Hamiltonian Cycles in the Square of a Graph

Jan Ekstein ekstein@kma.zcu.cz Department of Mathematics University of West Bohemia Univerzitní 8 306 14 Plzeň Czech Republic

September 2, 2010

Abstract

We show that under certain conditions the square of the graph obtained by identifying a vertex in two graphs with hamiltonian square is also hamiltonian. Using this result, we prove necessary and sufficient conditions for hamiltonicity of the square of a connected graph such that every vertex of degree at least three in a block graph corresponds to a cut vertex and any two these vertices are at distance at least four.

Keywords: hamiltonian cycle; connection of graphs; block graph; square; star

1 Introduction and notation

The graphs considered in this paper are undirected and simple. If G is a graph, we denote by V(G) the vertex set of G, by E(G) the edge set of G. For $x \in V(G)$, $d_G(x)$ denotes the *degree* of x and $N_G(x)$ denotes the *neighborhood* of x. For $x, y \in V(G)$, $\operatorname{dist}_G(x, y)$ denotes the *distance* between x, y. For $A \subseteq V(G)$, $\langle A \rangle$ denotes the subgraph of G induced by A.

The k-star is a tree on k + 1 vertices with one vertex of degree k, called the center, and the others of degree 1, k = 0, 1, 2, ... The graph $S(K_{1,3})$ is the graph $K_{1,3}$ in which each edge is subdivided once. Given sets A, B of vertices, we call $P = x_0, ..., x_k$ an (A, B)-path if $V(P) \cap A = \{x_0\}$ and $V(P) \cap B = \{x_k\}$, we write (a, B)-path rather than $(\{a\}, B)$ -path. For a graph G we define $V_i(G) = \{v \in V(G) : d(v) = i\}$ and $W(G) = V(G) \setminus V_2(G)$. A branch in G is a nontrivial path whose ends are in W(G) and whose internal vertices, if any, are of degree 2 in G.

The square of G, denoted G^2 , is the graph with the vertex set V(G) in which two vertices are adjacent if their distance in G is one or two. We say that two graphs are *homeomorphic* if they can be turned into isomorphic graphs by finite number of edge-subdivisions. Let G' be an subgraph of G. We say that G' is *maximal* with respect to a given graph property if G'itself has the property but no graph G' + A does, for any nonempty subset $A \subseteq E(G) \setminus E(G')$.

A connected graph that has no cut vertices is called a *block*. A *block* of a graph is a subgraph that is a block and is maximal with respect to this property. The *degree of a block* B of a graph G, denoted by d(B), is the number of cut vertices of G belonging to V(B). A block of degree 1 is called an *endblock* of G, otherwise it is a *non-end block*. A block is said to be *acyclic* if it is isomorphic to one edge, otherwise we say it is *cyclic*. The *block graph* of a graph G is the graph Bl(G) such that the vertices of Bl(G) are the blocks and cut vertices of G, and two vertices are adjacent in Bl(G) if one of them is a block of G and the second one is its vertex.

Let G_1, G_2 be connected graphs, $x \notin V(G_1) \cup V(G_2), V(G_1) \cap V(G_2) = \emptyset$, and let $x_i \in V(G_i)$, i = 1, 2. Then the graph G with vertex set $V(G) = (V(G_1) \setminus \{x_1\}) \cup (V(G_2) \setminus \{x_2\}) \cup \{x\}$ and with edge set $E(G) = E(G_1 - x_1) \cup E(G_2 - x_2) \cup \{ux \mid u \in V(G_1), ux_1 \in E(G_1)\} \cup \{vx \mid v \in V(G_2), vx_2 \in E(G_2)\}$ is called the *connection of the graphs* G_1, G_2 over the vertices x_1, x_2 , denoted $G = G_1[x_1 = x_2]G_2$.

Let G be a connected graph such that G^2 is hamiltonian and let $x \in V(G)$. We say that

- a) the vertex x is of type 1 if there exists a hamiltonian cycle C of G^2 such that both edges of C incident with x are in G,
- b) the vertex x is of type 2 if x is not of type 1 and there exists a hamiltonian cycle C of G^2 such that exactly one edge of C incident with x is in G,
- c) the vertex x is of type 3 if x is not of type 1 or 2 and there exists a hamiltonian cycle C of G^2 such that for some two vertices $u, v \in$

 $N_G(x)$ is $uv \in E(C)$,

d) the vertex x is of type 4 if x is not of type 1 or 2 or 3. We denote $V_{[i]}(G) = \{x \in V(G) \mid x \text{ is of type } i\}, i = 1, 2, 3, 4.$

2 The connection of graphs

Let us first mention the following result by Fleischner [2] that will be used many times in proofs.

Theorem 2.1 [2]. Let y and z be arbitrarily chosen vertices of a 2connected graph G. Then G^2 contains a hamiltonian cycle C such that the edges of C incident with y are in G and at least one of edges of C incident with z is in G. If y and z are adjacent in G, then these are three different edges.

It is easy to see that Theorem 2.1 implies that the square of a 2-connected graph is hamiltonian.

The following result shows that, under certain conditions, the square of the connection of two graphs with hamiltonian square is also hamiltonian.

