Choosability of planar graphs of girth 5
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Abstract

Thomassen proved that any plane graph of girth 5 is list-colorable
from any list assignment such that all vertices have lists of size two
or three and the vertices with list of size two are all incident with the
outer face and form an independent set. We present a strengthening
of this result, relaxing the constraint on the vertices with list of size
two. This result is used to bound the size of the 3-list-coloring critical
plane graphs with one precolored face.

1 Introduction

All graphs considered in this paper are simple and finite. The concepts of list
coloring and choosability were introduced by Vizing [8] and independently
by Erdés et al. [4]: A list assignment of G is a function L that assigns to
each vertex v € V(G) a list L(v) of colors. An L-coloring is a function ¢ :
V(G) — U, L(v) such that ¢(v) € L(v) for every v € V(G) and ¢(u) # p(v)
whenever u,v are adjacent vertices of G. If G admits an L-coloring, then it
is L-colorable. A graph G is k-choosable if it is L-colorable for for every list
assignment L such that |L(v)| > k for all v € V(G).

A well-known result of Grotzsch [5] states that any triangle-free planar
graph is 3-colorable. Since the cycles of length 4 can be easily eliminated,
the main part of the proof of Grétzsch’s theorem concerns graphs of girth
5. Generalizing this result, Thomassen [6] proved that every planar graph
of girth at least 5 is 3-choosable. In fact, he proved the following stronger
claim:

Theorem 1. Let G be a plane graph of girth at least 5 and F' a face of G.
Let P be a path in G of length at most 5, such that V(P) C V(F). Let
L be an assignment of lists to the vertices of G such that |L(v)| = 3 for
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v € V(G)\V(F), |L(v)| > 2 forve V(F)\V(P), |L(v)| =1 forv e V(P),
the lists of vertices of P give a proper coloring of the subgraph induced by

V(P), and a vertex v with |L(v)| = 2 is not adjacent to any vertex u with
|L(u)] <2. Then, G can be L-colored.

Voigt [9] found a triangle-free planar graph that is not 3-choosable, thus
the restriction on the girth of the graph in Theorem 1 cannot be relaxed
without imposing further constraints on 4-cycles—Dvorak et al. [2] proved
that Theorem 1 holds for triangle-free graphs as long as no 4-cycle shares an
edge with a cycle of length at most 5.

On the other hand, the assumption of Theorem 1 that the vertices with
lists of size 2 form an independent set is not the best possible. In fact, the
following claim an easy consequence of Theorem 1 (see e.g. Thomassen [7],
where a slightly stronger version allowing a precolored path of length at most
5 is derived):

Corollary 2. Let GG be a plane graph of girth at least 5 and F a face of G.
Let L be an assignment of lists to the vertices of G such that |L(v)| = 3 for
ve V(G)\V(F), |L(v)| > 2 forveV(F), and

e (G does not contain a path vivevsy with |L(vi)| = |L(ve)| = |L(v3)| = 2,

e G does not contain a path vivavsvy with |L(vy)| = |L(ve)| = |L(v4)| = 2,

and
e (G does not contain a path vivavsv vsve with |L(vy)| = |L(ve)| = |L(vs)| =
|L(ve)| = 2.

Then, G can be L-colored.

However, even the assumptions of Corollary 2 turn out to be unnecessarily
restrictive. We show the following strengthening;:

Theorem 3. Let G be a plane graph of girth at least 5 and F' a face of G.
Let L be an assignment of lists to the vertices of G such that |L(v)| = 3 for
veV(G)\V(F), |L(w)| > 2 forveV(F), and

e (G does not contain a path vivevsy with |L(vi)| = |L(ve)| = |L(v3)| = 2,

e G does not contain a path v1v9v3v4v5 with |L(vy)| = |L(ve)| = |L(vy)| =
|L(vs)| = 2.

Then, G can be L-colored.



Figure 1: A counterexample for a strengthening of Theorem 6

The proof of this theorem is presented in Section 2. Let us note that the
condition that G' does not contain a path vyvovsvsvs with |L(vy)| = |L(ve)| =
|L(vs4)| = |L(v5)| = 2 cannot be removed, as the graph in Figure 1 cannot be
colored from the prescribed lists.

We also show two applications of Theorem 3, both concerning critical
graphs. Let us start with definitions.

A graph G is k-critical if G is not (k — 1)-colorable, but every proper
subgraph of G is (k — 1)-colorable. We need to generalize the notion of a
critical graphs in two directions: we need to apply it to the list coloring
instead of the ordinary coloring, and we also want to consider the situation
that a subgraph of G is precolored (like e.g. the path P in Theorem 1).

Consider a graph G, a subgraph (not necessarily induced) S C G and
an assignment L of lists to vertices in V(G) \ V(S). A graph G is strongly
S-critical (with respect to L) if there exists a coloring of S that does not
extend to an L-coloring of GG, but extends to an L-coloring of every proper
subgraph G’ C G such that S C G'. A graph G is S-critical (with respect
to L) if for every proper subgraph G’ C G such that S C G, there exists a
coloring of S that does not extend to an L-coloring of G, but extends to an
L-coloring of G'. We call a (strongly) S-critical graph G proper if G # S.
Note that every strongly S-critical graph is also S-critical, but the converse
is false. If S = () and all vertices have the same list of k£ colors, then G is
(-critical (or strongly @-critical) if and only if G is (k 4 1)-critical.

While the definition of a strongly critical graph may seem more natural,
the notion of a critical graph is often more suitable for both proofs and



Figure 2: A critical graph bounded by a 12-cycle

applications—for instance, every graph H O S has an S-critical subgraph
G DO S such that any coloring of S extends to H if and only if it extends to
G (we call such a subgraph G an S-skeleton of H) however, H does not have
to contain a strongly S-critical subgraph with this property.

In [7], Thomassen characterized the F-critical plane graphs of girth 5,
where F' consist of a boundary of a face of length at most 12:

Theorem 4. Let G be a plane graph of girth at least 5, with the outer face F
bounded by an induced cycle of length at most 12. Let L be a list assignment
of lists of size three to the vertices of V(G) \ V(F). If G is proper strongly
F'-critical graph, then

(a) {(F)>9 and G — V(F) is a tree with at most {(F') — 8 vertices, or

(b) L(F) > 10 and G — V(F) is a connected graph with at most {(F') — 5
vertices containing exactly one cycle, and the length of this cycle is 5,
or

(c) ((F) =12 and every second vertex of F' has degree two and is incident
with a 5-face.

If /(F) < 11, the complete list of strongly F'-critical graphs is provided by
Theorem 4, however for /(F') = 12, only a necessary condition is given in the
case (c). As the first application of Theorem 3, we complete this classification
by showing that the only F-critical graph satisfying the condition (c) is the
one depicted in Figure 2. The proof is presented in Section 3.



For ordinary (not list) coloring, Thomassen [7] proved that there are only
finitely many 4-critical graphs of girth 5 embedded in any fixed surface. In
fact, his result allows a constant number of precolored vertices. An alterna-
tive proof with stronger bounds on the sizes of the critical graphs is given by
Dvorak, Kral’ and Thomas [3]. Our goal is to prove the same result for the
list-coloring critical graphs. We present our general argument in a followup
paper. As the second application of Theorem 3, we consider the special case
of a plane graph in that vertices incident with one face are precolored. In
Section 4, we show the following bound:

Theorem 5. Let G be a plane graph of girth at least 5 with the outer face
F bounded by a cycle of length at least 10, and L an assignment of lists of
size three to vertices of V(G) \ V(F). If G is F-critical, then |E(G)| <

37¢(F)—320
180(F) — 160 and |V(G)| < =320,

Let us note that this bound is much stronger than the ones shown in
Thomassen [7] (who shows that |V (G)| < 20¢U)*) or in Dvoiék et al. [3]
(who shows that |V(G)| < c¢l(F) for a constant ¢ = 10°), even though these
papers only consider ordinary 3-coloring.

2 Proof of Theorem 3

For the purpose of the induction, we prove an (unfortunately rather technical)
generalization of Theorem 3. In order to state this generalization, we need
to introduce several definitions.

Let G be a plane graph of girth at least 5. Let F' be the outer face of G
and let P =p;...pg be a path with V(P) C V(F'). Consider an assignment
L of lists to vertices of V(G) \ V(P) such that |L(v)| > 2 for each vertex
v and |L(v)| = 3 for each v ¢ V(F). Let I4(G, P, L) be the set of vertices
with the list of size two. Let I(G,P,L) = Io(G,P, L) if /(P) < 2 and
I(G,P,L) = Iy(G, P,L)UV (P) otherwise. Let us call a vertex v bad if there
exists a path vvivy with |L(v1)| = 2 and vy € I(G, P, L), or a path vvjvavs3v4
with |L(vy)| = |L(vs)| = 2, |L(vy)| = 3 and vy € I(G, P, L). We say that the
list assignment L is valid if no vertex with list of size two is bad.

Suppose that /(P) = 4. For a set X C V(P), colorings ¢, and 1y of P
are X -different if there exists v € X such that ¢;(v) # ¥(v). We say that
G is class A if

e cach of p; and p5 is adjacent to a vertex with list of size two, and

e there exists a coloring ¥(“>1) of P such that if ¢ is a coloring of P

{p1, P2, P4, p5 }-different from P @PL) then 1) extends to an L-coloring
of G.



Figure 3: A class A and a class B graph.

We say that G is class B if there exists a coloring (@) of P such that
if ¢ is a coloring of P {pi, ps, p5}-different from P@PL) then 1) extends to
an L-coloring of G.

Theorem 6. Let G be a plane graph of girth at least 5 with the outer face
F, let P =py...pg be a path of length at most four such that V(P) C V(F),
and let L be a valid list assignment. Furthermore, if {(P) = 2, then assume
that p1 or ps is not bad, and if {(P) > 3, then assume that no verter of P
is bad. If G is a proper P-critical graph, then ((P) = 4 and G is a 5-face,
class A or class B.

Theorem 3 is the special case of Theorem 6 where P is empty. Two exam-
ples of P-critical graphs that are class A or class B and satisfy assumptions
of Theorem 6 are depicted in Figure 3. Let us note that infinitely many such
graphs exist.

Before proving Theorem 6, let us show several observations regarding
critical graphs. Let G be a T-critical graph (with respect to some list as-
signment). For S C G, a graph G’ C G is an S-component of G if S C &,
TNG' C S and all edges of G incident with vertices of V/(G’)\ V(S) belong to
G'. For example, if GG is a plane graph with T contained in the boundary of
its outer face and S is a cycle in G, then the subgraph of GG consisting of the
vertices and edges drawn the closed disk bounded by S is an S-component

of GG.

Lemma 7. Let G be a T-critical graph with list assignment L. Let G' be an
S-component of G, for some S C G. Then G’ is S-critical.

Proof. Since G is T-critical, every isolated vertex of G belongs to 7', and
thus every isolated vertex of G’ belongs to S. Suppose for a contradiction
that G’ is not S-critical. Then, there exists an edge e € E(G’) \ E(S) such
that every coloring of S that extends to G’ — e also extends to G’. Note
that e ¢ F(T). Since G is T-critical, there exists a coloring ¢ of T' that
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extends to an L-coloring ¢ of G — e, but does not extend to an L-coloring
of G. However, by the choice of e, the restriction of ¢ to S extends to an
L-coloring ¢’ of G'. Let ¢” be the coloring that matches ¢’ on V(G’) and ¢
on V(G) \ V(G). Observe that ¢” is an L-coloring of G extending 1, which
is a contradiction. ]

Lemma 7 in conjunction with Theorem 4 describes the subgraphs drawn
inside cycles in plane critical graphs. Since Theorem 4 is only stated for
strongly critical graphs, let us show that it holds for critical graphs as well.

Lemma 8. Let G be a plane graph of girth at least 5, with the outer face F
bounded by an induced cycle of length at most 12. Let L be a list assignment
of lists of size three to the vertices of V(G)\ V(F). If G is proper F-critical
graph, then G satisfies one of the conditions (a), (b) or (c) of Theorem 4.

