Choosability of planar graphs of girth 5

Zdeněk Dvořák*

Ken-ichi Kawarabayashi ${ }^{\dagger}$

Abstract

Thomassen proved that any plane graph of girth 5 is list-colorable from any list assignment such that all vertices have lists of size two or three and the vertices with list of size two are all incident with the outer face and form an independent set. We present a strengthening of this result, relaxing the constraint on the vertices with list of size two. This result is used to bound the size of the 3-list-coloring critical plane graphs with one precolored face.

1 Introduction

All graphs considered in this paper are simple and finite. The concepts of list coloring and choosability were introduced by Vizing [8] and independently by Erdős et al. [4]: A list assignment of G is a function L that assigns to each vertex $v \in V(G)$ a list $L(v)$ of colors. An L-coloring is a function φ : $V(G) \rightarrow \bigcup_{v} L(v)$ such that $\varphi(v) \in L(v)$ for every $v \in V(G)$ and $\varphi(u) \neq \varphi(v)$ whenever u, v are adjacent vertices of G. If G admits an L-coloring, then it is L-colorable. A graph G is k-choosable if it is L-colorable for for every list assignment L such that $|L(v)| \geq k$ for all $v \in V(G)$.

A well-known result of Grötzsch [5] states that any triangle-free planar graph is 3 -colorable. Since the cycles of length 4 can be easily eliminated, the main part of the proof of Grötzsch's theorem concerns graphs of girth 5. Generalizing this result, Thomassen [6] proved that every planar graph of girth at least 5 is 3 -choosable. In fact, he proved the following stronger claim:

Theorem 1. Let G be a plane graph of girth at least 5 and F a face of G. Let P be a path in G of length at most 5 , such that $V(P) \subseteq V(F)$. Let L be an assignment of lists to the vertices of G such that $|L(v)|=3$ for

[^0]$v \in V(G) \backslash V(F),|L(v)| \geq 2$ for $v \in V(F) \backslash V(P),|L(v)|=1$ for $v \in V(P)$, the lists of vertices of P give a proper coloring of the subgraph induced by $V(P)$, and a vertex v with $|L(v)|=2$ is not adjacent to any vertex u with $|L(u)| \leq 2$. Then, G can be L-colored.

Voigt [9] found a triangle-free planar graph that is not 3-choosable, thus the restriction on the girth of the graph in Theorem 1 cannot be relaxed without imposing further constraints on 4-cycles-Dvořák et al. [2] proved that Theorem 1 holds for triangle-free graphs as long as no 4 -cycle shares an edge with a cycle of length at most 5 .

On the other hand, the assumption of Theorem 1 that the vertices with lists of size 2 form an independent set is not the best possible. In fact, the following claim an easy consequence of Theorem 1 (see e.g. Thomassen [7], where a slightly stronger version allowing a precolored path of length at most 5 is derived):

Corollary 2. Let G be a plane graph of girth at least 5 and F a face of G. Let L be an assignment of lists to the vertices of G such that $|L(v)|=3$ for $v \in V(G) \backslash V(F),|L(v)| \geq 2$ for $v \in V(F)$, and

- G does not contain a path $v_{1} v_{2} v_{3}$ with $\left|L\left(v_{1}\right)\right|=\left|L\left(v_{2}\right)\right|=\left|L\left(v_{3}\right)\right|=2$,
- G does not contain a path $v_{1} v_{2} v_{3} v_{4}$ with $\left|L\left(v_{1}\right)\right|=\left|L\left(v_{2}\right)\right|=\left|L\left(v_{4}\right)\right|=2$, and
- G does not contain a path $v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}$ with $\left|L\left(v_{1}\right)\right|=\left|L\left(v_{2}\right)\right|=\left|L\left(v_{5}\right)\right|=$ $\left|L\left(v_{6}\right)\right|=2$.

Then, G can be L-colored.
However, even the assumptions of Corollary 2 turn out to be unnecessarily restrictive. We show the following strengthening:

Theorem 3. Let G be a plane graph of girth at least 5 and F a face of G. Let L be an assignment of lists to the vertices of G such that $|L(v)|=3$ for $v \in V(G) \backslash V(F),|L(v)| \geq 2$ for $v \in V(F)$, and

- G does not contain a path $v_{1} v_{2} v_{3}$ with $\left|L\left(v_{1}\right)\right|=\left|L\left(v_{2}\right)\right|=\left|L\left(v_{3}\right)\right|=2$,
- G does not contain a path $v_{1} v_{2} v_{3} v_{4} v_{5}$ with $\left|L\left(v_{1}\right)\right|=\left|L\left(v_{2}\right)\right|=\left|L\left(v_{4}\right)\right|=$ $\left|L\left(v_{5}\right)\right|=2$.

Then, G can be L-colored.

Figure 1: A counterexample for a strengthening of Theorem 6

The proof of this theorem is presented in Section 2. Let us note that the condition that G does not contain a path $v_{1} v_{2} v_{3} v_{4} v_{5}$ with $\left|L\left(v_{1}\right)\right|=\left|L\left(v_{2}\right)\right|=$ $\left|L\left(v_{4}\right)\right|=\left|L\left(v_{5}\right)\right|=2$ cannot be removed, as the graph in Figure 1 cannot be colored from the prescribed lists.

We also show two applications of Theorem 3, both concerning critical graphs. Let us start with definitions.

A graph G is k-critical if G is not $(k-1)$-colorable, but every proper subgraph of G is $(k-1)$-colorable. We need to generalize the notion of a critical graphs in two directions: we need to apply it to the list coloring instead of the ordinary coloring, and we also want to consider the situation that a subgraph of G is precolored (like e.g. the path P in Theorem 1).

Consider a graph G, a subgraph (not necessarily induced) $S \subseteq G$ and an assignment L of lists to vertices in $V(G) \backslash V(S)$. A graph G is strongly S-critical (with respect to L) if there exists a coloring of S that does not extend to an L-coloring of G, but extends to an L-coloring of every proper subgraph $G^{\prime} \subset G$ such that $S \subseteq G^{\prime}$. A graph G is S-critical (with respect to L) if for every proper subgraph $G^{\prime} \subset G$ such that $S \subseteq G^{\prime}$, there exists a coloring of S that does not extend to an L-coloring of G, but extends to an L-coloring of G^{\prime}. We call a (strongly) S-critical graph G proper if $G \neq S$. Note that every strongly S-critical graph is also S-critical, but the converse is false. If $S=\emptyset$ and all vertices have the same list of k colors, then G is \emptyset-critical (or strongly \emptyset-critical) if and only if G is $(k+1)$-critical.

While the definition of a strongly critical graph may seem more natural, the notion of a critical graph is often more suitable for both proofs and

Figure 2: A critical graph bounded by a 12-cycle
applications-for instance, every graph $H \supseteq S$ has an S-critical subgraph $G \supseteq S$ such that any coloring of S extends to H if and only if it extends to G (we call such a subgraph G an S-skeleton of H) however, H does not have to contain a strongly S-critical subgraph with this property.

In [7], Thomassen characterized the F-critical plane graphs of girth 5 , where F consist of a boundary of a face of length at most 12 :

Theorem 4. Let G be a plane graph of girth at least 5 , with the outer face F bounded by an induced cycle of length at most 12. Let L be a list assignment of lists of size three to the vertices of $V(G) \backslash V(F)$. If G is proper strongly F-critical graph, then
(a) $\ell(F) \geq 9$ and $G-V(F)$ is a tree with at most $\ell(F)-8$ vertices, or
(b) $\ell(F) \geq 10$ and $G-V(F)$ is a connected graph with at most $\ell(F)-5$ vertices containing exactly one cycle, and the length of this cycle is 5 , or
(c) $\ell(F)=12$ and every second vertex of F has degree two and is incident with a 5-face.

If $\ell(F) \leq 11$, the complete list of strongly F-critical graphs is provided by Theorem 4, however for $\ell(F)=12$, only a necessary condition is given in the case (c). As the first application of Theorem 3, we complete this classification by showing that the only F-critical graph satisfying the condition (c) is the one depicted in Figure 2. The proof is presented in Section 3.

For ordinary (not list) coloring, Thomassen [7] proved that there are only finitely many 4 -critical graphs of girth 5 embedded in any fixed surface. In fact, his result allows a constant number of precolored vertices. An alternative proof with stronger bounds on the sizes of the critical graphs is given by Dvořák, Král' and Thomas [3]. Our goal is to prove the same result for the list-coloring critical graphs. We present our general argument in a followup paper. As the second application of Theorem 3, we consider the special case of a plane graph in that vertices incident with one face are precolored. In Section 4, we show the following bound:
Theorem 5. Let G be a plane graph of girth at least 5 with the outer face F bounded by a cycle of length at least 10, and L an assignment of lists of size three to vertices of $V(G) \backslash V(F)$. If G is F-critical, then $|E(G)| \leq$ $18 \ell(F)-160$ and $|V(G)| \leq \frac{37 \ell(F)-320}{3}$.

Let us note that this bound is much stronger than the ones shown in Thomassen [7] (who shows that $|V(G)| \leq 2^{O\left(\ell(F)^{2}\right)}$) or in Dvořák et al. [3] (who shows that $|V(G)| \leq c \ell(F)$ for a constant $c \approx 10^{6}$), even though these papers only consider ordinary 3 -coloring.

2 Proof of Theorem 3

For the purpose of the induction, we prove an (unfortunately rather technical) generalization of Theorem 3. In order to state this generalization, we need to introduce several definitions.

Let G be a plane graph of girth at least 5 . Let F be the outer face of G and let $P=p_{1} \ldots p_{k}$ be a path with $V(P) \subseteq V(F)$. Consider an assignment L of lists to vertices of $V(G) \backslash V(P)$ such that $|L(v)| \geq 2$ for each vertex v and $|L(v)|=3$ for each $v \notin V(F)$. Let $I_{0}(G, P, L)$ be the set of vertices with the list of size two. Let $I(G, P, L)=I_{0}(G, P, L)$ if $\ell(P) \leq 2$ and $I(G, P, L)=I_{0}(G, P, L) \cup V(P)$ otherwise. Let us call a vertex v bad if there exists a path $v v_{1} v_{2}$ with $\left|L\left(v_{1}\right)\right|=2$ and $v_{2} \in I(G, P, L)$, or a path $v v_{1} v_{2} v_{3} v_{4}$ with $\left|L\left(v_{1}\right)\right|=\left|L\left(v_{3}\right)\right|=2,\left|L\left(v_{2}\right)\right|=3$ and $v_{4} \in I(G, P, L)$. We say that the list assignment L is valid if no vertex with list of size two is bad.

Suppose that $\ell(P)=4$. For a set $X \subseteq V(P)$, colorings ψ_{1} and ψ_{2} of P are X-different if there exists $v \in X$ such that $\psi_{1}(v) \neq \psi_{2}(v)$. We say that G is class A if

- each of p_{1} and p_{5} is adjacent to a vertex with list of size two, and
- there exists a coloring $\psi^{(G, P, L)}$ of P such that if ψ is a coloring of P $\left\{p_{1}, p_{2}, p_{4}, p_{5}\right\}$-different from $\psi^{(G, P, L)}$, then ψ extends to an L-coloring of G.

Figure 3: A class A and a class B graph.
We say that G is class B if there exists a coloring $\psi^{(G, P, L)}$ of P such that if ψ is a coloring of $P\left\{p_{1}, p_{3}, p_{5}\right\}$-different from $\psi^{(G, P, L)}$, then ψ extends to an L-coloring of G.

Theorem 6. Let G be a plane graph of girth at least 5 with the outer face F, let $P=p_{1} \ldots p_{k}$ be a path of length at most four such that $V(P) \subseteq V(F)$, and let L be a valid list assignment. Furthermore, if $\ell(P)=2$, then assume that p_{1} or p_{3} is not bad, and if $\ell(P) \geq 3$, then assume that no vertex of P is bad. If G is a proper P-critical graph, then $\ell(P)=4$ and G is a 5 -face, class A or class B.

Theorem 3 is the special case of Theorem 6 where P is empty. Two examples of P-critical graphs that are class A or class B and satisfy assumptions of Theorem 6 are depicted in Figure 3. Let us note that infinitely many such graphs exist.

Before proving Theorem 6, let us show several observations regarding critical graphs. Let G be a T-critical graph (with respect to some list assignment). For $S \subseteq G$, a graph $G^{\prime} \subseteq G$ is an S-component of G if $S \subseteq G^{\prime}$, $T \cap G^{\prime} \subseteq S$ and all edges of G incident with vertices of $V\left(G^{\prime}\right) \backslash V(S)$ belong to G^{\prime}. For example, if G is a plane graph with T contained in the boundary of its outer face and S is a cycle in G, then the subgraph of G consisting of the vertices and edges drawn the closed disk bounded by S is an S-component of G.

Lemma 7. Let G be a T-critical graph with list assignment L. Let G^{\prime} be an S-component of G, for some $S \subseteq G$. Then G^{\prime} is S-critical.

Proof. Since G is T-critical, every isolated vertex of G belongs to T, and thus every isolated vertex of G^{\prime} belongs to S. Suppose for a contradiction that G^{\prime} is not S-critical. Then, there exists an edge $e \in E\left(G^{\prime}\right) \backslash E(S)$ such that every coloring of S that extends to $G^{\prime}-e$ also extends to G^{\prime}. Note that $e \notin E(T)$. Since G is T-critical, there exists a coloring ψ of T that
extends to an L-coloring φ of $G-e$, but does not extend to an L-coloring of G. However, by the choice of e, the restriction of φ to S extends to an L-coloring φ^{\prime} of G^{\prime}. Let $\varphi^{\prime \prime}$ be the coloring that matches φ^{\prime} on $V\left(G^{\prime}\right)$ and φ on $V(G) \backslash V(G)$. Observe that $\varphi^{\prime \prime}$ is an L-coloring of G extending ψ, which is a contradiction.

Lemma 7 in conjunction with Theorem 4 describes the subgraphs drawn inside cycles in plane critical graphs. Since Theorem 4 is only stated for strongly critical graphs, let us show that it holds for critical graphs as well.

Lemma 8. Let G be a plane graph of girth at least 5, with the outer face F bounded by an induced cycle of length at most 12. Let L be a list assignment of lists of size three to the vertices of $V(G) \backslash V(F)$. If G is proper F-critical graph, then G satisfies one of the conditions (a), (b) or (c) of Theorem 4.

Proof. Suppose for a contradiction that G is a counterexample to Lemma 8 with the smallest number of vertices. Since G is proper, there exists a precoloring ψ of F that does not extend to an L-coloring of G. Let $G^{\prime} \supset F$ be the minimal subgraph of G such that ψ does not extend to G^{\prime}. Observe that G^{\prime} is a proper strongly F-critical graph, thus it satisfies one of the condition (a), (b) or (c). Since G does not satisfy any of these conditions, there exists an induced cycle $C \subseteq G^{\prime}$ that bounds a face in G^{\prime}, but not in G. Furthermore, if G^{\prime} satisfies the condition (c), then we may assume that $\ell(C)=5$.

Observe that $\ell(C) \leq 8$, and $\ell(C) \leq 7$ unless $\ell(F)=12$ and $\mid V\left(G^{\prime}\right) \backslash$ $V(F) \mid=1$. Let H be the subgraph of G drawn in the closed disk bounded by C. Lemma 7 implies that H is a proper C-critical graph. Since G is the counterexample to Lemma 8 with the smallest number of vertices, C is not an induced cycle in H. Since G has girth at least 5 , we conclude that $\ell(C)=8$ and C has a chord e such that $C \cup e$ contains two 5 -cycles C_{1} and C_{2}. Repeating the same argument for C_{1} and C_{2}, we conclude that C_{1} and C_{2} are faces of H and $V(H)=V(C)$. It follows that $|V(G) \backslash V(F)|=1$, and thus G satisfies (a). This is a contradiction.

In this section, we need only the following corollary of Lemma 8.
Corollary 9. Let G be a plane graph of girth at least 5, with the outer face F bounded by a cycle of length at most 12. Let L be a list assignment of lists of size three to the vertices of $V(G) \backslash V(F)$. If G is a proper F-critical graph, then

- $\ell(F) \geq 8$ and F has a chord, or
- $\ell(F)=9$ and $V(G) \backslash V(F)$ consists of a single vertex v adjacent to three vertices of F.

Lemma 7 together with Corollary 9 implies that
if H is an S-critical plane graph of girth at least 5 , where S is a subgraph of the boundary of the outer face of H, then any cycle of length at most 7 in H bounds a face, the open disk bounded by a cycle of length 8 contains no vertices, and the open disk bounded by a cycle of length 9 contains at most one vertex.

Furthermore, let us recall the following result of Vizing [8]:
Theorem 10. Let G be a 2-connected graph with a list assignment L such that $|L(v)| \geq \operatorname{deg}(v)$ for each vertex $v \in V(G)$. Then G is L-colorable, unless G is a complete graph or an odd cycle and the lists assigned to all vertices are the same.

This implies the following:
Lemma 11. Let G be a triangle-free critical graph, S a subgraph of G and L an assignment of lists to vertices of $V(G) \backslash V(S)$. Let H be a 2-connected subgraph of G such that $V(H) \cap V(S)=\emptyset$ and $|L(v)| \geq \operatorname{deg}_{G}(v)$ for each $v \in V(H)$. If G is S-critical, then H is an induced odd cycle in G.

