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Abstract

We show that under certain conditions the square of the graph

obtained by identifying a vertex in two graphs with hamiltonian square

is also hamiltonian. Using this result, we prove necessary and sufficient

conditions for hamiltonicity of the square of a connected graph such

that every vertex of degree at least three in a block graph corresponds

to a cut vertex and any two these vertices are at distance at least four.
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square; star

1 Introduction and notation

The graphs considered in this paper are undirected and simple. If G is

a graph, we denote by V (G) the vertex set of G, by E(G) the edge set

of G. For x ∈ V (G), dG(x) denotes the degree of x and NG(x) denotes the

neighborhood of x. For x, y ∈ V (G), distG(x, y) denotes the distance between

x, y. For A ⊆ V (G), 〈A〉 denotes the subgraph of G induced by A.

The k-star is a tree on k + 1 vertices with one vertex of degree k, called

the center, and the others of degree 1, k = 0, 1, 2, .... The graph S(K1,3) is the
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graphK1,3 in which each edge is subdivided once. Given sets A, B of vertices,

we call P = x0, ..., xk an (A, B)-path if V (P ) ∩ A = {x0} and V (P ) ∩ B =

{xk}, we write (a, B)-path rather than ({a}, B)-path. For a graph G we

define Vi(G) = {v ∈ V (G) : d(v) = i} and W (G) = V (G) \ V2(G). A branch

in G is a nontrivial path whose ends are inW (G) and whose internal vertices,

if any, are of degree 2 in G.

The square of G, denoted G2, is the graph with the vertex set V (G) in

which two vertices are adjacent if their distance in G is one or two. We say

that two graphs are homeomorphic if they can be turned into isomorphic

graphs by finite number of edge-subdivisions. Let G′ be an subgraph of G.

We say that G′ is maximal with respect to a given graph property if G′

itself has the property but no graph G′ + A does, for any nonempty subset

A ⊆ E(G) \ E(G′).

A connected graph that has no cut vertices is called a block. A block of

a graph is a subgraph that is a block and is maximal with respect to this

property. The degree of a block B of a graph G, denoted by d(B), is the

number of cut vertices of G belonging to V (B). A block of degree 1 is called

an endblock of G, otherwise it is a non-end block. A block is said to be

acyclic if it is isomorphic to one edge, otherwise we say it is cyclic. The block

graph of a graph G is the graph Bl(G) such that the vertices of Bl(G) are

the blocks and cut vertices of G, and two vertices are adjacent in Bl(G) if

one of them is a block of G and the second one is its vertex.

LetG1, G2 be connected graphs, x /∈ V (G1)
⋃

V (G2), V (G1)
⋂

V (G2) =

∅, and let xi ∈ V (Gi), i = 1, 2. Then the graph G with vertex set V (G) =

(V (G1) \ {x1})
⋃

(V (G2) \ {x2})
⋃

{x} and with edge set E(G) =

E(G1 − x1)
⋃

E(G2 − x2)
⋃

{ux| u ∈ V (G1), ux1 ∈ E(G1)}
⋃

{vx| v ∈

V (G2), vx2 ∈ E(G2)} is called the connection of the graphs G1, G2 over the

vertices x1, x2, denoted G = G1[x1 = x2]G2.

LetG be a connected graph such thatG2 is hamiltonian and let x ∈ V (G).

We say that

a) the vertex x is of type 1 if there exists a hamiltonian cycle C of G2

such that both edges of C incident with x are in G,

b) the vertex x is of type 2 if x is not of type 1 and there exists a hamil-

tonian cycle C of G2 such that exactly one edge of C incident with x

is in G,

c) the vertex x is of type 3 if x is not of type 1 or 2 and there exists

a hamiltonian cycle C of G2 such that for some two vertices u, v ∈
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NG(x) is uv ∈ E(C),

d) the vertex x is of type 4 if x is not of type 1 or 2 or 3.

We denote V[i](G) = {x ∈ V (G) | x is of type i}, i = 1, 2, 3, 4.

2 The connection of graphs

Let us first mention the following result by Fleischner [2] that will be used

many times in proofs.

Theorem 2.1 [2]. Let y and z be arbitrarily chosen vertices of a 2-

connected graph G. Then G2 contains a hamiltonian cycle C such that the

edges of C incident with y are in G and at least one of edges of C incident

with z is in G. If y and z are adjacent in G, then these are three different

edges.

It is easy to see that Theorem 2.1 implies that the square of a 2-connected

graph is hamiltonian.