Proof. Suppose for a contradiction that G is a counterexample to Lemma 8
with the smallest number of vertices. Since G is proper, there exists a precol-
oring ¢ of F' that does not extend to an L-coloring of G. Let G’ O F be the
minimal subgraph of G such that ¢ does not extend to GG'. Observe that G’
is a proper strongly F-critical graph, thus it satisfies one of the condition (a),
(b) or (c). Since G does not satisfy any of these conditions, there exists an
induced cycle C' C G’ that bounds a face in G, but not in G. Furthermore,
if G’ satisfies the condition (c), then we may assume that ¢(C') = 5.
Observe that ¢(C') < 8, and ¢(C) < 7 unless /(F) = 12 and |[V(G') \
V(F)| = 1. Let H be the subgraph of G drawn in the closed disk bounded
by C. Lemma 7 implies that H is a proper C-critical graph. Since G is
the counterexample to Lemma 8 with the smallest number of vertices, C' is
not an induced cycle in H. Since G has girth at least 5, we conclude that
¢(C') = 8 and C has a chord e such that C'U e contains two 5-cycles C and
(5. Repeating the same argument for C; and C5, we conclude that C; and
Cy are faces of H and V(H) = V(C). It follows that |V(G)\ V(F)| =1, and
thus G satisfies (a). This is a contradiction. O

In this section, we need only the following corollary of Lemma 8.

Corollary 9. Let G be a plane graph of girth at least 5, with the outer face
F bounded by a cycle of length at most 12. Let L be a list assignment of

lists of size three to the vertices of V(G)\ V(F). If G is a proper F-critical
graph, then

e ((F)>38 and F has a chord, or

o /(F) =9 and V(G) \ V(F) consists of a single vertex v adjacent to
three vertices of F'.



Lemma 7 together with Corollary 9 implies that

of H is an S-critical plane graph of girth at least 5, where S is a subgraph of
the boundary of the outer face of H, then any cycle of length at most 7 in
H bounds a face, the open disk bounded by a cycle of length 8 contains no
vertices, and the open disk bounded by a cycle of length 9 contains at most
one vertex.

(1)

Furthermore, let us recall the following result of Vizing [8]:

Theorem 10. Let G be a 2-connected graph with a list assignment L such
that |L(v)| > deg(v) for each vertezxv € V(G). Then G is L-colorable, unless
G is a complete graph or an odd cycle and the lists assigned to all vertices
are the same.

This implies the following:

Lemma 11. Let G be a triangle-free critical graph, S a subgraph of G and
L an assignment of lists to vertices of V(G)\ V(S). Let H be a 2-connected
subgraph of G such that V(H) NV (S) = 0 and |L(v)| > degg(v) for each
veV(H). If G is S-critical, then H is an induced odd cycle in G.

Proof. Let H' = G[V(H)] be the subgraph of G induced by V(H). Since G
is S-critical, there exists a precoloring ¢ of S that extends to an L-coloring
¢ of G —V(H), but not to an L-coloring of G. Consider the list assignment
L’ such that for v € V(H), L'(v) = L(v) \ C,, where C, is the set of colors
of vertices of G — V(H) adjacent to v, according to the coloring ¢. Observe
that H’ is 2-connected, H' is not L'-colorable, and |L'(v)| > degy, (v) for
each v € V(H). By Theorem 10, since G is triangle-free, H' is an odd cycle.
Furthermore, H = H’, since H is 2-connected. n

Let us now proceed with the proof of the main result.

Proof of Theorem 6. Suppose that G together with lists L and a path P
is a counterexample to Theorem 6 such that |V (G)| + |E(G)| is minimal,
and among such graphs, the path P is the longest possible. The path P is
nonempty, as otherwise we can choose an arbitrary vertex of F' as p;. As G
is a proper P-critical graph, there exists at least one precoloring of P that
does not extend to an L-coloring of G. By the minimality of GG, each vertex
of P has degree at least two. By Lemma 7, each vertex v € V(G) \ V(P) has
degree at least |L(v)].

Lemma 12. The graph G is 2-connected.



Proof. Obviously, GG is connected. Suppose now that v is a cut vertex of G
and G; and G are induced subgraphs of G such that G = G; U Gy, {v} =
V(G1) NV (Gs) and |V (Gy)|,|V(G2)| > 2. Let P,=PNG; if v e V(P) and
P, = v otherwise, for i € {1,2}; by Lemma 7, G; is P;-critical. By symmetry,
we may assume that ((P;) < {(P;), and thus ¢(P;) < {(P)/2 < 2. Tt follows
that v € I(Gy, P, L) and I(Gy,P,L) C I(G, P, L), thus the restriction
of L to V(Gy) \ V(P) is a valid list assignment. If {(P) = 2, with say
P, = pipaps and p3 = v, then p; is not bad in (G, since it is not bad in G.
By the minimality of G, we can apply Theorem 6 to GG, obtaining G; = P;.
Since |V (G1)| > 2, we conclude that G contains a vertex of degree one, which
is a contradiction. ]

By Lemma 12, the outer face F' of G is bounded by a cycle. A chord of
F is an edge in E(G) \ E(F) incident with two vertices of V(F'). A t-chord
of F'is a path Q = qoq1...q; of length ¢ (t > 2) such that ¢y # ¢ and
V(Q)NV(F)={qo,q}. Sometimes, we refer to a chord as a 1-chord.

Lemma 13. The cycle F' has no chords.

Proof. Suppose that e = uv is a chord of F', and let G; and G5 be the
two induced subgraphs of G such that G = G; U Ga, uv = G; N G, and
G1,G2 # uv. Note that |V(G1)|,|V(Gs)| > 2. If P C Gy, then Gy is uv-
critical by Lemma 7. Since I(Gs,uv, L) C I(G, P, L), the restriction of L
to G5 is a valid list assignment. By the minimality of GG, we have G5 = wuw,
which is a contradiction. It follows that P ¢ GG; and by symmetry, P € Gs.
Therefore, every chord of F' is incident with a vertex of P distinct from p;
and py.

Suppose now that say |V(P)NV(Gy) \ {u,v}| < 1. In that case, P, =
(P N Gy) + wv has length at most two. By Lemma 7, G, is Pj-critical, and
since I(Gy, P, L) C I(G, P, L), we conclude that the restriction of L to G
is a valid list assignment. Furthermore, if ¢(P;) = 2, then we may assume
that P, = p1pops with u = py and v = ps3, and p; is not bad in GG;. By the
minimality of GG, we conclude that G; = P, which is a contradiction, since
|[V(G1)| > 2 and G does not contain a vertex of degree one.

By symmetry, we conclude that |V (P)NV(G;) \{u,v}| > 2 fori € {1,2}.
This implies that £ =5 and V(P) N {u,v} = p3. Without loss of generality,
u = p3, PNG| = pipeps and PN Gy = p3paps. Let v; be the neighbor of v in
G, in the facial walk of F', for i € {1,2}. Since every chord of F' is incident
with a vertex of P, v is not adjacent to a vertex with list of size two except
for v; and vs.

Suppose now that |L(vy)| # 2. By Lemma 7, G is P/-critical, where
P| = pipapsv. Note that I(Gq, P1, L)\ I(G, P,L) = {v}, and v is not bad, as



it is not adjacent to a vertex with list of size two in G;. By the minimality
of G, we conclude that G; = P;, which is a contradiction, since p; has degree
at least two in G.

By symmetry, |L(v;)| = |L(ve)| = 2. Since L is a valid list assignment,
|L(v)| = 3. By Lemma 7, G is Pj-critical and G; is P,-critical, where
Py = pipapsvv; and Py = pspapsvvs. Note that both G and Gy are proper,
since p; and ps have degree at least two in G. Let L; be L restricted to
V(G)\V(P,), for i € {1,2}. Then I(G;, P;, L;)\ I(G, P, L) = {v}, and since
v is not adjacent to a vertex with list of size two in G;, v is not bad.

By the minimality of G, Theorem 6 holds for G; and 5. Since L is a valid
list assignment for GG, by the symmetry between v; and v, we may assume
that v; is not adjacent to a vertex of I(G, P, L), and thus G is neither a
5-face nor class A. Therefore, G is class B. Let ¢, = (@171 Consider a
precoloring v of P that is {p;, ps}-different from ;. By the minimality of
(G, the precoloring of the path pspsps given by ¢ extends to an L-coloring
@2 of G5. The precoloring v of Py given by ¢'(p;) = ¥ (p;) for ¢ € {1,2,3},
Y (v) = o(v) and Y’ (v1) € L(vy) \ {p(v)} extends to an L-coloring ¢ of G,
since (G is class B and v/ is {p1, p3, v1 }-different from 1);. We conclude that
Y extends to the L-coloring (; U o of G.

Suppose that G is class A or B, with 1, = (@21 Analogically
to the previous paragraph, we conclude that any precoloring ¢ of P that
is {ps}-different from v, extends to an L-coloring of G. It follows that G
is almost reducible with (&PE) = 4. where 1o(p1) = ¥1(p1), Yo(ps) =
U1(ps), Yo(ps) = ¥2(ps) (Yo(p2) and o(ps) are arbitrary colors distinct from
the colors used on the rest of P). This is a contradiction, since G is a
counterexample.

Since (G5 satisfies the conclusion of Theorem 6, (G5 is a 5-face and vyp5 is an
edge. Choose ¢ € L(vy) \{¢1(v1)}, c € L(v)\{c, ¥1(p3)} and d € L(v2)\{c}.

Then, G'is class B with ¢(G’P’L) = by, where ¥g(p1) = ¥1(p1), Yo(ps) = ¥1(ps)
and 1y(ps) = d: before, we proved that if a precoloring ¢ of P is {p1, ps}-
different from )y, then 1 extends to an L-coloring of G. If v (p3) = 11(ps)
and v (ps) # d, then we can color v by ¢, vo by d and vy by ¢’. The resulting
coloring of P; is {v;}-different from 1y, thus it extends to G, giving an
L-coloring of G. This is a contradiction, since G is a counterexample to
Theorem 6. ]

By Lemma 13, P is a subpath of F' and by Corollary 9, /(F) > 9. Also,
((P) > 3:

e If P consists of a single vertex p;, then we can add arbitrary neighbor
of p; in F' as py. Since pp, is longer than P and the assumptions of
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Theorem 6 are satisfied, the choice of P implies that G = p;p,, which
is a contradiction.

If P = pipy and ps is not bad, then let P’ = xp;py, where x is the
neighbor of p; in F'. Otherwise, let P’ = p;poy, where y is the neighbor
of po in F'. As ps is bad with respect to P, it follows that |L(y)| = 2, and
since L is a valid assignment, y is not bad with respect to P’. Therefore,
the assumptions of Theorem 6 are satisfied. Again, we conclude that
(G = P’, which is a contradiction.

Suppose that ¢(P) = 2 and say p; is not bad. Let x # py be the
neighbor of p3 in F. If |L(z)| = 2, then let P’ = p1pspsx. Otherwise,
by symmetry we can assume that no neighbor of p; or ps has list of
size two. Let y # p3 be the neighbor of y in F. If |L(y)| = 2, then let

P' = pipapszy, otherwise let P’ = pipopsx. Let L' be L restricted to
V(G)\ V(P).

Observe that I(G, P', L")\ I(G,P,L) C {p1,ps,ps,z}. We conclude
that if no vertex of P’ is bad, then L’ is a valid assignment. The
vertices ps and ps are not adjacent to a vertex with list of size two,
thus they are not bad. If |L(z)| = 2, then neither p; nor = are bad with
respect to L, and we conclude that neither of them is bad with respect
to L. If |L(x)| = 3, then neither p; nor x are adjacent to a vertex with
list of size two in L', thus they are not bad. Finally, if y € V(P’), then
y is not bad with respect to L’, since it is not bad with respect to L
and no other vertex of P’ is bad. We conclude that the assumptions
of Theorem 6 are satisfied, and since P’ is longer than P, GG satisfies
the conclusions of Theorem 6 with respect to P’. Since the minimum
degree of GG is at least two, we have G # P’, and thus ¢(P’) = 4. Note
that G is not a 5-face, as |L(x)| = 3 and = would have degree two. It
follows that G is class A or B. Let 1)y = (@10,

For any precoloring 1 of P = p;paps, we can choose a color ¢ € L(y) \
{¥o(y)}, color y with ¢ and z by a color in L(z)\ {«(ps), ¢}, and extend
this precoloring (which is {y}-different from 1)y) to an L-coloring of G.
This shows that G cannot be a proper P-critical graph, which is a
contradiction.

Let D ={v e V(G)\V(P):|L(v)=2}U{p1,pr}

Lemma 14. Let QQ = qy...q be a t-chord of F' (t < 4) and let G1,Gy # Q
be the subgraphs of G such that G = G1UGy and G1NGy = Q. If all vertices
of P except for p; and py belong to V(G1) and Gy does not consist of a single
5-face, then t > 3 and |{qv, 3} N D| <t — 3.
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Proof. Suppose for a contradiction that () does not satisfy the conclusions
of the lemma. By Lemma 13, ¢t > 2. Let (' be the path obtained from () in
the following way: for i € {0,¢},

e if ¢; = po, then add p; to @),
e if ¢; = pr_1, then add p, to @', and

o if g; ¢ D and ¢, is adjacent to a vertex v € V(F)NV(Gy) with |L(v)| =
2, then add v to Q.