Proof. Let $H^{\prime}=G[V(H)]$ be the subgraph of G induced by $V(H)$. Since G is S-critical, there exists a precoloring ψ of S that extends to an L-coloring φ of $G-V(H)$, but not to an L-coloring of G. Consider the list assignment L^{\prime} such that for $v \in V(H), L^{\prime}(v)=L(v) \backslash C_{v}$, where C_{v} is the set of colors of vertices of $G-V(H)$ adjacent to v, according to the coloring φ. Observe that H^{\prime} is 2-connected, H^{\prime} is not L^{\prime}-colorable, and $\left|L^{\prime}(v)\right| \geq \operatorname{deg}_{H^{\prime}}(v)$ for each $v \in V(H)$. By Theorem 10, since G is triangle-free, H^{\prime} is an odd cycle. Furthermore, $H=H^{\prime}$, since H is 2-connected.

Let us now proceed with the proof of the main result.
Proof of Theorem 6. Suppose that G together with lists L and a path P is a counterexample to Theorem 6 such that $|V(G)|+|E(G)|$ is minimal, and among such graphs, the path P is the longest possible. The path P is nonempty, as otherwise we can choose an arbitrary vertex of F as p_{1}. As G is a proper P-critical graph, there exists at least one precoloring of P that does not extend to an L-coloring of G. By the minimality of G, each vertex of P has degree at least two. By Lemma 7, each vertex $v \in V(G) \backslash V(P)$ has degree at least $|L(v)|$.
Lemma 12. The graph G is 2 -connected.

Proof. Obviously, G is connected. Suppose now that v is a cut vertex of G and G_{1} and G_{2} are induced subgraphs of G such that $G=G_{1} \cup G_{2},\{v\}=$ $V\left(G_{1}\right) \cap V\left(G_{2}\right)$ and $\left|V\left(G_{1}\right)\right|,\left|V\left(G_{2}\right)\right| \geq 2$. Let $P_{i}=P \cap G_{i}$ if $v \in V(P)$ and $P_{i}=v$ otherwise, for $i \in\{1,2\}$; by Lemma $7, G_{i}$ is P_{i}-critical. By symmetry, we may assume that $\ell\left(P_{1}\right) \leq \ell\left(P_{2}\right)$, and thus $\ell\left(P_{1}\right) \leq \ell(P) / 2 \leq 2$. It follows that $v \notin I\left(G_{1}, P_{1}, L\right)$ and $I\left(G_{1}, P_{1}, L\right) \subseteq I(G, P, L)$, thus the restriction of L to $V\left(G_{1}\right) \backslash V\left(P_{1}\right)$ is a valid list assignment. If $\ell\left(P_{1}\right)=2$, with say $P_{1}=p_{1} p_{2} p_{3}$ and $p_{3}=v$, then p_{1} is not bad in G_{1}, since it is not bad in G. By the minimality of G, we can apply Theorem 6 to G_{1}, obtaining $G_{1}=P_{1}$. Since $\left|V\left(G_{1}\right)\right| \geq 2$, we conclude that G contains a vertex of degree one, which is a contradiction.

By Lemma 12, the outer face F of G is bounded by a cycle. A chord of F is an edge in $E(G) \backslash E(F)$ incident with two vertices of $V(F)$. A t-chord of F is a path $Q=q_{0} q_{1} \ldots q_{t}$ of length $t(t \geq 2)$ such that $q_{0} \neq q_{t}$ and $V(Q) \cap V(F)=\left\{q_{0}, q_{t}\right\}$. Sometimes, we refer to a chord as a 1-chord.
Lemma 13. The cycle F has no chords.
Proof. Suppose that $e=u v$ is a chord of F, and let G_{1} and G_{2} be the two induced subgraphs of G such that $G=G_{1} \cup G_{2}$, uv $=G_{1} \cap G_{2}$ and $G_{1}, G_{2} \neq u v$. Note that $\left|V\left(G_{1}\right)\right|,\left|V\left(G_{2}\right)\right|>2$. If $P \subseteq G_{1}$, then G_{2} is uvcritical by Lemma 7. Since $I\left(G_{2}, u v, L\right) \subseteq I(G, P, L)$, the restriction of L to G_{2} is a valid list assignment. By the minimality of G, we have $G_{2}=u v$, which is a contradiction. It follows that $P \nsubseteq G_{1}$ and by symmetry, $P \nsubseteq G_{2}$. Therefore, every chord of F is incident with a vertex of P distinct from p_{1} and p_{k}.

Suppose now that say $\left|V(P) \cap V\left(G_{1}\right) \backslash\{u, v\}\right| \leq 1$. In that case, $P_{1}=$ $\left(P \cap G_{1}\right)+u v$ has length at most two. By Lemma 7, G_{1} is P_{1}-critical, and since $I\left(G_{1}, P_{1}, L\right) \subseteq I(G, P, L)$, we conclude that the restriction of L to G_{1} is a valid list assignment. Furthermore, if $\ell\left(P_{1}\right)=2$, then we may assume that $P_{1}=p_{1} p_{2} p_{3}$ with $u=p_{2}$ and $v=p_{3}$, and p_{1} is not bad in G_{1}. By the minimality of G, we conclude that $G_{1}=P_{1}$, which is a contradiction, since $\left|V\left(G_{1}\right)\right|>2$ and G does not contain a vertex of degree one.

By symmetry, we conclude that $\left|V(P) \cap V\left(G_{i}\right) \backslash\{u, v\}\right| \geq 2$ for $i \in\{1,2\}$. This implies that $k=5$ and $V(P) \cap\{u, v\}=p_{3}$. Without loss of generality, $u=p_{3}, P \cap G_{1}=p_{1} p_{2} p_{3}$ and $P \cap G_{2}=p_{3} p_{4} p_{5}$. Let v_{i} be the neighbor of v in G_{i} in the facial walk of F, for $i \in\{1,2\}$. Since every chord of F is incident with a vertex of P, v is not adjacent to a vertex with list of size two except for v_{1} and v_{2}.

Suppose now that $\left|L\left(v_{1}\right)\right| \neq 2$. By Lemma 7, G_{1} is P_{1}^{\prime}-critical, where $P_{1}^{\prime}=p_{1} p_{2} p_{3} v$. Note that $I\left(G_{1}, P_{1}, L\right) \backslash I(G, P, L)=\{v\}$, and v is not bad, as
it is not adjacent to a vertex with list of size two in G_{1}. By the minimality of G, we conclude that $G_{1}=P_{1}$, which is a contradiction, since p_{1} has degree at least two in G.

By symmetry, $\left|L\left(v_{1}\right)\right|=\left|L\left(v_{2}\right)\right|=2$. Since L is a valid list assignment, $|L(v)|=3$. By Lemma 7, G_{1} is P_{1}-critical and G_{2} is P_{2}-critical, where $P_{1}=p_{1} p_{2} p_{3} v v_{1}$ and $P_{2}=p_{5} p_{4} p_{3} v v_{2}$. Note that both G_{1} and G_{2} are proper, since p_{1} and p_{5} have degree at least two in G. Let L_{i} be L restricted to $V\left(G_{i}\right) \backslash V\left(P_{i}\right)$, for $i \in\{1,2\}$. Then $I\left(G_{i}, P_{i}, L_{i}\right) \backslash I(G, P, L)=\{v\}$, and since v is not adjacent to a vertex with list of size two in G_{i}, v is not bad.

By the minimality of G, Theorem 6 holds for G_{1} and G_{2}. Since L is a valid list assignment for G, by the symmetry between v_{1} and v_{2} we may assume that v_{1} is not adjacent to a vertex of $I(G, P, L)$, and thus G_{1} is neither a 5 -face nor class A. Therefore, G_{1} is class B. Let $\psi_{1}=\psi^{\left(G_{1}, P_{1}, L\right)}$. Consider a precoloring ψ of P that is $\left\{p_{1}, p_{3}\right\}$-different from ψ_{1}. By the minimality of G, the precoloring of the path $p_{3} p_{4} p_{5}$ given by ψ extends to an L-coloring φ_{2} of G_{2}. The precoloring ψ^{\prime} of P_{1} given by $\psi^{\prime}\left(p_{i}\right)=\psi\left(p_{i}\right)$ for $i \in\{1,2,3\}$, $\psi^{\prime}(v)=\varphi_{2}(v)$ and $\psi^{\prime}\left(v_{1}\right) \in L\left(v_{1}\right) \backslash\{\varphi(v)\}$ extends to an L-coloring φ_{1} of G_{1}, since G_{1} is class B and ψ^{\prime} is $\left\{p_{1}, p_{3}, v_{1}\right\}$-different from ψ_{1}. We conclude that ψ extends to the L-coloring $\varphi_{1} \cup \varphi_{2}$ of G.

Suppose that G_{2} is class A or B, with $\psi_{2}=\psi^{\left(G_{2}, P_{2}, L\right)}$. Analogically to the previous paragraph, we conclude that any precoloring ψ of P that is $\left\{p_{5}\right\}$-different from ψ_{2} extends to an L-coloring of G. It follows that G is almost reducible with $\psi^{(G, P, L)}=\psi_{0}$, where $\psi_{0}\left(p_{1}\right)=\psi_{1}\left(p_{1}\right), \psi_{0}\left(p_{3}\right)=$ $\psi_{1}\left(p_{3}\right), \psi_{0}\left(p_{5}\right)=\psi_{2}\left(p_{5}\right)\left(\psi_{0}\left(p_{2}\right)\right.$ and $\psi_{0}\left(p_{4}\right)$ are arbitrary colors distinct from the colors used on the rest of P). This is a contradiction, since G is a counterexample.

Since G_{2} satisfies the conclusion of Theorem 6, G_{2} is a 5 -face and $v_{2} p_{5}$ is an edge. Choose $c^{\prime} \in L\left(v_{1}\right) \backslash\left\{\psi_{1}\left(v_{1}\right)\right\}, c \in L(v) \backslash\left\{c^{\prime}, \psi_{1}\left(p_{3}\right)\right\}$ and $d \in L\left(v_{2}\right) \backslash\{c\}$. Then, G is class B with $\psi^{(G, P, L)}=\psi_{0}$, where $\psi_{0}\left(p_{1}\right)=\psi_{1}\left(p_{1}\right), \psi_{0}\left(p_{3}\right)=\psi_{1}\left(p_{3}\right)$ and $\psi_{0}\left(p_{5}\right)=d$: before, we proved that if a precoloring ψ of P is $\left\{p_{1}, p_{3}\right\}-$ different from ψ_{0}, then ψ extends to an L-coloring of G. If $\psi\left(p_{3}\right)=\psi_{1}\left(p_{3}\right)$ and $\psi\left(p_{5}\right) \neq d$, then we can color v by c, v_{2} by d and v_{1} by c^{\prime}. The resulting coloring of P_{1} is $\left\{v_{1}\right\}$-different from ψ_{1}, thus it extends to G_{1}, giving an L-coloring of G. This is a contradiction, since G is a counterexample to Theorem 6.

By Lemma $13, P$ is a subpath of F and by Corollary $9, \ell(F) \geq 9$. Also, $\ell(P) \geq 3$:

- If P consists of a single vertex p_{1}, then we can add arbitrary neighbor of p_{1} in F as p_{2}. Since $p_{1} p_{2}$ is longer than P and the assumptions of

Theorem 6 are satisfied, the choice of P implies that $G=p_{1} p_{2}$, which is a contradiction.

- If $P=p_{1} p_{2}$ and p_{2} is not bad, then let $P^{\prime}=x p_{1} p_{2}$, where x is the neighbor of p_{1} in F. Otherwise, let $P^{\prime}=p_{1} p_{2} y$, where y is the neighbor of p_{2} in F. As p_{2} is bad with respect to P, it follows that $|L(y)|=2$, and since L is a valid assignment, y is not bad with respect to P^{\prime}. Therefore, the assumptions of Theorem 6 are satisfied. Again, we conclude that $G=P^{\prime}$, which is a contradiction.
- Suppose that $\ell(P)=2$ and say p_{1} is not bad. Let $x \neq p_{2}$ be the neighbor of p_{3} in F. If $|L(x)|=2$, then let $P^{\prime}=p_{1} p_{2} p_{3} x$. Otherwise, by symmetry we can assume that no neighbor of p_{1} or p_{3} has list of size two. Let $y \neq p_{3}$ be the neighbor of y in F. If $|L(y)|=2$, then let $P^{\prime}=p_{1} p_{2} p_{3} x y$, otherwise let $P^{\prime}=p_{1} p_{2} p_{3} x$. Let L^{\prime} be L restricted to $V(G) \backslash V\left(P^{\prime}\right)$.
Observe that $I\left(G, P^{\prime}, L^{\prime}\right) \backslash I(G, P, L) \subseteq\left\{p_{1}, p_{2}, p_{3}, x\right\}$. We conclude that if no vertex of P^{\prime} is bad, then L^{\prime} is a valid assignment. The vertices p_{2} and p_{3} are not adjacent to a vertex with list of size two, thus they are not bad. If $|L(x)|=2$, then neither p_{1} nor x are bad with respect to L, and we conclude that neither of them is bad with respect to L^{\prime}. If $|L(x)|=3$, then neither p_{1} nor x are adjacent to a vertex with list of size two in L^{\prime}, thus they are not bad. Finally, if $y \in V\left(P^{\prime}\right)$, then y is not bad with respect to L^{\prime}, since it is not bad with respect to L and no other vertex of P^{\prime} is bad. We conclude that the assumptions of Theorem 6 are satisfied, and since P^{\prime} is longer than P, G satisfies the conclusions of Theorem 6 with respect to P^{\prime}. Since the minimum degree of G is at least two, we have $G \neq P^{\prime}$, and thus $\ell\left(P^{\prime}\right)=4$. Note that G is not a 5 -face, as $|L(x)|=3$ and x would have degree two. It follows that G is class A or B. Let $\psi_{0}=\psi^{\left(G, P^{\prime}, L^{\prime}\right)}$.
For any precoloring ψ of $P=p_{1} p_{2} p_{3}$, we can choose a color $c \in L(y) \backslash$ $\left\{\psi_{0}(y)\right\}$, color y with c and x by a color in $L(x) \backslash\left\{\psi\left(p_{3}\right), c\right\}$, and extend this precoloring (which is $\{y\}$-different from ψ_{0}) to an L-coloring of G. This shows that G cannot be a proper P-critical graph, which is a contradiction.

Let $D=\{v \in V(G) \backslash V(P): \mid L(v)=2\} \cup\left\{p_{1}, p_{k}\right\}$.
Lemma 14. Let $Q=q_{0} \ldots q_{t}$ be a t-chord of $F(t \leq 4)$ and let $G_{1}, G_{2} \neq Q$ be the subgraphs of G such that $G=G_{1} \cup G_{2}$ and $G_{1} \cap G_{2}=Q$. If all vertices of P except for p_{1} and p_{k} belong to $V\left(G_{1}\right)$ and G_{2} does not consist of a single 5 -face, then $t \geq 3$ and $\left|\left\{q_{0}, q_{3}\right\} \cap D\right| \leq t-3$.

Proof. Suppose for a contradiction that Q does not satisfy the conclusions of the lemma. By Lemma $13, t \geq 2$. Let Q^{\prime} be the path obtained from Q in the following way: for $i \in\{0, t\}$,

- if $q_{i}=p_{2}$, then add p_{1} to Q^{\prime},
- if $q_{i}=p_{k-1}$, then add p_{k} to Q^{\prime}, and
- if $q_{i} \notin D$ and q_{i} is adjacent to a vertex $v \in V(F) \cap V\left(G_{2}\right)$ with $|L(v)|=$ 2 , then add v to Q^{\prime}.

Let $Q^{\prime}=q_{0}^{\prime} q_{1}^{\prime} \ldots q_{\ell\left(Q^{\prime}\right)}^{\prime}$ and let L_{2} be L restricted to $V\left(G_{2}\right) \backslash V\left(Q^{\prime}\right)$. Note that $Q^{\prime} \subseteq G_{2}$: otherwise say $p_{1} \in V\left(G_{1}\right)$ and $p_{2}=q_{0}$, implying that $p_{3} \in V\left(G_{2}\right)$. Since $p_{3} \in V\left(G_{1}\right)$ by the assumptions of the lemma, it follows that $p_{3}=q_{t}$, and by (1), the cycle $q_{0} q_{1} \ldots q_{t}$ bounds a face of length $t+1$. Since the girth of G is at least 5 , we conclude that G_{2} is a 5 -face, which is a contradiction.

Suppose first that $2 \leq t \leq 3$ and $\left|\left\{q_{0}, q_{t}\right\} \cap D\right| \geq t-1$. Subject to these assumptions, choose Q such that G_{2} is as small as possible. Observe that $\ell\left(Q^{\prime}\right) \leq 3$. By Lemma 13 and the minimality of G_{2}, q_{i}^{\prime} is not adjacent to a vertex with list of size two in L_{2}, for $1 \leq i \leq \ell\left(Q^{\prime}\right)-1$. Also, if $x \in\left\{q_{0}^{\prime}, q_{\ell\left(Q^{\prime}\right)}^{\prime}\right\}$ is adjacent to a vertex with list of size two in L_{2}, then $x \in I(G, P, L)$. It follows that L_{2} is a valid list assignment for G_{2} with respect to Q^{\prime} and no vertex of Q^{\prime} is bad in G_{2}. By Lemma 7 and the minimality of G, it follows that $G_{2}=Q^{\prime}$, which is a contradiction. We conclude that
$\left|\left\{q_{0}, q_{t}\right\} \cap D\right| \leq t-2$ for any t-chord Q satisfying the assumptions of Lemma 14.