The following result shows that, under certain conditions, the square of

the connection of two graphs with hamiltonian square is also hamiltonian.

Theorem 2.2. Let G1, G2 be connected graphs such that (G1)
2, (G2)

2

are hamiltonian, let xi ∈ V (Gi), i = 1, 2. If

I) G = G1[x1 = x2]G2 and xi ∈ V[1](Gi)
⋃

V[2](Gi), i = 1, 2, or

II) G = G1[x1 = x2]K2, x1 ∈ V[1](G1)
⋃

V[2](G1)
⋃

V[3](G1) and V (K2) =

{x2, u} or

III) G = G1[x1 = x2]G2, x1 ∈ V[3](G1) and x2 ∈ V[1](G2),

then G2 is hamiltonian.

Moreover under the assumptions of I),

a) if xi ∈ V[1](Gi), i = 1, 2, then x = x1 = x2 ∈ V[1](G);

b) if x1 ∈ V[1](G1) and x2 ∈ V[2](G2), then x = x1 = x2 ∈ V[2](G);

c) if G2 is 2-connected and x1 ∈ V[1](G1)
⋃

V[2](G1), then v ∈ V[1](G) for

any v ∈ V (G2), v 6= x2;

d) if xi ∈ V[2](Gi), i = 1, 2, then x = x1 = x2 /∈ V[1](G)
⋃

V[2](G).

Moreover under the assumptions of II),

a) if x1 ∈ V[1](G1), then x = x1 = x2 ∈ V[1](G);

b) if x1 ∈ V[2](G1), then x = x1 = x2 ∈ V[2](G);

c) if x1 ∈ V[1](G1)
⋃

V[2](G1), then u ∈ V[2](G).
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Proof.

I) Let x = x1 = x2 and let C1, C2 be hamiltonian cycles in (G1)
2,

(G2)
2 such that a1x, b1x ∈ E(G) for a1 ∈ NC1

(x), b1 ∈ NC2
(x), re-

spectively. Let a2 ∈ NC1
(x), a1 6= a2, and b2 ∈ NC2

(x), b1 6= b2,

and let Pa1a2
= C1 − x1 and Pb2b1 = C2 − x2. Then Pa1a2

, Pb2b1 are

hamiltonian paths in (G1 − x)2, (G2 − x)2, respectively, and the cycle

C = a1Pa1a2
a2xb2Pb2b1b1a1 is a hamiltonian cycle in G2.

a) If moreover xi ∈ V[1](Gi), i = 1, 2, then we can assume that

a2x, b2x ∈ E(G) and therefore x ∈ V[1](G).

b) If moreover x1 ∈ V[1](G1) and x2 ∈ V[2](G2), then we can assume

that a2x ∈ E(G) and it is obvious that there is no C2 such that

b2x ∈ E(G), therefore x ∈ V[2](G).

c) If moreover G2 is 2-connected, then for any v ∈ V (G2), v 6= x2,

by Theorem 2.1 we can assume without loss of generality that

c1v, c2v ∈ E(G2), c1, c2 ∈ NC2
(v), c1 6= c2. If v 6= b1, then

c1v, c2v ∈ E(C), therefore v ∈ V[1](G). If v = b1, then we

have vx2 ∈ V (G2) and by Theorem 2.1 x2b2 ∈ E(G). Then

C̃ = a1Pa1a2
a2xb1Pb1b2b2a1 is also a hamiltonian cycle in G2

and moreover the edges of C2 incident with v = b1 are in C̃.

Therefore v ∈ V[1](G).

d) If moreover xi ∈ V[2](Gi), i = 1, 2, then it is obvious that

there are no C1, C2 such that a2x ∈ E(G) or b2x ∈ E(G) and

therefore x /∈ V[1](G)
⋃

V[2](G).

II) Case 1: x1 ∈ V[3](G1).

Let x = x1 = x2 and let C1 be a hamiltonian cycle in (G1)
2 such

that yw ∈ E(C1) for some y, w ∈ NG1
(x). Let Pyw = C1 − yw. Then

Pyw is a hamiltonian path in (G1)
2 and the cycle C = yPywwuy is

a hamiltonian cycle in G2.

Case 2: x1 ∈ V[1](G1)
⋃

V[2](G1).