Theorem 2.2. Let G_1 , G_2 be connected graphs such that $(G_1)^2$, $(G_2)^2$ are hamiltonian, let $x_i \in V(G_i)$, i = 1, 2. If

I) $G = G_1[x_1 = x_2]G_2$ and $x_i \in V_{[1]}(G_i) \cup V_{[2]}(G_i), i = 1, 2, \text{ or }$

II) $G = G_1[x_1 = x_2]K_2, x_1 \in V_{[1]}(G_1) \cup V_{[2]}(G_1) \cup V_{[3]}(G_1) \text{ and } V(K_2) = \{x_2, u\} \text{ or }$

III) $G = G_1[x_1 = x_2]G_2, x_1 \in V_{[3]}(G_1) \text{ and } x_2 \in V_{[1]}(G_2),$ then G^2 is hamiltonian.

Moreover under the assumptions of I),

- a) if $x_i \in V_{[1]}(G_i)$, i = 1, 2, then $x = x_1 = x_2 \in V_{[1]}(G)$;
- b) if $x_1 \in V_{[1]}(G_1)$ and $x_2 \in V_{[2]}(G_2)$, then $x = x_1 = x_2 \in V_{[2]}(G)$;
- c) if G_2 is 2-connected and $x_1 \in V_{[1]}(G_1) \cup V_{[2]}(G_1)$, then $v \in V_{[1]}(G)$ for any $v \in V(G_2), v \neq x_2$;

d) if
$$x_i \in V_{[2]}(G_i)$$
, $i = 1, 2$, then $x = x_1 = x_2 \notin V_{[1]}(G) \cup V_{[2]}(G)$.
Moreover under the assumptions of II),

a) if $x_1 \in V_{[1]}(G_1)$, then $x = x_1 = x_2 \in V_{[1]}(G)$;

- b) if $x_1 \in V_{[2]}(G_1)$, then $x = x_1 = x_2 \in V_{[2]}(G)$;
- c) if $x_1 \in V_{[1]}(G_1) \cup V_{[2]}(G_1)$, then $u \in V_{[2]}(G)$.

Proof.

- I) Let $x = x_1 = x_2$ and let C_1 , C_2 be hamiltonian cycles in $(G_1)^2$, $(G_2)^2$ such that $a_1x, b_1x \in E(G)$ for $a_1 \in N_{C_1}(x)$, $b_1 \in N_{C_2}(x)$, respectively. Let $a_2 \in N_{C_1}(x)$, $a_1 \neq a_2$, and $b_2 \in N_{C_2}(x)$, $b_1 \neq b_2$, and let $P_{a_1a_2} = C_1 - x_1$ and $P_{b_2b_1} = C_2 - x_2$. Then $P_{a_1a_2}$, $P_{b_2b_1}$ are hamiltonian paths in $(G_1 - x)^2$, $(G_2 - x)^2$, respectively, and the cycle $C = a_1 P_{a_1a_2} a_2 x b_2 P_{b_2b_1} b_1 a_1$ is a hamiltonian cycle in G^2 .
 - a) If moreover $x_i \in V_{[1]}(G_i)$, i = 1, 2, then we can assume that $a_2x, b_2x \in E(G)$ and therefore $x \in V_{[1]}(G)$.
 - b) If moreover $x_1 \in V_{[1]}(G_1)$ and $x_2 \in V_{[2]}(G_2)$, then we can assume that $a_2x \in E(G)$ and it is obvious that there is no C_2 such that $b_2x \in E(G)$, therefore $x \in V_{[2]}(G)$.
 - c) If moreover G_2 is 2-connected, then for any $v \in V(G_2)$, $v \neq x_2$, by Theorem 2.1 we can assume without loss of generality that $c_1v, c_2v \in E(G_2), c_1, c_2 \in N_{C_2}(v), c_1 \neq c_2$. If $v \neq b_1$, then $c_1v, c_2v \in E(C)$, therefore $v \in V_{[1]}(G)$. If $v = b_1$, then we have $vx_2 \in V(G_2)$ and by Theorem 2.1 $x_2b_2 \in E(G)$. Then $\tilde{C} = a_1P_{a_1a_2}a_2xb_1P_{b_1b_2}b_2a_1$ is also a hamiltonian cycle in G^2 and moreover the edges of C_2 incident with $v = b_1$ are in \tilde{C} . Therefore $v \in V_{[1]}(G)$.
 - d) If moreover $x_i \in V_{[2]}(G_i)$, i = 1, 2, then it is obvious that there are no C_1 , C_2 such that $a_2x \in E(G)$ or $b_2x \in E(G)$ and therefore $x \notin V_{[1]}(G) \cup V_{[2]}(G)$.
- II) Case 1: $x_1 \in V_{[3]}(G_1)$.

Let $x = x_1 = x_2$ and let C_1 be a hamiltonian cycle in $(G_1)^2$ such that $yw \in E(C_1)$ for some $y, w \in N_{G_1}(x)$. Let $P_{yw} = C_1 - yw$. Then P_{yw} is a hamiltonian path in $(G_1)^2$ and the cycle $C = yP_{yw}wuy$ is a hamiltonian cycle in G^2 .

Case 2: $x_1 \in V_{[1]}(G_1) \cup V_{[2]}(G_1)$.

