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Abstract

An edge-face colouring of a plane graph with edge set E and face
set F is a colouring of the elements of E ∪ F such that adjacent or
incident elements receive different colours. Borodin proved that every
plane graph of maximum degree ∆ > 10 can be edge-face coloured
with ∆ + 1 colours. Borodin’s bound was recently extended to the
case where ∆ = 9. In this paper we extend it to the case ∆ = 8.

1 Introduction

Let G be a plane graph with vertex set V , edge set E and face set F . Given
a positive integer k, an edge-face k-colouring of G is a mapping λ : E ∪F →
{1, 2, . . . , k} such that

(i) λ(e) 6= λ(e′) for every pair (e, e′) of adjacent edges;

(ii) λ(e) 6= λ(f) for edge e and every face f incident to e;

(iii) λ(f) 6= λ(f ′) for every pair (f, f ′) of adjacent faces with f 6= f ′.

The requirement in (iii) that f and f ′ be distinct is only relevant for graphs
containing a cut-edge; such graphs would not have an edge-face colouring
otherwise. Let χef(G) be the value of the smallest integer k such that there
exists an edge-face k-colouring of G.
Edge-face colourings were first studied by Jucovič [4] and Fiamčík [3], who

considered 3- and 4-regular graphs. A conjecture of Mel’nikov [5] spurred
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research into upper bounds on χef(G) for plane graphs G with ∆(G) 6 ∆.
For small values of ∆, the best bounds known are ∆+3 for ∆ ∈ {2, . . . , 6} [1,
6, 9] and ∆ + 2 for ∆ = 7 [7]. For ∆ > 10, Borodin [2] proved the bound
of ∆ + 1. This is tight, as can be seen by considering trees. Recently, the
second and third authors [8] extended the ∆ + 1 bound to the case ∆ = 9
by proving that every plane graph of maximum degree 9 has an edge-face
10-colouring. Here, using a more delicate analysis, we settle the case ∆ = 8.

Theorem 1. Every plane graph of maximum degree 8 has an edge-face 9-
colouring.

The problem of finding the provably optimal upper bounds on χef(G) for
plane graphs G with ∆(G) 6 ∆ remains open for ∆ ∈ {4, 5, 6, 7}.
We prove Theorem 1 by contradiction. From now on, we let G = (V, E, F )

be a counter-example to the statement of Theorem 1 with as few edges as
possible. That is, G is a plane graph of maximum degree 8 and no edge-face
9-colouring, but every plane graph of maximum degree at most 8 with less
than |E| edges has an edge-face 9-colouring. In particular, for every edge
e ∈ E the plane subgraph G− e of G has an edge-face 9-colouring. First, we
describe various structural properties of G in Section 2; the proofs of these
properties are given at the end of this paper in Section 5. In Section 3 we
describe the discharging rules. In Section 4 we use the discharging rules and
the structural properties of G to obtain a contradiction, and thus a proof of
Theorem 1.
In the sequel, a vertex of degree d is called a d-vertex. A vertex is an (6d)-

vertex if its degree is at most d; it is an (>d)-vertex if its degree is at least
d. The notions of d-face, (6d)-face and (>d)-face are defined analogously as
for the vertices, where the degree of a face is the number of edges incident to
it. A face of length 3 is called a triangle. For integers a, b, c, an (6a, 6b, 6c)-
triangle is a triangle xyz of G with deg(x) 6 a, deg(y) 6 b and deg(z) 6

c. The notions of (a, 6b, 6c)-triangles, (a, b, >c)-triangles, (a, 6b, c, d)-faces,
and so on, are defined analogously. A vertex is triangulated if all its incident
faces are triangles.
As mentioned above, our proof uses discharging techniques. It was devel-

oped through several rounds, with corrective adjustments and optimisations
included in each, starting from a näive scheme in which only the (>7)-vertices
compensated for the deficit of charge on triangles. A breakthrough in the
design of our strategy was the realisation that the reducible configuration
A3 (defined below) could allow us to conserve considerable charge at (>7)-
vertices incident to (>5)-faces of a particular type (cf. the rule R1g mentioned
at the end of Section 3). We could then balance these savings against the
loss of charge to incident triangles with the development of further reducible
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configurations. As will become apparent, the analysis of the final charge of
(>7)-vertices is particularly difficult.

2 Reducible configurations

In this section, we present a catalogue of the structural properties of the
graph G that are necessary for our proof of Theorem 1. In particular, we
identify that some plane graphs are reducible configurations, i.e. that they
cannot be part of the chosen embedding of G. Their reducibility follows from
Lemmas 2–10 presented in Section 5.
For convenience, we depict these configurations in Figure 1. We use

the following notational conventions for vertices: 2-, 3- and 4-vertices are
depicted by black bullets, black triangles and black squares, respectively; a
white bullet containing a number represents a vertex of degree that quantity;
an empty white bullet represents a vertex of arbitrary degree (but at least
that shown in the figure). For faces, we use the following conventions: a
straight line indicates a single edge; a curved line indicates a portion of the
face with an unspecified number of edges; a curved face that is shaded grey
represents an (64)-face.
The following configurations are reducible. Note that, for any of the

below, if an edge can be removed without affecting the specific incidence or
facial structure, then the configuration remains reducible.

A0 A 1-vertex.

Configurations with faces incident to a 2-vertex

A1 A triangle incident to a 2-vertex.

A2 A 4-face incident to a 2-vertex and an (63)-vertex.

A3 A face incident to an edge uv such that deg(u) = 2 and deg(v) = 6.

Configurations with an edge incident to a (64)-face

B1 An edge uv that is incident to an (64)-face, with deg(u) + deg(v) 6 9.

B2 A triangle uvw with deg(u) + deg(v) 6 10 and deg(w) = 6.

B3 A triangle uvw with uw incident to two (64)-faces, and deg(u) +
deg(v) 6 10 and deg(w) = 7.
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B4 A triangle uvw with uw adjacent to two (64)-faces, vw incident to two
(64)-faces, and deg(u) + deg(v) 6 10.

Configurations with an edge incident to two (64)-faces

C1 An edge uv that is incident to two (64)-faces, with deg(u) + deg(v) 6

10.

C2 A triangle uvw with uv incident to two (64)-faces, and deg(u) +
deg(v) 6 11 and deg(w) = 6.

C3 A triangle uvw with uv and uw each incident to two (64)-faces, and
deg(u) + deg(v) 6 11 and deg(w) = 7.

C4 A triangle uvw with vw incident to the triangle vwx and wx incident
to two (64)-faces, and deg(u) = deg(x) = 3.

C5 A triangle uvw with vw incident to the triangle vwx and wx incident
to two (64)-faces, and deg(u)+deg(v) 6 10 and deg(v)+deg(x) 6 11.

Configurations along a 2-path

D1 A 2-path uvw such that vwx is a triangle, with uv incident to an (64)-
face, vw and vx each incident to two (64)-faces, and deg(u)+deg(v) 6

10 and deg(v) + deg(w) 6 11.

D2 A 2-path uvw such that vwx is a triangle, with uv, vw and vx each
incident to two (64)-faces, and deg(u) + deg(v) 6 11 and deg(v) +
deg(w) 6 11.

