p(S) =
∑

S∈Fi

∏

k≥i

pk(S ∩ Vi)

=
∏

k≥i

∑

S∈Ik\∅

pk(S)

= 1 ,
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which proves (i).

Similarly, if x ∈ Vj and i ≤ j, then

∑

S∈Fi
x∈S

p(S) =
∑

S∈Fi
x∈S

∏

k≥i

pk(S ∩ Vi)

=









∑

S∈Ij

x∈S

pj(S)

















∏

k≥i
k 6=j

∑

S∈Ik\∅

pk(S)









=
1

χj

.

Further, if i > j then no element of Fi intersects Vj , and hence (ii) holds. We
omit the proof of (iii), which can be established similarly by again switching
the sum and the product signs and using (ii).

We are ready to define our final weighting w of I (G). For convenience,
set χ0 := 0. For every S ∈ F , we define w(S) to be (χi − χi−1) · p(S) where
i ∈ {1, . . . , n} such that S ∈ Fi. Further, we set w(V0) := max(0, f(n)−χn);
all the other independent sets are assigned weight 0 by w. Recall that the
graphs Gi are ordered such that χi ≥ χi−1.
Lemma 2(i) implies that

∑

S∈I (G)

w(S) =
∑

S∈F

w(S) + w(V0)

=
n
∑

i=1

(χi − χi−1) ·
∑

S∈Fi

p(S) + max(0, f(n) − χn)

= χn + max(0, f(n) − χn)

= max(χn, f(n)) .

By Lemma 2(ii), for each x ∈ Vj

w[x] =

j
∑

i=1

(χi − χi−1) ·
∑

S∈Fi
x∈S

p(S)

=
1

χj

·

j
∑

i=1

(χi − χi−1)

= 1 .
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It remains to show that w[x] ≥ 1 if x ∈ V0. Let x ∈ V0, and let (x1, x2, . . . , xn) ∈
V1×V2×. . .×Vn be the n-uple of its neighbors inG. Then, using Lemma 2(iii),

w[x] = w(V0) +
∑

S∈F
S∩{x1,x2,...,xn}=∅

w(S) = w(V0) +

n
∑

i=1

∑

S∈Fi

S∩{x1,...,xn}=∅

w(S)

= w(V0) +
n
∑

i=1

(

(χi − χi−1)
∏

k≥i

(

1 −
1

χk

)

)

= w(V0) +

n
∑

i=1

(

χi

∏

k≥i

(

1 −
1

χk

)

)

−
n
∑

i=1

(

(χi−1 − 1)
∏

k≥i

(

1 −
1

χk

)

)

−
n
∑

i=1

∏

k≥i

(

1 −
1

χk

)

= w(V0) +
n
∑

i=1

(

(χi − 1)
∏

k>i

(

1 −
1

χk

)

)

−
n
∑

i=1

(

(χi−1 − 1)
∏

k≥i

(

1 −
1

χk

)

)

−
n
∑

i=1

∏

k≥i

(

1 −
1

χk

)

= w(V0) + χn − 1 −
n
∑

i=2

∏

k≥i

(

1 −
1

χi

)

= max(0, f(n) − χn) + χn + 1 − f(n)

≥ 1 .

Hence, w is a fractional max(χn, f(n))-coloring of G, which concludes the
proof.
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