Let $x = x_1 = x_2$ and let C_1 be a hamiltonian cycle in $(G_1)^2$ such that $yx \in E(G)$ for $y \in N_{C_1}(x)$. Let $z \in N_{C_1}(x)$, $z \neq y$, and let $P_{zy} = C_1 - x_1$. Then P_{yz} is a hamiltonian path in $(G_1 - x)^2$ and the cycle $C = zP_{zy}yuxz$ is a hamiltonian cycle in G^2 .

- a) If moreover $x_1 \in V_{[1]}(G_1)$, then we can assume that $xz \in E(G)$ and therefore $x \in V_{[1]}(G)$.
- b) If moreover $x_1 \in V_{[2]}(G_1)$, then it is obvious that there is no C_1 such that $xz \in E(G)$ and therefore $x \in V_{[2]}(G)$.

c) Since $ux \in E(G)$ and $N_G(u) = \{x\}$, it is obvious that there is no cycle \tilde{C} in G^2 such that both edges of \tilde{C} incident with u are in G and therefore $u \in V_{[2]}(G)$.

III) Let $x = x_1 = x_2$, let C_1 be a hamiltonian cycle in $(G_1)^2$ such that $yw \in E(C_1)$ for some $y, w \in N_{G_1}(x)$ and let C_2 be a hamiltonian cycle in $(G_2)^2$ such that $ax, bx \in E(G)$ for $a, b \in N_{C_2}(x), a \neq b$. Let $P_{yw} = C_1 - yw$ and $P_{ab} = C_2 - x_2$. Then P_{yw}, P_{ab} are hamiltonian paths in $(G_1)^2, (G_2 - x)^2$, respectively, and the cycle $C = wP_{wy}yaP_{ab}bw$ is a hamiltonian cycle in G^2 .

3 The hamiltonian square of a graph

This work is motivated by the following result due to El Kadi Abderrezzak, Flandrin and Ryjáček [1].

Theorem 3.1 [1]. If G is a connected graph such that every induced $S(K_{1,3})$ has at least three edges in a block of degree at most 2, then G^2 is hamiltonian.

The following result, originally by Thomassen [5], is an immediate corollary of Theorem 3.1.

Theorem 3.2 [5]. If the block graph of G is a path, then G^2 is hamiltonian.

We consider the graph in Figure 1. It is easy to see that the cycle $C = v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}, v_1$ is a hamiltonian cycle in G^2 but the induced subgraph $H = \langle \{v_1, v_2, v_3, v_5, v_6, v_9, v_{10}\} \rangle$ is isomorphic to $S(K_{1,3})$ and does not have at least three edges in a block of degree at most 2. This example shows that the assumptions in Theorem 3.1 are sufficient but not necessary. We looked for other conditions implying that the square of a graph is hamiltonian.

Before the presentation of our main results we first give the following slight strengthening of Theorem 3.2 which will be needed in our proofs.

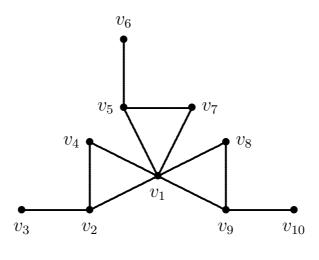


Figure 1:

Theorem 3.3. Let G be a graph such that its block graph is a path and let u_1 , u_2 be arbitrary vertices which are not cut vertices and are contained in different endblocks of G.

Then G^2 contains a hamiltonian cycle C such that, for i = 1, 2,

- if u_i is contained in a cyclic block, then both edges of C incident with u_i are in G, and
- if u_i is contained in an acyclic block, then exactly one edge of C incident with u_i is in G.

Proof. If G is a path of length at least 2, then the theorem is obvious. Thus, suppose that G contains at least one cyclic block B_1 and let k denote the number of blocks of G.

We prove the theorem by induction on k.

1. Let k = 2, let B_2 be the second block of G, let x = V(G) be the (only) cut vertex of G and let u_1, u_2 be arbitrary vertices such that $u_1 \in V(B_1)$, $u_2 \in V(B_2)$ and $u_1 \neq x, u_2 \neq x$. The graph $(B_1)^2$ contains a hamiltonian cycle C_1 such that the edges of C_1 incident with u_1 are in B_1 and at least one of edges of C_1 incident with x is in B_1 . If u_1 and x are adjacent in G, then these are three different edges by Theorem 2.1. Then we can assume that $x \in V_{[1]}(B_1) \cup V_{[2]}(B_1)$ and $G = B_1[x_1 = x_2]B_2$, where x_1 and x_2 is the copy of x in B_1 and B_2 , respectively.

a) If B_2 is cyclic, then the graph G^2 contains a hamiltonian cycle C such that both edges of C incident with u_2 are in G by Theorem 2.2 Ic) and it is obvious that we can find C such that also both edges of C incident with u_1 are in G.

b) If $B_2 = K_2 = x_2 u_2$, then the graph G^2 contains a hamiltonian cycle C such that exactly one edge of C incident with u_2 is in G by Theorem 2.2 IIc) and it is obvious that we can find C such that both edges of C incident with u_1 are in G.

2. Suppose the assertion is true for each graph with at most k blocks, let G be a graph with k + 1 blocks such that its block graph is a path and let u_1, u_2 be arbitrary vertices which are not cut vertices and are contained in different endblocks of $G, k \geq 2$.