D3 A 2-path uvw such that vwx is a triangle, with vx incident to two
(64)-faces, and deg(u) = 2, deg(v) = 7 and deg(u) = 3.

D4 A 2-path uvw such that vwx is a triangle, with vw and vx each incident
to two (64)-faces, and deg(u) = 2, deg(v) = 7 and deg(u) = 4.

Note on configurations D1 and D2. An (64)-face incident to uv is not ruled
out from also being an (64)-face (distinct from vwx) incident to vw or vx.
In this sense, the figures representing D1 and D2 in Figure 1 belie the con-
figurations’ fuller forms.
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Special configurations

E1 A 4-path uvwxy, such that uvz, vwz, wxz and xyz are triangles, with
yz incident to two (64)-faces, and deg(v) = 3, deg(x) = 4.

E2 A 4-path uvwxy, such that uvz, vwz, wxz and xyz are triangles, and
deg(v) = 3, deg(x) = 4 and deg(y) = 6.

E3 A triangulated 8-vertex that is adjacent to both a 3-vertex and a 4-
vertex.

3 Discharging rules

Recall that G = (V, E, F ) is a plane graph that is a minimum counter-
example to the statement of Theorem 1, in the sense that |E| is minimum.
(In particular, a planar embedding of G is fixed.) We obtain a contradiction
by using the Discharging Method. Each vertex and face of G is assigned an
initial charge; the total sum of the charge is negative by Euler’s Formula.
Then vertices and faces send or receive charge according to certain redistri-
bution rules. The total sum of the charge remains unchanged, but ultimately
(by using all of the reducible configurations in Section 2) we deduce that the
charge of each face and vertex is non-negative, a contradiction.

Initial charge

We assign a charge to each vertex and face. For every vertex v ∈ V , we
define the initial charge ch(v) to be 2 ·deg(v)−6, while for every face f ∈ F ,
we define the initial charge ch(f) to be deg(f) − 6. The total sum is

∑

v∈V

ch(v) +
∑

f∈F

ch(f) = −12 .

Indeed, by Euler’s formula |E| − |V | − |F | = −2. Thus, 6|E| − 6|V | − 6|F | =
−12. Since

∑
v∈V deg(v) = 2|E| =

∑
f∈F deg(f), it follows that

−12 = 4 · |E| − 6 · |V | +
∑

f∈F

(deg(f) − 6)

=
∑

v∈V

(2 deg(v) − 6) +
∑

f∈F

(deg(f) − 6) .
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Figure 1: The reducible configurations.
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Rules

We need the following definition to state the discharging rules. Given a vertex
v, a face is special (for v) if it is an (>5)-face that is incident to a degree 2
neighbour of v (and so, in particular, such a face is incident to v).
SinceGmay have cut-vertices (of a type not forbidden by Lemma 2), some

vertices may be incident to the same face several times. Thus, in the rules
below, when we say that a vertex or a face sends charge to an incident face
or vertex, we mean that the charge is sent as many times as these elements
are incident to each other.
The following describe how the charge is redistributed among the edges

and faces in G.

R0 An (>4)-face sends 1 to each incident 2-vertex.

R1 An (>7)-vertex sends

R1a 3/2 to incident (3, >7, >7)-triangles and (4, 6, >7)-triangles;

R1b 7/5 to incident (5, 5, >7)-triangles;

R1c 5/4 to incident (4, >7, >7)-triangles and (2, 8, 4, 8)-faces;

R1d 6/5 to incident (5, 6, 8)-triangles;

R1e 11/10 to incident (5, 6, 7)- and (5, >7, >7)-triangles, and incident
(2, 8, 5, 8)-faces;

R1f 1 to incident (>6, >6, >6)-triangles, to every other incident 4-face,
and to special faces.

R2 A 6-vertex sends

R2a 11/10 to incident (5, 6, 6)- and (5, 6, 7)-triangles;

R2b 1 to every other incident triangle and to each incident 4-face.

R3 A 5-vertex sends 4/5 to each incident face.

R4 A 4-vertex sends 1/2 to each incident face.

Note on rules R1 and R2. Since the configurations A1, B1 and B2 are
reducible, it follows from rule R1 that an (>7)-vertex sends positive charge
to every incident triangle. We conclude that an (>7)-vertex sends zero charge
only to incident (>5)-faces that are not special; we refer to this as rule R1g.
Similarly, R2c is the “rule” that a 6-vertex sends zero charge to each incident
(>5)-face.
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4 Proof of Theorem 1

In this section, we prove that the final charge ch∗(x) of every x ∈ V ∪ F is
non-negative. Hence, we obtain

−12 =
∑

x∈V ∪F

ch(x) =
∑

x∈V ∪F

ch∗(x) > 0 ,

a contradiction. This contradiction establishes Theorem 1.

Final charge of faces

Let f be a d-face. Our goal is to show that ch∗(f) > 0. Recall that the initial
charge of f is ch(f) = d − 6.
First suppose that d > 5. Let p be the number of (>7)-vertices for

which f is special, and q the number of 2-vertices incident to f . Since the
configuration A3 is reducible, p > q+1 if d is odd and p > q otherwise. Thus,
by rules R0 and R1f, the final charge of f satisfies ch∗(f) > d − 6 + p − q.
Hence, ch∗(f) > 0 if d > 6, and if d = 5 then d−6+p−q > 5−6+q+1−q = 0.
Next suppose that d = 4. Let the four vertices incident to f be v0, . . . , v3

in clockwise order and suppose without loss of generality that v0 has the
least degree among v0, . . . , v3. First, if deg(v0) > 4, then by rules R1f,
R2b, R3 and R4, the charge sent to f by each incident vertex is at least
1/2, so that ch∗(f) > −2 + 4 · 1/2 = 0. If deg(v0) = 3, then since the
configuration B1 is reducible deg(v1) > 7 and deg(v3) > 7. Thus, by rule R1f,
ch∗(f) > −2+2 = 0. Last, assume that deg(v0) = 2. Since the configuration
B1 is reducible, deg(v1) = deg(v3) = 8, and since the configuration A2 is
reducible, deg(v2) > 4. By rule R0, f sends charge 1 to v0. But f receives
charge 3: by rules R1c and R4 if f is a (2, 8, 4, 8)-face; by rules R1e and R3
if f is a (2, 8, 5, 8)-face; and by rules R1f an R2b if f is a (2, 8, >6, 8)-face.
Thus, ch∗(f) > 0.
Finally suppose that d = 3. Let the three vertices incident to f be v0, v1

and v2, and let us assume without loss of generality that deg(v0) 6 deg(v1) 6

deg(v2). Since the configuration A1 is reducible, deg(v0) > 3. Thus f sends
no charge, but needs to make up for an initial charge of −3. We analyze
several cases according to the value of deg(v0).

deg(v0) = 3. Since the configuration B1 is reducible, deg(v1) > 7. By rule
R1a, f receives charge 2 · 3/2 = 3.

deg(v0) = 4. Since the configuration B1 is reducible, deg(v1) > 6. If
deg(v1) > 7, then f receives charge 2·5/4+1/2 = 3 by rules R1c and R4.
Otherwise, deg(v1) = 6 and hence deg(v2) > 7 since the configuration
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B2 is reducible, but then f receives charge 3/2 + 1 + 1/2 = 3 by rules
R1a, R2b and R4.

deg(v0) = 5. If deg(v1) = 5, then deg(v2) > 7 since the configuration B2 is
reducible, but then f receives charge 7/5+2 ·4/5 = 3 by rules R1b and
R3. If deg(v1) = 6, then we separately consider the cases of deg(v2) ∈
{6, 7, 8}. If deg(v2) ∈ {6, 7}, then f receives charge 2 · 11/10 + 4/5 = 3
by rules R1e, R2a and R3; if deg(v2) = 8, then f receives charge
6/5+1+4/5 = 3 by rules R1d, R2b and R3. Last, if deg(v1) > 7, then
f receives charge 2 · 11/10 + 4/5 = 3 by rules R1e and R3.

deg(v0) > 6. f receives charge at least 3 by rules R1f and R2b.