Let x = x1 = x2 and let C1 be a hamiltonian cycle in (G1)
2 such

that yx ∈ E(G) for y ∈ NC1
(x). Let z ∈ NC1

(x), z 6= y, and let

Pzy = C1 − x1. Then Pyz is a hamiltonian path in (G1 − x)2 and the

cycle C = zPzyyuxz is a hamiltonian cycle in G2.

a) If moreover x1 ∈ V[1](G1), then we can assume that xz ∈ E(G)

and therefore x ∈ V[1](G).

b) If moreover x1 ∈ V[2](G1), then it is obvious that there is no C1

such that xz ∈ E(G) and therefore x ∈ V[2](G).
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c) Since ux ∈ E(G) and NG(u) = {x}, it is obvious that there is

no cycle C̃ in G2 such that both edges of C̃ incident with u are

in G and therefore u ∈ V[2](G).

III) Let x = x1 = x2, let C1 be a hamiltonian cycle in (G1)
2 such that

yw ∈ E(C1) for some y, w ∈ NG1
(x) and let C2 be a hamiltonian

cycle in (G2)
2 such that ax, bx ∈ E(G) for a, b ∈ NC2

(x), a 6= b. Let

Pyw = C1−yw and Pab = C2−x2. Then Pyw, Pab are hamiltonian paths

in (G1)
2, (G2 − x)2, respectively, and the cycle C = wPwyyaPabbw is

a hamiltonian cycle in G2.

3 The hamiltonian square of a graph

This work is motivated by the following result due to El Kadi Abderrezzak,

Flandrin and Ryjáček [1].

Theorem 3.1 [1]. If G is a connected graph such that every induced

S(K1,3) has at least three edges in a block of degree at most 2, then G2 is

hamiltonian.

The following result, originally by Thomassen [5], is an immediate corol-

lary of Theorem 3.1.

Theorem 3.2 [5]. If the block graph of G is a path, then G2 is hamilto-

nian.

We consider the graph in Figure 1. It is easy to see that the cycle

C = v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v1 is a hamiltonian cycle in G2 but the

induced subgraph H = 〈{v1, v2, v3, v5, v6, v9, v10}〉 is isomorphic to S(K1,3)

and does not have at least three edges in a block of degree at most 2. This

example shows that the assumptions in Theorem 3.1 are sufficient but not

necessary. We looked for other conditions implying that the square of a graph

is hamiltonian.

Before the presentation of our main results we first give the following

slight strengthening of Theorem 3.2 which will be needed in our proofs.
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Figure 1:

Theorem 3.3. Let G be a graph such that its block graph is a path and

let u1, u2 be arbitrary vertices which are not cut vertices and are contained

in different endblocks of G.

Then G2 contains a hamiltonian cycle C such that, for i = 1, 2,

• if ui is contained in a cyclic block, then both edges of C incident with

ui are in G, and

• if ui is contained in an acyclic block, then exactly one edge of C

incident with ui is in G.

Proof. If G is a path of length at least 2, then the theorem is obvious.

Thus, suppose that G contains at least one cyclic block B1 and let k denote

the number of blocks of G.

We prove the theorem by induction on k.

1. Let k = 2, let B2 be the second block of G, let x = V (G) be the (only)

cut vertex of G and let u1, u2 be arbitrary vertices such that u1 ∈ V (B1),

u2 ∈ V (B2) and u1 6= x, u2 6= x. The graph (B1)
2 contains a hamiltonian

cycle C1 such that the edges of C1 incident with u1 are in B1 and at least

one of edges of C1 incident with x is in B1. If u1 and x are adjacent in G,

then these are three different edges by Theorem 2.1. Then we can assume

that x ∈ V[1](B1)
⋃

V[2](B1) and G = B1[x1 = x2]B2, where x1 and x2 is the

copy of x in B1 and B2, respectively.

a) If B2 is cyclic, then the graph G2 contains a hamiltonian cycle C such

that both edges of C incident with u2 are in G by Theorem 2.2 Ic)

and it is obvious that we can find C such that also both edges of C

incident with u1 are in G.
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b) If B2 = K2 = x2u2, then the graph G2 contains a hamiltonian cycle C

such that exactly one edge of C incident with u2 is in G by Theorem

2.2 IIc) and it is obvious that we can find C such that both edges of

C incident with u1 are in G.

2. Suppose the assertion is true for each graph with at most k blocks, let

G be a graph with k + 1 blocks such that its block graph is a path and let

u1, u2 be arbitrary vertices which are not cut vertices and are contained in

different endblocks of G, k ≥ 2.