Let B_{k+1} be the endblock of G containing u_2 . We denote $\tilde{G} = G - V(B_{k+1} - x)$, where $x \in V(B_{k+1})$ is a cut vertex of G. Then $G = \tilde{G}[x_1 = x_2]B_{k+1}$, where x_1 and x_2 is the copy of x in \tilde{G} and B_{k+1} , respectively, and we can assume by the induction hypothesis that \tilde{G} contains a hamiltonian cycle C_1 such that if u_1, x_1 is contained in a cyclic block, then both edges of C_1 incident with u_1, x_1 are in \tilde{G} , and if u_1, x_1 is contained in an acyclic block, then exactly one edge of C_1 incident with u_1, x_1 is in \tilde{G} , respectively. Then we can assume that $x_1 \in V_{[1]}(\tilde{G}) \cup V_{[2]}(\tilde{G})$.

- a) If B_{k+1} is cyclic, $u_2 \in V(B_{k+1})$ and $u_2 \neq x_2$, then the graph G^2 contains a hamiltonian cycle C such that both edges of C incident with u_2 are in G by Theorem 2.2 Ic) and it is obvious that we can find C such that if u_1 is contained in a cyclic block, then both edges of C incident with u_1 are in G, and if u_1 is contained in an acyclic block, then exactly one edge of C incident with u_1 is in G.
- b) If $B_{k+1} = K_2 = x_2u_2$, then the graph G^2 contains a hamiltonian cycle C such that exactly one edge of C incident with u_2 is in G by Theorem 2.2 IIc) and it is obvious that we can find C such that if u_1 is contained in a cyclic block, then both edges of C incident with u_1 are in G, and if u_1 is contained in an acyclic block, then exactly one edge of C incident with u_1 is in G.

4 Main result

Let $V_{\geq 3}(G) = \{x \in V(G) | d_G(x) \geq 3\}$ and, for $x \in V(G)$, $t_G(x)$ denotes the number of acyclic non-end blocks of G containing x. First of all we prove the following lemma.

Lemma 4.1. Let G be a connected graph with exactly one vertex in $V_{\geq 3}(Bl(G))$ corresponding to a cut vertex a of G. If a is contained in at most two acyclic non-end blocks of G, then G^2 contains a hamiltonian cycle C such that if $t_G(a) = 0$, then both edges of C incident with a are in G, if $t_G(a) = 1$, then exactly one edge of C incident with a is in G, if $t_G(a) = 2$, then no edge of C incident with a is in G.

Proof. Let $r \ge 0$, $s \ge 0$ and $t = t_G(a) \ge 0$ denote the number of cyclic blocks, acyclic endblocks and acyclic non-end blocks of G containing a, respectively, and choose the notation such that if r > 0, then $B_1, ..., B_r$ are all cyclic blocks, if s > 0, then $B_{r+1}, ..., B_{r+s}$ are all acyclic endblocks, and if t > 0, then $B_{r+s+1}, ..., B_{r+s+t}$ are all acyclic non-end blocks of G containing the vertex a.

By the assumption, $t \leq 2$ and $r + s + t \geq 3$, hence r + s > 0.

Case 1: r = 0.

If t = 0, then G is a star and the assertion is obvious. Let $t \ge 1$.

Subcase 1.1: s = 1. Then necessarily t = 2. Let $B_1 = au$ and let b_2 , b_3 be the branch of Bl(G) containing the vertex corresponding to B_2 , B_3 and denote H_2 , H_3 the subgraph corresponding to b_2 , b_3 , respectively. For i = 2, 3, Bl(H_i) is a path and therefore $(H_i)^2$ is hamiltonian and $a \in V_{[2]}(H_i)$ by Theorem 3.3. If $G_1 = H_2[x_1 = x_2]B_1$, where x_1 and x_2 is the copy of a in H_2 and B_1 , respectively, then $(G_1)^2$ is hamiltonian and $a \in V_{[2]}(G_1)$ by Theorem 2.2 IIb). Moreover $G = G_1[y_1 = y_2]H_3$, where y_1 and y_2 is the copy of a in G_1 and H_3 , respectively, and G^2 contains hamiltonian cycle C such that no edge of C incident with a is in G by Theorem 2.2 Id).

Subcase 1.2: $s \ge 2$. Then necessarily $1 \le t \le 2$. For i = s + 1, s + 2, let H_i be the same subgraphs as in Subcase 1.1 and let $\tilde{G} = G - V(H_{s+1} - a) - V(H_{s+2} - a)$. It is obvious that \tilde{G} is a star and therefore $(\tilde{G})^2$ is hamiltonian and $a \in V_{[1]}(\tilde{G})$. If t = 1, then $G = \tilde{G}[x_1 = x_2]H_{s+1}$, where x_1 and x_2 is the copy of a in \tilde{G} and H_{s+1} , respectively, and G^2 contains hamiltonian cycle C such that exactly one edge of C incident with a is in G by Theorem 2.2 Ib). Let t = 2. If $G_1 = \tilde{G}[x_1 = x_2]H_{s+1}$, where x_1 and x_2 is the copy of a in \tilde{G} and H_{s+1} , respectively, then $(G_1)^2$ is hamiltonian and $a \in V_{[2]}(G_1)$ by Theorem 2.2 Ib). Moreover $G = G_1[y_1 = y_2]H_{s+2}$, where y_1 and y_2 is the copy of a in G_1 and H_{s+2} , respectively, and G^2 contains hamiltonian cycle C such that no edge of C incident with a is in G by Theorem 2.2 Id).