Let Q' = ¢4, - - - qyry and let Ly be L restricted to V(G2) \ V(Q'). Note that
Q)' C Go: otherwise say p; € V(Gy) and py = qp, implying that p; € V(Gs).
Since ps € V(G1) by the assumptions of the lemma, it follows that p3 = ¢,
and by (1), the cycle qoq; - - . ¢; bounds a face of length ¢ + 1. Since the girth
of (G is at least 5, we conclude that (G5 is a 5-face, which is a contradiction.

Suppose first that 2 <t < 3 and |{qo, ¢} N D| >t — 1. Subject to these
assumptions, choose () such that (G, is as small as possible. Observe that
((Q") < 3. By Lemma 13 and the minimality of G3, ¢, is not adjacent to a
vertex with list of size two in Lo, for 1 <4 < ((Q')—1. Also, if z € {qp, ¢}
is adjacent to a vertex with list of size two in Lo, then x € I(G,P,L). It
follows that L, is a valid list assignment for G5 with respect to ' and no
vertex of )’ is bad in GG5. By Lemma 7 and the minimality of G, it follows
that Gy = ', which is a contradiction. We conclude that

H{qo,q:} N D| < t — 2 for any t-chord Q satisfying the assumptions of
Lemma 14.
(2)

Let us now consider a t-chord () violating the conclusions of Lemma 14
(i.e., |{qo,q:} N D| >t —2), such that G5 is as large as possible. Note that
0(Q) < 4. By (2) and Lemma 13, if a vertex z € V(Q') is adjacent to
a vertex with list of size two in Lo, then x € {qp, ¢y} N I(G, P, L). We
conclude that L, is a valid list assignment for GG, and that no vertex of ()’
is bad in GG5. Lemma 7 implies that (G5 is a proper (Q’-critical graph. By the
minimality of G, £(Q') = 4 and Gy is class A or B. Let 1), = (629" 2) Note
that ¢, ¢ V(F) and ¢, q, € D.

If G5 is class A, then let G’ consist of G; together with two new vertices
x and y and a path ¢jzyq;, with the list assignment L’ given by L'(v) = L(v)
for v e V(G1)\V(P), L'(x) = {¢2(q}), c} and L'(y) = {¥2(q}), ¢}, where ¢ is
an arbitrary color distinct from 15(q5) and ¥9(q)). If Gs is class B, then let
G' = Gy, L'(v) = L(v) for v € V(G1) \ {gz} and L'(q5) = L(g) \ {¥2(43)}-
Consider any precoloring 1 of P whose restriction to P N G’ extends to an
L’-coloring ¢ of G', and let ¢’ be the restriction of ¥ U ¢ to V(Q'). If Gy is
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class A, then ¢’ is {q1, ¢3}-different from 19, and if G is class B, then ¢’ is
{¢, }-different from 1), thus ¢’ extends to an Lo-coloring of G5. Together with
©, this gives an L-coloring of G extending . Since at least one precoloring
of P does not extend to an L-coloring of (G, we conclude that there exists a
precoloring of P N G’ that does not extend to an L’-coloring of G’.

Let G” be a (P N G")-skeleton of G'. Suppose now that

L' is a valid list assignment and no vertex of PN G" is bad.

(3)
In order to apply Theorem 6, we need to show that G’ is smaller than G,
ie., that |V(G")| + |[E(G")| < |[V(G1)| + |E(Gy)] +5 < |[V(G)] + |[E(G)|.
This is obvious if |V (G2) \ V(Q)| > 3. Since G2 is not a 5-face, we have
V(G)\V(Q) = Land ¢ > 5 [V(Ga) \ VIQ). T [V(Ga) \ V(Q)] = 1,
then t = 4, qo,qu € D and the vertex w € V(G5) \ V(Q) has degree two. It
follows that |L(w)| = 2, and the path gywqy contradicts the assumptions of
Theorem 6. Similarly, we exclude the case that [V (G2) \ V(Q)| = 2.

Note that G” does not consist of a single 5-face, since F' does not have
chords. Also, since not all precolorings of P N G’ extend to an L’-colorings
of ', G" # PN G'. By Theorem 6 applied to to G” with the path P NG’
and the list assignment L', we have ¢(P) =4, P C G’ and G” is class A or
B. Let 1y = (&P,

If G" is class A, then any precoloring of P that is {p1, p2, p4, p5 }-different
from v; extends to an L’-coloring of G, and thus it also extends to an L'-
coloring of G’ and an L-coloring of G. Also, p; is adjacent to a vertex w such
that |L'(w)| = 2 in G”. Note that p; € {q}, ¢4} and by (2), p; is not adjacent
to g5, thus w € V(G) and |L(w)| = 2. By symmetry, p; has a neighbor with
list of size two in GG. Therefore, G is class A. Similarly, if G” is class B, then
G is class B. This is a contradiction, and hence the assumption (3) is false.

Let us now distinguish the two cases regarding whether (G5 is class A or
B with respect to the path )" and the list assignment Lo:

e Gy is class A. Let z be the neighbor of ¢ in G2 with |L(z)| = 2.

Let us recall that in this case the list assignment L’ matches L on
V(G")\ V(P) and G’ contains two additional vertices x and y with
lists of size two. Since (3) is false, we may assume by symmetry that
either ¢) € I(G",G'NP, L") or |[L'(qy)| = 3 and G” contains a path ¢juv
with |L/(u)] =2 and v € (I(G",G' NP, L")\ {z,y}) C I(G, P, L).

By the choice of ()’ either ¢f € V(P) or |L(q;)| = 3. Suppose first that
¢, & V(P). If ¢§ € V(F), then |L(q))| = 2 by the construction of ¢,
and the path zg(qjuv contradicts the assumption that L is a valid list
assignment. If ¢] ¢ V(F), then by (2) ug)q) is not a 2-chord of F', and
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thus u = ¢{. In this case, the path zuv contradicts the assumption that
L is a valid list assignment.

We conclude that ¢; € V(P). By symmetry and the construction of
(', we may assume that ¢; = py and ¢, = p;. Note that ¢ ¢ V(P), as
the girth of GG is at least five and ¢} # ps. It follows that L’ is a valid
list assignment for G with respect to the path P’ = ap,...p; and no
vertex of this path is bad.

By the minimality of G, this implies that ¢(P’) = ¢(P) = 4 and G”
is class A or B with respect to P, with vg = "L If G” is
class A with respect to P’, then ps is adjacent to a vertex w with
|L(w)| = |L'(w)| = 2. Furthermore, p; = ¢ is adjacent to z, which has
|L(2)| = 2. Let (L) be a coloring that matches 1y on popspsps and
satisfies ¥ (p1) € {(GPL) (py), (@) (py)}. Consider a precoloring v
of P. If v is {po, p4, ps }-different from (@5 then v is {ps, ps, ps}-
different from 1)y; choose a color of x in L'(x) \ ¥ (p2) and extend the
resulting precoloring of P’ to an L’-coloring of G”. This implies that
Y extends to an L-coloring of G. If v is not {ps, p4, ps }-different from
YGPL) but it is {p; }-different, then 1 (p1) # ¥2(p1). In this case, by
Theorem 6 applied to a popspsps-skeleton of G with list assignment L,
we conclude that ¢ extends to an L-coloring ¢ of 1, and since ¢ Uy
is {p; }-different from p, on @', ¢ extends to Ls-coloring of G, giving
an L-coloring of G. We conclude that G is class A. Analogically, if G”
is class B with respect to P’, then G is class B. This is a contradiction.

Go is class B. The vertex ¢, does not have any neighbor in D by (2).
Since (3) is false, ¢} has a neighbor p € V(P) \ {p1,pr}. As girth of G
is at least five, ¢} is adjacent to exactly one vertex of P. Since (3) is
false, G5 contains a ghuv with |L(u)| = 3 and |L(v)| = 2. Since G5 was
chosen to be as large as possible, we may assume that u = ¢}, and if
¢, € V(Gy), then v = ¢.

If /(P) = 4 and ¢j is adjacent to p3, then consider precoloring ¢ of
P that does not extend to an L-coloring of G. Choose a color for ¢
from L'(¢5) \ {¢(ps)}. Let Hy, Hy # ¢4ps be the subgraphs of G; U P
such that Gy U P = H; U Hy, ¢hps = Hy N Hy and p; € V(H;). By the
minimality of G, Theorem 6 implies that the precoloring of pipapsdb
extends to an L-coloring of H; and the precoloring of pspspsqh extends
to an L-coloring of H,, giving an L’-coloring of G’. This implies that
1 extends to an L-coloring of G, which is a contradiction.

We conclude that p € {p2,pr_1}, and by symmetry, we may assume
that p = p;. The maximality of G implies that ¢5 = py and ¢} =
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p1. Note that L’ is a valid list assignment with respect to the path
P = ¢q}p,...pr, and no vertex of this path is bad. By the minimality
of G, {(P") = {(P) = 4 and G” is class A or B with respect to the
path P’. Since ¢, is not adjacent to a vertex with list of size two, we
conclude that G” is class B. It follows that G is class B, with with
(@PL) matching (@5 on ps and ps and PGP (p)) = y(py).
This is a contradiction.

[

Let P' = py...ppvivu3v4vs be a subpath of F. As we observed before,
((F) > 9. Suppose that £k = 5 and ¢(F') = 9, i.e., v5 = p;. By Corollary 9,
GG contains exactly one vertex v € V(F). As p; and p5 are not bad, v must
be adjacent to ps, vy and vy, |L(vy)| = |L(vs)| = 3 and |L(ve)| = |L(v3)| = 2,
i.e., G is the class B graph depicted in Figure 3 (L may differ from the list
assignment shown in the figure). Therefore, we may assume that all the
vertices of P’ are distinct.

Lemma 15. Ezactly one of |L(v1)| = 2 and |L(vy)| = 2 is satisfied. Further-
more, if Y 1s a precoloring of P that cannot be extended to an L-coloring of

G, then ¢(pr) € L(vy).

Proof. Since py, is not bad, it cannot be the case that |L(vq)| = |L(vg)| = 2.
Let ¢ be a precoloring of P that does not extend to an L-coloring of G.
Suppose that |L(vy)| = |L(v)| = 3 or ¢(pr) € L(vy). Let N’ be the set
of neighbors of p, in G. Let N = N’ \ {pr_1,v1} if ¥(px) & L(v1) and
N = N'\{px_1} otherwise. Let L’ be the list assignment obtained from L by
removing 1(py) from the lists of all vertices in N. The vertices of N form an
independent set in G. By Lemma 14 and the assumption that |L(vy)| = 3, if
w is a neighbor of a vertex of N and w ¢ V(P), then |L(w)| = 3. Similarly,
if w € V(P), then w ¢ {p1,po}, and since the girth of G is at least 5,
w & {ps,...,pk_1}- Therefore, L' is a valid list assignment for G — p;, with
respect to the path P — p, and no vertex of P — py is bad. By the minimality
of G, we can apply Theorem 6 to a (P — py)-skeleton of G — py, and conclude
that ¢ can be extended to an L’-coloring of G — p,. Therefore, 1) extends to
an L-coloring of G, which is a contradiction. []

Let us define a set X of vertices of (G, depending on the sizes of the lists
of vertices vy, ..., vs (we exclude the cases forbidden by Lemma 15 and the
assumption that py is not bad). See Figure 4 for an illustration.

o If |L(v1)| =2, then |L(vq)| = 3. If |L(v3)| = 3, then let X = {v;}.
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Figure 4: The definition of the set X. Squares denote vertices with list of
size two.

o If |[L(v1)| =|L(v3)| = 2 and |L(vy)| = 3, then |L(vy)| = 3. If |L(vs)| =
3, then let X = {wvy,v9,v3}, otherwise let X = {vy, v, v3,v4}.

o If |[L(v1)| = 3, then |L(ve)| = 2. If |L(vs)| = |L(vy)| = 3, then let
X = {Ul,UQ}.

o If |L(vy)| = |L(vs)] = 3 and |L(ve)| = |L(v4)| = 2, then let X =
{U17U27U3}'

o If |L(vy)| = 3 and |L(vq)| = |L(v3)| = 2, then |L(vy)| = 3. If |L(vs)| =
3, then let X = {wy, vy, v3}, otherwise let X = {vy, v, v3,v4}.