Let Bk+1 be the endblock of G containing u2. We denote G̃ = G −

V (Bk+1 − x), where x ∈ V (Bk+1) is a cut vertex of G. Then G = G̃[x1 =

x2]Bk+1, where x1 and x2 is the copy of x in G̃ and Bk+1, respectively, and

we can assume by the induction hypothesis that G̃ contains a hamiltonian

cycle C1 such that if u1, x1 is contained in a cyclic block, then both edges

of C1 incident with u1, x1 are in G̃, and if u1, x1 is contained in an acyclic

block, then exactly one edge of C1 incident with u1, x1 is in G̃, respectively.

Then we can assume that x1 ∈ V[1](G̃)
⋃

V[2](G̃).

a) If Bk+1 is cyclic, u2 ∈ V (Bk+1) and u2 6= x2, then the graph G2

contains a hamiltonian cycle C such that both edges of C incident

with u2 are in G by Theorem 2.2 Ic) and it is obvious that we can find

C such that if u1 is contained in a cyclic block, then both edges of C

incident with u1 are in G, and if u1 is contained in an acyclic block,

then exactly one edge of C incident with u1 is in G.

b) If Bk+1 = K2 = x2u2, then the graph G2 contains a hamiltonian

cycle C such that exactly one edge of C incident with u2 is in G by

Theorem 2.2 IIc) and it is obvious that we can find C such that if u1

is contained in a cyclic block, then both edges of C incident with u1

are in G, and if u1 is contained in an acyclic block, then exactly one

edge of C incident with u1 is in G.

4 Main result

Let V≥3(G) = {x ∈ V (G)|dG(x) ≥ 3} and, for x ∈ V (G), tG(x) denotes the

number of acyclic non-end blocks of G containing x. First of all we prove the

following lemma.
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Lemma 4.1. Let G be a connected graph with exactly one vertex in

V≥3(Bl(G)) corresponding to a cut vertex a of G. If a is contained in at

most two acyclic non-end blocks of G, then G2 contains a hamiltonian cycle

C such that if tG(a) = 0, then both edges of C incident with a are in G, if

tG(a) = 1, then exactly one edge of C incident with a is in G, if tG(a) = 2,

then no edge of C incident with a is in G.

Proof. Let r ≥ 0, s ≥ 0 and t = tG(a) ≥ 0 denote the number of

cyclic blocks, acyclic endblocks and acyclic non-end blocks of G containing

a, respectively, and choose the notation such that if r > 0, then B1, ..., Br are

all cyclic blocks, if s > 0, then Br+1, ..., Br+s are all acyclic endblocks, and if

t > 0, then Br+s+1, ..., Br+s+t are all acyclic non-end blocks of G containing

the vertex a.

By the assumption, t ≤ 2 and r + s + t ≥ 3, hence r + s > 0.

Case 1: r = 0.

If t = 0, then G is a star and the assertion is obvious. Let t ≥ 1.

Subcase 1.1: s = 1. Then necessarily t = 2. Let B1 = au and let b2,

b3 be the branch of Bl(G) containing the vertex corresponding to B2, B3

and denote H2, H3 the subgraph corresponding to b2, b3, respectively. For

i = 2, 3, Bl(Hi) is a path and therefore (Hi)
2 is hamiltonian and a ∈ V[2](Hi)

by Theorem 3.3. If G1 = H2[x1 = x2]B1, where x1 and x2 is the copy of a

in H2 and B1, respectively, then (G1)
2 is hamiltonian and a ∈ V[2](G1) by

Theorem 2.2 IIb). Moreover G = G1[y1 = y2]H3, where y1 and y2 is the copy

of a in G1 and H3, respectively, and G2 contains hamiltonian cycle C such

that no edge of C incident with a is in G by Theorem 2.2 Id).

Subcase 1.2: s ≥ 2. Then necessarily 1 ≤ t ≤ 2. For i = s + 1, s + 2, let

Hi be the same subgraphs as in Subcase 1.1 and let G̃ = G− V (Hs+1 − a)−

V (Hs+2 − a). It is obvious that G̃ is a star and therefore (G̃)2 is hamiltonian

and a ∈ V[1](G̃). If t = 1, then G = G̃[x1 = x2]Hs+1, where x1 and x2 is the

copy of a in G̃ and Hs+1, respectively, and G2 contains hamiltonian cycle C

such that exactly one edge of C incident with a is in G by Theorem 2.2 Ib).