Let us now consider a t-chord Q violating the conclusions of Lemma 14 (i.e., $\left|\left\{q_{0}, q_{t}\right\} \cap D\right| \geq t-2$), such that G_{2} is as large as possible. Note that $\ell\left(Q^{\prime}\right) \leq 4$. By (2) and Lemma 13, if a vertex $x \in V\left(Q^{\prime}\right)$ is adjacent to a vertex with list of size two in L_{2}, then $x \in\left\{q_{0}^{\prime}, q_{\ell\left(Q^{\prime}\right)}^{\prime}\right\} \cap I(G, P, L)$. We conclude that L_{2} is a valid list assignment for G_{2} and that no vertex of Q^{\prime} is bad in G_{2}. Lemma 7 implies that G_{2} is a proper Q^{\prime}-critical graph. By the minimality of $G, \ell\left(Q^{\prime}\right)=4$ and G_{2} is class A or B. Let $\psi_{2}=\psi^{\left(G_{2}, Q^{\prime}, L_{2}\right)}$. Note that $q_{2}^{\prime} \notin V(F)$ and $q_{0}^{\prime}, q_{4}^{\prime} \in D$.

If G_{2} is class A, then let G^{\prime} consist of G_{1} together with two new vertices x and y and a path $q_{1}^{\prime} x y q_{3}^{\prime}$, with the list assignment L^{\prime} given by $L^{\prime}(v)=L(v)$ for $v \in V\left(G_{1}\right) \backslash V(P), L^{\prime}(x)=\left\{\psi_{2}\left(q_{1}^{\prime}\right), c\right\}$ and $L^{\prime}(y)=\left\{\psi_{2}\left(q_{3}^{\prime}\right), c\right\}$, where c is an arbitrary color distinct from $\psi_{2}\left(q_{2}^{\prime}\right)$ and $\psi_{2}\left(q_{4}^{\prime}\right)$. If G_{2} is class B , then let $G^{\prime}=G_{1}, L^{\prime}(v)=L(v)$ for $v \in V\left(G_{1}\right) \backslash\left\{q_{2}^{\prime}\right\}$ and $L^{\prime}\left(q_{2}^{\prime}\right)=L\left(q_{2}^{\prime}\right) \backslash\left\{\psi_{2}\left(q_{2}^{\prime}\right)\right\}$. Consider any precoloring ψ of P whose restriction to $P \cap G^{\prime}$ extends to an L^{\prime}-coloring φ of G^{\prime}, and let φ^{\prime} be the restriction of $\psi \cup \varphi$ to $V\left(Q^{\prime}\right)$. If G_{2} is
class A, then φ^{\prime} is $\left\{q_{1}^{\prime}, q_{3}^{\prime}\right\}$-different from ψ_{2}, and if G_{2} is class B , then φ^{\prime} is $\left\{q_{2}^{\prime}\right\}$-different from ψ_{2}, thus φ^{\prime} extends to an L_{2}-coloring of G_{2}. Together with φ, this gives an L-coloring of G extending ψ. Since at least one precoloring of P does not extend to an L-coloring of G, we conclude that there exists a precoloring of $P \cap G^{\prime}$ that does not extend to an L^{\prime}-coloring of G^{\prime}.

Let $G^{\prime \prime}$ be a $\left(P \cap G^{\prime}\right)$-skeleton of G^{\prime}. Suppose now that
L^{\prime} is a valid list assignment and no vertex of $P \cap G^{\prime \prime}$ is bad.
In order to apply Theorem 6, we need to show that $G^{\prime \prime}$ is smaller than G, i.e., that $\left|V\left(G^{\prime \prime}\right)\right|+\left|E\left(G^{\prime \prime}\right)\right| \leq\left|V\left(G_{1}\right)\right|+\left|E\left(G_{1}\right)\right|+5<|V(G)|+|E(G)|$. This is obvious if $\left|V\left(G_{2}\right) \backslash V(Q)\right| \geq 3$. Since G_{2} is not a 5 -face, we have $\left|V\left(G_{2}\right) \backslash V(Q)\right| \geq 1$ and $t \geq 5-\left|V\left(G_{2}\right) \backslash V(Q)\right|$. If $\left|V\left(G_{2}\right) \backslash V(Q)\right|=1$, then $t=4, q_{0}, q_{4} \in D$ and the vertex $w \in V\left(G_{2}\right) \backslash V(Q)$ has degree two. It follows that $|L(w)|=2$, and the path $q_{0} w q_{4}$ contradicts the assumptions of Theorem 6. Similarly, we exclude the case that $\left|V\left(G_{2}\right) \backslash V(Q)\right|=2$.

Note that $G^{\prime \prime}$ does not consist of a single 5 -face, since F does not have chords. Also, since not all precolorings of $P \cap G^{\prime}$ extend to an L^{\prime}-colorings of $G^{\prime}, G^{\prime \prime} \neq P \cap G^{\prime}$. By Theorem 6 applied to to $G^{\prime \prime}$ with the path $P \cap G^{\prime}$ and the list assignment L^{\prime}, we have $\ell(P)=4, P \subseteq G^{\prime}$ and $G^{\prime \prime}$ is class A or B. Let $\psi_{1}=\psi^{\left(G^{\prime \prime}, P, L^{\prime}\right)}$.

If $G^{\prime \prime}$ is class A, then any precoloring of P that is $\left\{p_{1}, p_{2}, p_{4}, p_{5}\right\}$-different from ψ_{1} extends to an L^{\prime}-coloring of $G^{\prime \prime}$, and thus it also extends to an L^{\prime} coloring of G^{\prime} and an L-coloring of G. Also, p_{1} is adjacent to a vertex w such that $\left|L^{\prime}(w)\right|=2$ in $G^{\prime \prime}$. Note that $p_{1} \notin\left\{q_{1}^{\prime}, q_{3}^{\prime}\right\}$ and by (2), p_{1} is not adjacent to q_{2}^{\prime}, thus $w \in V(G)$ and $|L(w)|=2$. By symmetry, p_{k} has a neighbor with list of size two in G. Therefore, G is class A. Similarly, if $G^{\prime \prime}$ is class B , then G is class B. This is a contradiction, and hence the assumption (3) is false.

Let us now distinguish the two cases regarding whether G_{2} is class A or B with respect to the path Q^{\prime} and the list assignment L_{2} :

- G_{2} is class A. Let z be the neighbor of q_{0}^{\prime} in G_{2} with $|L(z)|=2$.

Let us recall that in this case the list assignment L^{\prime} matches L on $V\left(G^{\prime \prime}\right) \backslash V(P)$ and G^{\prime} contains two additional vertices x and y with lists of size two. Since (3) is false, we may assume by symmetry that either $q_{1}^{\prime} \in I\left(G^{\prime \prime}, G^{\prime} \cap P, L^{\prime}\right)$ or $\left|L^{\prime}\left(q_{1}^{\prime}\right)\right|=3$ and $G^{\prime \prime}$ contains a path $q_{1}^{\prime} u v$ with $\left|L^{\prime}(u)\right|=2$ and $v \in\left(I\left(G^{\prime \prime}, G^{\prime} \cap P, L^{\prime}\right) \backslash\{x, y\}\right) \subseteq I(G, P, L)$.
By the choice of Q^{\prime}, either $q_{1}^{\prime} \in V(P)$ or $\left|L\left(q_{1}^{\prime}\right)\right|=3$. Suppose first that $q_{1}^{\prime} \notin V(P)$. If $q_{1}^{\prime} \in V(F)$, then $\left|L\left(q_{0}^{\prime}\right)\right|=2$ by the construction of Q^{\prime}, and the path $z q_{0}^{\prime} q_{1}^{\prime} u v$ contradicts the assumption that L is a valid list assignment. If $q_{1}^{\prime} \notin V(F)$, then by (2) $u q_{1}^{\prime} q_{0}^{\prime}$ is not a 2 -chord of F, and
thus $u=q_{0}^{\prime}$. In this case, the path $z u v$ contradicts the assumption that L is a valid list assignment.
We conclude that $q_{1}^{\prime} \in V(P)$. By symmetry and the construction of Q^{\prime}, we may assume that $q_{1}^{\prime}=p_{2}$ and $q_{0}^{\prime}=p_{1}$. Note that $q_{3}^{\prime} \notin V(P)$, as the girth of G is at least five and $q_{3}^{\prime} \neq p_{5}$. It follows that L^{\prime} is a valid list assignment for $G^{\prime \prime}$ with respect to the path $P^{\prime}=x p_{2} \ldots p_{k}$ and no vertex of this path is bad.
By the minimality of G, this implies that $\ell\left(P^{\prime}\right)=\ell(P)=4$ and $G^{\prime \prime}$ is class A or B with respect to P^{\prime}, with $\psi_{0}=\psi^{\left(G^{\prime \prime}, P^{\prime}, L^{\prime}\right)}$. If $G^{\prime \prime}$ is class A with respect to P^{\prime}, then p_{5} is adjacent to a vertex w with $|L(w)|=\left|L^{\prime}(w)\right|=2$. Furthermore, $p_{1}=q_{0}^{\prime}$ is adjacent to z, which has $|L(z)|=2$. Let $\psi^{(G, P, L)}$ be a coloring that matches ψ_{0} on $p_{2} p_{3} p_{4} p_{5}$ and satisfies $\psi_{2}\left(p_{1}\right) \in\left\{\psi^{(G, P, L)}\left(p_{1}\right), \psi^{(G, P, L)}\left(p_{2}\right)\right\}$. Consider a precoloring ψ of P. If ψ is $\left\{p_{2}, p_{4}, p_{5}\right\}$-different from $\psi^{(G, P, L)}$, then ψ is $\left\{p_{2}, p_{4}, p_{5}\right\}$ different from ψ_{0}; choose a color of x in $L^{\prime}(x) \backslash \psi\left(p_{2}\right)$ and extend the resulting precoloring of P^{\prime} to an L^{\prime}-coloring of $G^{\prime \prime}$. This implies that ψ extends to an L-coloring of G. If ψ is not $\left\{p_{2}, p_{4}, p_{5}\right\}$-different from $\psi^{(G, P, L)}$, but it is $\left\{p_{1}\right\}$-different, then $\psi\left(p_{1}\right) \neq \psi_{2}\left(p_{1}\right)$. In this case, by Theorem 6 applied to a $p_{2} p_{3} p_{4} p_{5}$-skeleton of G_{1} with list assignment L, we conclude that ψ extends to an L-coloring φ of G_{1}, and since $\varphi \cup \psi$ is $\left\{p_{1}\right\}$-different from p_{2} on Q^{\prime}, φ extends to L_{2}-coloring of G_{2}, giving an L-coloring of G. We conclude that G is class A. Analogically, if $G^{\prime \prime}$ is class B with respect to P^{\prime}, then G is class B . This is a contradiction.

- G_{2} is class B. The vertex q_{2}^{\prime} does not have any neighbor in D by (2). Since (3) is false, q_{2}^{\prime} has a neighbor $p \in V(P) \backslash\left\{p_{1}, p_{k}\right\}$. As girth of G is at least five, q_{2}^{\prime} is adjacent to exactly one vertex of P. Since (3) is false, G_{2} contains a $q_{2}^{\prime} u v$ with $|L(u)|=3$ and $|L(v)|=2$. Since G_{2} was chosen to be as large as possible, we may assume that $u=q_{3}^{\prime}$, and if $q_{4}^{\prime} \in V\left(G_{1}\right)$, then $v=q_{4}^{\prime}$.
If $\ell(P)=4$ and q_{2}^{\prime} is adjacent to p_{3}, then consider precoloring ψ of P that does not extend to an L-coloring of G. Choose a color for q_{2}^{\prime} from $L^{\prime}\left(q_{2}^{\prime}\right) \backslash\left\{\psi\left(p_{3}\right)\right\}$. Let $H_{1}, H_{2} \neq q_{2}^{\prime} p_{3}$ be the subgraphs of $G_{1} \cup P$ such that $G_{1} \cup P=H_{1} \cup H_{2}, q_{2}^{\prime} p_{3}=H_{1} \cap H_{2}$ and $p_{1} \in V\left(H_{1}\right)$. By the minimality of G, Theorem 6 implies that the precoloring of $p_{1} p_{2} p_{3} q_{2}^{\prime}$ extends to an L-coloring of H_{1} and the precoloring of $p_{5} p_{4} p_{3} q_{2}^{\prime}$ extends to an L-coloring of H_{2}, giving an L^{\prime}-coloring of G^{\prime}. This implies that ψ extends to an L-coloring of G, which is a contradiction.
We conclude that $p \in\left\{p_{2}, p_{k-1}\right\}$, and by symmetry, we may assume that $p=p_{2}$. The maximality of G_{2} implies that $q_{2}^{\prime}=p_{2}$ and $q_{1}^{\prime}=$
p_{1}. Note that L^{\prime} is a valid list assignment with respect to the path $P^{\prime}=q_{3}^{\prime} p_{2} \ldots p_{k}$, and no vertex of this path is bad. By the minimality of $G, \ell\left(P^{\prime}\right)=\ell(P)=4$ and $G^{\prime \prime}$ is class A or B with respect to the path P^{\prime}. Since q_{2}^{\prime} is not adjacent to a vertex with list of size two, we conclude that $G^{\prime \prime}$ is class B . It follows that G is class B , with with $\psi^{(G, P, L)}$ matching $\psi^{\left(G^{\prime \prime}, P^{\prime}, L^{\prime}\right)}$ on p_{3} and p_{5} and $\psi^{(G, P, L)}\left(p_{1}\right)=\psi_{2}\left(p_{1}\right)$. This is a contradiction.

Let $P^{\prime}=p_{1} \ldots p_{k} v_{1} v_{2} v_{3} v_{4} v_{5}$ be a subpath of F. As we observed before, $\ell(F) \geq 9$. Suppose that $k=5$ and $\ell(F)=9$, i.e., $v_{5}=p_{1}$. By Corollary 9 , G contains exactly one vertex $v \notin V(F)$. As p_{1} and p_{5} are not bad, v must be adjacent to p_{3}, v_{1} and $v_{4},\left|L\left(v_{1}\right)\right|=\left|L\left(v_{4}\right)\right|=3$ and $\left|L\left(v_{2}\right)\right|=\left|L\left(v_{3}\right)\right|=2$, i.e., G is the class B graph depicted in Figure 3 (L may differ from the list assignment shown in the figure). Therefore, we may assume that all the vertices of P^{\prime} are distinct.

Lemma 15. Exactly one of $\left|L\left(v_{1}\right)\right|=2$ and $\left|L\left(v_{2}\right)\right|=2$ is satisfied. Furthermore, if ψ is a precoloring of P that cannot be extended to an L-coloring of G, then $\psi\left(p_{k}\right) \in L\left(v_{1}\right)$.

Proof. Since p_{k} is not bad, it cannot be the case that $\left|L\left(v_{1}\right)\right|=\left|L\left(v_{2}\right)\right|=2$. Let ψ be a precoloring of P that does not extend to an L-coloring of G. Suppose that $\left|L\left(v_{1}\right)\right|=\left|L\left(v_{2}\right)\right|=3$ or $\psi\left(p_{k}\right) \notin L\left(v_{1}\right)$. Let N^{\prime} be the set of neighbors of p_{k} in G. Let $N=N^{\prime} \backslash\left\{p_{k-1}, v_{1}\right\}$ if $\psi\left(p_{k}\right) \notin L\left(v_{1}\right)$ and $N=N^{\prime} \backslash\left\{p_{k-1}\right\}$ otherwise. Let L^{\prime} be the list assignment obtained from L by removing $\psi\left(p_{k}\right)$ from the lists of all vertices in N. The vertices of N form an independent set in G. By Lemma 14 and the assumption that $\left|L\left(v_{2}\right)\right|=3$, if w is a neighbor of a vertex of N and $w \notin V(P)$, then $|L(w)|=3$. Similarly, if $w \in V(P)$, then $w \notin\left\{p_{1}, p_{2}\right\}$, and since the girth of G is at least 5 , $w \notin\left\{p_{3}, \ldots, p_{k-1}\right\}$. Therefore, L^{\prime} is a valid list assignment for $G-p_{k}$ with respect to the path $P-p_{k}$ and no vertex of $P-p_{k}$ is bad. By the minimality of G, we can apply Theorem 6 to a $\left(P-p_{k}\right)$-skeleton of $G-p_{k}$, and conclude that ψ can be extended to an L^{\prime}-coloring of $G-p_{k}$. Therefore, ψ extends to an L-coloring of G, which is a contradiction.

Let us define a set X of vertices of G, depending on the sizes of the lists of vertices v_{1}, \ldots, v_{5} (we exclude the cases forbidden by Lemma 15 and the assumption that p_{k} is not bad). See Figure 4 for an illustration.

$$
\text { - If }\left|L\left(v_{1}\right)\right|=2 \text {, then }\left|L\left(v_{2}\right)\right|=3 \text {. If }\left|L\left(v_{3}\right)\right|=3 \text {, then let } X=\left\{v_{1}\right\} \text {. }
$$

Figure 4: The definition of the set X. Squares denote vertices with list of size two.