Let m = | X|. Let us fix a precoloring 1) of P that does not extend to an
L-coloring of GG. Observe that there exists an L-coloring ¢ = ¢, of the path
induced by X such that

e o(v1) # ¢(pr), and
o if |[L(vyi1)| =2, then o(vy,) € L(vpmi1).

Furthermore, if |L(v;,41)| = 3, then v, is the only neighbor of v,,,; that
belongs to I(G, P, L).

Let X' = X U{v € {vms1,pr} : degg(v) = 2} and G = G — X'. Let
N’ be the set of neighbors of the vertices of X in V(G) \ (X' U {px}). Let
N = N"if |L(vpme1)| =3 and N = N\ {vpp1} if [L(vy1)| = 3.

Let L' be the assignment of lists to vertices of G’ obtained from L by
removing the colors of vertices of X given by ¢ from the lists of their
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Figure 5: The obstructions.

neighbors, i.e., from the lists of vertices in N (or, more precisely, N’; how-
ever, when N # N’ then N'\ N = {v,,.1}, the only neighbor of v,,;
in X is v, and ¢(v,) € L(vyy1)). Additionally, if pr, & X', then we set
L'(p) = (1), 0(or)}, and if 6(P) = 4, then L'(pr) = {(p1), ¥(p2)}.
Let P’ = popspy if £(P) = 4 and P’ = pypaps if £(P) = 3. Since ¢ does not
extend to an L-coloring of G, we conclude that 1 (restricted to the path P’)
does not extend to an L'-coloring of G’, either. Let us remark that ¢(P’) = 2,
thus the vertices of P’ do not belong to I(G’, P, L'), and we only need to
show that the list assignment is valid and p,_; is not bad in order to be able
to apply Theorem 6.

First, assume that G does not contain the following configurations, see
Figure 5 for an illustration:

Obstruction A. A path p,_jzy with =,y € N.
Obstruction B. A path vzv,,; 1, where v € X and x € N.

Obstruction C. A path zyz with x adjacent to py, y to v and z to vy, in
case that vy € X.

Obstruction D. A vertex in N with two neighbors in X.

By the absence of Obstruction D and Lemma 13, L’ assigns a list of at
least two colors to all vertices of V(G') \ V(P’). Since the girth of G is at
least 5 and | X| < 4, the induced subgraph G|N] contains at most one edge.
By Lemma 13, if p, € V(G’), then p; is not adjacent to any vertex v with
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|L(v)| = 2. By Lemma 14, no vertex of N is adjacent to a vertex with list of
size two in G or to py or pi (for v,,,1 in case that |L(v,,+1)| = 3, the choice
of X implies that m < 3 and v,,,2 & I(G, P,L)). Therefore, G’ does not
contain a path ujusuz with |L'(uq)| = [L'(u2)| = | L' (u3)| = 2.

Suppose now that two vertices x,y € N are adjacent and there exists a
path zyzuw C G" with |L(z)| = 3 and one of the following holds:

o [L(u)| = |L(w)| =2, or
o ((P)=4,u=p and |L(w)| =2, or
e /((P)=4,w=p and |L(u)| = 2.

Note that x,y # v,,41 by the absence of Obstruction B. Let v; € X be
the neighbor of z and v; € X the neighbor of y. If z € V(F), then let
() = v;yz, otherwise let () = v;yzu. Note that () is a 2- or 3-chord. Let
G, Gy # Q be the subgraphs of G such that G = G UG5, Q = G NG5 and
P C G,. Using Lemma 14, we conclude that G5 consists of a single 5-face
and |L(v;)| = 3. It follows that ¢ < j. Furthermore, consider the vertices
vj11 and vj;o following v, in the boundary of F. If z € V(F'), then both
vj11 and v;4o have degree two. If z ¢ V/(F'), then v, has degree two and
u = vj4o. It follows that |L(vj;1)| = 2 and either |L(vji2)| =2 or v,42 = p1,
and since L is a valid list assignment, © = v;49 and w = v;4;. Observe
that w # p;. The cycle C = v;v;4; ...v;yx has length at most 6, hence C
bounds a face by (1). All vertices v; with ¢ < t < j have degree two, and
thus |L(v;)| = 2. As G has girth at least 5, i < j — 2, hence |L(v;_1)| = 2.
Since L is a valid list assignment and |L(v;4+1)| = 2 and vj;2 € D, we have
i =j—2and |L(v;)| = |L(v;)| = 3. Examination of the possible choices of
X shows that these conditions may only be satisfied if j = m. However, in
that case w = v,,41 has degree two in GG, and hence w € X', contradicting
the assumption that w € V(G’).

Suppose now that G’ contains a path uugususus with |L'(uq)| = |L'(u2)| =
|L'(uy)| = |L'(us)| = 2 and |L'(u3)| = 3. Since L is a valid list assignment
and p, has no neighbor with list of size two in G’, we may assume that
uy,us € N and ug,us € N. However, this contradicts the previous para-
graph. We conclude that L' is a valid list assignment for G’ with respect to
the path P'.

Let us now consider a path py_juous with |L'(us)| = |L'(u3)| = 2. Note
that us, uz # pr. By Lemmas 13 and 14, we have uy, us # p; and |L(usg)| =
|L(u3)| = 3, and thus wus,us € N. This is not possible, as G does not
contain Obstruction A. Finally, consider a path py_jusususus with |L'(us)| =
|L'(uyg)| = |L'(us)| = 2 and |L'(u3)| = 3. By Lemma 13, we have either
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Uy = Pi Or Uus € N. In the former case, Lemmas 13 and 14 imply u4, us € N,
which is a contradiction, since G does not contain Obstruction C. It follows
that us € N, and by Lemma 13, us # v,,11. Let v; be the neighbor of us
in X. The 2-chord pj_jusv; bounds a 5-face by Lemma 14, hence ¢ = 2,
|L(v1)| = 2 and |L(v9)| = 3. Since | X| < 4 and G has girth 5, uy and us
cannot both belong to V. Since no vertex of N is adjacent to a vertex with
list of size two not belonging to N, it follows that us,us ¢ N, and thus
uy = py or |L(ug)| = 2. If ug € V(F), then let Q = pp_1usus, otherwise let
@ = pr_1usuzuy. Lemma 14 applied to () implies that () together with a
path in the boundary of F' bounds a 5-face. However, this contradicts the
existence of the edge usvy. We conclude that py_; is not bad.
Let us summarize the results of the previous few paragraphs:

e If G does not contain Obstruction D, then I’ assigns each vertex of
V(G")\ V(P') at least two colors.

e If additionally GG does not contain Obstruction B, then L’ is a valid list
assignment.

e If additionally G does not contain Obstructions A and C, then p,_; is
not bad.

By the minimality of G, ¥ can be extended to an L’-coloring of G’. This
is a contradiction, and thus G contains at least one of the obstructions. Note
that the obstructions are mutually exclusive, hence GG contains exactly one of
them. Furthermore, if G does not contain Obstructions B and D (so that L’
is a valid list assignment), then both p,_; and py_3 are bad. Let us consider
each obstruction separately:

Obstruction A. Let us recall that this obstruction consists of a path pp_12y
with v,y € N. By Lemma 14, x is adjacent to vs, |L(vy)| = 2 and
|L(vy)| = 3. It follows that m = 4 and y is adjacent to vs. As vovsvayx
is a b-face, |L(v3)| = 2. As py is not bad in G, |L(v4)| = 3. Since
vy € X, |L(vs)| = 2. Therefore, N consists of x, y and other neighbors
of vy. Observe also that L’ is a valid list assignment.

Suppose that p; is bad in G'. No vertex of N is adjacent to p; or to a
vertex z with |L(z)| = 2 by Lemma 14 and p; is not bad in G. Since
p1 is bad in G’, there exists a path pi2z; 202y or a path piz;2yx with
|L(z1)] = 2 and |L(z3)| = 3. The former is not possible, as the 2-chord
voxze (if 20 € V(F')) or the 3-chord vexze2; would bound a 5-face by
Lemma 14, contradicting the existence of y. In the latter case, if 2, €
V(F), then zoyv, is a 2-chord and by Lemma 14, zyyv vsvg is a 5-face
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(where vg is the common neighbor of vs and 23 in F'), |L(vg)| = 2, and
the path p;2129v6v5 shows that p; is bad in G. Similarly, if 2, & V(F),
then the 3-chord z;29yv, together with the path v,v52; bounds a 5-face
and the path p;z,v5 shows that p; is bad in G. This is a contradiction,
hence p; is not bad in G'.

If £ =4, this implies that 1 extends to an L-coloring of G. Therefore,
k = 5. Suppose now that a vertex v € N is adjacent to py. The
corresponding 2-chord bounds a 5-face by Lemma 14, which excludes
the case v = z. If v # y were a neighbor of vy, then popspszryvsv
would be a 7-face by (1), implying that y has degree two. This is a
contradiction, thus v = y. In this case, Lemma 14 implies that vy is
adjacent to pi, and by (1) G is the class A graph depicted in Figure 3
(L may differ from the list assignment shown in the figure). Therefore,
no vertex of NV is adjacent to ps.

Suppose that v € N is adjacent to p3. As the girth of G is at least
5, v # x,y, thus v is a neighbor of v, distinct from y. However, then
P3papsv1U2v3040 would be a separating 8-cycle, which contradicts (1).
Similarly, we conclude that the only neighbor of p, in N is x.

Let ¢4 € L(vg) \ L(vs) and ¢3 € L(vs) \ {ca} be chosen arbitrarily.
Observe that we may assume that ¢, (v4) = ¢4 and ¢, (v3) = c3, inde-
pendently on the precoloring ¢ of P. Let P» = pipopspsxr and Lo be
the list assignment for the vertices of V(G’) \ V(F2) obtained from L
by removing ¢, from the lists of neighbors of v4. Let us remark that Lo
is L' restricted to V(G') \ V(P,), thus L, is a valid list assignment.

We have shown that p; is not bad and p,, p3 and p, are not adjacent
to a vertex with list of size two, thus they are not bad, either. Finally,
x has list of size two in the valid list assignment L', thus x is not
bad. We conclude that a P»-skeleton G5 of G’ satisfies assumptions of
Theorem 6. Since x is not adjacent to p;, (G5 is class A or B.

If G5 is class A, then let J = {p1, p2,ps}. Note that p; is adjacent to
a vertex z in Gg such that |Lo(z)| = 2 and 25 € N, thus |L(z)| = 2,
and p; is adjacent to vy in G, which has |L(vy)| = 2. If Gy is class B,
then let J = {p1,p3}. Given a precoloring ¢’ of P that is J-different
from (" P2L2)  we color X according to ¢/ = @y and choose a color
for x from L(z) \ {¢'(ps), ¢'(v2)}. This precoloring of P, extends to an
Lo-coloring of GGy, giving an L-coloring of G.

Choose now ¢y € L(vy) \ L(vs) and ¢; € L(vy) \ {c2}. If ¥'(ps) # e,
then consider the graph G5 = G — {ps, v1, vo} with list assignment L”
obtained from L by removing ¢, from the list of x. Observe that this
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list assignment is valid and that no vertex of P3 = pipopsps is bad,
thus ¢ extends to an Ls-coloring of GG3. We extend this coloring to G
by coloring v; by ¢; and vy by cy. It follows that G is class A or B,
with (@ 1) matching (" F22) on py, p, and ps, PP (ps) = ¢; and
G PE) (py) chosen so that ¢(@F252) (py) € {p(GPE) (py), @) (ps)}.

Obstruction B. That is, G contains a path vrv,, 1, where v € X and x €
N. By Lemma 14, |L(v)| = |L(vm11)| = 3, v = Upm—o and |L(vy—1)| =
|L(vpn)| = 2. Since v,,41 € X, the inspection of the choice of X shows
that m = 3 and |L(vp42)| = 3.

Let S be an arbitrary list of two colors such that L(vy)NL(v3) € S. Let
Gy = G — {vq, v3}, with the list assignment Ly such that Ls(u) = L(u)
for u & {v1,v4} and Lo(vy) C L(vy) and La(vy) € L(vy) be lists of size
two chosen as follows:

o If SN L(vy)| <1, then choose Ly(vy) disjoint from S and Lo (vy)
arbitrarily.

o If |[SN L(vg)| <1, then choose La(vy) disjoint from S and L (vy)
arbitrarily.

e Otherwise, S = {a,b} C L(vy)NL(vy). Set Lo(vy) = {a}U(L(vy1)\
S) and Lo(vy) = {b} U (L(vg) \ 5).