This concludes our analysis of the final charge of f , verifying that ch∗(f) > 0.

Final charge of (66)-vertices

Let v be an arbitrary vertex of G. Our goal is to show that ch∗(v) > 0. Recall
that the initial charge of v is ch(v) = 2 · deg(v) − 6. Moreover, deg(v) > 2
since the configuration A0 is reducible.
If deg(v) = 2, then v is incident to two (>4)-faces since the configuration

A1 is reducible; thus, v receives charge 1 from both incident faces by rule R0
and the final charge of v is ch∗(v) = −2 + 2 = 0.
If deg(v) = 3, then v neither sends nor receives any charge; hence, the

final charge of v is ch∗(v) = ch(v) = 0.
If deg(v) ∈ {4, 5}, then v sends charge ch(v)/ deg(v) to each incident face

by rules R3 and R4; the final charge of v is ch∗(v) = 0.
Suppose now that deg(v) = 6. The initial charge of v is ch(v) = 6. Since

the configuration A3 is reducible, all adjacent vertices have degree at least 3.
Thus, no (>5)-face is special for v and by rule R2c any incident (>5)-face is
sent no charge. If there is an incident (>5)-face, then by rule R2 the total
charge sent by v is at most 5 ·11/10 < 6. We conclude that v is only incident
to (64)-faces. Then, since the configuration C2 is reducible, v has no incident
(5, 6, 6)-face; furthermore, since the configuration C3 is reducible, v has no
incident (5, 6, 7)-face. Therefore, the charge sent by v is at most 6 and the
final charge of v satisfies ch∗(v) > 0.

Final charge of 7-vertices

Next, suppose that deg(v) = 7. For convenience, let v0, v1, . . . , v6 be the
neighbours of v in clockwise order, and let fi be the face vvivi+1 for i ∈
{0, 1, . . . , 6}, where the index is modulo 7. The initial charge of v is ch(v) = 8.
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We partition our analysis based on the number of incident special (>5)-faces.
Note that since the configuration B1 is reducible, if v is adjacent to a 2-vertex
then both of the 2-vertex’s incident faces are special for v.
We first treat the cases in which v is adjacent to some 2-vertex. In these

cases, we may assume that there is no incident (>5)-face that is not special
(and sent no charge from v by rule R1g), for otherwise the total charge
sent by v is at most 4 · 3/2 + 2 = 8 (due to rule R1f). Furthermore, by
rules R1a and R1b, any face that is sent charge more than 5/4 must be a
(3, 7, >7)-, (4, 6, 7)- or (5, 5, 7)-triangle. And so we assert that if fi is such
a triangle, then both fi−1 and fi+1 are (>5)-faces. The assertion holds if fi

is a (3, 7, >7)-triangle since the configurations C1 and D3 are reducible, and
the fact that the configuration B3 is reducible implies the assertion for the
two other cases.
If v has at least five (>5)-faces, then the charge sent is at most 2·3/2+5 =

8 due to rule R1f.
If v is incident to exactly four (>5)-faces, all of which are special, then

there must be two incident (64)-faces that are adjacent. (Recall that each
special face is adjacent to another special face.) By the assertion in the
second paragraph of the 7-vertex analysis, both of these are sent charge at
most 5/4. Therefore, the total charge sent by v in this case is at most
3/2 + 2 · 5/4 + 4 = 8.
If v is incident to exactly three (>5)-faces, all of which are special, then

these faces are sequentially adjacent around v. Hence, by the assertion in the
second paragraph of the 7-vertex analysis, no face is sent charge more than
5/4 and the total charge sent is at most 4 · 5/4 + 3 = 8
Suppose that v is incident to exactly two (>5)-faces, say f0 and f1, both

special (so v1 is a 2-vertex). Recall that all other incident faces have size at
most 4. Let us analyse which incident faces can be sent charge 5/4. By rule
R1c, such a face must be a (4, 7, >7)-triangle. Since the configuration D4 is
reducible, such a face must be adjacent to a special face for v. Thus, there
are at most two such faces, namely f2 and f6. Consequently, the total charge
sent by v is at most 2 · 5/4 + 3 · 11/10 + 2 < 8 by rules R1c, R1e and R1f.
Now we may assume that v is not adjacent to a 2-vertex and thus any

(>5)-face incident to v is sent no charge. Thus, v is incident to at most one
(>5)-face, for otherwise the total charge sent by v is at most 5 · 3/2 < 8.
Since the configuration B3 is reducible, v is incident to no (3, 7, 7)-, (4, 6, 7)-
or (5, 5, 7)-triangles. Furthermore, since the configuration C1 is reducible, if
fi is a (3, 7, 8)-triangle then fi−1 or fi+1 is an (>5)-face. In particular, v is
incident to at most two such triangles; if it is incident to at least one then it
is also incident to an (>5)-face, in which case the total charge sent is at most
2·3/2+4·5/4 = 8. Therefore, we may assume that v does not send more than
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5/4 charge to any incident face. As a result, v has no incident (>5)-faces,
for otherwise the total charge sent is 6 · 5/4 < 8. Since the configuration
D2 is reducible, v has at most one degree 4 neighbour. Therefore, at most
two faces are sent charge 5/4 by rule R1c, and all other faces are sent charge
at most 11/10 by rule R1e. Hence, the total charge sent by v is at most
2 · 5/4 + 5 · 11/10 = 8.