Let t = 2. If G1 = G̃[x1 = x2]Hs+1, where x1 and x2 is the copy of a in G̃ and

Hs+1, respectively, then (G1)
2 is hamiltonian and a ∈ V[2](G1) by Theorem

2.2 Ib). Moreover G = G1[y1 = y2]Hs+2, where y1 and y2 is the copy of a in

G1 and Hs+2, respectively, and G2 contains hamiltonian cycle C such that

no edge of C incident with a is in G by Theorem 2.2 Id).
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Case 2: r ≥ 1.

For i = 1, 2, ..., r, let bi be the branch of Bl(G) containing the vertex corre-

sponding to Bi. We denote Hi the subgraph corresponding to bi. The block

graph Bl(Hi) is a path and therefore (Hi)
2 is hamiltonian and a ∈ V[1](Hi)

either by Theorem 3.3 or by Theorem 2.1. Let br+s+1, br+s+2 be the branch

of Bl(G) containing the vertex corresponding to Br+s+1, Br+s+2 and denote

Hr+s+1, Hr+s+2 the subgraph corresponding to br+s+1, br+s+2, respectively.

For j = r+s+1, r+s+2, Bl(Hj) is a path and therefore (Hj)
2 is hamiltonian

and a ∈ V[2](Hj) by Theorem 3.3.

Let G1 = G−V (Hr+s+1−a)−V (Hr+s+2−a) and let ℓ denote the number

of branches of Bl(G1).

We show that (G1)
2 is hamiltonian and a ∈ V[1](G1).

We proceed by induction on ℓ.

1. For ℓ = 1 obviously G1 = H1 and the assertion is true.

2. Suppose the assertion is true for each graph such that its block graph

contains at most ℓ branches, let G1 be a graph without acyclic non-end

blocks such that its block graph contains ℓ+1 branches and with exactly one

vertex in V≥3(Bl(G1)) corresponding to a cut vertex a of G1.

If G̃1 = G1−V (H1−a), then G1 = H1[x1 = x2]G̃1, where x1 and x2 is the

copy of a in H1 and G̃1, respectively. If G̃1 = Br+1, then (G1)
2 is hamiltonian

and a ∈ V[1](G1) by Theorem 2.2 IIa). Otherwise G̃1 is hamiltonian and

a = x1 ∈ V[1](G̃1) by the induction hypothesis. Then (G1)
2 is hamiltonian

and a ∈ V[1](G1) by Theorem 2.2 Ia).

If G = G1, then it is obvious that G
2 contains a hamiltonian cycle C such

that both edges of C incident with a are in G. If t = 1, then G = G1[y1 =

y2]Hr+s+1, where y1 and y2 is the copy of a in G1 and Hr+s+1, respectively,

and G2 contains hamiltonian cycle C such that exactly one edge of C incident

with a is in G by Theorem 2.2 Ib). Let t = 2. If G2 = G1[y1 = y2]Hr+s+1,

where y1 and y2 is the copy of a in G1 and Hr+s+1, respectively, then (G2)
2

is hamiltonian and a ∈ V[2](G2) by Theorem 2.2 Ib). Moreover G = G2[z1 =

z2]Hr+s+2, where z1 and z2 is the copy of a in G2 and Hr+s+2, respectively,

and G2 contains hamiltonian cycle C such that no edge of C incident with a

is in G by Theorem 2.2 Id).

We will now prove our main result.
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Theorem 4.2. Let G be a connected graph with at least three vertices

such that

i) every vertex x ∈ V≥3(Bl(G)) corresponds to a cut vertex of G, and

ii) for any two vertices x, y ∈ V≥3(Bl(G)), distBl(G)
(x, y) ≥ 4.

Then G2 is hamiltonian if and only if every cut vertex of G is contained in

at most two acyclic non-end blocks of G.

Proof. I) First suppose that we have a vertex a ∈ V (G) contained in

at least three acyclic non-end blocks of G. We show that the graph G2 is

not hamiltonian. Let, to the contrary, C be a hamiltonian cycle in G2. For

i = 1, 2, 3, let Bi = aia denote three acyclic non-end blocks of G and Bi+3

a block ofG adjacent to the block Bi such that a /∈ V (Bi+3). Then necessarily

there is a vertex ci ∈ NBi+3
(ai) such that cia ∈ E(C), for i = 1, 2, 3. From

this it follows that degCa ≥ 3, contradicting the fact that C is a cycle.

II) Now suppose that every cut vertex of G is contained in at most two

acyclic non-end blocks of G. We show that G2 is hamiltonian.