- If $\left|L\left(v_{1}\right)\right|=\left|L\left(v_{3}\right)\right|=2$ and $\left|L\left(v_{2}\right)\right|=3$, then $\left|L\left(v_{4}\right)\right|=3$. If $\left|L\left(v_{5}\right)\right|=$ 3 , then let $X=\left\{v_{1}, v_{2}, v_{3}\right\}$, otherwise let $X=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$.
- If $\left|L\left(v_{1}\right)\right|=3$, then $\left|L\left(v_{2}\right)\right|=2$. If $\left|L\left(v_{3}\right)\right|=\left|L\left(v_{4}\right)\right|=3$, then let $X=\left\{v_{1}, v_{2}\right\}$.
- If $\left|L\left(v_{1}\right)\right|=\left|L\left(v_{3}\right)\right|=3$ and $\left|L\left(v_{2}\right)\right|=\left|L\left(v_{4}\right)\right|=2$, then let $X=$ $\left\{v_{1}, v_{2}, v_{3}\right\}$.
- If $\left|L\left(v_{1}\right)\right|=3$ and $\left|L\left(v_{2}\right)\right|=\left|L\left(v_{3}\right)\right|=2$, then $\left|L\left(v_{4}\right)\right|=3$. If $\left|L\left(v_{5}\right)\right|=$ 3, then let $X=\left\{v_{1}, v_{2}, v_{3}\right\}$, otherwise let $X=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$.

Let $m=|X|$. Let us fix a precoloring ψ of P that does not extend to an L-coloring of G. Observe that there exists an L-coloring $\varphi=\varphi_{\psi}$ of the path induced by X such that

- $\varphi\left(v_{1}\right) \neq \psi\left(p_{k}\right)$, and
- if $\left|L\left(v_{m+1}\right)\right|=2$, then $\varphi\left(v_{m}\right) \notin L\left(v_{m+1}\right)$.

Furthermore, if $\left|L\left(v_{m+1}\right)\right|=3$, then v_{m} is the only neighbor of v_{m+1} that belongs to $I(G, P, L)$.

Let $X^{\prime}=X \cup\left\{v \in\left\{v_{m+1}, p_{k}\right\}: \operatorname{deg}_{G}(v)=2\right\}$ and $G^{\prime}=G-X^{\prime}$. Let N^{\prime} be the set of neighbors of the vertices of X in $V(G) \backslash\left(X^{\prime} \cup\left\{p_{k}\right\}\right)$. Let $N=N^{\prime}$ if $\left|L\left(v_{m+1}\right)\right|=3$ and $N=N^{\prime} \backslash\left\{v_{m+1}\right\}$ if $\left|L\left(v_{m+1}\right)\right|=3$.

Let L^{\prime} be the assignment of lists to vertices of G^{\prime} obtained from L by removing the colors of vertices of X given by φ from the lists of their

Figure 5: The obstructions.
neighbors, i.e., from the lists of vertices in N (or, more precisely, N^{\prime}; however, when $N \neq N^{\prime}$, then $N^{\prime} \backslash N=\left\{v_{m+1}\right\}$, the only neighbor of v_{m+1} in X is v_{m} and $\left.\varphi\left(v_{m}\right) \notin L\left(v_{m+1}\right)\right)$. Additionally, if $p_{k} \notin X^{\prime}$, then we set $L^{\prime}\left(p_{k}\right)=\left\{\psi\left(p_{k-1}\right), \psi\left(p_{k}\right)\right\}$, and if $\ell(P)=4$, then $L^{\prime}\left(p_{1}\right)=\left\{\psi\left(p_{1}\right), \psi\left(p_{2}\right)\right\}$. Let $P^{\prime}=p_{2} p_{3} p_{4}$ if $\ell(P)=4$ and $P^{\prime}=p_{1} p_{2} p_{3}$ if $\ell(P)=3$. Since ψ does not extend to an L-coloring of G, we conclude that ψ (restricted to the path P^{\prime}) does not extend to an L^{\prime}-coloring of G^{\prime}, either. Let us remark that $\ell\left(P^{\prime}\right)=2$, thus the vertices of P^{\prime} do not belong to $I\left(G^{\prime}, P^{\prime}, L^{\prime}\right)$, and we only need to show that the list assignment is valid and p_{k-1} is not bad in order to be able to apply Theorem 6.

First, assume that G does not contain the following configurations, see Figure 5 for an illustration:

Obstruction A. A path $p_{k-1} x y$ with $x, y \in N$.
Obstruction B. A path $v x v_{m+1}$, where $v \in X$ and $x \in N$.
Obstruction C. A path $x y z$ with x adjacent to p_{k}, y to v_{2} and z to v_{4}, in case that $v_{4} \in X$.

Obstruction D. A vertex in N with two neighbors in X.
By the absence of Obstruction D and Lemma $13, L^{\prime}$ assigns a list of at least two colors to all vertices of $V\left(G^{\prime}\right) \backslash V\left(P^{\prime}\right)$. Since the girth of G is at least 5 and $|X| \leq 4$, the induced subgraph $G[N]$ contains at most one edge. By Lemma 13, if $p_{k} \in V\left(G^{\prime}\right)$, then p_{k} is not adjacent to any vertex v with
$|L(v)|=2$. By Lemma 14, no vertex of N is adjacent to a vertex with list of size two in G or to p_{1} or p_{k} (for v_{m+1} in case that $\left|L\left(v_{m+1}\right)\right|=3$, the choice of X implies that $m \leq 3$ and $\left.v_{m+2} \notin I(G, P, L)\right)$. Therefore, G^{\prime} does not contain a path $u_{1} u_{2} u_{3}$ with $\left|L^{\prime}\left(u_{1}\right)\right|=\left|L^{\prime}\left(u_{2}\right)\right|=\left|L^{\prime}\left(u_{3}\right)\right|=2$.

Suppose now that two vertices $x, y \in N$ are adjacent and there exists a path $x y z u w \subseteq G^{\prime}$ with $|L(z)|=3$ and one of the following holds:

- $|L(u)|=|L(w)|=2$, or
- $\ell(P)=4, u=p_{1}$ and $|L(w)|=2$, or
- $\ell(P)=4, w=p_{1}$ and $|L(u)|=2$.

Note that $x, y \neq v_{m+1}$ by the absence of Obstruction B. Let $v_{i} \in X$ be the neighbor of x and $v_{j} \in X$ the neighbor of y. If $z \in V(F)$, then let $Q=v_{j} y z$, otherwise let $Q=v_{j} y z u$. Note that Q is a 2 - or 3 -chord. Let $G_{1}, G_{2} \neq Q$ be the subgraphs of G such that $G=G_{1} \cup G_{2}, Q=G_{1} \cap G_{2}$ and $P \subseteq G_{1}$. Using Lemma 14, we conclude that G_{2} consists of a single 5 -face and $\left|L\left(v_{j}\right)\right|=3$. It follows that $i<j$. Furthermore, consider the vertices v_{j+1} and v_{j+2} following v_{j} in the boundary of F. If $z \in V(F)$, then both v_{j+1} and v_{j+2} have degree two. If $z \notin V(F)$, then v_{j+1} has degree two and $u=v_{j+2}$. It follows that $\left|L\left(v_{j+1}\right)\right|=2$ and either $\left|L\left(v_{j+2}\right)\right|=2$ or $v_{j+2}=p_{1}$, and since L is a valid list assignment, $u=v_{j+2}$ and $w=v_{j+1}$. Observe that $w \neq p_{1}$. The cycle $C=v_{i} v_{i+1} \ldots v_{j} y x$ has length at most 6 , hence C bounds a face by (1). All vertices v_{t} with $i<t<j$ have degree two, and thus $\left|L\left(v_{t}\right)\right|=2$. As G has girth at least $5, i \leq j-2$, hence $\left|L\left(v_{j-1}\right)\right|=2$. Since L is a valid list assignment and $\left|L\left(v_{j+1}\right)\right|=2$ and $v_{j+2} \in D$, we have $i=j-2$ and $\left|L\left(v_{i}\right)\right|=\left|L\left(v_{j}\right)\right|=3$. Examination of the possible choices of X shows that these conditions may only be satisfied if $j=m$. However, in that case $w=v_{m+1}$ has degree two in G, and hence $w \in X^{\prime}$, contradicting the assumption that $w \in V\left(G^{\prime}\right)$.

Suppose now that G^{\prime} contains a path $u_{1} u_{2} u_{3} u_{4} u_{5}$ with $\left|L^{\prime}\left(u_{1}\right)\right|=\left|L^{\prime}\left(u_{2}\right)\right|=$ $\left|L^{\prime}\left(u_{4}\right)\right|=\left|L^{\prime}\left(u_{5}\right)\right|=2$ and $\left|L^{\prime}\left(u_{3}\right)\right|=3$. Since L is a valid list assignment and p_{k} has no neighbor with list of size two in G^{\prime}, we may assume that $u_{1}, u_{2} \in N$ and $u_{4}, u_{5} \notin N$. However, this contradicts the previous paragraph. We conclude that L^{\prime} is a valid list assignment for G^{\prime} with respect to the path P^{\prime}.

Let us now consider a path $p_{k-1} u_{2} u_{3}$ with $\left|L^{\prime}\left(u_{2}\right)\right|=\left|L^{\prime}\left(u_{3}\right)\right|=2$. Note that $u_{2}, u_{3} \neq p_{k}$. By Lemmas 13 and 14 , we have $u_{2}, u_{3} \neq p_{1}$ and $\left|L\left(u_{2}\right)\right|=$ $\left|L\left(u_{3}\right)\right|=3$, and thus $u_{2}, u_{3} \in N$. This is not possible, as G does not contain Obstruction A. Finally, consider a path $p_{k-1} u_{2} u_{3} u_{4} u_{5}$ with $\left|L^{\prime}\left(u_{2}\right)\right|=$ $\left|L^{\prime}\left(u_{4}\right)\right|=\left|L^{\prime}\left(u_{5}\right)\right|=2$ and $\left|L^{\prime}\left(u_{3}\right)\right|=3$. By Lemma 13, we have either
$u_{2}=p_{k}$ or $u_{2} \in N$. In the former case, Lemmas 13 and 14 imply $u_{4}, u_{5} \in N$, which is a contradiction, since G does not contain Obstruction C. It follows that $u_{2} \in N$, and by Lemma $13, u_{2} \neq v_{m+1}$. Let v_{i} be the neighbor of u_{2} in X. The 2 -chord $p_{k-1} u_{2} v_{i}$ bounds a 5 -face by Lemma 14 , hence $i=2$, $\left|L\left(v_{1}\right)\right|=2$ and $\left|L\left(v_{2}\right)\right|=3$. Since $|X| \leq 4$ and G has girth $5, u_{4}$ and u_{5} cannot both belong to N. Since no vertex of N is adjacent to a vertex with list of size two not belonging to N, it follows that $u_{4}, u_{5} \notin N$, and thus $u_{4}=p_{1}$ or $\left|L\left(u_{4}\right)\right|=2$. If $u_{3} \in V(F)$, then let $Q=p_{k-1} u_{2} u_{3}$, otherwise let $Q=p_{k-1} u_{2} u_{3} u_{4}$. Lemma 14 applied to Q implies that Q together with a path in the boundary of F bounds a 5 -face. However, this contradicts the existence of the edge $u_{2} v_{2}$. We conclude that p_{k-1} is not bad.

Let us summarize the results of the previous few paragraphs:

- If G does not contain Obstruction D , then L^{\prime} assigns each vertex of $V\left(G^{\prime}\right) \backslash V\left(P^{\prime}\right)$ at least two colors.
- If additionally G does not contain Obstruction B , then L^{\prime} is a valid list assignment.
- If additionally G does not contain Obstructions A and C , then p_{k-1} is not bad.

By the minimality of G, ψ can be extended to an L^{\prime}-coloring of G^{\prime}. This is a contradiction, and thus G contains at least one of the obstructions. Note that the obstructions are mutually exclusive, hence G contains exactly one of them. Furthermore, if G does not contain Obstructions B and D (so that L^{\prime} is a valid list assignment), then both p_{k-1} and p_{k-3} are bad. Let us consider each obstruction separately:

Obstruction A. Let us recall that this obstruction consists of a path $p_{k-1} x y$ with $x, y \in N$. By Lemma $14, x$ is adjacent to $v_{2},\left|L\left(v_{1}\right)\right|=2$ and $\left|L\left(v_{2}\right)\right|=3$. It follows that $m=4$ and y is adjacent to v_{4}. As $v_{2} v_{3} v_{4} y x$ is a 5 -face, $\left|L\left(v_{3}\right)\right|=2$. As p_{k} is not bad in $G,\left|L\left(v_{4}\right)\right|=3$. Since $v_{4} \in X,\left|L\left(v_{5}\right)\right|=2$. Therefore, N consists of x, y and other neighbors of v_{4}. Observe also that L^{\prime} is a valid list assignment.

Suppose that p_{1} is bad in G^{\prime}. No vertex of N is adjacent to p_{1} or to a vertex z with $|L(z)|=2$ by Lemma 14 and p_{1} is not bad in G. Since p_{1} is bad in G^{\prime}, there exists a path $p_{1} z_{1} z_{2} x y$ or a path $p_{1} z_{1} z_{2} y x$ with $\left|L\left(z_{1}\right)\right|=2$ and $\left|L\left(z_{2}\right)\right|=3$. The former is not possible, as the 2 -chord $v_{2} x z_{2}$ (if $z_{2} \in V(F)$) or the 3 -chord $v_{2} x z_{2} z_{1}$ would bound a 5 -face by Lemma 14, contradicting the existence of y. In the latter case, if $z_{2} \in$ $V(F)$, then $z_{2} y v_{4}$ is a 2 -chord and by Lemma $14, z_{2} y v_{4} v_{5} v_{6}$ is a 5 -face
(where v_{6} is the common neighbor of v_{5} and z_{2} in F), $\left|L\left(v_{6}\right)\right|=2$, and the path $p_{1} z_{1} z_{2} v_{6} v_{5}$ shows that p_{1} is bad in G. Similarly, if $z_{2} \notin V(F)$, then the 3 -chord $z_{1} z_{2} y v_{4}$ together with the path $v_{4} v_{5} z_{1}$ bounds a 5 -face and the path $p_{1} z_{1} v_{5}$ shows that p_{1} is bad in G. This is a contradiction, hence p_{1} is not bad in G^{\prime}.
If $k=4$, this implies that ψ extends to an L-coloring of G. Therefore, $k=5$. Suppose now that a vertex $v \in N$ is adjacent to p_{2}. The corresponding 2 -chord bounds a 5 -face by Lemma 14 , which excludes the case $v=x$. If $v \neq y$ were a neighbor of v_{4}, then $p_{2} p_{3} p_{4} x y v_{4} v$ would be a 7 -face by (1), implying that y has degree two. This is a contradiction, thus $v=y$. In this case, Lemma 14 implies that v_{5} is adjacent to p_{1}, and by (1) G is the class A graph depicted in Figure 3 (L may differ from the list assignment shown in the figure). Therefore, no vertex of N is adjacent to p_{2}.
Suppose that $v \in N$ is adjacent to p_{3}. As the girth of G is at least $5, v \neq x, y$, thus v is a neighbor of v_{4} distinct from y. However, then $p_{3} p_{4} p_{5} v_{1} v_{2} v_{3} v_{4} v$ would be a separating 8 -cycle, which contradicts (1). Similarly, we conclude that the only neighbor of p_{4} in N is x.
Let $c_{4} \in L\left(v_{4}\right) \backslash L\left(v_{5}\right)$ and $c_{3} \in L\left(v_{3}\right) \backslash\left\{c_{4}\right\}$ be chosen arbitrarily. Observe that we may assume that $\varphi_{\psi}\left(v_{4}\right)=c_{4}$ and $\varphi_{\psi}\left(v_{3}\right)=c_{3}$, independently on the precoloring ψ of P. Let $P_{2}=p_{1} p_{2} p_{3} p_{4} x$ and L_{2} be the list assignment for the vertices of $V\left(G^{\prime}\right) \backslash V\left(P_{2}\right)$ obtained from L by removing c_{4} from the lists of neighbors of v_{4}. Let us remark that L_{2} is L^{\prime} restricted to $V\left(G^{\prime}\right) \backslash V\left(P_{2}\right)$, thus L_{2} is a valid list assignment.
We have shown that p_{1} is not bad and p_{2}, p_{3} and p_{4} are not adjacent to a vertex with list of size two, thus they are not bad, either. Finally, x has list of size two in the valid list assignment L^{\prime}, thus x is not bad. We conclude that a P_{2}-skeleton G_{2} of G^{\prime} satisfies assumptions of Theorem 6. Since x is not adjacent to p_{1}, G_{2} is class A or B.
If G_{2} is class A, then let $J=\left\{p_{1}, p_{2}, p_{4}\right\}$. Note that p_{1} is adjacent to a vertex z in G_{2} such that $\left|L_{2}(z)\right|=2$ and $z_{2} \notin N$, thus $|L(z)|=2$, and p_{5} is adjacent to v_{1} in G, which has $\left|L\left(v_{1}\right)\right|=2$. If G_{2} is class B , then let $J=\left\{p_{1}, p_{3}\right\}$. Given a precoloring ψ^{\prime} of P that is J-different from $\psi^{\left(G^{\prime}, P_{2}, L_{2}\right)}$, we color X according to $\varphi^{\prime}=\varphi_{\psi^{\prime}}$ and choose a color for x from $L(x) \backslash\left\{\psi^{\prime}\left(p_{4}\right), \varphi^{\prime}\left(v_{2}\right)\right\}$. This precoloring of P_{2} extends to an L_{2}-coloring of G_{2}, giving an L-coloring of G.
Choose now $c_{2} \in L\left(v_{2}\right) \backslash L\left(v_{3}\right)$ and $c_{1} \in L\left(v_{1}\right) \backslash\left\{c_{2}\right\}$. If $\psi^{\prime}\left(p_{5}\right) \neq c_{1}$, then consider the graph $G_{3}=G-\left\{p_{5}, v_{1}, v_{2}\right\}$ with list assignment $L^{\prime \prime}$ obtained from L by removing c_{2} from the list of x. Observe that this
list assignment is valid and that no vertex of $P_{3}=p_{1} p_{2} p_{3} p_{4}$ is bad, thus ψ extends to an L_{3}-coloring of G_{3}. We extend this coloring to G by coloring v_{1} by c_{1} and v_{2} by c_{2}. It follows that G is class A or B , with $\psi^{(G, P, L)}$ matching $\psi^{\left(G^{\prime}, P_{2}, L_{2}\right)}$ on p_{1}, p_{2} and $p_{3}, \psi^{(G, P, L)}\left(p_{5}\right)=c_{1}$ and $\psi^{(G, P, L)}\left(p_{4}\right)$ chosen so that $\psi^{\left(G^{\prime}, P_{2}, L_{2}\right)}\left(p_{4}\right) \in\left\{\psi^{(G, P, L)}\left(p_{4}\right), \psi^{(G, P, L)}\left(p_{5}\right)\right\}$.