Final charge of 8-vertices

Last, suppose that deg(v) = 8. For convenience, let v0, . . . , v7 be the neigh-
bours of v in clockwise order, and for i ∈ {0, . . . , 7}, let fi be the face of
G incident with vvi and vvi+1, where the index is modulo 8. The initial
charge of v is ch(v) = 10. We partition our analysis based on the number of
incident special faces. Note that since the configuration C1 is reducible, if
v is adjacent to a 2-vertex then at least one of the 2-vertex’s incident faces
is special for v. Furthermore, since the configurations A2 and B1 are re-
ducible, if one of the 2-vertex’s incident faces is an (64)-face, then it must
be a (2, 8, >4, 8)-face.
We first treat the cases in which v is adjacent to some 2-vertex. In these

cases, we may assume that there is no incident (>5)-face that is not special
(and sent no charge from v by rule R1g), for otherwise the total charge sent
by v is at most 6 · 3/2 + 1 = 10 (due to rule R1f).
If v has at least four incident special faces, then the charge sent is at most

4 · 3/2 + 4 = 10.
Suppose that v is incident to exactly three special faces. If v is incident to

at least two (2, 8, >4, 8)-faces, each sent charge at most 5/4 by rule R1c, then
the total charge sent by v is at most 3 · 3/2+2 · 5/4+3 = 10. If v is incident
to exactly one (2, 8, >4, 8)-face, then it must be that v is incident to three
sequentially adjacent (64)-faces, say f0, f1 and f2. Since the configuration B4
is reducible, f1 is not a (3, 7, 8)-, (4, 6, 8)- or (5, 5, 8)-face; since v is incident
to a (2, 8, >4, 8)-face and D1 is reducible, f1 is not a (3, 8, 8)-face; hence, f1

receives charge at most 5/4. Consequently, the total charge sent by v is at
most 3 · 3/2 + 2 · 5/4 + 3 = 10. If v is not incident to a (2, 8, >4, 8)-face,
then the three incident special faces are sequentially adjacent around v. In
the following we shall assume that f5, f6 and f7 are the three special faces.
The remaining five faces are are all triangles, otherwise (by rule R1f) the
total charge sent by v is at most 4 · 3/2 + 4 = 10. Note that there is no
i ∈ {2, 3, 4} such that all of fi−1, fi, fi+1 are (3, >7, 8)-triangles since the
configuration C4 is reducible. Since the configuration B4 is reducible, none
of f1, f2, f3 is a (3, 7, 8)-, (4, 6, 8)- or (5, 5, 8)-triangle. Furthermore, since the
configuration D2 is reducible, v is incident to at most one pair of adjacent
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(3, >7, 8)-triangles. Thus, at most one of v1, . . . , v4 is a 3-vertex.

If none of v1, . . . , v4 is a 3-vertex, then the only faces that can be sent charge
more than 5/4 are f0 and f4. Therefore, the total charge sent by v is
at most 2 · 3/2 + 3 · 5/4 + 3 < 10.

Suppose that v2 or v3 is a 3-vertex, say v2, by symmetry. Then v1 and v3

are 8-vertices. Since the configuration C4 is reducible, v0 and v4 are
(>4)-vertices and hence f0 and f3 are each sent charge at most 5/4.
Thus, the total charge sent by v is at most 3 · 3/2 + 2 · 5/4 + 3 = 10.

Suppose that v1 or v4 is a 3-vertex, say v1, by symmetry. Then f4 is the only
face other than f0 and f1 that can be sent charge more than 5/4. In
this case, the total charge sent by v is at most 3 · 3/2+2 · 5/4+3 = 10.

Suppose that v is incident to exactly two special faces (and hence is
incident to at most two (2, 8, >4, 8)-faces). First, assume that v is incident to
a (2, 8, >4, 8)-face. Since the configuration B4 is reducible, if fi is a (3, 7, 8)-,
(4, 6, 8)- or (5, 5, 8)-triangle, then fi−1 or fi+1 is a (>5)-face; also, since the
configuration D1 is reducible (and v is incident to a (2, 8, >4, 8)-face), the
same conclusion holds if fi is a (3, 8, 8)-triangle. Since each incident special
face is sequentially adjacent either to an incident (2, 8, >4, 8)-face or to the
other special face, we deduce that at most two faces are sent charge more
than 5/4. Thus, the total charge sent by v is at most 2 ·3/2+4 ·5/4+2 = 10.
Now we deal with the case where v is not incident to a (2, 8, >4, 8)-face.

Suppose f6 and f7 are the two special faces, with v7 being a 2-vertex. Recall
that none of f0, . . . , f5 is an (>5)-face. Note also that at most one of f0, . . . , f5

is a 4-face, for otherwise the charge sent by v is at most 4 · 3/2 + 4 = 10.
We analyse possible (3, >7, 8)-triangles among these six faces. First, note
that there is no i ∈ {2, 3, 4, 5} such that all of fi−1, fi, fi+1 are (3, >7, 8)-
triangles since the configuration C4 is reducible. Since the configuration B4
is reducible, none of f1, . . . , f4 is a (3, 7, 8)-, (4, 6, 8)- or (5, 5, 8)-triangle. Fur-
thermore, since the configuration D2 is reducible, v is incident to at most one
pair of adjacent (3, >7, 8)-triangles. First, we suppose that all of f0, . . . , f5

are triangles. It follows that at most one of v1, . . . , v5 is a 3-vertex. We
consider several cases regarding which neighbours of v are (64)-vertices.

If none of v1, . . . , v5 is a 3-vertex, then the only faces that can be sent charge
more than 5/4 are f0 and f5. Therefore, the total charge sent by v is
at most 2 · 3/2 + 4 · 5/4 + 2 = 10.

Suppose that v3 is a 3-vertex. Hence, v2 and v4 are 8-vertices. We show that
f0 and f1 are sent charge at most 5/2 altogether by v. Indeed, if v1 is
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a 4-vertex, then deg(v0) > 7 because the configuration E2 is reducible.
Hence, v sends charge 5/4 to each of f0 and f1 by rule R1c. If v1 is a
5-vertex, then deg(v0) > 5 and hence v sends charge 11/10 to f1 and at
most 7/5 to f0 by rules R1b and R1e. Last, if deg(v1) > 6 then v sends
charge 1 to f1 and at most 3/2 to f0 by rules R1a and R1f. Similarly,
we deduce that v sends charge at most 5/2 to f4 and f5 altogether.
Therefore, the total charge sent by v is at most 2 ·3/2+2 ·5/2+2 = 10.

Suppose that v2 or v4 is a 3-vertex, say v2, by symmetry. Then, v1 and v3 are
8-vertices. We have deg(v0) > 4 since the configuration C4 is reducible,
so that f0 receives charge at most 5/4 from v. Thus, it suffices to show
that v sends to f3, f4 and f5 charge at most 15/4 altogether: the total
charge sent by v would then be at most 2 · 3/2 + 5/4 + 15/4 + 2 = 10.
First, deg(v4) > 5 since the configuration E1 is reducible. Recall that
deg(v4) + deg(v5) > 11. If deg(v4) + deg(v5) > 12, then f3 and f4

are sent charge at most 9/4 altogether by v. Thus, the conclusion
holds since f6 is sent charge at most 3/2 by v. Now, if deg(v4) +
deg(v5) = 11, then deg(v5)+deg(v6) > 11 since the configuration C5 is
reducible. Consequently, each of f4 and f5 is sent charge at most 5/4
by v. Moreover, f3 is sent charge at most 11/10 by rule R1e, so that
the conclusion holds.

Suppose that v1 or v5 is a 3-vertex, say v1, by symmetry. Then, deg(v0) =
8 = deg(v2), and deg(v3) > 5 since E1 is reducible. Further, recall that
v4 and v5 both have degree at least 4. If deg(v6) 6 4, then deg(v5) > 6.
Since deg(v3) + deg(v4) > 11 (because B4 is reducible), at least one of
f2 and f4 is sent charge at most 1, implying that the total charge sent
by v is at most 3 · 3/2 + 2 · 5/4+ 3 = 10. If deg(v6) > 5, then f5 is sent
charge at most 7/5 and f2 is sent charge at most 11/10, so the total
charge sent by v is at most 2 · 3/2 + 7/5 + 2 · 5/4 + 11/10 + 2 = 10.