Observe that any Lo-coloring of v; and v, extends to an L-coloring of
vo and w3, thus any precoloring of P that extends to an Lo-coloring of
(G5 also extends to an L-coloring of G. By Lemma 13, Lo is a valid list
assignment, and no vertex of P other than p; or py is bad. If p; or p,
were bad, then there would exist a path vyuwy C G with |L(u)| = 3,
|L(w)| = 2 and either y = p; or |L(y)| = 2. However, the 2-chord vjuw
would contradict Lemma 14.

By the minimality of GG, we can apply Theorem 6 to a P-skeleton of
(5. Since v does not extend to an Lo-coloring of G5, we conclude that
((P) = 4 and Gy is class A or B. If G, is class B, then G is class B as well.
If G is class A, then p; is adjacent to a vertex v such that |Ly(v)| = 2.
By Lemma 13, v ¢ {vy,v4}, and thus |Ls(v)| = 2. Furthermore, there
exists a coloring 1z = (@2"12) of P and a set R = {py, p2, ps, p5} such
that any precoloring ¢’ of P that is R-different from 1 extends to an
L-coloring of G. Let us remark that G is not class A, since ps5 is not
adjacent to a vertex with list of size two. We postpone the discussion
of this case for later.
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Obstruction C. Let us recall that Obstruction C consists of a path xyz
with x adjacent to py, y to vy and z to vy, and vy € X. As G does
not contain separating 5-cycles, |L(vy)| = |L(v3)| = 2. Since vy € X,
we have m = 4, and the inspection of the choice of X shows that
|L(ve)| = |L(v4)| = 3 and |L(vs)| = 2. There is no edge other than pyx
between {z,y, 2z} and V(P)—the only cases that are not excluded by
Lemma 14 and the assumption that the girth of G is at least 5 are the
following:

e y adjacent to p3, but then G would contain a separating cycle
p3 ... pru1vay of length at most 6, contrary to (1).

e 2 adjacent to p; € {p2,ps, ..., Pr}, but then p;p;i1 ... prryz would
bound a face of length at most 7 by (1), implying that = has degree
two, which is a contradiction.

By Lemma 15, L(vy) = {¢(px), 1} for some color ¢;. Suppose first that
L(vg) # L(vz) U{ci}. We choose a color ¢y € L(vg) \ (L(v3) U {c1}).
Let Gy = G — {v1, v} and Ly be the list assignment such that Ly(y) =
L(y) \ {e2}, La(pr) = {e(pr-1), ¥(pr)}, La(pr) = {¥(p1),¥(p2)} and
Ly(v) = L(v) for any other vertex v. Observe that Ly is a valid list
assignment for Go with respect to the path po...pp_1 and pi_; is not
bad. By the minimality of G, 1) extends to an Ls-coloring of G5, giving
an L-coloring of G, which is a contradiction. Therefore, L(vy) = L(v3)U
{c1}, and thus {¥(px)} = L(v1) \ (L(v2) \ L(v3)). This implies that any
precoloring ¢’ of P with ¢/(py) # ¥ (px) extends to an L-coloring of G.

Let G3 = G — {1, v9,v3,y} and choose ¢ € L(y) \ L(v3). Let N3 be the
set of neighbors of y in G, excluding v,. Let L3 be the list assignment
for V(G3) \ V(P) obtained from L by removing ¢ from the lists of
vertices in N3. The vertices of N3 form an independent set. As we
observed before, x is not adjacent to a vertex of P other than p, and
z is not adjacent to any vertex of P. A vertex v € N3\ {z, z} is not
adjacent to a vertex of V(P) \ {ps} by Lemma 14. If v were adjacent
to p3, then the open disk bounded by ps...prviv9yv would contain the
vertex x, contrary to (1). By Lemma 14, no vertex of N3 is adjacent to
a vertex v with |L(v)| = 2 and there does not exist a path zvivs with
|L(vq)| = 2. It follows that Lj is a valid list assignment for G3 and no
vertex of P is bad. By the minimality of G, we conclude that ((P) = 4
and G is class A or B, with 13 = ¢(@3PLs) If G5 is class A, then let
J = {p1, p2, p4}; in this case, p; has a neighbor v with |L3(v)| = 2, and
since no vertex of N is adjacent to py, |L(v)| = 2. Furthermore, p; is
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adjacent to the vertex v, with list of size two. If G5 is class B, then let
J = {p1,ps}-

Consider a precoloring 9’ of P with ¢'(ps) = 1¥(ps), such that ¢ is
J-different from 3. This precoloring extends to an Lsz-coloring of G3.
Furthermore, it also extends to an L-coloring of G: We color y by ¢, vy
by ¢; and v3 by a color ¢3 € L(v3) different from the color of v,. Observe
that ¢ = ¢; or ¢ € L(vs), thus we can color v, by a color in L(vy) \
{c1,c3}. Let @5 match 13 on p, po and ps, 55 (ps) = ¥ (ps)
and choose 1% (p,) so that ¢s(ps) € { D) (py), S0 (ps) }. We
conclude that if G5 is class A, then G is class A, and if G5 is class B,
then G is class B.

Obstruction D. lLe., a vertex x € N has two neighbors v;,v; € X. Assume
that ¢ < j. As G has girth at least 5 and |X| < 4, ¢ =1 and j = 4,
|L(v1)| = |L(vs)| = 3 and |L(ve)| = |L(v3)| = 2. The inspection of the
choice of X implies that |L(vs)| = 2. By Lemma 14, x is not adjacent
to p1 and ps. Since the girth of G is at least 5, x is not adjacent to py
and Pr—1-

Suppose that x is not adjacent to ps. Choose a color ¢ € L(z) \
{o(v1),o(vs)}. Let Gy = G' — x and let Ly be the assignment ob-
tained from L’ by removing ¢ from the lists of neighbors of x. Let N,
be the set of vertices of V(G3) \ (V(P) U {vs}) that are adjacent to
vy, x or vy in G, excluding vs. Each vertex in N, is adjacent to only
one of v;, x or v;, as G has girth at most 5. Furthermore, the vertices
in Ny form an independent set—if vertices z1, 29 € N, were adjacent,
then, since the girth of GG is at least 5, say z; would be adjacent to
vy and z3 to vy. However, by (1) vizvsze21, and = would have degree
two. Similarly, no vertex of N, is adjacent to pi or vs. By Lemma 14,
|L(v)| = 3 for any v € Ny, and no neighbor u of a vertex of Ny satisfies
u=pioru¢gV(P)and |L(u)| = 2. We conclude that L, is a valid list
assignment to GG, with respect to the path P’

If 9 extended to an Ly-coloring of GGo, then it would also extend to an
L-coloring of GG, hence this is not the case. By the minimality of G,
we can apply Theorem 6 to a P’-skeleton of G5, and we conclude that
pr_1 is bad in G5 with the list assignment L,. Since NoU{py} forms an
independent set and no vertex of this set is adjacent to another vertex
with list of size two, it follows that there exists a path py_1212023 C Gy
with z; € Ny U {pr}, |L(22)| = 3 and either z3 = p; or |L(z3)| = 2.
However, this contradicts Lemma 14.

Therefore, x is adjacent to p3. Since x is not adjacent to ps_1, it follows
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that ¢(P) = 4. By (1), pspapsvix is a b-face. If L(vy) # L(v3) or
L(v1) # L(ve) U{®(ps)}, then there exists a color ¢; € L(vy)\ {(ps5)}\
(L(va)NL(v3)). Observe that that for any ¢4 € L(vy4), the path vyvov304
can be L-colored so that v; has color ¢; and v, has color ¢4. Let Gz =
G —{p4, ps, v1, V2, v3} and let Lz be the list assignment obtained from L
by removing ¢; from the list of z, and setting L3(p1) = {¥(p1), ¥(p2)}-
By Lemma 14, x is not adjacent to p; or a vertex v with |L(v)| = 2,
hence L3 is a valid list assignment for (G35 with respect to the path pops.
By the minimality of G, the precoloring of pops given by ¢ extends
to an Ls-coloring of (G5, and further to an L-coloring of GG, which is a
contradiction. Therefore, L(vy) = {1 (ps), c2,¢c3} and L(vg) = L(vs) =
{c2, c3} for some colors ¢; and c¢3, and {1(ps)} = L(vy)\L(vq). It follows
that any precoloring ¢’ of P that is {ps}-different from 1) extends to
an L-coloring of G.

Furthermore, L(z) = {1(p3), c2,c3}, as if say ¢y € L(z), then we could
instead define L3(z) = L(x) \ {c3}, and if ¥(p3) € L(x), then we could
define L3(x) = (L(x) \ {c2,c3}) U {¢(p3)}, obtaining a contradiction in
the same way. Therefore, {¢(p3)} = L(z) \ L(vs), and any precoloring
Y’ of P that is {ps}-different from 1) extends to an L-coloring of G. Let

¢R - w a’nd R = {p37p5}-

We proved that ¢(P) = 4. Furthermore, we proved that G does not
contain Obstructions A and C, and if G contains Obstruction B or D, there
exists a set R C V/(P) and coloring 1 of P such that ps € R, {ps3, ps}NR # 0,
any precoloring v’ of P that is R-different from 1 extends to an L-coloring
of GG, and if p3 € R, then p; is adjacent to a vertex with list of size two.

By symmetry of the path P, there exists a set S C V(P) and coloring
g of P such that p; € S, {p2,p3} NS # ), any precoloring v’ of P that is
S-different from g extends to an L-coloring of GG, and if p3 &€ S, then pj5 is
adjacent to a vertex with list of size two.

If p3 € R, then G is class B, with ¢(“"L) matching ¢z on p; and ps
and (@) (p)) = 9g(p1). Symmetrically, if ps € S, then G is class B. If
ps € RUS, then G is class A, with (") matching vz on ps and ps and
g on p; and po. This is a contradiction. ]

3 Ciritical graphs with outer face of length 12

Theorem 4 (and Lemma 8) provides a characterization of the plane F-critical
graphs of girth 5, where F’ is the outer face of length at most 12. If /(F') < 11,
the complete list of F-critical graphs is provided, however for ¢(F') = 12, only
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a necessary condition (every second vertex of F' is a 2-vertex incident with
a b-face) is given for one subclass of the critical graphs. Here, we show that
this subclass in fact contains only one graph.

Lemma 16. Let G be a plane graph of girth at least 5, with the outer face
F bounded by an induced cycle of length most 12. Furthermore, suppose that
every second verter of F' has degree two and is incident with a 5-face. Let L
be a list assignment of lists of size three to the vertices of V(G) \ V(F). If
G is proper F-critical, then G is isomorphic to the graph in Figure 2.

Proof. Let G be a graph satisfying the assumptions of the lemma, and assume
as the induction hypothesis that any such graph G’ with |V (G')| < |V (G)] is
isomorphic to the graph in Figure 2. Let F' = v vy ...v19, Where vg, vy, ...,
V1o are vertices of degree two incident with 5-faces. In particular, vy, vs, ...,
v11 have degree at least three.

The face f has no 2-chord.

(4)
Otherwise, we may assume that there exists a vertex v adjacent to v; and vy,
for 5 < k£ < 7. We may also assume that v is not adjacent to a vertex v; with
2<1<k-—1,thus C =vvy...v,0v is an induced cycle of length at most 8.
Since v, is incident with a 5-face, the open disk bounded by C' contains at
least one vertex, contradicting (1).

Suppose that there exists a 2-chord @) = v;zyv; such that |i — j| # 2, i.e.,
such that no cycle of QU F' bounds a 5-face. We may assume that ¢ = 1 and
j < 7. By the previous paragraph, the cycle C' = v; ...v;yz is induced, and
since vy is incident with a 5-face, the open disk bounded by C contains at
least one vertex. By Lemmas 7 and 8, 7 = 7 and there is exactly one vertex
v of degree three in the open disk bounded C. However, this is not possible,
as v cannot have two neighbors in F'. It follows that

if Q 1s a 2-chord of F', then QQ U F contains a 5-cycle.
(5)
Consider now a 3-chord v;zyzv;. Again, we assume that ¢ =1 and 7 < 7.
Observe that the cycle C' = v, ...v;zyx is either the union of two 5-faces
(with j = 5 and y adjacent to v3), or induced. Assume that C is induced.
As in the previous paragraph, we exclude the case j < 6, thus 7 = 7. Let
C" = vqvg ... vgvizyz. By (4) and (5), C' is an induced cycle. We apply
Lemmas 7 and 8 to the 10-cycles C' and C’. By the constraints on the
degrees of vertices and sizes of the faces incident with F', we conclude that
there are the following possibilities for C' (and symmetrically, for C"):
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(a) there is a 5-cycle inside C, and the vertices of this 5-cycle are adjacent
to vy, vs, vs, vy and y, or

(b) there are two adjacent vertices u; and us inside C', u; is adjacent to vs
and x and u, is adjacent to v5 and z.