Obstruction B. That is, G contains a path $v x v_{m+1}$, where $v \in X$ and $x \in$ N. By Lemma 14, $|L(v)|=\left|L\left(v_{m+1}\right)\right|=3, v=v_{m-2}$ and $\left|L\left(v_{m-1}\right)\right|=$ $\left|L\left(v_{m}\right)\right|=2$. Since $v_{m+1} \notin X$, the inspection of the choice of X shows that $m=3$ and $\left|L\left(v_{m+2}\right)\right|=3$.
Let S be an arbitrary list of two colors such that $L\left(v_{2}\right) \cap L\left(v_{3}\right) \subseteq S$. Let $G_{2}=G-\left\{v_{2}, v_{3}\right\}$, with the list assignment L_{2} such that $L_{2}(u)=L(u)$ for $u \notin\left\{v_{1}, v_{4}\right\}$ and $L_{2}\left(v_{1}\right) \subseteq L\left(v_{1}\right)$ and $L_{2}\left(v_{4}\right) \subseteq L\left(v_{4}\right)$ be lists of size two chosen as follows:

- If $\left|S \cap L\left(v_{1}\right)\right| \leq 1$, then choose $L_{2}\left(v_{1}\right)$ disjoint from S and $L_{2}\left(v_{4}\right)$ arbitrarily.
- If $\left|S \cap L\left(v_{4}\right)\right| \leq 1$, then choose $L_{2}\left(v_{4}\right)$ disjoint from S and $L_{1}\left(v_{4}\right)$ arbitrarily.
- Otherwise, $S=\{a, b\} \subseteq L\left(v_{1}\right) \cap L\left(v_{4}\right)$. Set $L_{2}\left(v_{1}\right)=\{a\} \cup\left(L\left(v_{1}\right) \backslash\right.$ $S)$ and $L_{2}\left(v_{4}\right)=\{b\} \cup\left(L\left(v_{4}\right) \backslash S\right)$.

Observe that any L_{2}-coloring of v_{1} and v_{4} extends to an L-coloring of v_{2} and v_{3}, thus any precoloring of P that extends to an L_{2}-coloring of G_{2} also extends to an L-coloring of G. By Lemma $13, L_{2}$ is a valid list assignment, and no vertex of P other than p_{1} or p_{k} is bad. If p_{1} or p_{k} were bad, then there would exist a path $v_{1} u w y \subseteq G_{2}$ with $|L(u)|=3$, $|L(w)|=2$ and either $y=p_{1}$ or $|L(y)|=2$. However, the 2 -chord $v_{1} u w$ would contradict Lemma 14.
By the minimality of G, we can apply Theorem 6 to a P-skeleton of G_{2}. Since ψ does not extend to an L_{2}-coloring of G_{2}, we conclude that $\ell(P)=4$ and G_{2} is class A or B . If G_{2} is class B , then G is class B as well. If G is class A, then p_{1} is adjacent to a vertex v such that $\left|L_{2}(v)\right|=2$. By Lemma $13, v \notin\left\{v_{1}, v_{4}\right\}$, and thus $\left|L_{2}(v)\right|=2$. Furthermore, there exists a coloring $\psi_{R}=\psi^{\left(G_{2}, P, L_{2}\right)}$ of P and a set $R=\left\{p_{1}, p_{2}, p_{4}, p_{5}\right\}$ such that any precoloring ψ^{\prime} of P that is R-different from ψ_{R} extends to an L-coloring of G. Let us remark that G is not class A, since p_{5} is not adjacent to a vertex with list of size two. We postpone the discussion of this case for later.

Obstruction C. Let us recall that Obstruction C consists of a path xyz with x adjacent to p_{k}, y to v_{2} and z to v_{4}, and $v_{4} \in X$. As G does not contain separating 5 -cycles, $\left|L\left(v_{1}\right)\right|=\left|L\left(v_{3}\right)\right|=2$. Since $v_{4} \in X$, we have $m=4$, and the inspection of the choice of X shows that $\left|L\left(v_{2}\right)\right|=\left|L\left(v_{4}\right)\right|=3$ and $\left|L\left(v_{5}\right)\right|=2$. There is no edge other than $p_{k} x$ between $\{x, y, z\}$ and $V(P)$-the only cases that are not excluded by Lemma 14 and the assumption that the girth of G is at least 5 are the following:

- y adjacent to p_{3}, but then G would contain a separating cycle $p_{3} \ldots p_{k} v_{1} v_{2} y$ of length at most 6 , contrary to (1).
- z adjacent to $p_{i} \in\left\{p_{2}, p_{3}, \ldots, p_{k}\right\}$, but then $p_{i} p_{i+1} \ldots p_{k} x y z$ would bound a face of length at most 7 by (1), implying that x has degree two, which is a contradiction.

By Lemma 15, $L\left(v_{1}\right)=\left\{\psi\left(p_{k}\right), c_{1}\right\}$ for some color c_{1}. Suppose first that $L\left(v_{2}\right) \neq L\left(v_{3}\right) \cup\left\{c_{1}\right\}$. We choose a color $c_{2} \in L\left(v_{2}\right) \backslash\left(L\left(v_{3}\right) \cup\left\{c_{1}\right\}\right)$. Let $G_{2}=G-\left\{v_{1}, v_{2}\right\}$ and L_{2} be the list assignment such that $L_{2}(y)=$ $L(y) \backslash\left\{c_{2}\right\}, L_{2}\left(p_{k}\right)=\left\{\psi\left(p_{k-1}\right), \psi\left(p_{k}\right)\right\}, L_{2}\left(p_{1}\right)=\left\{\psi\left(p_{1}\right), \psi\left(p_{2}\right)\right\}$ and $L_{2}(v)=L(v)$ for any other vertex v. Observe that L_{2} is a valid list assignment for G_{2} with respect to the path $p_{2} \ldots p_{k-1}$ and p_{k-1} is not bad. By the minimality of G, ψ extends to an L_{2}-coloring of G_{2}, giving an L-coloring of G, which is a contradiction. Therefore, $L\left(v_{2}\right)=L\left(v_{3}\right) \cup$ $\left\{c_{1}\right\}$, and thus $\left\{\psi\left(p_{k}\right)\right\}=L\left(v_{1}\right) \backslash\left(L\left(v_{2}\right) \backslash L\left(v_{3}\right)\right)$. This implies that any precoloring ψ^{\prime} of P with $\psi^{\prime}\left(p_{k}\right) \neq \psi\left(p_{k}\right)$ extends to an L-coloring of G.
Let $G_{3}=G-\left\{v_{1}, v_{2}, v_{3}, y\right\}$ and choose $c \in L(y) \backslash L\left(v_{3}\right)$. Let N_{3} be the set of neighbors of y in G, excluding v_{2}. Let L_{3} be the list assignment for $V\left(G_{3}\right) \backslash V(P)$ obtained from L by removing c from the lists of vertices in N_{3}. The vertices of N_{3} form an independent set. As we observed before, x is not adjacent to a vertex of P other than p_{k} and z is not adjacent to any vertex of P. A vertex $v \in N_{3} \backslash\{x, z\}$ is not adjacent to a vertex of $V(P) \backslash\left\{p_{3}\right\}$ by Lemma 14. If v were adjacent to p_{3}, then the open disk bounded by $p_{3} \ldots p_{k} v_{1} v_{2} y v$ would contain the vertex x, contrary to (1). By Lemma 14, no vertex of N_{3} is adjacent to a vertex v with $|L(v)|=2$ and there does not exist a path $x v_{1} v_{2}$ with $\left|L\left(v_{2}\right)\right|=2$. It follows that L_{3} is a valid list assignment for G_{3} and no vertex of P is bad. By the minimality of G, we conclude that $\ell(P)=4$ and G_{3} is class A or B, with $\psi_{3}=\psi^{\left(G_{3}, P, L_{3}\right)}$. If G_{3} is class A, then let $J=\left\{p_{1}, p_{2}, p_{4}\right\}$; in this case, p_{1} has a neighbor v with $\left|L_{3}(v)\right|=2$, and since no vertex of N is adjacent to $p_{1},|L(v)|=2$. Furthermore, p_{5} is
adjacent to the vertex v_{1} with list of size two. If G_{3} is class B , then let $J=\left\{p_{1}, p_{3}\right\}$.
Consider a precoloring ψ^{\prime} of P with $\psi^{\prime}\left(p_{5}\right)=\psi\left(p_{5}\right)$, such that ψ^{\prime} is J-different from ψ_{3}. This precoloring extends to an L_{3}-coloring of G_{3}. Furthermore, it also extends to an L-coloring of G : We color y by c, v_{1} by c_{1} and v_{3} by a color $c_{3} \in L\left(v_{3}\right)$ different from the color of v_{4}. Observe that $c=c_{1}$ or $c \notin L\left(v_{2}\right)$, thus we can color v_{2} by a color in $L\left(v_{2}\right) \backslash$ $\left\{c_{1}, c_{3}\right\}$. Let $\psi^{(G, P, L)}$ match ψ_{3} on p_{1}, p_{2} and $p_{3}, \psi^{(G, P, L)}\left(p_{5}\right)=\psi\left(p_{5}\right)$ and choose $\psi^{(G, P, L)}\left(p_{4}\right)$ so that $\psi_{3}\left(p_{4}\right) \in\left\{\psi^{(G, P, L)}\left(p_{4}\right), \psi^{(G, P, L)}\left(p_{5}\right)\right\}$. We conclude that if G_{3} is class A , then G is class A , and if G_{3} is class B , then G is class B.

Obstruction D. I.e., a vertex $x \in N$ has two neighbors $v_{i}, v_{j} \in X$. Assume that $i<j$. As G has girth at least 5 and $|X| \leq 4, i=1$ and $j=4$, $\left|L\left(v_{1}\right)\right|=\left|L\left(v_{4}\right)\right|=3$ and $\left|L\left(v_{2}\right)\right|=\left|L\left(v_{3}\right)\right|=2$. The inspection of the choice of X implies that $\left|L\left(v_{5}\right)\right|=2$. By Lemma $14, x$ is not adjacent to p_{1} and p_{2}. Since the girth of G is at least $5, x$ is not adjacent to p_{k} and p_{k-1}.
Suppose that x is not adjacent to p_{3}. Choose a color $c \in L(x) \backslash$ $\left\{\varphi\left(v_{1}\right), \varphi\left(v_{4}\right)\right\}$. Let $G_{2}=G^{\prime}-x$ and let L_{2} be the assignment obtained from L^{\prime} by removing c from the lists of neighbors of x. Let N_{2} be the set of vertices of $V\left(G_{2}\right) \backslash\left(V(P) \cup\left\{v_{5}\right\}\right)$ that are adjacent to v_{1}, x or v_{4} in G, excluding v_{5}. Each vertex in N_{2} is adjacent to only one of v_{i}, x or v_{j}, as G has girth at most 5 . Furthermore, the vertices in N_{2} form an independent set-if vertices $z_{1}, z_{2} \in N_{2}$ were adjacent, then, since the girth of G is at least 5 , say z_{1} would be adjacent to v_{1} and z_{2} to v_{4}. However, by (1) $v_{1} x v_{4} z_{2} z_{1}$, and x would have degree two. Similarly, no vertex of N_{2} is adjacent to p_{k} or v_{5}. By Lemma 14, $|L(v)|=3$ for any $v \in N_{2}$, and no neighbor u of a vertex of N_{2} satisfies $u=p_{1}$ or $u \notin V(P)$ and $|L(u)|=2$. We conclude that L_{2} is a valid list assignment to G_{2} with respect to the path P^{\prime}.
If ψ extended to an L_{2}-coloring of G_{2}, then it would also extend to an L-coloring of G, hence this is not the case. By the minimality of G, we can apply Theorem 6 to a P^{\prime}-skeleton of G_{2}, and we conclude that p_{k-1} is bad in G_{2} with the list assignment L_{2}. Since $N_{2} \cup\left\{p_{k}\right\}$ forms an independent set and no vertex of this set is adjacent to another vertex with list of size two, it follows that there exists a path $p_{k-1} z_{1} z_{2} z_{3} \subseteq G_{2}$ with $z_{1} \in N_{2} \cup\left\{p_{k}\right\},\left|L\left(z_{2}\right)\right|=3$ and either $z_{3}=p_{1}$ or $\left|L\left(z_{3}\right)\right|=2$. However, this contradicts Lemma 14.
Therefore, x is adjacent to p_{3}. Since x is not adjacent to p_{k-1}, it follows
that $\ell(P)=4$. By (1), $p_{3} p_{4} p_{5} v_{1} x$ is a 5 -face. If $L\left(v_{2}\right) \neq L\left(v_{3}\right)$ or $L\left(v_{1}\right) \neq L\left(v_{2}\right) \cup\left\{\psi\left(p_{5}\right)\right\}$, then there exists a color $c_{1} \in L\left(v_{1}\right) \backslash\left\{\psi\left(p_{5}\right)\right\} \backslash$ $\left(L\left(v_{2}\right) \cap L\left(v_{3}\right)\right)$. Observe that that for any $c_{4} \in L\left(v_{4}\right)$, the path $v_{1} v_{2} v_{3} v_{4}$ can be L-colored so that v_{1} has color c_{1} and v_{4} has color c_{4}. Let $G_{3}=$ $G-\left\{p_{4}, p_{5}, v_{1}, v_{2}, v_{3}\right\}$ and let L_{3} be the list assignment obtained from L by removing c_{1} from the list of x, and setting $L_{3}\left(p_{1}\right)=\left\{\psi\left(p_{1}\right), \psi\left(p_{2}\right)\right\}$. By Lemma 14, x is not adjacent to p_{1} or a vertex v with $|L(v)|=2$, hence L_{3} is a valid list assignment for G_{3} with respect to the path $p_{2} p_{3}$. By the minimality of G, the precoloring of $p_{2} p_{3}$ given by ψ extends to an L_{3}-coloring of G_{3}, and further to an L-coloring of G, which is a contradiction. Therefore, $L\left(v_{1}\right)=\left\{\psi\left(p_{5}\right), c_{2}, c_{3}\right\}$ and $L\left(v_{2}\right)=L\left(v_{3}\right)=$ $\left\{c_{2}, c_{3}\right\}$ for some colors c_{2} and c_{3}, and $\left\{\psi\left(p_{5}\right)\right\}=L\left(v_{1}\right) \backslash L\left(v_{2}\right)$. It follows that any precoloring ψ^{\prime} of P that is $\left\{p_{5}\right\}$-different from ψ extends to an L-coloring of G.
Furthermore, $L(x)=\left\{\psi\left(p_{3}\right), c_{2}, c_{3}\right\}$, as if say $c_{2} \notin L(x)$, then we could instead define $L_{3}(x)=L(x) \backslash\left\{c_{3}\right\}$, and if $\psi\left(p_{3}\right) \notin L(x)$, then we could define $L_{3}(x)=\left(L(x) \backslash\left\{c_{2}, c_{3}\right\}\right) \cup\left\{\psi\left(p_{3}\right)\right\}$, obtaining a contradiction in the same way. Therefore, $\left\{\psi\left(p_{3}\right)\right\}=L(x) \backslash L\left(v_{2}\right)$, and any precoloring ψ^{\prime} of P that is $\left\{p_{3}\right\}$-different from ψ extends to an L-coloring of G. Let $\psi_{R}=\psi$ and $R=\left\{p_{3}, p_{5}\right\}$.

We proved that $\ell(P)=4$. Furthermore, we proved that G does not contain Obstructions A and C, and if G contains Obstruction B or D, there exists a set $R \subseteq V(P)$ and coloring ψ_{R} of P such that $p_{5} \in R,\left\{p_{3}, p_{4}\right\} \cap R \neq \emptyset$, any precoloring ψ^{\prime} of P that is R-different from ψ_{R} extends to an L-coloring of G, and if $p_{3} \notin R$, then p_{1} is adjacent to a vertex with list of size two.