Assume now that (exactly) one of f0, . . . , f5 is a 4-face. (Such a 4-face
is assumed to not have an incident 2-vertex.) Without loss of generality, we
may suppose that it is one of f0, f1 and f2. Recall that none of f1, . . . , f4 is a
(3, 7, 8)-, (4, 6, 8)- or (5, 5, 8)-triangle since the configuration B4 is reducible.
Also, at most one of v1, . . . , v5 is a 3-vertex since the configurations C4 and
D2 are reducible. Moreover, if at most one of f1, . . . , f4 is sent charge 3/2
by v (i.e. is a (3, 8, 8)-triangle), then the total charge sent by v is at most
3 · 3/2 + 2 · 5/4 + 3 = 10. In particular, we assume that (exactly) one of
v2, v3, v4 has degree 3.

Suppose that the 4-face is f0. At most three of f1, . . . , f5 are sent charge
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more than 5/4, so the total charge sent by v is at most 3 · 3/2 + 2 ·
5/4 + 3 = 10.

Suppose that the 4-face is f1. By the remark above, one of v3 and v4

has degree 3. If deg(v4) = 3, then deg(v3) = deg(v5) = 8. Further,
deg(v6) > 4 since the configuration C4 is reducible. Consequently, the
total charge sent by v is at most 3 ·3/2+2 ·5/4+3 = 10. If deg(v3) = 3,
then f4 and f5 are sent at most 5/2 altogether by v. Indeed, let us check
all of the subcases: if deg(v6) 6 4, then deg(v5) > 6, implying that f4

is sent charge 1 and f5 is sent charge at most 3/2; if deg(v6) = 5,
then deg(v5) > 5, implying that f4 is sent charge at most 11/10 and
f5 is sent charge at most 7/5; if deg(v6) = 6, then deg(v5) > 5 since
the configuration E1 is reducible, and so each of f4 and f5 are sent
charge at most 6/5; if deg(v6) > 7, then each of f4 and f5 are sent
charge at most 5/4. Therefore, the total charge sent by v is at most
3 · 3/2 + 3 + 5/2 = 10.

Suppose that the 4-face is f2. Then, deg(v4) = 3, for otherwise at most
one face among f1, . . . , f4 is sent charge 3/2 by v. Then, deg(v5) = 8
and deg(v6) > 4 since the configuration C4 is reducible. Therefore, the
total charge sent by v is at most 3 · 3/2 + 2 · 5/4 + 3 = 10.

Suppose that v is incident to exactly one special face. Then v is incident
to a (2, 8, >4, 8)-face and, since the configurations B4 and D1 are reducible,
v is incident to at most one (3, >7, 8)-, (4, 6, 8)- or (5, 5, 8)-face; the total
charge sent by v is at most 3/2 + 6 · 5/4 + 1 = 10.
Suppose that v is not incident to a special face. Any (>5)-face incident

to v is sent no charge. If there are two such faces, then the total charge sent
by v is at most 6 · 3/2 < 10. If there is one such face, since configurations
B4, C4 and D2 are reducible, we conclude that v is incident to at most four
faces that are sent more than 5/4 charge; thus, the total charge sent by v is
at most 4 · 3/2 + 3 · 5/4 < 10.
Finally, we are in the case that v is only incident to (64)-faces (none of

which are (2, 8, 65, 8)-faces since the configuration C1 is reducible). Since the
configuration B4 is reducible, v is incident to no (3, 7, 8)-, (4, 6, 8)- or (5, 5, 8)-
triangle. If v is not incident to a (3, 8, 8)-triangle, then no face is sent charge
more than 5/4 and hence the total charge sent by v is at most 8 · 5/4 = 10.
So assume that v7 is a 3-vertex, and that f7 is a (3, 8, 8)-triangle. Since the
configuration D2 is reducible, v is adjacent to no other 3-vertices. We may
assume that v is incident to fewer 4-faces than the number of (3, 8, 8)-triangles
incident to v. (Otherwise, if x is the number of (3, 8, 8)-triangles incident to
v, then the total charge sent by v is at most x·(3/2+1)+(8−2·x)·5/4 = 10.)
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If v were incident to only one (3, 8, 8)-triangle then the other face incident to
w would necessarily be a 4-face. We conclude, therefore, that v is incident
to exactly two (3, 8, 8)-triangles, namely f6 and f7, and to at most one 4-
face. Now, if v is incident to only triangles, then since the configuration
E3 is reducible, every neighbour of v other than v1 has degree at least 5,
and so the total charge sent is at most 2 · 3/2 + 4 · 6/5 + 2 · 11/10 = 10
(where we observe that the faces adjacent around v to the (3, 8, 8)-triangles
are (>5, 8, 8)-faces and hence sent charge at most 11/10).
Therefore, in addition to the two (3, 8, 8)-triangles, v must be incident to

exactly one 4-face. Since the configuration E3 is reducible, we may assume,
without loss of generality, by symmetry, that f0 is an (>5, 8, 8)-triangle, and
f1 and f2 are both (>5, >5, 8)-triangles. If f1 is a (5, 8, 8)-triangle, then
(since the configuration B4 is reducible) f2 and f3 must both be (>5, >6, 8)-
triangles; in this case, the total charge sent by v is at most 2 · 3/2 + 2 ·
5/4 + 2 · 6/5 + 11/10 + 1 = 10. Otherwise, f1 is an (>6, 8, 8)-triangle and
sent charge at most 1 by rule R1f and the total charge sent by v is at most
2 · 3/2 + 4 · 5/4 + 2 = 10.
We have shown that if deg(v) = 8, then ch∗(v) > 0. This allows us to

conclude our analysis of the final charge of v, having shown ch∗(v) > 0 in all
cases. This completes the proof of Theorem 1. �

5 Proofs of reducibility

In this section, we prove that the graph G cannot contain any of the config-
urations given in Section 2.
Let λ be a (partial) edge-face 9-colouring of G. For each element x ∈

E∪F , we define C(x) to be the set of colours (with respect to λ) of the edges
and faces incident or adjacent to x. If x ∈ V we define E(x) to be the set of
colours of the edges incident to x. Moreover, λ is nice if only some (64)-faces
are uncoloured. Observe that every nice colouring can be greedily extended
to an edge-face 9-colouring of G, since |C(f)| 6 8 for each (64)-face f , i.e. f
has at most 8 forbidden colours. Therefore, in the rest of the paper, we shall
always suppose that such faces are coloured at the very end. More precisely,
every time we consider a partial colouring of G, we uncolour all (64)-faces,
and implicitly colour them at the very end of the colouring procedure of G.
We make the following observation about nice colourings, which we rely on
frequently.

Observation. Let e be an edge of G incident to two faces f and f ′. There
exists a nice colouring λ of G − e, and hence a partial edge-face 9-colouring
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of G in which only e and f are uncoloured. Moreover, if f is an (64)-face,
then it suffices to properly colour the edge e with a colour from {1, 2, . . . , 9}
to extend λ to a nice colouring of G.

The following lemma implies the reducibility of configuration A0. We
require the stronger form as it is necessary for later arguments.