As each of x, y and z has degree at least 3, the configuration (a) must
appear in C' and the configuration (b) in C” (or vice versa), implying that G
is the graph depicted in Figure 2. Therefore,

any 4-chord together with a path in I bounds a cycle K such that the closed
disk bounded by K is a union of two 5-faces.
(6)

If all the vertices vy, vs, ..., v1; had degree three, then G —V (F) would be
a 6-cycle K and all vertices of K would have degree three in G, contradicting
Lemma 11. Therefore, assume that vs has degree at least 4. Consider a
coloring ¢ of F that does not extend to an L-coloring of G. Let G' =
G — {v12,v1, V9, V3,4, U5, Ug} and let L’ be the list assignment obtained from
L by removing the colors of vy, v3 and v5 from the lists of their neighbors and
setting L'(v7) = {p(v7), ¢(vs)} and L'(v11) = {@(v11), p(v10)}. As ¢ does not
extend to an L-coloring of G, G’ together with L’ and the path P = vgvgvqg
must violate assumptions of Theorem 6. Observe that as vs has degree at
least 4, (4), (5) and (6) imply that L’ is a valid list assignment. It follows
that both vg and vy are bad. Note that v; is the only vertex with list of size
two adjacent to vg, and by (4), v; is not adjacent to any vertex with list of
size two. Therefore, there exists a path vgvyzyz with |L'(y)| = |L'(2)] = 2.
By (4) and (5), y is adjacent to vs, 2z is adjacent to vz and vs has degree
three. Symmetrically, since vy is bad, v; has degree three. Similarly,

if v; € V(F) has degree greater than three, then v;_s and v;yo have degree
three.
(7)

For every vertex v; € V(F') of degree three, let z; be the neighbor of v;
that is not incident with F'. Consider now the case that v;, v9 and v;; have
degree three. Then, G contains an 8-cycle C' = v3xz52729211 21y, Where x and
y are neighbors of v3. By (1), at least one of x and y has degree two, which
is a contradiction.

Suppose now that vy and v;; have degree three, and thus v; has degree
greater than 4. Consider the 10-cycle C' = vsrzsuvswzgz1121y. Since x, y, u
and w have degree at least three, Lemmas 7 and 8 imply that the open disk
bounded by C' contains a 5-cycle D with vertices adjacent to vy, x, u, w and
z11. However, then the subgraph G — V(F) contradicts Lemma 11.
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By symmetry, it is also not the case that both v; and vy have degree three.
Suppose that vg has degree greater than three. By (7), v; and vy; have degree
three. We applying Lemmas 7 and 8 to the 10-cycle C' = yvsxrzszruvgwz1121.
Since z, y, u and w have degree at least three, the open disk bounded by C
contains two adjacent vertices p; and ps, with p; adjacent to x and u and ps
adjacent to w and y. However, the 4-chord vsxpuvy contradicts (6).

Therefore, we may assume that v; and v, have degree greater than three
and vg has degree three. Consider the induced 12-cycle

C = V3T 185L2V7T329L4V11T521%6

,and let Y =V(G)\ (V(F)UV(C)) and Gy =G — (V(F) \ V(C)). By (4)
and (5), C is an induced cycle. By Lemma 8 and the induction hypothesis
applied to Gy whose outer face is bounded by C,

(a) G[Y] is a tree with at most 4 vertices, or

(b) G[Y] is a connected unicyclic graph consisting of a 5-cycle K and at
most two other vertices, or

(c) Gy is isomorphic to the graph in Figure 2.

By (6), each vertex in Y is adjacent to at most one vertex of C'. On the other
hand, each of x1, xs, ..., x¢ has at least one neighbor in Y, hence |Y| > 6,
excluding the case (a).

Consider the case (b). Since |Y| > 6, G[Y] contains at least one vertex
not belonging to K. As G[F] is unicyclic, it contains a vertex v of degree
one. As the degree of v in G is at least three, v has at least two neighbors in
C', which is a contradiction.

Finally, consider the case (c), i.e., Gy is the graph in Figure 2, with x,
..., xg being the > 3-vertices in the outer face. We may assume that x; and
x4 are the vertices of degree four. Let H be a 2-connected component of
G — (V(F)U{x, x4} such that |V(H)| > 2. Then all vertices of V(H) have
degree three in G and H is not an odd cycle, contradicting Lemma 11. [

The description of the critical graphs with outer face of length at most
12 follows:

Corollary 17. Let G be a plane graph of girth at least 5, with the outer
face ' bounded by an induced cycle of length at most 12. Let L be a list

assignment of lists of size three to the vertices of V(G) \ V(F). If G is
proper V (F)-critical graph, then

o ((F)>9 and G —V(F) is a tree with at most {(F') — 8 vertices, or
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e /(F)>10 and G — V(F) is a connected graph with at most {(F) — 5
vertices containing exactly one cycle, and the length of this cycle is 5,
or

o (G is the graph in Figure 2.

4 4-critical graphs

In this section, we prove Theorem 5. Let us note that several of the ideas
(the face weights, dealing with the possibly non-critical graphs created by
the reductions) used in this proof are inspired by the approach of Dvorék et
al. [3]. However, the basic ideas of the proofs are quite different (discharging
vs. precoloring extension). It should be noted that our approach gives better
bounds on the sizes of the critical graphs.

Let w : ZT — R be the function defined in the following way: w(z) = 0
for v <4, w(5) =1/7 and w(z) = x — 5 for > 6. Note the following basic
properties of the function w:

e w is non-decreasing
o for every x > 5, w(x) <x — 5+ w(b)
o for every x <y, w(z) —w(zx —1) <w(y) —w(y —1)
The consequence of the last of these properties is the following:

Ifv+y=2zand x,y > m, then w(z) +w(y) < w(z —m) + w(m).
(8)

Let GG be a plane graph with the outer face F', and let F(G) be the set of
faces of G excluding the outer face F'. Let the weight w(G) of G be defined
as w(G) = Zfef(G) w(l(f)).

Let E; be the set of all cycles of length at least 5. Let E5 be the set
of plane graphs G of girth at least 5 with outer face F' bounded by a cycle
such that G — I consists of a chord of F'. Let E3 be the set of plane graphs
G of girth at least 5 with outer face F' bounded by an induced cycle such
that V(G) \ V(F) consists of a single vertex of degree three. A graph G is
exceptional if G € E1 U E5 U E5. Note that if G is exceptional, then

o w(G) <w(l(F)), and
o if G ¢ Fy, then w(G) <w(l(F)—3)+ w(b), and
o if G & FEy U Es,, then w(G) < w(l(F) —4) + 2w(5).
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We prove the following claim, which implies Theorem 5.

Theorem 18. Let G be a plane graph of girth at least 5 with the outer face
F, and L an assignment of lists of size three to vertices of V(G) \ V(F).
If G is a non-exceptional F-critical graph, then ((F) > 10 and w(G) <
w(l(F)—5) + bw(5).

Note that the bound in Theorem 18 is tight for the graph G whose outer
face F' is bounded by an induced cycle, G — V (F)) is 5-cycle C, every vertex
of C has degree three in G and G has only one face of length greater than 5
distinct from F.

Before we proceed with the proof of the theorem, let us introduce several
definitions and auxiliary results. Let G be a plane graph of girth at least 5
with the outer face F. A jump in G is a subgraph of G consisting of two
b-faces vivavsyx and vzvsvs2zy such that the path vyvevgvsvs (the base of the
jump) is a part of the facial walk of F' and x,y,z &€ V(F'). The path vyzyzvs
is called the body of the jump. The internal vertices of the jump are vy, vs,
vy, x, y and z. Two jumps are disjoint if the sets of their internal vertices are
disjoint. A peeling of G is the subgraph H obtained by removing the internal
vertices of the bases of at most two disjoint jumps. Let B be the outer face
of H. Note that /(B) = {(F') and w(G) < w(H)+4w(5). Also, by Lemma 7,
if G is F-critical, then H is B-critical.

Lemma 19. Let G be a plane graph of girth at least 5 with the outer face F'
and L an assignment of lists of size three to vertices of V(G) \ V(F). If G
15 a proper F-critical graph, then at least one of the following holds:

(a) the outer face of a peeling of G is not bounded by an induced cycle, or
(b) the outer face of a peeling of G has a 2-chord, or
(c) F contains two adjacent vertices of degree two, or

(d) a peeling H of G with the outer face B has a 3-chord @ such that no
cycle in B U @Q distinct from B bounds a face of G, or

(e) a peeling H of G with the outer face B has a 4-chord (Q = vovv9v304
such that for each cycle K C BUQ distinct from B, the subgraph of G
drawn in the closed disk bounded by K s equal neither to K nor to K
with exactly one chord incident with vy, or

(f) there exists a path uvwz C G such that u,v,w,z & V(F) and each of
u, v, w and x has a neighbor in F', or
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(g9) there exists a 4-chord Q) = vov1vav3vy of the outer face B of a peeling
H of G such that a cycle C'C BUQ distinct from B bounds a face of
G and H contains a jump intersecting C' in vouy, or

(h) there exist a 4-chord () = vov1v2v3v4 of the outer face B of a peeling
H of G and 5-faces Cy and Cy of H such that a cycle C C B U Q
distinct from B bounds a face of G, |V(Ci N B)| = |V(CyN B)| = 3,
CiNC =gy and C1 N C = v3vy.

Proof. Suppose that none of (a-h) holds. Then the outer face of G is an
induced cycle, and since G is F-critical, G is 2-connected. By Lemma 8§,
since (b) is false, ¢(F) > 10.

Let X be the set of vertices of V(G) \ V(F') that have a neighbor in F.
Since (b) is false, each vertex of X has exactly one neighbor in F. Since
(c) and (d) are false, if x1, 2o € X are adjacent, then there exists a unique
b-face f(x1xe) = x1x2v1V2v3, Where v109v3 is a part of the facial walk of F.
Similarly, if 212523 is a path with 1, x9, 3 € X, then the 5-faces f(x122) and
f(zax3) intersect F' in consecutive segments. It follows that G[X] is either a
cycle, or a union of paths. Note that G[X] cannot be a cycle of length three,
since the girth of G is at least 5. Since (f) is false, G[X] is a union of paths
of length at most two.

For i € {0, 1,2}, let X; be the set of vertices © € X such that the maximal
path in G[X] that contains = has length i. Note that each path P in G[X5]
corresponds to a jump; let this jump be denoted by j(P). Let Y be the set
of vertices of V(G) \ (V(F) U X3) that have a neighbor in X,. Note that
XNy =0.

Suppose that a vertex y € Y has two neighbors in X. Let x; be a neighbor
of y in Xy and x5 € X another neighbor in X. Note that F' has a 4-chord
Q = vizyrevs. As X NY = (), y is not adjacent to a vertex of F, and
since (e) is false, Q) U F' contains a cycle K # F bounding a face. However,
the 4-chord () together with the jump containing x; implies that G satisfies
(g), which is a contradiction. Therefore, each vertex in Y has exactly one
neighbor in X (and this neighbor belongs to X5).

Consider now two adjacent vertices y1,y, € Y. For i € {1,2}, let J; be
the jump in that y; has a neighbor. Suppose that J; # Jy, and let H be
the peeling of G obtained by removing the internal vertices of the base of J;.
Let B be the outer face of H. Then B has a 4-chord ) = x1y1ysx9v, with
x; belonging to the body of J;, for i € {1,2}. Note that y, does not have
a neighbor in B, as y» ¢ X, and since (e) is false, ) U B contains a cycle
K # B bounding a face of G. However, () together with the jump Js implies
that G satisfies (g), which is a contradiction. It follows that J; = Jy, and
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as G has girth at least 5, y;92 together with a path in X, (a subpath of the
body of J;) bounds a 5-face f(y1y2). As both neighbors in X of the vertices
of any edge y1y» € F(G[Y]) must belong to the same jump, we conclude that
E(G[Y]) does not contain a path of length two.