By symmetry of the path P, there exists a set $S \subseteq V(P)$ and coloring ψ_{S} of P such that $p_{1} \in S,\left\{p_{2}, p_{3}\right\} \cap S \neq \emptyset$, any precoloring ψ^{\prime} of P that is S-different from ψ_{S} extends to an L-coloring of G, and if $p_{3} \notin S$, then p_{5} is adjacent to a vertex with list of size two.

If $p_{3} \in R$, then G is class B, with $\psi^{(G, P, L)}$ matching ψ_{R} on p_{3} and p_{5} and $\psi^{(G, P, L)}\left(p_{1}\right)=\psi_{S}\left(p_{1}\right)$. Symmetrically, if $p_{3} \in S$, then G is class B. If $p_{3} \notin R \cup S$, then G is class A, with $\psi^{(G, P, L)}$ matching ψ_{R} on p_{4} and p_{5} and ψ_{S} on p_{1} and p_{2}. This is a contradiction.

3 Critical graphs with outer face of length 12

Theorem 4 (and Lemma 8) provides a characterization of the plane F-critical graphs of girth 5 , where F is the outer face of length at most 12 . If $\ell(F) \leq 11$, the complete list of F-critical graphs is provided, however for $\ell(F)=12$, only
a necessary condition (every second vertex of F is a 2-vertex incident with a 5 -face) is given for one subclass of the critical graphs. Here, we show that this subclass in fact contains only one graph.

Lemma 16. Let G be a plane graph of girth at least 5, with the outer face F bounded by an induced cycle of length most 12. Furthermore, suppose that every second vertex of F has degree two and is incident with a 5 -face. Let L be a list assignment of lists of size three to the vertices of $V(G) \backslash V(F)$. If G is proper F-critical, then G is isomorphic to the graph in Figure 2.

Proof. Let G be a graph satisfying the assumptions of the lemma, and assume as the induction hypothesis that any such graph G^{\prime} with $\left|V\left(G^{\prime}\right)\right|<|V(G)|$ is isomorphic to the graph in Figure 2. Let $F=v_{1} v_{2} \ldots v_{12}$, where v_{2}, v_{4}, \ldots, v_{12} are vertices of degree two incident with 5 -faces. In particular, v_{1}, v_{3}, \ldots, v_{11} have degree at least three.

The face f has no 2-chord.
Otherwise, we may assume that there exists a vertex v adjacent to v_{1} and v_{k} for $5 \leq k \leq 7$. We may also assume that v is not adjacent to a vertex v_{i} with $2 \leq i \leq k-1$, thus $C=v_{1} v_{2} \ldots v_{k} v$ is an induced cycle of length at most 8 . Since v_{2} is incident with a 5 -face, the open disk bounded by C contains at least one vertex, contradicting (1).

Suppose that there exists a 2-chord $Q=v_{i} x y v_{j}$ such that $|i-j| \neq 2$, i.e., such that no cycle of $Q \cup F$ bounds a 5 -face. We may assume that $i=1$ and $j \leq 7$. By the previous paragraph, the cycle $C=v_{1} \ldots v_{j} y x$ is induced, and since v_{2} is incident with a 5 -face, the open disk bounded by C contains at least one vertex. By Lemmas 7 and $8, j=7$ and there is exactly one vertex v of degree three in the open disk bounded C. However, this is not possible, as v cannot have two neighbors in F. It follows that
if Q is a 2-chord of F, then $Q \cup F$ contains a 5-cycle.
Consider now a 3 -chord $v_{i} x y z v_{j}$. Again, we assume that $i=1$ and $j \leq 7$. Observe that the cycle $C=v_{1} \ldots v_{j} z y x$ is either the union of two 5 -faces (with $j=5$ and y adjacent to v_{3}), or induced. Assume that C is induced. As in the previous paragraph, we exclude the case $j \leq 6$, thus $j=7$. Let $C^{\prime}=v_{7} v_{8} \ldots v_{12} v_{1} x y z$. By (4) and (5), C^{\prime} is an induced cycle. We apply Lemmas 7 and 8 to the 10 -cycles C and C^{\prime}. By the constraints on the degrees of vertices and sizes of the faces incident with F, we conclude that there are the following possibilities for C (and symmetrically, for C^{\prime}):
(a) there is a 5 -cycle inside C, and the vertices of this 5 -cycle are adjacent to $v_{1}, v_{3}, v_{5}, v_{7}$ and y, or
(b) there are two adjacent vertices u_{1} and u_{2} inside C, u_{1} is adjacent to v_{3} and x and u_{2} is adjacent to v_{5} and z.

As each of x, y and z has degree at least 3 , the configuration (a) must appear in C and the configuration (b) in $C^{\prime \prime}$ (or vice versa), implying that G is the graph depicted in Figure 2. Therefore,
any 4-chord together with a path in F bounds a cycle K such that the closed disk bounded by K is a union of two 5 -faces.

If all the vertices $v_{1}, v_{3}, \ldots, v_{11}$ had degree three, then $G-V(F)$ would be a 6 -cycle K and all vertices of K would have degree three in G, contradicting Lemma 11. Therefore, assume that v_{3} has degree at least 4. Consider a coloring φ of F that does not extend to an L-coloring of G. Let $G^{\prime}=$ $G-\left\{v_{12}, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$ and let L^{\prime} be the list assignment obtained from L by removing the colors of v_{1}, v_{3} and v_{5} from the lists of their neighbors and setting $L^{\prime}\left(v_{7}\right)=\left\{\varphi\left(v_{7}\right), \varphi\left(v_{8}\right)\right\}$ and $L^{\prime}\left(v_{11}\right)=\left\{\varphi\left(v_{11}\right), \varphi\left(v_{10}\right)\right\}$. As φ does not extend to an L-coloring of G, G^{\prime} together with L^{\prime} and the path $P=v_{8} v_{9} v_{10}$ must violate assumptions of Theorem 6. Observe that as v_{3} has degree at least $4,(4),(5)$ and (6) imply that L^{\prime} is a valid list assignment. It follows that both v_{8} and v_{10} are bad. Note that v_{7} is the only vertex with list of size two adjacent to v_{8}, and by (4), v_{7} is not adjacent to any vertex with list of size two. Therefore, there exists a path $v_{8} v_{7} x y z$ with $\left|L^{\prime}(y)\right|=\left|L^{\prime}(z)\right|=2$. By (4) and (5), y is adjacent to v_{5}, z is adjacent to v_{3} and v_{5} has degree three. Symmetrically, since v_{10} is bad, v_{1} has degree three. Similarly,
if $v_{i} \in V(F)$ has degree greater than three, then v_{i-2} and v_{i+2} have degree three.

For every vertex $v_{i} \in V(F)$ of degree three, let z_{i} be the neighbor of v_{i} that is not incident with F. Consider now the case that v_{7}, v_{9} and v_{11} have degree three. Then, G contains an 8 -cycle $C=v_{3} x z_{5} z_{7} z_{9} z_{11} z_{1} y$, where x and y are neighbors of v_{3}. By (1), at least one of x and y has degree two, which is a contradiction.

Suppose now that v_{9} and v_{11} have degree three, and thus v_{7} has degree greater than 4 . Consider the 10 -cycle $C=v_{3} x z_{5} u v_{7} w z_{9} z_{11} z_{1} y$. Since x, y, u and w have degree at least three, Lemmas 7 and 8 imply that the open disk bounded by C contains a 5 -cycle D with vertices adjacent to y, x, u, w and z_{11}. However, then the subgraph $G-V(F)$ contradicts Lemma 11.

By symmetry, it is also not the case that both v_{7} and v_{9} have degree three. Suppose that v_{9} has degree greater than three. By (7), v_{7} and v_{11} have degree three. We applying Lemmas 7 and 8 to the 10 -cycle $C=y v_{3} x z_{5} z_{7} u v_{9} w z_{11} z_{1}$. Since x, y, u and w have degree at least three, the open disk bounded by C contains two adjacent vertices p_{1} and p_{2}, with p_{1} adjacent to x and u and p_{2} adjacent to w and y. However, the 4 -chord $v_{3} x p_{1} u v_{9}$ contradicts (6).

Therefore, we may assume that v_{7} and v_{11} have degree greater than three and v_{9} has degree three. Consider the induced 12 -cycle

$$
C=v_{3} x_{1} z_{5} x_{2} v_{7} x_{3} z_{9} x_{4} v_{11} x_{5} z_{1} z_{6}
$$

, and let $Y=V(G) \backslash(V(F) \cup V(C))$ and $G_{2}=G-(V(F) \backslash V(C))$. By (4) and (5), C is an induced cycle. By Lemma 8 and the induction hypothesis applied to G_{2} whose outer face is bounded by C,
(a) $G[Y]$ is a tree with at most 4 vertices, or
(b) $G[Y]$ is a connected unicyclic graph consisting of a 5 -cycle K and at most two other vertices, or
(c) G_{2} is isomorphic to the graph in Figure 2.

By (6), each vertex in Y is adjacent to at most one vertex of C. On the other hand, each of $x_{1}, x_{2}, \ldots, x_{6}$ has at least one neighbor in Y, hence $|Y| \geq 6$, excluding the case (a).

Consider the case (b). Since $|Y| \geq 6, G[Y]$ contains at least one vertex not belonging to K. As $G[F]$ is unicyclic, it contains a vertex v of degree one. As the degree of v in G is at least three, v has at least two neighbors in C, which is a contradiction.

Finally, consider the case (c), i.e., G_{2} is the graph in Figure 2, with x_{1}, \ldots, x_{6} being the ≥ 3-vertices in the outer face. We may assume that x_{1} and x_{4} are the vertices of degree four. Let H be a 2 -connected component of $G-\left(V(F) \cup\left\{x_{1}, x_{4}\right\}\right.$ such that $|V(H)|>2$. Then all vertices of $V(H)$ have degree three in G and H is not an odd cycle, contradicting Lemma 11.

The description of the critical graphs with outer face of length at most 12 follows:

Corollary 17. Let G be a plane graph of girth at least 5, with the outer face F bounded by an induced cycle of length at most 12. Let L be a list assignment of lists of size three to the vertices of $V(G) \backslash V(F)$. If G is proper $V(F)$-critical graph, then

- $\ell(F) \geq 9$ and $G-V(F)$ is a tree with at most $\ell(F)-8$ vertices, or
- $\ell(F) \geq 10$ and $G-V(F)$ is a connected graph with at most $\ell(F)-5$ vertices containing exactly one cycle, and the length of this cycle is 5 , or
- G is the graph in Figure 2.

4 4-critical graphs

In this section, we prove Theorem 5. Let us note that several of the ideas (the face weights, dealing with the possibly non-critical graphs created by the reductions) used in this proof are inspired by the approach of Dvořák et al. [3]. However, the basic ideas of the proofs are quite different (discharging vs. precoloring extension). It should be noted that our approach gives better bounds on the sizes of the critical graphs.

Let $w: Z^{+} \rightarrow R$ be the function defined in the following way: $w(x)=0$ for $x \leq 4, w(5)=1 / 7$ and $w(x)=x-5$ for $x \geq 6$. Note the following basic properties of the function w :

- w is non-decreasing
- for every $x \geq 5, w(x) \leq x-5+w(5)$
- for every $x<y, w(x)-w(x-1) \leq w(y)-w(y-1)$

The consequence of the last of these properties is the following:
If $x+y=z$ and $x, y \geq m$, then $w(x)+w(y) \leq w(z-m)+w(m)$.
Let G be a plane graph with the outer face F, and let $\mathcal{F}(G)$ be the set of faces of G excluding the outer face F. Let the weight $w(G)$ of G be defined as $w(G)=\sum_{f \in \mathcal{F}(G)} w(\ell(f))$.

Let E_{1} be the set of all cycles of length at least 5 . Let E_{2} be the set of plane graphs G of girth at least 5 with outer face F bounded by a cycle such that $G-F$ consists of a chord of F. Let E_{3} be the set of plane graphs G of girth at least 5 with outer face F bounded by an induced cycle such that $V(G) \backslash V(F)$ consists of a single vertex of degree three. A graph G is exceptional if $G \in E_{1} \cup E_{2} \cup E_{3}$. Note that if G is exceptional, then

- $w(G) \leq w(\ell(F))$, and
- if $G \notin E_{1}$, then $w(G) \leq w(\ell(F)-3)+w(5)$, and
- if $G \notin E_{1} \cup E_{2}$, then $w(G) \leq w(\ell(F)-4)+2 w(5)$.

We prove the following claim, which implies Theorem 5.
Theorem 18. Let G be a plane graph of girth at least 5 with the outer face F, and L an assignment of lists of size three to vertices of $V(G) \backslash V(F)$. If G is a non-exceptional F-critical graph, then $\ell(F) \geq 10$ and $w(G) \leq$ $w(\ell(F)-5)+5 w(5)$.

Note that the bound in Theorem 18 is tight for the graph G whose outer face F is bounded by an induced cycle, $G-V(F)$ is 5-cycle C, every vertex of C has degree three in G and G has only one face of length greater than 5 distinct from F.

Before we proceed with the proof of the theorem, let us introduce several definitions and auxiliary results. Let G be a plane graph of girth at least 5 with the outer face F. A jump in G is a subgraph of G consisting of two 5 -faces $v_{1} v_{2} v_{3} y x$ and $v_{3} v_{4} v_{5} z y$ such that the path $v_{1} v_{2} v_{3} v_{4} v_{5}$ (the base of the jump) is a part of the facial walk of F and $x, y, z \notin V(F)$. The path $v_{1} x y z v_{5}$ is called the body of the jump. The internal vertices of the jump are v_{2}, v_{3}, v_{4}, x, y and z. Two jumps are disjoint if the sets of their internal vertices are disjoint. A peeling of G is the subgraph H obtained by removing the internal vertices of the bases of at most two disjoint jumps. Let B be the outer face of H. Note that $\ell(B)=\ell(F)$ and $w(G) \leq w(H)+4 w(5)$. Also, by Lemma 7, if G is F-critical, then H is B-critical.

Lemma 19. Let G be a plane graph of girth at least 5 with the outer face F and L an assignment of lists of size three to vertices of $V(G) \backslash V(F)$. If G is a proper F-critical graph, then at least one of the following holds:
(a) the outer face of a peeling of G is not bounded by an induced cycle, or
(b) the outer face of a peeling of G has a 2-chord, or
(c) F contains two adjacent vertices of degree two, or
(d) a peeling H of G with the outer face B has a 3 -chord Q such that no cycle in $B \cup Q$ distinct from B bounds a face of G, or
(e) a peeling H of G with the outer face B has a 4 -chord $Q=v_{0} v_{1} v_{2} v_{3} v_{4}$ such that for each cycle $K \subseteq B \cup Q$ distinct from B, the subgraph of G drawn in the closed disk bounded by K is equal neither to K nor to K with exactly one chord incident with v_{2}, or
(f) there exists a path uvwx $\subseteq G$ such that $u, v, w, x \notin V(F)$ and each of u, v, w and x has a neighbor in F, or
(g) there exists a 4-chord $Q=v_{0} v_{1} v_{2} v_{3} v_{4}$ of the outer face B of a peeling H of G such that a cycle $C \subseteq B \cup Q$ distinct from B bounds a face of G and H contains a jump intersecting C in $v_{0} v_{1}$, or
(h) there exist a 4 -chord $Q=v_{0} v_{1} v_{2} v_{3} v_{4}$ of the outer face B of a peeling H of G and 5 -faces C_{1} and C_{2} of H such that a cycle $C \subseteq B \cup Q$ distinct from B bounds a face of $G,\left|V\left(C_{1} \cap B\right)\right|=\left|V\left(C_{2} \cap B\right)\right|=3$, $C_{1} \cap C=v_{0} v_{1}$ and $C_{1} \cap C=v_{3} v_{4}$.

Proof. Suppose that none of (a-h) holds. Then the outer face of G is an induced cycle, and since G is F-critical, G is 2-connected. By Lemma 8, since (b) is false, $\ell(F) \geq 10$.

Let X be the set of vertices of $V(G) \backslash V(F)$ that have a neighbor in F. Since (b) is false, each vertex of X has exactly one neighbor in F. Since (c) and (d) are false, if $x_{1}, x_{2} \in X$ are adjacent, then there exists a unique 5 -face $f\left(x_{1} x_{2}\right)=x_{1} x_{2} v_{1} v_{2} v_{3}$, where $v_{1} v_{2} v_{3}$ is a part of the facial walk of F. Similarly, if $x_{1} x_{2} x_{3}$ is a path with $x_{1}, x_{2}, x_{3} \in X$, then the 5 -faces $f\left(x_{1} x_{2}\right)$ and $f\left(x_{2} x_{3}\right)$ intersect F in consecutive segments. It follows that $G[X]$ is either a cycle, or a union of paths. Note that $G[X]$ cannot be a cycle of length three, since the girth of G is at least 5 . Since (f) is false, $G[X]$ is a union of paths of length at most two.

For $i \in\{0,1,2\}$, let X_{i} be the set of vertices $x \in X$ such that the maximal path in $G[X]$ that contains x has length i. Note that each path P in $G\left[X_{2}\right]$ corresponds to a jump; let this jump be denoted by $j(P)$. Let Y be the set of vertices of $V(G) \backslash\left(V(F) \cup X_{2}\right)$ that have a neighbor in X_{2}. Note that $X \cap Y=\emptyset$.