Lemma 2. Let v be a vertex of G with neighbours v0, v1, . . . , vd−1 in clockwise
order. If v is a cut-vertex of G, then no component C of G − v is such
that the neighbourhood of v in C is contained in {vi, vi+1} for some i ∈
{0, 1, . . . , d − 1}, where the index i is taken modulo d.

Proof. Suppose on the contrary that C is a component of G − v such that
the neighbourhood of v in C is contained in, say, {v0, v1}.
First, assume that the neighbourhood of v is {v0, v1}. Then G is the edge-

disjoint union of two plane graphs G1 = (C ∪{v}, E1) and G2 = (V \C, E2).
The outer face f1 of G1 corresponds to a face f2 of G2. By the minimality
of G, the graph Gi has an edge-face 9-colouring λi for i ∈ {1, 2}. Since
both vv0 and vv1 are incident in G1 to f1, we may assume that λ1(f1) = 1,
λ1(vv0) = 8 and λ1(vv1) = 9. Regarding λ2, we may assume that λ2(f2) = 1.
Furthermore, up to permuting the colours, we can also assume that the
colours of the edges of G2 incident to v are contained in {1, 2, . . . , 7}, since
there are at most 6 such edges.
We now define an edge-face 9-colouring λ of G as follows. For every edge

e of G, set λ(e) := λ1(e) if e ∈ E1 and λ(e) := λ2(e) if e ∈ E2. To colour
the faces of G, let f be the face of G incident to both vv0 and vvd−1. (Note
that there is only one such face, since otherwise v would have degree 2, which
would be a contradiction.) Now observe that there is a natural one-to-one
correspondence between the faces of G1 and a subset F1 of the face set F of
G that maps f1 to f . Similarly, there is a natural one-to-one correspondence
between the faces of G and a subset F2 of F that maps f2 to f . Note that
F1 ∩ F2 = {f}. Now, we can colour every face f ∈ Fi using λi. This is well
defined since λ1(f1) = λ2(f2) = 1.
Let us check that λ is proper. Two adjacent edges ofG are assigned differ-

ent colours. Indeed, if the two edges belong to Ei for some i ∈ {1, 2}, then it
comes from the fact that λi is an edge-face 9-colouring of Gi. Otherwise, both
edges are incident with v, and one is in G1 and the other in G2. The former
is coloured either 8 or 9, and the latter with a colour of {1, 2, . . . , 7} by the
choice of λ1 and λ2. Two adjacent faces in G necessarily correspond to two
adjacent faces in G1 or G2, and hence are assigned different colours. Last, let
g be a face of G and e an edge incident to g in G. If g 6= f , then g and e are
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incident in G1 or G2, and hence coloured differently. Otherwise e is incident
to fi in Gi for some i ∈ {1, 2}, and hence λ(e) = λi(e) 6= λi(fi) = 1 = λ(f).
The case where the neighbourhood of v is {v0}, i.e. vv0 is a cut-edge, is

dealt with in the very same way so we omit it.

The next lemma shows the reducibility of configurations A3, B1 and C1.

Lemma 3. Let uv be an edge of G, and let s ∈ {0, 1, 2} be the number of
(64)-faces incident to uv. Then deg(u) + deg(v) > 9 + s.

Proof. Suppose on the contrary that deg(u) + deg(v) 6 8 + s. Let f and f ′

be the two faces incident to uv.
First assume that s > 1. Without loss of generality assume that f is an

(64)-face. By the minimality of G, the graph G − e has a nice colouring λ.
Let f ′′ be the face of G − e corresponding to the union of the two faces f
and f ′ of G after having removed the edge e. We obtain a partial edge-face
9-colouring of G in which only e, f and the (64)-faces are uncoloured by just
assigning the colour λ(f ′′) to f ′, and keeping all the other assignments.
Consequently, |C(uv)| 6 deg(u) + deg(v) − 2 + 2 − s 6 8. Hence, we

can properly colour the edge uv, thereby obtaining a nice colouring of G; a
contradiction.
Now assume that s = 0. The graph G′ obtained by contracting the edge

uv is planar, simple and has maximum degree at most 8. By the minimality of
G, let λ be a nice colouring ofG′. Let g and g′ be the faces ofG′ corresponding
to the contracted faces f and f ′ of G, respectively. We obtain a partial edge-
face 9-colouring of G in which only e is uncoloured by assigning the colour
λ(g) to f , λ(g′) to f ′, and keeping all the other assignments.
Consequently, |C(uv)| 6 deg(u) + deg(v) − 2 + 2 6 8. Hence, we can

properly colour the edge uv, thereby obtaining a nice colouring of G; a con-
tradiction.

In light of Lemma 3, we make the following definition and observation.
An edge uv of G is called tight if deg(u)+deg(v)− s = 9, where s ∈ {0, 1, 2}
is the number of (64)-faces incident to uv.

Observation. Assume that c is an edge-face 9-colouring of G in which only
uv and the (64)-faces are uncoloured. Let S be the (possibly empty) set of
colours assigned by c to the (>5)-faces incident to uv. If uv is tight, then the
sets E(u), E(v) and S are pairwise disjoint, and C(uv) = E(u) ∪ E(v) ∪ S =
{1, . . . , 9}.

The reducibility of configurations B2, B3, B4, C2 and C3 follows from
the next lemma.
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Lemma 4. Let uvw be a triangle of G such that deg(u) + deg(v) = 10 + s,
where s ∈ {0, 1} is the number of (64)-faces distinct from uvw incident
to uv, and let t ∈ {0, 1, 2} be the number of (64)-faces distinct from uvw
incident to uw or vw. Then deg(w) > 7 + t.

Proof. As we pointed out, there exists a partial edge-face 9-colouring c of G
in which only uv and the (64)-faces are left uncoloured. Let αuv, αvw and αuw

be the colours, if any, assigned to the (>5)-faces incident to uv, vw and uw,
respectively. Since the edge uv is tight, E(u), E(v) and {αuv} form a partition
of {1, 2, . . . , 9}. Thus, if there is a colour ξ ∈ E(u) ∪ {αuv} that is not in
E(w)∪{αvw}, then we can colour uv with c(vw) and next recolour vw with ξ
to obtain a nice colouring of G. We deduce that E(u)∪{αuv} ⊆ E(w)∪{αvw}.
Similarly, E(v) ∪ {αuv} ⊆ E(w) ∪ {αuw}. Hence, deg(w) + 2 − t > 9, so
deg(w) > 7 + t, as required.

The following verifies that the configuration A1 is reducible.

Lemma 5. Let u, v, w be vertices of G with deg(v) = 2. Then uvw is not a
face of G.

Proof. Suppose on the contrary that uvw is a face of G. There exists a
partial edge-face 9-colouring c of G in which only uv and the (64)-faces are
uncoloured. Let α be the colour, if any, assigned to the (>5)-face incident to
both uv and vw, and let βuw be the colour, if any, assigned to the (>5)-face
incident to uw.
By Lemma 2, observe that α /∈ {βuw, c(uw)}. Since uv is tight, the sets

E(u), {c(vw)} and {α} are pairwise disjoint. Since vw is tight, we deduce
that α /∈ E(w), for otherwise we could colour uv with c(vw) and next recolour
vw with a colour from {1, . . . , 9} \ E(w). Hence α /∈ E(u)∪ E(w)∪ {βuw}, so
then colouring uv with c(uw) and next recolouring uw with α yields a nice
colouring of G; a contradiction.