Let Y7 C Y be the set of vertices that are incident with an edge in G[Y].
Note that G[X; UY]] is 1-regular. Suppose that a vertex v € V(G)\ (V(F)U
X UY) has two neighbors 21,20 € X; UY;. For i € {1,2}, let 2. be the
neighbor of z; in X; UY}, and v; the neighbor of z; in f(z;2]) distinct from z;.
There exists a peeling H of G with the outer face B such that f(z;2]) —{z;, 2}
is a subpath of B for i € {1,2}. Then, Q) = v121v2905 is a 4-chord of B. As
v ¢ X UY, v does not have a neighbor in B, and since (e) is false, Q U B
contains a cycle K # B bounding a face of G. However, () together with the
faces f(z12]) and f(z225) implies that G satisfies (h), which is a contradiction.
Therefore, no vertex in V(G) \ (V(F)UX UY) has two neighbors in X; UY].

As G is critical and G # F, there exists a precoloring ¢ of I’ that does
not extend to an L-coloring of G. Since each vertex of X, has list of size
three, only one neighbor in F' and G[X5] is a union of paths, there exists an
L-coloring 11 of G[V (F)UXs] extending v. Let G; = G—(V(F)UX5) and let
Ly be the list assignment for GG; such that L, (v) = L(v) if v has no neighbor
in V(F)U X, and Li(v) = L(v) \ ¥1(x) if z € V(F) U X, is the (unique)
neighbor of v. Note that each vertex of (G; has list of size at least two, and
the set of vertices with lists of size two is a subset of Z = XoUX;UY. As we
proved in the previous paragraphs, G[Z] does not contain a path of length
three and there does not exist a path zy20v2324 C G with 21, 29, 24, 25 € Z.
Therefore, G; with the list assignment L, satisfies assumptions of Theorem 3
and G, has an L;-coloring ¢. However, i); U ¢ is an L-coloring of G that
extends 1), which is a contradiction. [

The following claims allow us to deal with the configurations described
in Lemma 19.

Lemma 20. Let G be a plane graph of girth at least 5 with the outer face F
and L an assignment of lists of size three to vertices of V(G)\V(F). Suppose
that G is a non-exceptional F-critical graph and H s a peeling of G. Then
H s not exceptional.

Proof. Suppose that H is exceptional. Since G is not exceptional, there exists
a jump J C G such that the body vixyzvs of J is a part of the boundary of
the outer face of H. As H is exceptional, z or z (say x) has degree two in H.
However, then = has degree two in GG as well, contradicting the criticality of

G. ]
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Lemma 21. Let G be a plane graph of girth at least 5 with the outer face F
and L an assignment of lists of size three to vertices of V(G)\V (F). Suppose
that G' 1s a non-exceptional F-critical graph and H is a peeling of G with the
outer face B such that B is not an induced cycle. Let Hy and Hy be induced
subgraphs of H such that H = H; U Hy, Hy # Hy N Hy # Hy and Hi N Hy
18 either a vertex of B, or a chord of B. Let B; be the outer face of H; for
ie{l,2}. If Hi,Hy € Fy, then ((F) = {(B;) + {(Bs).

Proof. If H; N Hy is a chord of B, then H € FE5 contrary to Lemma 20. It
follows that £(F) = £(By) + {(Bs). O

Lemma 22. Let G be a plane graph of girth at least 5 with the outer face
F and L an assignment of lists of size three to vertices of V(G) \ V(F).
Suppose that G is a non-exceptional F'-critical graph and H s a peeling of
G with the outer face B bounded by an induced cycle. Let () be a 2-chord of
B and Hy, Hy # Q be induced subgraphs of H such that H = H, U Hy and
H NnHy,=0Q. If HA € F, then Hy ¢ E1 U E,. Furthermore, if Hy € Ej,
then w(G) < w(H) 4 2w(5).

Proof. If Hy € FEy, then the vertex of V(Q) \ V(B) has degree two, contra-
dicting the criticality of G. If Hy, € 5, then H € F3, contrary to Lemma 20.
Suppose for a contradiction that Hy € F3 and w(G) > w(H) + 2w(5H), i.e.,
H was obtained from GG by removing the internal vertices of the bases of two
jumps J; and J,. Let z; and y; be the internal vertices of the bodies of J;
that have degree two in J;, for ¢ € {1,2}. Since x1, y1, z2 and y, have degree
greater than two in G, each of them is adjacent to a vertex of V(H) \ V(B).
However, then each vertex of V(G) \ V(F') has degree three, G — V(F) is
2-connected and not an odd cycle, which contradicts Lemma 11. ]

Lemma 23. Let G be a plane graph of girth at least 5 with the outer face F
and L an assignment of lists of size three to vertices of V(G)\V(F). Suppose
that G is a non-exceptional F'-critical graph that does not have properties (a)
and (b) of Lemma 19, and that vi and ve are two adjacent vertices of degree
two in G. Let G be the graph obtained from G by identifying vy with vs,
and Fy the outer face of Gy1. Then ((Fy) = ((F)—1, G is a non-exceptional
Fy-critical graph and the girth of Gy is at least 5.

Proof. Note that v,vy € V(F'), and thus ¢(Fy) = ((F) — 1. Let vgviv9v3 be
the subpath of F' containing v; and vy. Since G does not satisfy (b), vy and
v3 do not have a common neighbor, and thus the girth of GG; is at least 5.
Also, for any precoloring ¢ of F' there exists a precoloring 1 of F| matching
Y on V(F)\ {v1,v2}, and 9 extends to an L-coloring of a subgraph of G if
and only if 1, extends to an L-coloring of the corresponding subgraph of G,
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thus G is Fj-critical. Since GG is not exceptional and subdividing an edge of
the outer face of an exceptional graph results in an exceptional graph, G is
not exceptional. ]

Lemma 24. Let G be a plane graph of girth at least 5 with the outer face F
and L an assignment of lists of size three to vertices of V(G)\V (F). Suppose
that G is a non-exceptional F'-critical graph that does not have properties (a)
and (b) of Lemma 19. Let QQ be a 3-chord of B and Hy, Hy # Q be induced
subgraphs of H such that H = Hy U Hy, Hi N Hy = Q and H{,Hy ¢ E;.
Then at least one of Hy and Hy is not exceptional.

Proof. Since G does not have the properties (a) and (b), H — V(B) is not a
tree, thus |V(H)\V(B)| >5V(H)\V(B)\V(Q)| > 3. This implies that at
least one of H; and H, has at least two vertices not incident with the outer
face, and thus it is not exceptional. ]

Lemma 25. Let G be a plane graph of girth at least 5 with the outer face F'
and L an assignment of lists of size three to vertices of V(G)\V(F). Suppose
that G is a non-exceptional F'-critical graph that does not have properties (a)
and (b) of Lemma 19. Let QQ = vovivov3vy be a 4-chord of B and Hy, Hy # Q
be induced subgraphs of H such that H = H, U Hy, Hi N Hy = Q and for
i € {1,2}, H; & Ey and if H; € E,, then vy has degree two in H;. Then
Hi,,Hy & E5, and at least one of Hy and Hy is not exceptional.

Proof. Suppose that say H; € E5, and let B; be the outer face of H;. Since
the chord of B; is not incident with vy, B has either a chord or a 2-chord,
contradicting the assumption that G does not have properties (a) and (b).
Since the girth of G is at least 5, if H; € E5, then at least two of vy, vy
and v3 have degree two in H;,. Symmetrically, if H, € Fs3, then at least two
of v1, v9 and w3 have degree two in Hs. Therefore, if Hi, Hy € Es5, then at
least one of vy, v, and v3 has degree two in (G, which is a contradiction. It
follows that at most one of H; and H, is exceptional. O

We are now ready to prove the main theorem of this section.

Proof of Theorem 18. We proceed by induction on ¢(F) and the number of
edges of G. If /(F) < 11, then the claim follows from Lemma 8. Suppose
that ¢(F) > 12 and Theorem 18 holds for all graphs with the outer face of
length at most ¢(F') — 1, as well all graphs with outer the face of length ¢(F')
and fewer edges than G.

The graph G satisfies at least one of the conclusions of Lemma 19. If
G has the property (a), then let Hy, H C G be the subgraphs of G as in
Lemma 21, with outer faces By and Bs. Note that ¢(By) + ((By) < L(F) + 2,
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and thus ¢(B;),4(Bs) < {(F) — 3. By Lemma 7, H; is B;-critical for i €
{1,2}. If {Hy,Hs} € Fi, then by symmetry assume that H; ¢ F;. By
the induction hypothesis, w(H;) < w(f(B1) — 3) + 2w(5), and thus w(G) <
w(H) +4w(5) = w(Hy) +w(Hz) +4w(5) < w(f(By) —3) +w(l(By)) + 6w (5).
Note that ¢(B;) > 8 and ¢(By) > 5, thus by (8), w({(B;) — 3) + w({(By)) <
w(l(By) + U(By) — 8) + w(3) < w(l(F) — 6) +w(5) < w(t(F) — 5) — w(5).
We conclude that w(G) < w(l(F) —5) + 5w(5).

On the other hand, if Hy, Hy € E1, then w(G) = w(H;)+w(Hy)+4w(5) =
w(l(By)) + w(l(Bs)) + 4w(b) < w(l(By) + ¢(B2) — 5) + bw(b) = w(l(F) —
5) + 5w(5). Therefore, we may assume that G does not have the property
(a). This implies that G is 2-connected.

Suppose that G has the property (b). Let @), H; and Hs be the subgraphs
of G as in Lemma 22, and let B; and B, be the outer faces of H; and Ho,
respectively. Note that ¢(B;) + ¢(By) = ((F) + 4, and since the girth of
G is at least 5, it follows that ¢(B;),¢(By) < ((F). If {Hy, Hy} N Ey # 0,
then by symmetry assume that H; € F£;. By Lemma 22, Hy, & F; U Es.
By the induction hypothesis and Lemma 22, if Hy, € FEj3, then w(G) <
w(Hy) + w(Hy) + 2w(b) < wl(By)) + wl(By) —4) + 4w(5). If Hy € Ej,
then w(G) < w(Hy) + w(Hz) + 4w(5) < w(l(By)) + w(l(Bz) —5) + 9w(5) <
w(l(By))+w(l(By)—4)+4w(5). By (8), w(¢(B1))+w(l(By)—4) < w(l(B1)+
((B3)—9)+w(5) = wl(F)—5)4+w(5), and thus w(G) < w(l(F)—5)+5w(5).

On the other hand, it Hy, Hy € F1, then w(G) < w(Hy)+w(Hy)+4w(5) <
w(l(By) —3) + wl(Bs) — 3) + 6w(d) < w(l(By) + ¢(By) — 11) + Tw(5) =
wl(F)—=17)+7w(5) < w(l(F)—>5)+5w(5). Therefore, we may assume that
G does not have the property (b).

Suppose that v; and v, are adjacent vertices of degree two in G, and
let G; and F) be as in Lemma 23. Let f # F be the face of GG incident
with vjvg. Then ¢(f) > 6 and w(G) = w(Gy) + w(l(f)) —wl(f) —1). By
induction hypothesis, w(G1) < w(l(Fy) —5) + 5w (5) = w(l(F) — 6) + bw(5).
This implies that ¢(f) — 1 < {(Fy) = {(F) — 1. We conclude that w(G) <
w(l(F)—6)4+w(l(f))—w((f)—1)+dbw(5) < w(l(F)—5)+5w(5). Therefore,
assume that G does not have the property (c).

Suppose that G has the property (d). Let @), H; and Hs be the subgraphs
of G as in Lemma 24, and let B; and B, be the outer faces of H; and H,,
respectively. Note that ¢(B;) + ¢(By) = ¢(F) + 6. Since Hy, Hy & FE;, we
have ((By), {(Bs) > 8, and thus ¢(B;),{(Bs) < {(F). By Lemma 24, we may
assume that B, is not exceptional, and thus ¢(B) > 10. By the induction
hypothesis, w(G) < w(H;)+w(Hy)+4w(5) < w(l(By) —3)+w(l(By) —5)+
10w(5). By (8), w(¢(B1) —3) +w({(Bs) —5) < w({(B1) +{(By) — 13) +w(5),
and thus w(G) < w(l(F) —7) + 11w(5) < w(l(F) —5) + 5w(5). Therefore,
assume that G does not have the property (d).

)+
(B
Bw
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Suppose that G has the property (e). Let (), H; and Hs be the subgraphs
of G as in Lemma 25, and let By and By be the outer faces of H; and Ho,
respectively. By Lemma 25 and symmetry, we assume that H; ¢ E;UFE; and
H, is not exceptional, and thus ¢(B;) > 9 and ¢(Bs) > 10. Note that ¢(B;)+
((By) = (F) + 8, hence ¢(By),¢(By) < (F). By the induction hypothesis,
w(G) < w(Hy) +w(Hy) + 4w((b) < w(l(By) —4) + w(l(Bs) — 5) + 11w(5).
By (8), w({(By) —4) + w({(Bs) — 5) < w(l(By) + {(Bs) — 14) + w(5), and
thus w(G) < w(l(F) —6) + 11lw(b) < w(l(F) —5) + bw(5). It follows that
we can assume that G does not have the property (e).