Suppose that a vertex $y \in Y$ has two neighbors in X. Let x_{1} be a neighbor of y in X_{2} and $x_{2} \in X$ another neighbor in X. Note that F has a 4 -chord $Q=v_{1} x_{1} y x_{2} v_{2}$. As $X \cap Y=\emptyset, y$ is not adjacent to a vertex of F, and since (e) is false, $Q \cup F$ contains a cycle $K \neq F$ bounding a face. However, the 4 -chord Q together with the jump containing x_{1} implies that G satisfies (g), which is a contradiction. Therefore, each vertex in Y has exactly one neighbor in X (and this neighbor belongs to X_{2}).

Consider now two adjacent vertices $y_{1}, y_{2} \in Y$. For $i \in\{1,2\}$, let J_{i} be the jump in that y_{i} has a neighbor. Suppose that $J_{1} \neq J_{2}$, and let H be the peeling of G obtained by removing the internal vertices of the base of J_{1}. Let B be the outer face of H. Then B has a 4 -chord $Q=x_{1} y_{1} y_{2} x_{2} v$, with x_{i} belonging to the body of J_{i}, for $i \in\{1,2\}$. Note that y_{2} does not have a neighbor in B, as $y_{2} \notin X$, and since (e) is false, $Q \cup B$ contains a cycle $K \neq B$ bounding a face of G. However, Q together with the jump J_{2} implies that G satisfies (g), which is a contradiction. It follows that $J_{1}=J_{2}$, and
as G has girth at least $5, y_{1} y_{2}$ together with a path in X_{2} (a subpath of the body of J_{1}) bounds a 5 -face $f\left(y_{1} y_{2}\right)$. As both neighbors in X of the vertices of any edge $y_{1} y_{2} \in E(G[Y])$ must belong to the same jump, we conclude that $E(G[Y])$ does not contain a path of length two.

Let $Y_{1} \subseteq Y$ be the set of vertices that are incident with an edge in $G[Y]$. Note that $G\left[X_{1} \cup Y_{1}\right]$ is 1-regular. Suppose that a vertex $v \in V(G) \backslash(V(F) \cup$ $X \cup Y)$ has two neighbors $z_{1}, z_{2} \in X_{1} \cup Y_{1}$. For $i \in\{1,2\}$, let z_{i}^{\prime} be the neighbor of z_{i} in $X_{1} \cup Y_{1}$, and v_{i} the neighbor of z_{i} in $f\left(z_{i} z_{i}^{\prime}\right)$ distinct from z_{i}^{\prime}. There exists a peeling H of G with the outer face B such that $f\left(z_{i} z_{i}^{\prime}\right)-\left\{z_{i}, z_{i}^{\prime}\right\}$ is a subpath of B for $i \in\{1,2\}$. Then, $Q=v_{1} z_{1} v z_{2} v_{2}$ is a 4 -chord of B. As $v \notin X \cup Y, v$ does not have a neighbor in B, and since (e) is false, $Q \cup B$ contains a cycle $K \neq B$ bounding a face of G. However, Q together with the faces $f\left(z_{1} z_{1}^{\prime}\right)$ and $f\left(z_{2} z_{2}^{\prime}\right)$ implies that G satisfies (h), which is a contradiction. Therefore, no vertex in $V(G) \backslash(V(F) \cup X \cup Y)$ has two neighbors in $X_{1} \cup Y_{1}$.

As G is critical and $G \neq F$, there exists a precoloring ψ of F that does not extend to an L-coloring of G. Since each vertex of X_{2} has list of size three, only one neighbor in F and $G\left[X_{2}\right]$ is a union of paths, there exists an L-coloring ψ_{1} of $G\left[V(F) \cup X_{2}\right]$ extending ψ. Let $G_{1}=G-\left(V(F) \cup X_{2}\right)$ and let L_{1} be the list assignment for G_{1} such that $L_{1}(v)=L(v)$ if v has no neighbor in $V(F) \cup X_{2}$ and $L_{1}(v)=L(v) \backslash \psi_{1}(x)$ if $x \in V(F) \cup X_{2}$ is the (unique) neighbor of v. Note that each vertex of G_{1} has list of size at least two, and the set of vertices with lists of size two is a subset of $Z=X_{0} \cup X_{1} \cup Y$. As we proved in the previous paragraphs, $G[Z]$ does not contain a path of length three and there does not exist a path $z_{1} z_{2} v z_{3} z_{4} \subseteq G_{1}$ with $z_{1}, z_{2}, z_{4}, z_{5} \in Z$. Therefore, G_{1} with the list assignment L_{1} satisfies assumptions of Theorem 3 and G_{1} has an L_{1}-coloring φ. However, $\psi_{1} \cup \varphi$ is an L-coloring of G that extends ψ, which is a contradiction.

The following claims allow us to deal with the configurations described in Lemma 19.

Lemma 20. Let G be a plane graph of girth at least 5 with the outer face F and L an assignment of lists of size three to vertices of $V(G) \backslash V(F)$. Suppose that G is a non-exceptional F-critical graph and H is a peeling of G. Then H is not exceptional.

Proof. Suppose that H is exceptional. Since G is not exceptional, there exists a jump $J \subseteq G$ such that the body $v_{1} x y z v_{5}$ of J is a part of the boundary of the outer face of H. As H is exceptional, x or $z(\operatorname{say} x)$ has degree two in H. However, then x has degree two in G as well, contradicting the criticality of G.

Lemma 21. Let G be a plane graph of girth at least 5 with the outer face F and L an assignment of lists of size three to vertices of $V(G) \backslash V(F)$. Suppose that G is a non-exceptional F-critical graph and H is a peeling of G with the outer face B such that B is not an induced cycle. Let H_{1} and H_{2} be induced subgraphs of H such that $H=H_{1} \cup H_{2}, H_{1} \neq H_{1} \cap H_{2} \neq H_{2}$ and $H_{1} \cap H_{2}$ is either a vertex of B, or a chord of B. Let B_{i} be the outer face of H_{i} for $i \in\{1,2\}$. If $H_{1}, H_{2} \in E_{1}$, then $\ell(F)=\ell\left(B_{1}\right)+\ell\left(B_{2}\right)$.

Proof. If $H_{1} \cap H_{2}$ is a chord of B, then $H \in E_{2}$ contrary to Lemma 20. It follows that $\ell(F)=\ell\left(B_{1}\right)+\ell\left(B_{2}\right)$.

Lemma 22. Let G be a plane graph of girth at least 5 with the outer face F and L an assignment of lists of size three to vertices of $V(G) \backslash V(F)$. Suppose that G is a non-exceptional F-critical graph and H is a peeling of G with the outer face B bounded by an induced cycle. Let Q be a 2-chord of B and $H_{1}, H_{2} \neq Q$ be induced subgraphs of H such that $H=H_{1} \cup H_{2}$ and $H_{1} \cap H_{2}=Q$. If $H_{1} \in E_{1}$, then $H_{2} \notin E_{1} \cup E_{2}$. Furthermore, if $H_{2} \in E_{3}$, then $w(G) \leq w(H)+2 w(5)$.

Proof. If $H_{2} \in E_{1}$, then the vertex of $V(Q) \backslash V(B)$ has degree two, contradicting the criticality of G. If $H_{2} \in E_{2}$, then $H \in E_{3}$, contrary to Lemma 20. Suppose for a contradiction that $H_{2} \in E_{3}$ and $w(G)>w(H)+2 w(5)$, i.e., H was obtained from G by removing the internal vertices of the bases of two jumps J_{1} and J_{2}. Let x_{i} and y_{i} be the internal vertices of the bodies of J_{i} that have degree two in J_{i}, for $i \in\{1,2\}$. Since x_{1}, y_{1}, x_{2} and y_{2} have degree greater than two in G, each of them is adjacent to a vertex of $V(H) \backslash V(B)$. However, then each vertex of $V(G) \backslash V(F)$ has degree three, $G-V(F)$ is 2-connected and not an odd cycle, which contradicts Lemma 11.

Lemma 23. Let G be a plane graph of girth at least 5 with the outer face F and L an assignment of lists of size three to vertices of $V(G) \backslash V(F)$. Suppose that G is a non-exceptional F-critical graph that does not have properties (a) and (b) of Lemma 19, and that v_{1} and v_{2} are two adjacent vertices of degree two in G. Let G_{1} be the graph obtained from G by identifying v_{1} with v_{2}, and F_{1} the outer face of G_{1}. Then $\ell\left(F_{1}\right)=\ell(F)-1, G_{1}$ is a non-exceptional F_{1}-critical graph and the girth of G_{1} is at least 5 .

Proof. Note that $v_{1}, v_{2} \in V(F)$, and thus $\ell\left(F_{1}\right)=\ell(F)-1$. Let $v_{0} v_{1} v_{2} v_{3}$ be the subpath of F containing v_{1} and v_{2}. Since G does not satisfy (b), v_{0} and v_{3} do not have a common neighbor, and thus the girth of G_{1} is at least 5 . Also, for any precoloring ψ of F there exists a precoloring ψ_{1} of F_{1} matching ψ on $V(F) \backslash\left\{v_{1}, v_{2}\right\}$, and ψ extends to an L-coloring of a subgraph of G if and only if ψ_{1} extends to an L-coloring of the corresponding subgraph of G_{2},
thus G_{1} is F_{1}-critical. Since G is not exceptional and subdividing an edge of the outer face of an exceptional graph results in an exceptional graph, G_{1} is not exceptional.

Lemma 24. Let G be a plane graph of girth at least 5 with the outer face F and L an assignment of lists of size three to vertices of $V(G) \backslash V(F)$. Suppose that G is a non-exceptional F-critical graph that does not have properties (a) and (b) of Lemma 19. Let Q be a 3 -chord of B and $H_{1}, H_{2} \neq Q$ be induced subgraphs of H such that $H=H_{1} \cup H_{2}, H_{1} \cap H_{2}=Q$ and $H_{1}, H_{2} \notin E_{1}$. Then at least one of H_{1} and H_{2} is not exceptional.

Proof. Since G does not have the properties (a) and (b), $H-V(B)$ is not a tree, thus $|V(H) \backslash V(B)| \geq 5 V(H) \backslash V(B) \backslash V(Q) \mid \geq 3$. This implies that at least one of H_{1} and H_{2} has at least two vertices not incident with the outer face, and thus it is not exceptional.

Lemma 25. Let G be a plane graph of girth at least 5 with the outer face F and L an assignment of lists of size three to vertices of $V(G) \backslash V(F)$. Suppose that G is a non-exceptional F-critical graph that does not have properties (a) and (b) of Lemma 19. Let $Q=v_{0} v_{1} v_{2} v_{3} v_{4}$ be a 4-chord of B and $H_{1}, H_{2} \neq Q$ be induced subgraphs of H such that $H=H_{1} \cup H_{2}, H_{1} \cap H_{2}=Q$ and for $i \in\{1,2\}, H_{i} \notin E_{1}$ and if $H_{i} \in E_{2}$, then v_{2} has degree two in H_{i}. Then $H_{1}, H_{2} \notin E_{2}$, and at least one of H_{1} and H_{2} is not exceptional.

Proof. Suppose that say $H_{1} \in E_{2}$, and let B_{1} be the outer face of H_{1}. Since the chord of B_{1} is not incident with v_{2}, B has either a chord or a 2 -chord, contradicting the assumption that G does not have properties (a) and (b).

Since the girth of G is at least 5 , if $H_{1} \in E_{3}$, then at least two of v_{1}, v_{2} and v_{3} have degree two in H_{1}. Symmetrically, if $H_{2} \in E_{3}$, then at least two of v_{1}, v_{2} and v_{3} have degree two in H_{2}. Therefore, if $H_{1}, H_{2} \in E_{3}$, then at least one of v_{1}, v_{2} and v_{3} has degree two in G, which is a contradiction. It follows that at most one of H_{1} and H_{2} is exceptional.

We are now ready to prove the main theorem of this section.
Proof of Theorem 18. We proceed by induction on $\ell(F)$ and the number of edges of G. If $\ell(F) \leq 11$, then the claim follows from Lemma 8. Suppose that $\ell(F) \geq 12$ and Theorem 18 holds for all graphs with the outer face of length at most $\ell(F)-1$, as well all graphs with outer the face of length $\ell(F)$ and fewer edges than G.

The graph G satisfies at least one of the conclusions of Lemma 19. If G has the property (a), then let $H_{1}, H_{2} \subseteq G$ be the subgraphs of G as in Lemma 21, with outer faces B_{1} and B_{2}. Note that $\ell\left(B_{1}\right)+\ell\left(B_{2}\right) \leq \ell(F)+2$,
and thus $\ell\left(B_{1}\right), \ell\left(B_{2}\right) \leq \ell(F)-3$. By Lemma $7, H_{i}$ is B_{i}-critical for $i \in$ $\{1,2\}$. If $\left\{H_{1}, H_{2}\right\} \nsubseteq E_{1}$, then by symmetry assume that $H_{1} \notin E_{1}$. By the induction hypothesis, $w\left(H_{1}\right) \leq w\left(\ell\left(B_{1}\right)-3\right)+2 w(5)$, and thus $w(G) \leq$ $w(H)+4 w(5)=w\left(H_{1}\right)+w\left(H_{2}\right)+4 w(5) \leq w\left(\ell\left(B_{1}\right)-3\right)+w\left(\ell\left(B_{2}\right)\right)+6 w(5)$. Note that $\ell\left(B_{1}\right) \geq 8$ and $\ell\left(B_{2}\right) \geq 5$, thus by $(8), w\left(\ell\left(B_{1}\right)-3\right)+w\left(\ell\left(B_{2}\right)\right) \leq$ $w\left(\ell\left(B_{1}\right)+\ell\left(B_{2}\right)-8\right)+w(5) \leq w(\ell(F)-6)+w(5) \leq w(\ell(F)-5)-w(5)$. We conclude that $w(G) \leq w(\ell(F)-5)+5 w(5)$.

On the other hand, if $H_{1}, H_{2} \in E_{1}$, then $w(G)=w\left(H_{1}\right)+w\left(H_{2}\right)+4 w(5)=$ $w\left(\ell\left(B_{1}\right)\right)+w\left(\ell\left(B_{2}\right)\right)+4 w(5) \leq w\left(\ell\left(B_{1}\right)+\ell\left(B_{2}\right)-5\right)+5 w(5)=w(\ell(F)-$ $5)+5 w(5)$. Therefore, we may assume that G does not have the property (a). This implies that G is 2 -connected.

Suppose that G has the property (b). Let Q, H_{1} and H_{2} be the subgraphs of G as in Lemma 22, and let B_{1} and B_{2} be the outer faces of H_{1} and H_{2}, respectively. Note that $\ell\left(B_{1}\right)+\ell\left(B_{2}\right)=\ell(F)+4$, and since the girth of G is at least 5 , it follows that $\ell\left(B_{1}\right), \ell\left(B_{2}\right)<\ell(F)$. If $\left\{H_{1}, H_{2}\right\} \cap E_{1} \neq \emptyset$, then by symmetry assume that $H_{1} \in E_{1}$. By Lemma 22, $H_{2} \notin E_{1} \cup E_{2}$. By the induction hypothesis and Lemma 22, if $H_{2} \in E_{3}$, then $w(G) \leq$ $w\left(H_{1}\right)+w\left(H_{2}\right)+2 w(5) \leq w\left(\ell\left(B_{1}\right)\right)+w\left(\ell\left(B_{2}\right)-4\right)+4 w(5)$. If $H_{2} \notin E_{3}$, then $w(G) \leq w\left(H_{1}\right)+w\left(H_{2}\right)+4 w(5) \leq w\left(\ell\left(B_{1}\right)\right)+w\left(\ell\left(B_{2}\right)-5\right)+9 w(5) \leq$ $w\left(\ell\left(B_{1}\right)\right)+w\left(\ell\left(B_{2}\right)-4\right)+4 w(5)$. By (8), w($\left.\ell\left(B_{1}\right)\right)+w\left(\ell\left(B_{2}\right)-4\right) \leq w\left(\ell\left(B_{1}\right)+\right.$ $\left.\ell\left(B_{2}\right)-9\right)+w(5)=w(\ell(F)-5)+w(5)$, and thus $w(G) \leq w(\ell(F)-5)+5 w(5)$.

On the other hand, it $H_{1}, H_{2} \notin E_{1}$, then $w(G) \leq w\left(H_{1}\right)+w\left(H_{2}\right)+4 w(5) \leq$ $w\left(\ell\left(B_{1}\right)-3\right)+w\left(\ell\left(B_{2}\right)-3\right)+6 w(5) \leq w\left(\ell\left(B_{1}\right)+\ell\left(B_{2}\right)-11\right)+7 w(5)=$ $w(\ell(F)-7)+7 w(5) \leq w(\ell(F)-5)+5 w(5)$. Therefore, we may assume that G does not have the property (b).

Suppose that v_{1} and v_{2} are adjacent vertices of degree two in G, and let G_{1} and F_{1} be as in Lemma 23. Let $f \neq F$ be the face of G incident with $v_{1} v_{2}$. Then $\ell(f) \geq 6$ and $w(G)=w\left(G_{1}\right)+w(\ell(f))-w(\ell(f)-1)$. By induction hypothesis, $w\left(G_{1}\right) \leq w\left(\ell\left(F_{1}\right)-5\right)+5 w(5)=w(\ell(F)-6)+5 w(5)$. This implies that $\ell(f)-1<\ell\left(F_{1}\right)=\ell(F)-1$. We conclude that $w(G) \leq$ $w(\ell(F)-6)+w(\ell(f))-w(\ell(f)-1)+5 w(5) \leq w(\ell(F)-5)+5 w(5)$. Therefore, assume that G does not have the property (c).