If G is a cyclic block, then G2 is hamiltonian by Theorem 2.1, and if

Bl(G) is a path, then G2 is hamiltonian by Theorem 3.2.

Now suppose that Bl(G) contains at least one vertex of degree at least

three corresponding to a cut vertex of G. For i = 1, 2, ..., k, let bi be a vertex

of Bl(G) in V≥3(Bl(G)), let ai be the vertex of G corresponding to bi and

choose the notation such that distBl(G)(b1, bk) is maximum and the (unique)

path in Bl(G) joining b1 and b2 has no interior vertices in V≥3(Bl(G)). Let

tG(ai) ≥ 0 denote the number of acyclic non-end blocks of G containing ai.

We prove the following statement.

Under the assumptions of Theorem 4.2 the graph G2 contains a hamilto-

nian cycle C such that if tG(ai) = 0, then both edges of C incident with ai

are in G, if tG(ai) = 1, then exactly one edge of C incident with ai is in G,

if tG(ai) = 2, then no edge of C incident with ai is in G, i = 1, 2, ..., k.

We proceed by induction on k.

For k = 1 the assertion is given by Lemma 4.1.

Suppose the assertion is true for each graph G′ such that its block graph

Bl(G′) has at most k−1 vertices in V≥3(Bl(G
′)) corresponding to cut vertices

of G′ and these are at distance at least four in Bl(G′), and let G be a graph

such that its block graph Bl(G) is a tree with k vertices in V≥3(Bl(G)) cor-
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responding to cut vertices of G and any two vertices of Bl(G) in V≥3(Bl(G))

are at distance at least four in Bl(G), k ≥ 2.

By the notation of a1, let H be the unique subgraph of G corresponding

to the (b1, b2)-path in Bl(G). Let G̃ = G − V (H − {a1, a2}). We denote the

components of G̃ by G1, G2 such that a1 ∈ V (G1) and a2 ∈ V (G2).

If dBl(G1)
(a1) ≥ 3 and dBl(G2)

(a2) ≥ 3, then, by the induction hypothesis,

(G1)
2, (G2)

2 contains a hamiltonian cycle C1, C2 such that if tG1
(a1) = 0,

tG2
(ai) = 0, then both edges of C1, C2 incident with a1, ai are in G1, G2, if

tG1
(a1) = 1, tG2

(ai) = 1, then exactly one edge of C1, C2 incident with a1, ai

is in G1, G2, if tG1
(a1) = 2, tG2

(ai) = 2, then no edge of C1, C2 incident with

a1, ai is in G1, G2, i = 2, 3, ..., k, respectively.

In the case dBl(G1)
(a1) = 2, set K2 = vu (where v, u /∈ V (G)), and

Ĝ1 = G1[a1 = v]K2. Then (Ĝ1)
2 contains a hamiltonian cycle with the

required properties by the induction hypothesis and it is obvious that also

(G1)
2. Similarly we proceed in the case dBl(G2)

(a2) = 2.

Then by the assumption that any two vertices of Bl(G) in V≥3(Bl(G)) are

at distance at least four in Bl(G) and by Theorem 3.3, the graph H2 contains

a hamiltonian cycle CH such that, for j = 1, 2, if aj is contained in a cyclic

block, then both edges of CH incident with aj are in H , and if aj is contained

in an acyclic block, then exactly one edge of CH incident with aj is in H .

Case 1: tG2
(a2) ∈ {0, 1}.

Let G̃2 = G2[x1 = x2]H , where x1 and x2 is the copy of a2 in G2 and H ,

respectively. Then (G̃2)
2 contains a hamiltonian cycle C̃2 with the required

properties by Theorem 2.2 either Ia) or Ib) or Id) (using CH and C2). More-

over it is obvious that if a1 is contained in a cyclic block of G̃2, then both

edges of C̃2 incident with a1 are in G̃2, and if a1 is contained in an acyclic

block of G̃2, then exactly one edge of C̃2 incident with a1 is in G̃2.

a) If tG1
(a1) ∈ {0, 1}, then G = G1[y1 = y2]G̃2, where y1 and y2 is the

copy of a1 in G1 and G̃2, respectively, and G2 contains a hamiltonian

cycle C such that if tG(ai) = 0, then both edges of C incident with

ai are in G, if tG(ai) = 1, then exactly one edge of C incident with

ai is in G, if tG(ai) = 2, then no edge of C incident with ai is in G,

i = 1, 2, ..., k, by Theorem 2.2 either Ia) or Ib) or Id) (using C̃2 and

C1).

b) Let tG1
(a1) = 2. Let B1 be an acyclic non-end block of G1 contain-

ing the vertex a1, let F be the subgraph of G1 corresponding to the
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maximal connected subgraph of Bl(G1) containing the vertex corre-

sponding to B1 and not containing the vertex b1.