Case 2: $r \geq 1$.

For i = 1, 2, ..., r, let b_i be the branch of Bl(G) containing the vertex corresponding to B_i . We denote H_i the subgraph corresponding to b_i . The block graph $Bl(H_i)$ is a path and therefore $(H_i)^2$ is hamiltonian and $a \in V_{[1]}(H_i)$ either by Theorem 3.3 or by Theorem 2.1. Let b_{r+s+1} , b_{r+s+2} be the branch of Bl(G) containing the vertex corresponding to B_{r+s+1} , B_{r+s+2} and denote H_{r+s+1} , H_{r+s+2} the subgraph corresponding to b_{r+s+1} , b_{r+s+2} , respectively. For j = r+s+1, r+s+2, $Bl(H_j)$ is a path and therefore $(H_j)^2$ is hamiltonian and $a \in V_{[2]}(H_j)$ by Theorem 3.3.

Let $G_1 = G - V(H_{r+s+1} - a) - V(H_{r+s+2} - a)$ and let ℓ denote the number of branches of $Bl(G_1)$.

We show that $(G_1)^2$ is hamiltonian and $a \in V_{[1]}(G_1)$.

We proceed by induction on ℓ .

1. For $\ell = 1$ obviously $G_1 = H_1$ and the assertion is true.

2. Suppose the assertion is true for each graph such that its block graph contains at most ℓ branches, let G_1 be a graph without acyclic non-end blocks such that its block graph contains $\ell + 1$ branches and with exactly one vertex in $V_{\geq 3}(Bl(G_1))$ corresponding to a cut vertex a of G_1 .

If $\widetilde{G}_1 = G_1 - V(H_1 - a)$, then $G_1 = H_1[x_1 = x_2]\widetilde{G}_1$, where x_1 and x_2 is the copy of a in H_1 and \widetilde{G}_1 , respectively. If $\widetilde{G}_1 = B_{r+1}$, then $(G_1)^2$ is hamiltonian and $a \in V_{[1]}(G_1)$ by Theorem 2.2 IIa). Otherwise \widetilde{G}_1 is hamiltonian and $a = x_1 \in V_{[1]}(\widetilde{G}_1)$ by the induction hypothesis. Then $(G_1)^2$ is hamiltonian and $a \in V_{[1]}(G_1)$ by Theorem 2.2 Ia).

If $G = G_1$, then it is obvious that G^2 contains a hamiltonian cycle C such that both edges of C incident with a are in G. If t = 1, then $G = G_1[y_1 = y_2]H_{r+s+1}$, where y_1 and y_2 is the copy of a in G_1 and H_{r+s+1} , respectively, and G^2 contains hamiltonian cycle C such that exactly one edge of C incident with a is in G by Theorem 2.2 Ib). Let t = 2. If $G_2 = G_1[y_1 = y_2]H_{r+s+1}$, where y_1 and y_2 is the copy of a in G_1 and H_{r+s+1} , respectively, then $(G_2)^2$ is hamiltonian and $a \in V_{[2]}(G_2)$ by Theorem 2.2 Ib). Moreover $G = G_2[z_1 = z_2]H_{r+s+2}$, where z_1 and z_2 is the copy of a in G_2 and H_{r+s+2} , respectively, and G^2 contains hamiltonian cycle C such that no edge of C incident with a is in G by Theorem 2.2 Id).

We will now prove our main result.

Theorem 4.2. Let G be a connected graph with at least three vertices such that

i) every vertex $x \in V_{>3}(Bl(G))$ corresponds to a cut vertex of G, and

ii) for any two vertices $x, y \in V_{\geq 3}(Bl(G)), dist_{Bl(G)}(x, y) \geq 4$.

Then G^2 is hamiltonian if and only if every cut vertex of G is contained in at most two acyclic non-end blocks of G.

Proof. I) First suppose that we have a vertex $a \in V(G)$ contained in at least three acyclic non-end blocks of G. We show that the graph G^2 is not hamiltonian. Let, to the contrary, C be a hamiltonian cycle in G^2 . For i = 1, 2, 3, let $B_i = a_i a$ denote three acyclic non-end blocks of G and B_{i+3} a block of G adjacent to the block B_i such that $a \notin V(B_{i+3})$. Then necessarily there is a vertex $c_i \in N_{B_{i+3}}(a_i)$ such that $c_i a \in E(C)$, for i = 1, 2, 3. From this it follows that $\deg_C a \geq 3$, contradicting the fact that C is a cycle.

II) Now suppose that every cut vertex of G is contained in at most two acyclic non-end blocks of G. We show that G^2 is hamiltonian.

If G is a cyclic block, then G^2 is hamiltonian by Theorem 2.1, and if Bl(G) is a path, then G^2 is hamiltonian by Theorem 3.2.

Now suppose that Bl(G) contains at least one vertex of degree at least three corresponding to a cut vertex of G. For i = 1, 2, ..., k, let b_i be a vertex of Bl(G) in $V_{\geq 3}(Bl(G))$, let a_i be the vertex of G corresponding to b_i and choose the notation such that $dist_{Bl(G)}(b_1, b_k)$ is maximum and the (unique) path in Bl(G) joining b_1 and b_2 has no interior vertices in $V_{\geq 3}(Bl(G))$. Let $t_G(a_i) \geq 0$ denote the number of acyclic non-end blocks of G containing a_i .