Suppose that G has the property (f). Since G does not have the properties
(a-d), there exists a path vgv;...vg C F such that u is adjacent to vy, v to
vy, w to vy and x to vg, and the closed disk bounded by vgv; ... vgrwvu
consists of three 5-faces of G. Let G' = G — {vy,vs,...,v5} and let F’ be
the outer face of G'. Observe that G’ is F'-critical, ¢(F') = ¢(F) — 1 and
w(G) = w(G') + 3w(5). Since u and x have degree at least three in G, they
have degree at least three in G’. Also, u is not adjacent to x, since the
girth of G is at least 5, thus G’ € E; U E5. By the induction hypothesis,
w(G) < wl(F') —4)+2w(5) = wl(F) —5) + 2w(5). We conclude that
w(G) < w(l(F) —5) + 5w(b). Therefore, assume that G does not have the
property (f).

Let us now prove the following claim:

Let H be a peeling of G with the outer face B, and ¢ a precoloring of B
that does not extend to an L-coloring of H. Let () = wvyviv9v3v4 be a 4-
chord of B such that a cycle C # B in B U Q bounds a face of G. Then,

L(v1) € L(vz) U {tp(vo)}. (9)

Proof. Suppose for a contradiction that there exists a color ¢ € L(vy)\ L(v2)U
{1)(vg)}. Let d be a new color that does not appear in the lists of any of
the vertices of V(H) \ V(B). Let Ny C V(H) \ V(B) be the set of vertices
that are adjacent to v; and Ny C V(H) \ V(B) be the set of vertices that
are adjacent to vs. Note that N; and N, are disjoint, since v; and v4 do not
have a common neighbor other than vj.

If vy is adjacent to vy, then let H;y = H — wvgvy, otherwise let H; =
H—(V(CY\V(Q)). Let Hy be the graph obtained from H; by identifying v,
with v4 to a new vertex v, and let H3 = Hy — vv9. Let B’ be the outer face
of Hy. Let L’ be the list assignment obtained from L by replacing the color
c in the lists of vertices of N; and the color ¢(v,) in the lists of vertices of
N> by d. Let H' be a B’-skeleton of H3 with respect to the list assignment
L’. Note that ¢(B") =4(F)+5—4(C) </{(F) and |[E(H")| < |E(G)|.
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Suppose that H' contains a cycle K’ of length at most 4. Note that
v € V(K') and K’ corresponds to a path P of length ¢(K’) between v; and
vy in H such that vivy € E(P). Since the girth of G is at least 5, the shortest
path in between v; and vy in H — v1v5 has length at least 4, thus vy & V(P).
It follows that P U vivev3v, contains a cycle of length at most 7 containing
the path vivov3. By (1), such a cycle bounds a face, implying that v, has
degree two. This is a contradiction, thus H' has girth at least 5.

Let 9" be the precoloring of B’ that matches ¢ on V' (B’)\ {v} and ¢'(v) =
d. Suppose that 1)’ extends to an L’-coloring of H’, and thus also to an L'-
coloring ¢’ of Hz. By the choice of ¢, ¢ ¢ L(vs), and thus d ¢ L'(vs). It follows
that no vertex of Hj3 except for v is colored by d. Also, no vertex of Ny U{vg}
is colored by ¢ and no vertex of Ny is colored by v (v4). Therefore, the coloring
@ given by ¢(v1) = ¢ and p(w) = ¢'(w) for w € V(H) \ (V(B) U {v,} is an
L-coloring of GG extending v, which is a contradiction. We conclude that 1’
does not extend to an L’-coloring of H’, and thus H' ¢ FE;. Since G does
not have properties (a) and (b), B’ does not have a chord and no vertex of
H' has more than two neighbors in B’, thus H' ¢ E; U E3, and H' is not
exceptional and ¢(B’) > 10.

As H' has fewer edges than GG, by the induction hypothesis we get w(H') <
w(l(B'") — 5) + bw(5). Therefore, every face f € F(H') has length at most
0(f) < UB)—5=1L0F)—{C) < {(F).

Consider H' as a subgraph of Hy. Let fo be the face of Hz such that the
edge vvy of Hy is drawn in the open disk bounded by fy, and let K, be the
cycle in H obtained from fy by replacing v by the path C' — {vs,v3}. For
a cycle K C H, let H(K) be the subgraph of H drawn in the closed disk
bounded by K. Note that w(H) = w(H (Ko)) + > jerm sy WH (f)). For
each face f € F(H') \ {fo}, the induction hypothesis implies w(H(f)) <
wl(f)). As vyvy € E(H(K))), we have H(Ky) ¢ F1, thus ((Ky) > 8 and
U(fo) = (Ky) —2 > 6. Since ((Ky) = U(fo) +4(C)—3 < U(F)—3 < {(F), by
the induction hypothesis we have w(H (Ky)) < w(l(fo) +4(C) —6) +w(5) <
w(l(fo)) +4(C) — 6+ 2w(5). Therefore,

wH) = wH(Ko)+ Y  w(H(f)

feF(H)\{fo}

IA

wl(fo)+ Y wl(f) | +6C) 6+ 2w(5)
FEF(H")\{fo}
w(H") 4+ 0(C) — 6 4 2w(5)
wl(B') = 5) + £(C) — 6 + Tw(5)
w(l(F) = 6(C)) + £(C) — 6 + Tw(5)

IA
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Figure 6: The configurations in properties (g) and (h).

< wl(F)—5)+8w(b) — 1.

It follows that w(G) < w(l(F) —5) + 12w(5) — 1 < w(l(F) — 5) + 5w(b),
which is a contradiction. ]

Since G does not have properties (a-f), we conclude that G has properties
(g) or (h), i.e., there exists a peeling H of G with the outer face B, and
Q) = vov1v9v3v4 a 4-chord of B such that a cycle C' # B in B U (@ bounds a
face C, and either

e a jump with base wiwowsw4vg and body wyxx9v1vg, or
e two H-faces wiwovgu1x1 and wiwav4V3To, With wiwavy, wswsvy C B.

See Figure 6 for an illustration. In the former case, let R = {ws, ws, wy, vg}.
In the latter case, let R = {ws, wy, vg, w4}

As H # B is B-critical, there exists a precoloring 1 of B that does
not extend to an L-coloring of H. Let X; = L(vy) \ {¢(v)} and X5 =
L(vs) \ ¥{vs}. By (9), Xi U X3 C L(vq), and since |X|,|X3| > 2 and
|L(vg)| = 3, there exists a color ¢ € X1NX;3. Let H; = G—(V(C)\V(Q))—R
and let Hy be the graph obtained from H; by identifying v; with v to a
new vertex v. Let B’ be the outer face of H,. Let H' be a B’-skeleton
of H,, with respect to the restriction of L to V(Hs) \ V(B’). Note that
UB") =LF)—0C)+4 < UF).

Suppose that H' contains a cycle K of length at most 4. Then v € V(K)
and H; contains a path P of length ¢(K) between v; and vsz. Note that
ve & V(P), since the girth of G is at least 5. Therefore, P U vjvyv5 is a cycle
of length at most 6, and by (1), it bounds a face. It follows that v, has degree
two, which is a contradiction. It follows that H' has girth at least 5.

Let 9" be the precoloring of B’ that matches ¢ on V(F) N V(B'), with
Y'(v) = c and the colors of x; € L(x;) and x5 € L(x) chosen so that v’
is a proper coloring of B’. Suppose that v’ extends to an L-coloring of H’,
and thus also to an L-coloring ¢’ of H,. Setting ¢(vi) = p(v3) = ¢ and
o(z) =¢'(z) for z € V(H) \ (V(B) U {vy,v3}, we obtain an L-coloring of H
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extending 1, which is a contradiction. Therefore, 1’ does not extend to G’,
and G’ ¢ F,. Furthermore, since G does not have properties (a), (b) and
(d), B’ has no chords and no vertex of H' has more than two neighbors in
B’, hence H’ is not exceptional and ¢(B’") > 10.

By the induction hypothesis, w(H') < w({(B’') —5) + bw(5) = w(l(F) —
((C)—1)+5w(b). It follows that each face of H' has length at most ¢(B’)—5
UF)—0(C)—1<UF).

Consider H' as the subgraph of Hy. If vuy & E(H’), then let f, be the
face of H' such that the closed disk bounded by f; contains the edge vv,.
Let Ky C H be the cycle obtained from f; by replacing v by the path C' —wv,.
Since v1vy, v3vy € E(H(Ky)), it follows that H(K,) € EqUE; and ¢(Ky) > 9.
Also, ((Ky) = U(fo) + £(C) — 2 < U(F) — 3. By the induction hypothesis,
w(H(Ko)) < w(l(Ko)—4)+2w(5) = w(l(fo) +{(C) —6)+2w(5) < w(l(fo))+
¢(C) — 6+ 3w(5). Also, for each f € F(H')\ {fo}, w(H(f)) < w(l(f)). If
vvy € E(H'), then we let Ky = C and w(H(Ky))) = w(C). Note that in
addition to the faces contained in the graphs H(f) for f € F(H')\{fo} and in
H(Ky), H has two more 5-faces. Since {(C')—6+3w(5) < w(C'), we conclude
that w(H) < w(H') +w(C) +2w((5) <w(l(F)—4(C)—1)+w(C) + Tw(b).

If ((F)—¢(C) = 6, then, since {(F) > 12, we have ((C') > 6 and w({(F)—
U(C)—1)4+w(C) = (U(F)—L(C)—6+w(5))+({(C)—=5) =L(F)—11+w(5) =
wl(F)=5)+w((5)—1. If {(F)—£¢(C) > 6, then w({(F)—¢(C)—1)+w(C) <

) —
) <

(L(F)—£(C)—6))+(C)=5+w(d)) =w(l(F)—>5)+w(5) — 1. Therefore,
w(H) <w((F)—5)+8w(5) — 1 and w(G) < w(l(F)—5)+ 12w((b) — 1 <
w(l(F) = 5) 4 5w(5). 0

Theorem 18 implies that the number of vertices of a ['-critical plane graph
of girth at least 5 is linear in ¢(F):

Proof of Theorem 5. If G is exceptional, then |E(G)| < ((F)+3 < 18((F) —
160, and |V(G)| < U(F)+1 < w , since ¢(F) > 10. Therefore, assume

that G is not exceptional.
For each > 5, we have w(z) > w(5)z/5. By Theorem 18,

20(5)|E(G)|/5 = wB(F)/5+ Y.

FEFF(G)
< wBUEF)/5+ Y w(l(f))
feF (@)
= wB)(F)/5+ w(G)
w(B)(F)/5+w(l(F)—5)+ 5w(b)

IA A

(1+w(5)/5)0(F) — 10 + 6w(5).
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Therefore, |E(G)| < (1 +5/w(5))l(F)/2 —25/w(5) + 15 = 18((F') — 160.
As the minimum degree of G is at least 2 and all vertices except for

those in f have degree at least three, we get 3|V (G)| — 4(F) < 2|E(G)| <

36((F) — 320, and hence |V (G)| < TAE=320, O

5 Concluding remarks

The bound on |V (G)| in Theorem 5 can be improved by ¢(F") /6 by a slightly
more involved argument, first eliminating < 2-chords and edges joining ver-
tices of degree two. However, the bound seems to be far from the correct one
for large values of ((F).

As the number of vertices of an F-critical graph is linear in ¢(F'), the
number of such graphs is at most exponential in ¢(F') (Denise et al. [1]). On
the other hand, every tree with k leaves and all internal vertices of degree
three gives rise to an F-critical graph with ¢(F") = 3k, thus the number of
F-critical graphs is exponential in ¢(F').

The proof of Theorem 18 can be converted to an algorithm to generate
the critical graphs in the straightforward way—each critical graph GG contains
a configuration described by Lemma 19, and this configuration can be used
to derive G from smaller critical graphs. This algorithm could be practical
for small values of ((F'), say ((F') < 20.

A slightly unsatisfactory part of the proof of Theorem 18 concerns dealing
with the cases (g) and (h) of Lemma 19, where the reduced graph H' is not a
subgraph of G drawn inside a cycle of GG. It would be more appealing to have
a proof that avoids such non-trivial reductions, giving a better understanding
of the structure of the critical graphs, as well as a faster algorithm to generate
them.
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