Let F1 = G1 − V (F − a1). By the induction hypothesis, G1 contains

a hamiltonian cycle C1 such that no edge of C1 incident with a1 is in

G1 and we can divide C1 into hamiltonian cycles C1a in F1 and C1b

in F such that exactly one edge of C1a incident with a1 is in F1 and

exactly one edge of C1b incident with a1 is in F .

Necessarily both edges of C̃2 incident with a1 are in G̃2 (otherwise

tG(a1) = 3, a contradiction). Set G̃1 = F1[y1 = y2]G̃2, where y1 and

y2 is the copy of a1 in F1 and G̃2, respectively. Then (G̃1)
2 contains

a hamiltonian cycle C̃1 with the required properties by Theorem 2.2

Ib) (using C1a and C̃2).

Then G = G̃1[z1 = z2]F , where z1 and z2 is the copy of a1 in G̃1

and F , respectively, and G2 contains a hamiltonian cycle C such that

if tG(ai) = 0, then both edges of C incident with ai are in G, if

tG(ai) = 1, then exactly one edge of C incident with ai is in G, if

tG(ai) = 2, then no edge of C incident with ai is in G, i = 1, 2, ..., k,

by Theorem 2.2 Id) (using C̃1 and C1b).

Case 2: tG2
(a2) = 2.

Let B2 be an acyclic non-end block of G2 containing the vertex a2, let S

be the subgraph of G2 corresponding to the maximal connected subgraph

of Bl(G2) containing the vertex corresponding to B2 and not containing the

vertex b2.

Let S1 = G2 − V (S − a2). By the induction hypothesis, G2 contains

a hamiltonian cycle C2 such that no edge of C2 incident with a2 is in G and

we can divide C2 into hamiltonian cycles C2a in S1 and C2b in S such that

exactly one edge of C2a incident with a2 is in S1 and exactly one edge of C2b

incident with a2 is in S.

Now necessarily both edges of CH incident with a2 are in H (otherwise

tG(a2) = 3, a contradiction). Set S̃1 = S1[x1 = x2]H , where x1 and x2 is the

copy of a2 in S1 and H , respectively. Then (S̃1)
2 contains a hamiltonian cycle

C ′ with the required properties by Theorem 2.2 Ib) (using C2a and CH).

Then G̃2 = S̃1[u1 = u2]S, where u1 and u2 is the copy of a2 in S̃1 and

S, respectively, and (G̃2)
2 contains a hamiltonian cycle C̃2 with the required

properties by Theorem 2.2 Id) (using C ′ and C2b). Moreover it is obvious

that if a1 is contained in a cyclic block of G̃2, then both edges of C̃2 incident

with a1 are in G̃2, and if a1 is contained in an acyclic block of G̃2, then
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exactly one edge of C̃2 incident with a1 is in G̃2. Then we continue similarly

as in Subcase 1a) or 1b).

It is obvious that the conditions in Theorem 4.2 can be verified in poly-

nomial time. From this it follows that the decision problem, if the square

of a graph is hamiltonian, which is NP-complete in general ([3]), can be de-

cided in polynomial time in the class of the graphs G such that every vertex

x ∈ V≥3(Bl(G)) corresponds to a cut vertex of G, and for any two vertices

x, y ∈ V≥3(Bl(G)), distBl(G)
(x, y) ≥ 4.

The following theorems are immediate corollaries of Theorem 4.2.

Corollary 4.3. Let G be a connected graph such that its block graph

Bl(G) is homeomorphic to a star in which the center corresponds to a cut

vertex a of G. Then the graph G2 is hamiltonian if and only if the vertex a

is contained in at most two acyclic non-end blocks of G.

Corollary 4.4. If the block graph of G with at least three vertices is

a star, then G2 is hamiltonian.

Note that the graph in Figure 1 satisfies the assumptions of Corollary

4.3. Therefore Corollary 4.3 (hence also Theorem 4.2) does not follow from

Theorem 3.1.