We prove the following statement.

Under the assumptions of Theorem 4.2 the graph G^2 contains a hamiltonian cycle C such that if $t_G(a_i) = 0$, then both edges of C incident with a_i are in G, if $t_G(a_i) = 1$, then exactly one edge of C incident with a_i is in G, if $t_G(a_i) = 2$, then no edge of C incident with a_i is in G, i = 1, 2, ..., k.

We proceed by induction on k.

For k = 1 the assertion is given by Lemma 4.1.

Suppose the assertion is true for each graph G' such that its block graph $\operatorname{Bl}(G')$ has at most k-1 vertices in $V_{\geq 3}(\operatorname{Bl}(G'))$ corresponding to cut vertices of G' and these are at distance at least four in $\operatorname{Bl}(G')$, and let G be a graph such that its block graph $\operatorname{Bl}(G)$ is a tree with k vertices in $V_{\geq 3}(\operatorname{Bl}(G))$ cor-

responding to cut vertices of G and any two vertices of Bl(G) in $V_{\geq 3}(Bl(G))$ are at distance at least four in Bl(G), $k \geq 2$.

By the notation of a_1 , let H be the unique subgraph of G corresponding to the (b_1, b_2) -path in Bl(G). Let $\tilde{G} = G - V(H - \{a_1, a_2\})$. We denote the components of \tilde{G} by G_1 , G_2 such that $a_1 \in V(G_1)$ and $a_2 \in V(G_2)$.

If $d_{\operatorname{Bl}(G_1)}(a_1) \geq 3$ and $d_{\operatorname{Bl}(G_2)}(a_2) \geq 3$, then, by the induction hypothesis, $(G_1)^2$, $(G_2)^2$ contains a hamiltonian cycle C_1 , C_2 such that if $t_{G_1}(a_1) = 0$, $t_{G_2}(a_i) = 0$, then both edges of C_1 , C_2 incident with a_1 , a_i are in G_1 , G_2 , if $t_{G_1}(a_1) = 1$, $t_{G_2}(a_i) = 1$, then exactly one edge of C_1 , C_2 incident with a_1 , a_i is in G_1 , G_2 , if $t_{G_1}(a_1) = 2$, $t_{G_2}(a_i) = 2$, then no edge of C_1 , C_2 incident with a_1 , a_i is in G_1 , G_2 , i = 2, 3, ..., k, respectively.

In the case $d_{\operatorname{Bl}(G_1)}(a_1) = 2$, set $K_2 = vu$ (where $v, u \notin V(G)$), and $\widehat{G}_1 = G_1[a_1 = v]K_2$. Then $(\widehat{G}_1)^2$ contains a hamiltonian cycle with the required properties by the induction hypothesis and it is obvious that also $(G_1)^2$. Similarly we proceed in the case $d_{\operatorname{Bl}(G_2)}(a_2) = 2$.

Then by the assumption that any two vertices of Bl(G) in $V_{\geq 3}(Bl(G))$ are at distance at least four in Bl(G) and by Theorem 3.3, the graph H^2 contains a hamiltonian cycle C_H such that, for j = 1, 2, if a_j is contained in a cyclic block, then both edges of C_H incident with a_j are in H, and if a_j is contained in an acyclic block, then exactly one edge of C_H incident with a_j is in H.

Case 1: $t_{G_2}(a_2) \in \{0, 1\}.$

Let $\widetilde{G}_2 = G_2[x_1 = x_2]H$, where x_1 and x_2 is the copy of a_2 in G_2 and H, respectively. Then $(\widetilde{G}_2)^2$ contains a hamiltonian cycle \widetilde{C}_2 with the required properties by Theorem 2.2 either Ia) or Ib) or Id) (using C_H and C_2). Moreover it is obvious that if a_1 is contained in a cyclic block of \widetilde{G}_2 , then both edges of \widetilde{C}_2 incident with a_1 are in \widetilde{G}_2 , and if a_1 is contained in an acyclic block of \widetilde{G}_2 , then exactly one edge of \widetilde{C}_2 incident with a_1 is in \widetilde{G}_2 .

- a) If $t_{G_1}(a_1) \in \{0,1\}$, then $G = G_1[y_1 = y_2]\widetilde{G}_2$, where y_1 and y_2 is the copy of a_1 in G_1 and \widetilde{G}_2 , respectively, and G^2 contains a hamiltonian cycle C such that if $t_G(a_i) = 0$, then both edges of C incident with a_i are in G, if $t_G(a_i) = 1$, then exactly one edge of C incident with a_i is in G, if $t_G(a_i) = 2$, then no edge of C incident with a_i is in G, if $t_G(a_i) = 2$, then no edge of C incident with a_i is in G, if $t_G(a_i) = 2$, then no edge of C incident with a_i is in G, i = 1, 2, ..., k, by Theorem 2.2 either Ia) or Ib) or Id) (using \widetilde{C}_2 and C_1).
- b) Let $t_{G_1}(a_1) = 2$. Let B_1 be an acyclic non-end block of G_1 containing the vertex a_1 , let F be the subgraph of G_1 corresponding to the

maximal connected subgraph of $Bl(G_1)$ containing the vertex corresponding to B_1 and not containing the vertex b_1 .