Since the configuration B1 is reducible, to demonstrate that the configu-
ration A2 is reducible, it suffices to show the following.

Lemma 6. Let u, v, w, x be vertices of G with deg(v) = 2 and deg(x) 6 3.
Then uvwx is not a face of G.

Proof. Suppose on the contrary that uvwx is a face of G. There exists a
partial edge-face 9-colouring c of G in which only uv and the (64)-faces are
uncoloured. Let α be the colour, if any, assigned to the (>5)-face incident to
both uv and vw, and let βux and βwx be the colours, if any, assigned to the
(>5)-faces incident to ux and wx, respectively.
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By Lemma 2, observe that α /∈ {βux, βwx, c(ux), c(wx)}. Since uv is
tight, the sets E(u), {c(vw)} and {α} are pairwise disjoint. Since vw is
tight, we deduce that α /∈ E(w), for otherwise we could colour uv with
c(vw) and next recolour vw with a colour from {1, . . . , 9} \ E(w). Hence
α /∈ E(u) ∪ E(w) ∪ {βux, βwx}.
Let x′ be the vertex adjacent to x distinct from u and w. We must have

c(xx′) = α, otherwise we could colour uv with c(ux) and next recolour ux
with α. Since βux 6= βwx, at least one of βux and βwx is distinct from c(vw).
Observing that we can colour uv with c(vw) and next uncolour vw, we may
assume without loss of generality that βwx 6= c(vw). As a result, colouring
uv with c(vw), and next swapping the colours of vw and xw yields a nice
colouring of G; a contradiction.

The following verifies that the configurations C4 and C5 are reducible.

Lemma 7. Let uvw and vwx be triangles of G such that wx is incident to
two (64)-faces.

(i) At least one of u and x has degree at least 4.

(ii) If uv is tight, then deg(v) + deg(x) > 12.

Proof. (i). Suppose on the contrary that both u and x have degree less
than 4. Then both have degree 3 by Lemma 5. Let u′ (respectively x′)
be the neighbour of u (respectively x) distinct from v and w. Let c be a
partial edge-face 9-colouring of G in which only wx and the (64)-faces are
uncoloured. Let αuv, αuw and αvx be the colours, if any, assigned to the
(>5)-faces incident to uv, uw and vx, respectively.
Since the edge wx is tight, the sets E(w) and E(x) are disjoint. Hence

c(xx′) ∈ E(v), otherwise we could colour wx with c(vw) and recolour vw
with c(xx′).
We first assert that αvx 6= c(vw). Otherwise, |C(vx)| = |E(v)| 6 8 and

there exists ξ ∈ {1, 2, . . . , 9} \ C(vx). Now, colouring wx with c(vx) and
recolouring vx with ξ yields a nice colouring of G; a contradiction. Conse-
quently, we can safely swap the colours of vw and vx, if necessary.
Our next assertion is that {c(uu′), αuw} = {c(vw), c(vx)}. For, if c(vx) /∈

{c(uu′), αuw}, we can colour wx with c(uw) and recolour uw with c(vx); a
contradiction. The same argument after swapping the colours of vw and vx
shows that c(vw) ∈ {c(uu′), αuw}. Thus, up to swapping the colours of vw
and vx, we may assume that c(vx) = αuw.
Let us recolour uv with c(vx), colour wx with c(vx) and uncolour vx. The

obtained colouring is proper, since αuv 6= αuw = c(vx) and E(w) ∩ E(x) = ∅.
Now, if vx cannot be coloured greedily, then for the obtained colouring E(v)∪
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E(x)∪{αvx} = {1, 2, . . . , 9} since vx is tight. As a result, c(xx′) /∈ E(v)∪E(w)
and hence we can colour vx with c(vw) and colour vw with c(xx′) to obtain
a nice colouring of G; a contradiction.

(ii). Suppose on the contrary that uv is tight and deg(v) + deg(x) = 11.
Let c be a partial edge-face 9-colouring of G in which only uv and the (64)-
faces are uncoloured. Let αuv, αuw and αvx be the colours, if any, assigned
to the (>5)-faces incident to uv, uw and vx, respectively. Since the edge uv
is tight, the sets E(u), E(v) and {αuv} are pairwise disjoint.
Let ξ ∈ {1, . . . , 9} \ E(w). Then ξ ∈ E(v), otherwise we could colour uv

with c(vw) and recolour vw with ξ. It follows that ξ /∈ E(u). Therefore,
αuw = ξ, otherwise we could colour uv with c(uw) and recolour uw with ξ.
Thus, the colours of uw and vw may be exchanged, if necessary.
Let us show that E(u) ∪ {αuv, c(vw)} ⊆ E(x) ∪ {αvx}. First, if there is a

colour γ ∈ E(u)∪ {αuv} that is not in E(x)∪ {αvx}, then we can recolour vx
with γ and then colour uv with c(vx) to obtain a nice colouring of G, which
is a contradiction. Similarly, by exchanging the colours of uw and vw, we
conclude that c(vw) ∈ E(x) ∪ {αvx}.
Since uv is tight and deg(v)+deg(x) = 11, we deduce that E(x)∪{αvx} =

E(u)∪{αuv, c(vw), c(vx)}. (Indeed, |E(x)∪{αvx}| 6 deg(x)+1 = 12−deg(v),
and |E(u) ∪ {αuv}| = 9 − (deg(v) − 1) = 10 − deg(v).) In particular, αvx 6=
c(wx) and ξ /∈ E(x) \ {c(vx)}. Now, colour uv with c(vx), and then recolour
vx with c(wx), wx with ξ to obtain a nice colouring of G; a contradiction.

The next lemma implies that the configurations D1–D4 are reducible.

Lemma 8. Let vwx be a triangle of G and u a neighbour of v distinct from
x and w. If vx is incident to two (64)-faces, then not both uv and vw are
tight.

Proof. Suppose on the contrary that both uv and vw are tight. Let c be a
partial edge-face 9-colouring of G in which only vw and the (64)-faces are
left uncoloured. Let α be the colour, if any, assigned to the (>5)-face incident
to vw. Since vw is tight, we know that the sets E(v), E(w) and {α} form a
partition of {1, 2, . . . , 9}. In particular, c(vx) /∈ E(w) and c(wx) /∈ E(v).
If an edge e that is adjacent to vw could be properly recoloured with

a colour ξ, then colouring vw with c(e) and recolouring e with ξ would
yield a nice colouring of G; a contradiction. Applying this to vx yields that
E(w) ∪ {α} ⊆ E(x), since C(vx) = E(x) ∪ E(v), and as we noted above
{1, . . . , 9} \ E(v) = E(w)∪ {α}. Applying the same remark to wx, we obtain
E(v) ∪ {α} ⊆ E(x) ∪ {β}, where β is the colour, if any, assigned to the
(>5)-face incident to wx.
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Since 9 = |E(v)∪E(w)∪{α}| 6 |E(x)∪{β}| 6 9, we deduce that β /∈ E(x).
Therefore, we can safely swap the colours of vx and wx if needed (recalling
that E(v) ∩ E(w) = ∅).
Let S be the set of colours of the (>5)-faces incident to uv. Thus, |S| =

2−s where s is the number of (64)-faces incident to uv. Again, we apply the
same arguments as above to uv: since uv cannot be recoloured, we deduce
that E(u) ∪ E(v) ∪ S = {1, 2, . . . , 9}. But |E(u) ∪ E(v) ∪ S| 6 deg(u) −
1 + deg(v) − 1 + 2 − s = deg(u) + deg(v) − s 6 9 since uv is tight and
vw is uncoloured. Consequently, E(u), E(v) and S are pairwise disjoint. In
particular, c(vx) /∈ E(u) ∪ S. As a result, colouring vw with c(uv), then
recolouring uv with c(vx) and finally swapping the colours of vx and wx
yields a nice colouring of G; a contradiction.