5 A star in which the center corresponding

to a block

Let G be a connected graph such that its block graph Bl(G) is homeomorphic

to a star in which the center corresponds to a block Bc of G. If Bc is acyclic,

then Bl(G) is a path and G2 is hamiltonian by Theorem 3.2.

Let Bc be cyclic. Let k denote the number of cut vertices of G in V (Bc),

let vi ∈ V (Bc) be all cut vertices of G in Bc, i = 1, 2, ..., k. Let C be

a hamiltonian cycle in (Bc)
2. We say that C is acceptable in G if there

are pairwise distinct edges viwi ∈ E(C) such that viwi ∈ E(Bc), for any

i = 1, 2, ..., k.

The following theorem gives only a sufficient condition for hamiltonicity

in this class of graphs (in comparison with Theorem 4.2).
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Theorem 5.1. Let G be a connected graph such that its block graph

Bl(G) is homeomorphic to a star in which the center corresponds to a block

Bc of G. If (Bc)
2 contains an acceptable cycle in G, then G2 is hamiltonian.

Proof. Let vi ∈ V (Bc) be all cut vertices of G in V (Bc), i = 1, 2, ..., k.

We prove the following slight strengthening of Theorem 5.1.

Let G be a connected graph such that its block graph Bl(G) is homeomor-

phic to a star in which the center corresponds to a block Bc of G. If (Bc)
2

contains an acceptable cycle C in G, then G2 contains a hamiltonian cycle

containing all edges of C except the edges viwi, i = 1, 2, ..., k.

We prove this assertion by induction on k.

1. Let k = 0. Then G = Bc and the assertion is true.

2. Suppose the assertion is true for each graph such that the block Bc

contains at most k − 1 cut vertices, let G be a graph such that its block

graph is homeomorphic to a star in which the center corresponds to a block

Bc of G and Bc contains k cut vertices of G, k ≥ 1.

Let d ∈ V (Bl(G)) be the vertex corresponding to Bc, let G′ be the sub-

graph of G such that Bl(G′) = Bl(G)− d and let Hi be the component of G
′

such that vi ∈ V (Hi), for i = 1, 2, ..., k. The block graph Bl(Hi) is a path

and therefore either (Hi)
2 is hamiltonian and vi ∈ V[1](Hi)

⋃
V[2](Hi) (either

by Theorem 3.3 or by Theorem 2.1) or Hi is isomorphic to one edge.

Let G1 = G − V (H1 − v1) and let x1 and x2 denote the copy of v1 in G1

and H1, respectively. Then G = G1[x1 = x2]H1. Let C be an acceptable

cycle in G. Then C is also acceptable in G1 and therefore (G1)
2 contains

a hamiltonian cycle C1 containing all edges of C except viwi, i = 2, 3, ..., k,

by the induction hypothesis. The cycle C is acceptable in G and therefore

x1w1 ∈ E(G1) and x1w1 ∈ E(C1). Then x1 ∈ V[1](G1)
⋃

V[2](G1).

Case 1: x2 ∈ V[1](H1)
⋃

V[2](H1).

Then G2 contains a hamiltonian cycle containing all edges of C except viwi,

i = 1, 2, ..., k, by Theorem 2.2 I).

Case 2: H1 is isomorphic to one edge.

Then G2 contains a hamiltonian cycle containing all edges of C except viwi,

i = 1, 2, ..., k, by Theorem 2.2 either IIa) or IIb).

The following theorem is an immediate corollary of Theorem 5.1.
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Corollary 5.2. Let G be a connected graph such that its block graph

Bl(G) is homeomorphic to a star in which the center corresponds to a block

Bc of G. If Bc is hamiltonian, then G2 is hamiltonian.

Let us mention the following theorem by Schaar [4] that motivates the

next conjecture.

Theorem 5.3 [4]. For every block G with |V (G)| ≥ 4 there exists a hamil-

tonian cycle in G2 containing at least four edges of G.

Conjecture 5.4. Let G be a connected graph such that its block graph

Bl(G) is homeomorphic to a star in which the center c corresponds to a block

Bc of G. If dBl(G)
c ≤ k, k < 7, then G2 is hamiltonian.

Conjecture 5.4 is true for k ≤ 2 but for k = 3, 4, 5, 6 is an open prob-

lem. It is not possible to specify four edges from Theorem 5.3 and therefore

Conjecture 5.4 is not an immediate corollary of Theorem 5.3 for k ≤ 4. If

Conjecture 5.4 is true, then the upper bound is sharp as can be seen from

Figure 2.
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