Let $F_1 = G_1 - V(F - a_1)$. By the induction hypothesis, G_1 contains a hamiltonian cycle C_1 such that no edge of C_1 incident with a_1 is in G_1 and we can divide C_1 into hamiltonian cycles C_{1a} in F_1 and C_{1b} in F such that exactly one edge of C_{1a} incident with a_1 is in F_1 and exactly one edge of C_{1b} incident with a_1 is in F.

Necessarily both edges of \widetilde{C}_2 incident with a_1 are in \widetilde{G}_2 (otherwise $t_G(a_1) = 3$, a contradiction). Set $\widetilde{G}_1 = F_1[y_1 = y_2]\widetilde{G}_2$, where y_1 and y_2 is the copy of a_1 in F_1 and \widetilde{G}_2 , respectively. Then $(\widetilde{G}_1)^2$ contains a hamiltonian cycle \widetilde{C}_1 with the required properties by Theorem 2.2 Ib) (using C_{1a} and \widetilde{C}_2).

Then $G = \widetilde{G}_1[z_1 = z_2]F$, where z_1 and z_2 is the copy of a_1 in \widetilde{G}_1 and F, respectively, and G^2 contains a hamiltonian cycle C such that if $t_G(a_i) = 0$, then both edges of C incident with a_i are in G, if $t_G(a_i) = 1$, then exactly one edge of C incident with a_i is in G, if $t_G(a_i) = 2$, then no edge of C incident with a_i is in G, i = 1, 2, ..., k, by Theorem 2.2 Id) (using \widetilde{C}_1 and C_{1b}).

Case 2: $t_{G_2}(a_2) = 2$.

Let B_2 be an acyclic non-end block of G_2 containing the vertex a_2 , let S be the subgraph of G_2 corresponding to the maximal connected subgraph of $Bl(G_2)$ containing the vertex corresponding to B_2 and not containing the vertex b_2 .

Let $S_1 = G_2 - V(S - a_2)$. By the induction hypothesis, G_2 contains a hamiltonian cycle C_2 such that no edge of C_2 incident with a_2 is in G and we can divide C_2 into hamiltonian cycles C_{2a} in S_1 and C_{2b} in S such that exactly one edge of C_{2a} incident with a_2 is in S_1 and exactly one edge of C_{2b} incident with a_2 is in S.

Now necessarily both edges of C_H incident with a_2 are in H (otherwise $t_G(a_2) = 3$, a contradiction). Set $\widetilde{S}_1 = S_1[x_1 = x_2]H$, where x_1 and x_2 is the copy of a_2 in S_1 and H, respectively. Then $(\widetilde{S}_1)^2$ contains a hamiltonian cycle C' with the required properties by Theorem 2.2 Ib) (using C_{2a} and C_H).

Then $\widetilde{G}_2 = \widetilde{S}_1[u_1 = u_2]S$, where u_1 and u_2 is the copy of a_2 in \widetilde{S}_1 and S, respectively, and $(\widetilde{G}_2)^2$ contains a hamiltonian cycle \widetilde{C}_2 with the required properties by Theorem 2.2 Id) (using C' and C_{2b}). Moreover it is obvious that if a_1 is contained in a cyclic block of \widetilde{G}_2 , then both edges of \widetilde{C}_2 incident with a_1 are in \widetilde{G}_2 , and if a_1 is contained in an acyclic block of \widetilde{G}_2 , then

exactly one edge of \widetilde{C}_2 incident with a_1 is in \widetilde{G}_2 . Then we continue similarly as in Subcase 1a) or 1b).

It is obvious that the conditions in Theorem 4.2 can be verified in polynomial time. From this it follows that the decision problem, if the square of a graph is hamiltonian, which is NP-complete in general ([3]), can be decided in polynomial time in the class of the graphs G such that every vertex $x \in V_{\geq 3}(\mathrm{Bl}(G))$ corresponds to a cut vertex of G, and for any two vertices $x, y \in V_{\geq 3}(\mathrm{Bl}(G))$, $\mathrm{dist}_{\mathrm{Bl}(G)}(x, y) \geq 4$.

The following theorems are immediate corollaries of Theorem 4.2.

Corollary 4.3. Let G be a connected graph such that its block graph Bl(G) is homeomorphic to a star in which the center corresponds to a cut vertex a of G. Then the graph G^2 is hamiltonian if and only if the vertex a is contained in at most two acyclic non-end blocks of G.

Corollary 4.4. If the block graph of G with at least three vertices is a star, then G^2 is hamiltonian.

Note that the graph in Figure 1 satisfies the assumptions of Corollary 4.3. Therefore Corollary 4.3 (hence also Theorem 4.2) does not follow from Theorem 3.1.

5 A star in which the center corresponding to a block

Let G be a connected graph such that its block graph Bl(G) is homeomorphic to a star in which the center corresponds to a block B_c of G. If B_c is acyclic, then Bl(G) is a path and G^2 is hamiltonian by Theorem 3.2.

Let B_c be cyclic. Let k denote the number of cut vertices of G in $V(B_c)$, let $v_i \in V(B_c)$ be all cut vertices of G in B_c , i = 1, 2, ..., k. Let C be a hamiltonian cycle in $(B_c)^2$. We say that C is acceptable in G if there are pairwise distinct edges $v_i w_i \in E(C)$ such that $v_i w_i \in E(B_c)$, for any i = 1, 2, ..., k.