The next lemma implies that configurations E1 and E2 are reducible.

Lemma 9. Let v be an 8-vertex of G with neighbours v0, v1, . . . , v7 in anti-
clockwise order. Assume that vivi+1 is an edge for i ∈ {0, 1, 2, 3}, and that v1

an (64)-vertex. If v0 is an (66)-vertex or vv0 is adjacent to two (64)-faces,
then v3 is an (>4)-vertex.

Proof. Suppose on the contrary that v3 is a 3-vertex. By the minimality of
G, the graph G−vv3 has a nice colouring and hence G has a partial edge-face
9-colouring c in which only vv3 and the (64)-faces are left uncoloured. Since
vv3 is tight, we deduce that |E(v) ∪ E(v3)| = 9 and E(v) ∩ E(v3) = ∅.
Let α be the colour, if any, of the (>5)-face incident with both v2v3 and

v3v4. If v2v3 can be recoloured with a colour ξ, then colouring vv3 with c(v2v3)
and then v2v3 with ξ would yield a nice colouring of G; a contradiction. Thus,
E(v) ⊆ E(v2) ∪ {α}.
Let j ∈ {1, 2}. If there exists a colour ξ ∈ E(v3) \ E(vj), then colouring

vv3 with c(vvj) and then vvj with ξ yields a nice colouring of G (recalling
that E(v3) and E(v) are disjoint). Therefore, E(v3) ⊆ E(vj) for j ∈ {1, 2}.
Letting γ be the colour, if any, of the (>5)-face incident to vv0 we similarly
find that E(v3) ⊆ E(v0) ∪ {γ}.
Since E(v2) ∪ {α} ⊇ E(v) ∪ E(v3) = {1, 2, . . . , 9} and |E(v2) ∪ {α}| 6 9,

it follows that α 6= c(vv2). As E(v)∩ E(v3) = ∅, this implies that the colours
of vv2 and v2v3 can be freely swapped. By doing so, we can conclude that
E(v3) ∪ {c(vv2)} ⊆ E(vj) for j ∈ {1, 2} and E(v3) ∪ {c(vv2)} ⊆ E(v0) ∪ {γ}.
Since deg(v1) = 4, we find that E(v1) = {c(vv1), c(vv2)}∪E(v3). Further-

more, by swapping the colours of vv2 and v2v3 if necessary, we may assume
that c(v0v1) ∈ E(v3). Now, if v0v1 could be recoloured with a colour ξ, then
colouring vv3 with c(vv1), then vv1 with c(v0v1) and then v0v1 with ξ would
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yield a nice colouring of G. Thus, letting β be the colour, if any, of the
(>5)-face incident to v0v1 we obtain E(v0) ∪ E(v1) ∪ {β} = {1, 2, . . . , 9}.
Let us partition our analysis now based on if v0 is an (66)-vertex or if

vv0 is adjacent to two (64)-faces.
Suppose we are in the former case. Since E(v3) ∪ {c(vv2)} ⊆ (E(v0) ∪

{γ}) ∩ E(v1), we deduce that |E(v0) ∪ E(v1)| 6 deg(v0) + deg(v1) − 2 6 8.
Consequently, β 6= c(vv1) and c(vv1) /∈ E(v0). In particular, the colours of
vv1 and v0v1 can safely be swapped if needed. As a result, colouring vv3 with
c(vv1) and then swapping the colours of vv1 and v0v1 yields a nice colouring
of G; a contradiction.
Now suppose we are in the latter case. Then there is no colour γ. For j ∈

{0, 1}, it cannot be that c(vvj) ∈ E(v1−j) (and hence c(vvj) ∈ E(v0)∩E(v1)).
Otherwise, we would have, using E(v3) ∪ {c(vv2)} ⊆ E(v0) ∩ E(v1), that
|E(v0) ∪ E(v1)| 6 deg(v0) + deg(v1) − 4 6 8, in which case, recolouring as
we did in the last paragraph, we would reach a contradiction. However, for
some j ∈ {0, 1}, we must have β 6= c(vvj), and so the colours of vvj and v0v1

can be swapped safely. Thus, colouring vv3 with c(vvj) and then swapping
the colours of vvj and v0v1 yields a nice colouring of G; a contradiction.

In the following lemma, we show that the configuration E3 is reducible.

Lemma 10. Let v be a triangulated 8-vertex of G with neighbours v0, v1, . . . , v7

in anti-clockwise order. If v0 is a 3-vertex, then every vertex vi with i 6= 0
has degree at least 5.

Proof. Suppose on the contrary that vj is an (64)-vertex with j ∈ {1, . . . , 7}.
First, note that j /∈ {1, 7} since the configuration B2 is reducible. By the
minimality of G, the graph G−vv0 has a nice colouring, and hence the graph
G has a partial edge-face 9-colouring in which only vv0 and the (64)-faces
are left uncoloured. Since vv0 is tight and incident to two triangles, we infer
that |E(v) ∪ E(v0)| = 9 and E(v) ∩ E(v0) = ∅.
Note that E(v0) ⊂ E(vi) for i 6= 0, for otherwise we could colour vv0 with

c(vvi) and then recolour vvi with a colour in E(v0) \ E(vi) to obtain a nice
colouring ofG (recalling that E(v)∩E(v0) = ∅). Since {c(vvj)}∪E(v0) ⊆ E(vj)
and deg(vj) 6 4, we deduce that one of c(vv1) and c(vv7) does not belong to
E(vj), say c(vv7).
Let α be the colour of the face incident to both v0v1 and v0v7. We prove

that α 6= c(vv7). Indeed, suppose on the contrary that α = c(vv7). Then,
there exists a colour ξ that does not belong to E(v7) ∪ {α} = E(v7), since
deg(v7) 6 8. As E(v0) ⊂ E(v7), we deduce that ξ /∈ E(v0) ∪ E(v7) ∪ {α}.
Therefore, colouring vv0 with c(v0v7) and then v0v7 with ξ yields a nice
colouring of G; a contradiction. Hence, α 6= c(vv7). Consequently, we can
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freely swap the colours of vv7 and v0v7. Now, colouring vv0 with c(vvj), then
recolouring vvj with c(vv7) and last swapping the colours of vv7 and v0v7

yields a nice colouring of G; a contradiction.
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