The following theorem gives only a sufficient condition for hamiltonicity in this class of graphs (in comparison with Theorem 4.2). **Theorem 5.1.** Let G be a connected graph such that its block graph Bl(G) is homeomorphic to a star in which the center corresponds to a block B_c of G. If $(B_c)^2$ contains an acceptable cycle in G, then G^2 is hamiltonian.

Proof. Let $v_i \in V(B_c)$ be all cut vertices of G in $V(B_c)$, i = 1, 2, ..., k. We prove the following slight strengthening of Theorem 5.1.

Let G be a connected graph such that its block graph Bl(G) is homeomorphic to a star in which the center corresponds to a block B_c of G. If $(B_c)^2$ contains an acceptable cycle C in G, then G^2 contains a hamiltonian cycle containing all edges of C except the edges $v_i w_i$, i = 1, 2, ..., k.

We prove this assertion by induction on k.

1. Let k = 0. Then $G = B_c$ and the assertion is true.

2. Suppose the assertion is true for each graph such that the block B_c contains at most k - 1 cut vertices, let G be a graph such that its block graph is homeomorphic to a star in which the center corresponds to a block B_c of G and B_c contains k cut vertices of G, $k \ge 1$.

Let $d \in V(Bl(G))$ be the vertex corresponding to B_c , let G' be the subgraph of G such that Bl(G') = Bl(G) - d and let H_i be the component of G'such that $v_i \in V(H_i)$, for i = 1, 2, ..., k. The block graph $Bl(H_i)$ is a path and therefore either $(H_i)^2$ is hamiltonian and $v_i \in V_{[1]}(H_i) \cup V_{[2]}(H_i)$ (either by Theorem 3.3 or by Theorem 2.1) or H_i is isomorphic to one edge.

Let $G_1 = G - V(H_1 - v_1)$ and let x_1 and x_2 denote the copy of v_1 in G_1 and H_1 , respectively. Then $G = G_1[x_1 = x_2]H_1$. Let C be an acceptable cycle in G. Then C is also acceptable in G_1 and therefore $(G_1)^2$ contains a hamiltonian cycle C_1 containing all edges of C except $v_i w_i$, i = 2, 3, ..., k, by the induction hypothesis. The cycle C is acceptable in G and therefore $x_1w_1 \in E(G_1)$ and $x_1w_1 \in E(C_1)$. Then $x_1 \in V_{[1]}(G_1) \cup V_{[2]}(G_1)$.

Case 1: $x_2 \in V_{[1]}(H_1) \cup V_{[2]}(H_1)$.

Then G^2 contains a hamiltonian cycle containing all edges of C except $v_i w_i$, i = 1, 2, ..., k, by Theorem 2.2 I).

Case 2: H_1 is isomorphic to one edge.

Then G^2 contains a hamiltonian cycle containing all edges of C except $v_i w_i$, i = 1, 2, ..., k, by Theorem 2.2 either IIa) or IIb).

The following theorem is an immediate corollary of Theorem 5.1.

Corollary 5.2. Let G be a connected graph such that its block graph Bl(G) is homeomorphic to a star in which the center corresponds to a block B_c of G. If B_c is hamiltonian, then G^2 is hamiltonian.

Let us mention the following theorem by Schaar [4] that motivates the next conjecture.

Theorem 5.3 [4]. For every block G with $|V(G)| \ge 4$ there exists a hamiltonian cycle in G^2 containing at least four edges of G.

Conjecture 5.4. Let G be a connected graph such that its block graph Bl(G) is homeomorphic to a star in which the center c corresponds to a block B_c of G. If $d_{Bl(G)}c \leq k, k < 7$, then G^2 is hamiltonian.

Conjecture 5.4 is true for $k \leq 2$ but for k = 3, 4, 5, 6 is an open problem. It is not possible to specify four edges from Theorem 5.3 and therefore Conjecture 5.4 is not an immediate corollary of Theorem 5.3 for $k \leq 4$. If Conjecture 5.4 is true, then the upper bound is sharp as can be seen from Figure 2.

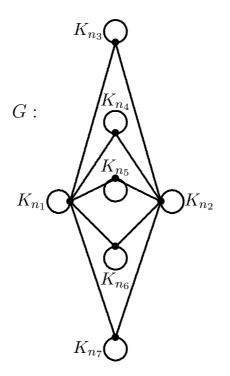


Figure 2:

6 Conclusion and acknowledgment

In conclusion I would like to thank Z. Ryjáček for valuable notes and recommendations.

References

- [1] M. El Kadi Abderrezzak, E. Flandrin, Z. Ryjáček: Induced $S(K_{1,3})$ and hamiltonian cycles in the square of a graph, Discrete Mathematics 207 (1999), 263 269.
- [2] H. Fleischner: In the square of graphs, hamiltonicity and pancyclity, hamiltonian connectedness and panconnectedness are equivalent concepts, Monatshefte für Mathematik 82 (1976), 125 - 149.
- [3] Paris Underground: On graphs with hamiltonian squares, Discrete Mathematics 21 (1978), 323.
- [4] G. Schaar: On 'maximal' Hamiltonian cycles in the square of a block, Discrete Mathematics 121 (1993), 195 - 198.
- [5] C. Thomassen: The square of a graph is hamiltonian provided its block graph is a path, preprint, unpublished.