Suppose that G has the property (d). Let Q, H_{1} and H_{2} be the subgraphs of G as in Lemma 24, and let B_{1} and B_{2} be the outer faces of H_{1} and H_{2}, respectively. Note that $\ell\left(B_{1}\right)+\ell\left(B_{2}\right)=\ell(F)+6$. Since $H_{1}, H_{2} \notin E_{1}$, we have $\ell\left(B_{1}\right), \ell\left(B_{2}\right) \geq 8$, and thus $\ell\left(B_{1}\right), \ell\left(B_{2}\right)<\ell(F)$. By Lemma 24, we may assume that B_{2} is not exceptional, and thus $\ell\left(B_{2}\right) \geq 10$. By the induction hypothesis, $w(G) \leq w\left(H_{1}\right)+w\left(H_{2}\right)+4 w(5) \leq w\left(\ell\left(B_{1}\right)-3\right)+w\left(\ell\left(B_{2}\right)-5\right)+$ $10 w(5)$. By (8), $w\left(\ell\left(B_{1}\right)-3\right)+w\left(\ell\left(B_{2}\right)-5\right) \leq w\left(\ell\left(B_{1}\right)+\ell\left(B_{2}\right)-13\right)+w(5)$, and thus $w(G) \leq w(\ell(F)-7)+11 w(5) \leq w(\ell(F)-5)+5 w(5)$. Therefore, assume that G does not have the property (d).

Suppose that G has the property (e). Let Q, H_{1} and H_{2} be the subgraphs of G as in Lemma 25, and let B_{1} and B_{2} be the outer faces of H_{1} and H_{2}, respectively. By Lemma 25 and symmetry, we assume that $H_{1} \notin E_{1} \cup E_{2}$ and H_{2} is not exceptional, and thus $\ell\left(B_{1}\right) \geq 9$ and $\ell\left(B_{2}\right) \geq 10$. Note that $\ell\left(B_{1}\right)+$ $\ell\left(B_{2}\right)=\ell(F)+8$, hence $\ell\left(B_{1}\right), \ell\left(B_{2}\right)<\ell(F)$. By the induction hypothesis, $w(G) \leq w\left(H_{1}\right)+w\left(H_{2}\right)+4 w(5) \leq w\left(\ell\left(B_{1}\right)-4\right)+w\left(\ell\left(B_{2}\right)-5\right)+11 w(5)$. By (8), $w\left(\ell\left(B_{1}\right)-4\right)+w\left(\ell\left(B_{2}\right)-5\right) \leq w\left(\ell\left(B_{1}\right)+\ell\left(B_{2}\right)-14\right)+w(5)$, and thus $w(G) \leq w(\ell(F)-6)+11 w(5) \leq w(\ell(F)-5)+5 w(5)$. It follows that we can assume that G does not have the property (e).

Suppose that G has the property (f). Since G does not have the properties (a-d), there exists a path $v_{0} v_{1} \ldots v_{6} \subseteq F$ such that u is adjacent to v_{0}, v to v_{2}, w to v_{4} and x to v_{6}, and the closed disk bounded by $v_{0} v_{1} \ldots v_{6} x w v u$ consists of three 5 -faces of G. Let $G^{\prime}=G-\left\{v_{1}, v_{2}, \ldots, v_{5}\right\}$ and let F^{\prime} be the outer face of G^{\prime}. Observe that G^{\prime} is F^{\prime}-critical, $\ell\left(F^{\prime}\right)=\ell(F)-1$ and $w(G)=w\left(G^{\prime}\right)+3 w(5)$. Since u and x have degree at least three in G, they have degree at least three in G^{\prime}. Also, u is not adjacent to x, since the girth of G is at least 5 , thus $G^{\prime} \notin E_{1} \cup E_{2}$. By the induction hypothesis, $w\left(G^{\prime}\right) \leq w\left(\ell\left(F^{\prime}\right)-4\right)+2 w(5)=w(\ell(F)-5)+2 w(5)$. We conclude that $w(G) \leq w(\ell(F)-5)+5 w(5)$. Therefore, assume that G does not have the property (f).

Let us now prove the following claim:
Let H be a peeling of G with the outer face B, and ψ a precoloring of B that does not extend to an L-coloring of H. Let $Q=v_{0} v_{1} v_{2} v_{3} v_{4}$ be a 4 chord of B such that a cycle $C \neq B$ in $B \cup Q$ bounds a face of G. Then, $L\left(v_{1}\right) \subseteq L\left(v_{2}\right) \cup\left\{\psi\left(v_{0}\right)\right\}$.

Proof. Suppose for a contradiction that there exists a color $c \in L\left(v_{1}\right) \backslash L\left(v_{2}\right) \cup$ $\left\{\psi\left(v_{0}\right)\right\}$. Let d be a new color that does not appear in the lists of any of the vertices of $V(H) \backslash V(B)$. Let $N_{1} \subseteq V(H) \backslash V(B)$ be the set of vertices that are adjacent to v_{1} and $N_{2} \subseteq V(H) \backslash V(B)$ be the set of vertices that are adjacent to v_{4}. Note that N_{1} and N_{4} are disjoint, since v_{1} and v_{4} do not have a common neighbor other than v_{0}.

If v_{0} is adjacent to v_{4}, then let $H_{1}=H-v_{0} v_{4}$, otherwise let $H_{1}=$ $H-(V(C) \backslash V(Q))$. Let H_{2} be the graph obtained from H_{1} by identifying v_{1} with v_{4} to a new vertex v, and let $H_{3}=H_{2}-v v_{2}$. Let B^{\prime} be the outer face of H_{2}. Let L^{\prime} be the list assignment obtained from L by replacing the color c in the lists of vertices of N_{1} and the color $\psi\left(v_{4}\right)$ in the lists of vertices of N_{2} by d. Let H^{\prime} be a B^{\prime}-skeleton of H_{3} with respect to the list assignment L^{\prime}. Note that $\ell\left(B^{\prime}\right)=\ell(F)+5-\ell(C) \leq \ell(F)$ and $\left|E\left(H^{\prime}\right)\right|<|E(G)|$.

Suppose that H^{\prime} contains a cycle K^{\prime} of length at most 4. Note that $v \in V\left(K^{\prime}\right)$ and K^{\prime} corresponds to a path P of length $\ell\left(K^{\prime}\right)$ between v_{1} and v_{4} in H such that $v_{1} v_{2} \notin E(P)$. Since the girth of G is at least 5 , the shortest path in between v_{1} and v_{2} in $H-v_{1} v_{2}$ has length at least 4 , thus $v_{2} \notin V(P)$. It follows that $P \cup v_{1} v_{2} v_{3} v_{4}$ contains a cycle of length at most 7 containing the path $v_{1} v_{2} v_{3}$. By (1), such a cycle bounds a face, implying that v_{2} has degree two. This is a contradiction, thus H^{\prime} has girth at least 5 .

Let ψ^{\prime} be the precoloring of B^{\prime} that matches ψ on $V\left(B^{\prime}\right) \backslash\{v\}$ and $\psi^{\prime}(v)=$ d. Suppose that ψ^{\prime} extends to an L^{\prime}-coloring of H^{\prime}, and thus also to an L^{\prime} coloring φ^{\prime} of H_{3}. By the choice of $c, c \notin L\left(v_{2}\right)$, and thus $d \notin L^{\prime}\left(v_{2}\right)$. It follows that no vertex of H_{3} except for v is colored by d. Also, no vertex of $N_{1} \cup\left\{v_{0}\right\}$ is colored by c and no vertex of N_{2} is colored by $\psi\left(v_{4}\right)$. Therefore, the coloring φ given by $\varphi\left(v_{1}\right)=c$ and $\varphi(w)=\varphi^{\prime}(w)$ for $w \in V(H) \backslash\left(V(B) \cup\left\{v_{1}\right\}\right.$ is an L-coloring of G extending ψ, which is a contradiction. We conclude that ψ^{\prime} does not extend to an L^{\prime}-coloring of H^{\prime}, and thus $H^{\prime} \notin E_{1}$. Since G does not have properties (a) and (b), B^{\prime} does not have a chord and no vertex of H^{\prime} has more than two neighbors in B^{\prime}, thus $H^{\prime} \notin E_{2} \cup E_{3}$, and H^{\prime} is not exceptional and $\ell\left(B^{\prime}\right) \geq 10$.

As H^{\prime} has fewer edges than G, by the induction hypothesis we get $w\left(H^{\prime}\right) \leq$ $w\left(\ell\left(B^{\prime}\right)-5\right)+5 w(5)$. Therefore, every face $f \in \mathcal{F}\left(H^{\prime}\right)$ has length at most $\ell(f) \leq \ell\left(B^{\prime}\right)-5=\ell(F)-\ell(C)<\ell(F)$.

Consider H^{\prime} as a subgraph of H_{2}. Let f_{0} be the face of H_{3} such that the edge $v v_{2}$ of H_{2} is drawn in the open disk bounded by f_{0}, and let K_{0} be the cycle in H obtained from f_{0} by replacing v by the path $C-\left\{v_{2}, v_{3}\right\}$. For a cycle $K \subseteq H$, let $H(K)$ be the subgraph of H drawn in the closed disk bounded by K. Note that $w(H)=w\left(H\left(K_{0}\right)\right)+\sum_{f \in \mathcal{F}\left(H^{\prime}\right) \backslash\left\{f_{0}\right\}} w(H(f))$. For each face $f \in \mathcal{F}\left(H^{\prime}\right) \backslash\left\{f_{0}\right\}$, the induction hypothesis implies $w(H(f)) \leq$ $w(\ell(f))$. As $v_{1} v_{2} \in E\left(H\left(K_{0}\right)\right)$, we have $H\left(K_{0}\right) \notin E_{1}$, thus $\ell\left(K_{0}\right) \geq 8$ and $\ell\left(f_{0}\right)=\ell\left(K_{0}\right)-2 \geq 6$. Since $\ell\left(K_{0}\right)=\ell\left(f_{0}\right)+\ell(C)-3 \leq \ell(F)-3<\ell(F)$, by the induction hypothesis we have $w\left(H\left(K_{0}\right)\right) \leq w\left(\ell\left(f_{0}\right)+\ell(C)-6\right)+w(5) \leq$ $w\left(\ell\left(f_{0}\right)\right)+\ell(C)-6+2 w(5)$. Therefore,

$$
\begin{aligned}
w(H) & =w\left(H\left(K_{0}\right)\right)+\sum_{f \in \mathcal{F}\left(H^{\prime}\right) \backslash\left\{f_{0}\right\}} w(H(f)) \\
& \leq\left(w\left(\ell\left(f_{0}\right)\right)+\sum_{f \in \mathcal{F}\left(H^{\prime}\right) \backslash\left\{f_{0}\right\}} w(\ell(f))\right)+\ell(C)-6+2 w(5) \\
& =w\left(H^{\prime}\right)+\ell(C)-6+2 w(5) \\
& \leq w\left(\ell\left(B^{\prime}\right)-5\right)+\ell(C)-6+7 w(5) \\
& =w(\ell(F)-\ell(C))+\ell(C)-6+7 w(5)
\end{aligned}
$$

Figure 6: The configurations in properties (g) and (h).

$$
\leq w(\ell(F)-5)+8 w(5)-1 .
$$

It follows that $w(G) \leq w(\ell(F)-5)+12 w(5)-1 \leq w(\ell(F)-5)+5 w(5)$, which is a contradiction.

Since G does not have properties (a-f), we conclude that G has properties (g) or (h), i.e., there exists a peeling H of G with the outer face B, and $Q=v_{0} v_{1} v_{2} v_{3} v_{4}$ a 4 -chord of B such that a cycle $C \neq B$ in $B \cup Q$ bounds a face C, and either

- a jump with base $w_{1} w_{2} w_{3} w_{4} v_{0}$ and body $w_{1} x_{1} x_{2} v_{1} v_{0}$, or
- two 5 -faces $w_{1} w_{2} v_{0} v_{1} x_{1}$ and $w_{3} w_{4} v_{4} v_{3} x_{2}$, with $w_{1} w_{2} v_{0}, w_{3} w_{4} v_{4} \subseteq B$.

See Figure 6 for an illustration. In the former case, let $R=\left\{w_{2}, w_{3}, w_{4}, v_{0}\right\}$. In the latter case, let $R=\left\{w_{2}, w_{4}, v_{0}, w_{4}\right\}$.

As $H \neq B$ is B-critical, there exists a precoloring ψ of B that does not extend to an L-coloring of H. Let $X_{1}=L\left(v_{1}\right) \backslash\left\{\psi\left(v_{0}\right)\right\}$ and $X_{3}=$ $L\left(v_{3}\right) \backslash \psi\left\{v_{4}\right\}$. By (9), $X_{1} \cup X_{3} \subseteq L\left(v_{2}\right)$, and since $\left|X_{1}\right|,\left|X_{3}\right| \geq 2$ and $\left|L\left(v_{2}\right)\right|=3$, there exists a color $c \in X_{1} \cap X_{3}$. Let $H_{1}=G-(V(C) \backslash V(Q))-R$ and let H_{2} be the graph obtained from H_{1} by identifying v_{1} with v_{3} to a new vertex v. Let B^{\prime} be the outer face of H_{2}. Let H^{\prime} be a B^{\prime}-skeleton of H_{2}, with respect to the restriction of L to $V\left(H_{2}\right) \backslash V\left(B^{\prime}\right)$. Note that $\ell\left(B^{\prime}\right)=\ell(F)-\ell(C)+4<\ell(F)$.

Suppose that H^{\prime} contains a cycle K of length at most 4. Then $v \in V(K)$ and H_{1} contains a path P of length $\ell(K)$ between v_{1} and v_{3}. Note that $v_{2} \notin V(P)$, since the girth of G is at least 5 . Therefore, $P \cup v_{1} v_{2} v_{3}$ is a cycle of length at most 6 , and by (1), it bounds a face. It follows that v_{2} has degree two, which is a contradiction. It follows that H^{\prime} has girth at least 5 .

Let ψ^{\prime} be the precoloring of B^{\prime} that matches ψ on $V(F) \cap V\left(B^{\prime}\right)$, with $\psi^{\prime}(v)=c$ and the colors of $x_{1} \in L\left(x_{1}\right)$ and $x_{2} \in L\left(x_{2}\right)$ chosen so that ψ^{\prime} is a proper coloring of B^{\prime}. Suppose that ψ^{\prime} extends to an L-coloring of H^{\prime}, and thus also to an L-coloring φ^{\prime} of H_{2}. Setting $\varphi\left(v_{1}\right)=\varphi\left(v_{3}\right)=c$ and $\varphi(z)=\varphi^{\prime}(z)$ for $z \in V(H) \backslash\left(V(B) \cup\left\{v_{1}, v_{3}\right\}\right.$, we obtain an L-coloring of H
extending ψ, which is a contradiction. Therefore, ψ^{\prime} does not extend to G^{\prime}, and $G^{\prime} \notin E_{1}$. Furthermore, since G does not have properties (a), (b) and (d), B^{\prime} has no chords and no vertex of H^{\prime} has more than two neighbors in B^{\prime}, hence H^{\prime} is not exceptional and $\ell\left(B^{\prime}\right) \geq 10$.

By the induction hypothesis, $w\left(H^{\prime}\right) \leq w\left(\ell\left(B^{\prime}\right)-5\right)+5 w(5)=w(\ell(F)-$ $\ell(C)-1)+5 w(5)$. It follows that each face of H^{\prime} has length at most $\ell\left(B^{\prime}\right)-5=$ $\ell(F)-\ell(C)-1<\ell(F)$.

Consider H^{\prime} as the subgraph of H_{2}. If $v v_{2} \notin E\left(H^{\prime}\right)$, then let f_{0} be the face of H^{\prime} such that the closed disk bounded by f_{0} contains the edge $v v_{2}$. Let $K_{0} \subseteq H$ be the cycle obtained from f_{0} by replacing v by the path $C-v_{2}$. Since $v_{1} v_{2}, v_{3} v_{2} \in E\left(H\left(K_{0}\right)\right)$, it follows that $H\left(K_{0}\right) \notin E_{0} \cup E_{1}$ and $\ell\left(K_{0}\right) \geq 9$. Also, $\ell\left(K_{0}\right)=\ell\left(f_{0}\right)+\ell(C)-2 \leq \ell(F)-3$. By the induction hypothesis, $w\left(H\left(K_{0}\right)\right) \leq w\left(\ell\left(K_{0}\right)-4\right)+2 w(5)=w\left(\ell\left(f_{0}\right)+\ell(C)-6\right)+2 w(5) \leq w\left(\ell\left(f_{0}\right)\right)+$ $\ell(C)-6+3 w(5)$. Also, for each $f \in \mathcal{F}\left(H^{\prime}\right) \backslash\left\{f_{0}\right\}, w(H(f)) \leq w(\ell(f))$. If $v v_{2} \in E\left(H^{\prime}\right)$, then we let $K_{0}=C$ and $\left.w\left(H\left(K_{0}\right)\right)\right)=w(C)$. Note that in addition to the faces contained in the graphs $H(f)$ for $f \in \mathcal{F}\left(H^{\prime}\right) \backslash\left\{f_{0}\right\}$ and in $H\left(K_{0}\right), H$ has two more 5 -faces. Since $\ell(C)-6+3 w(5)<w(C)$, we conclude that $w(H) \leq w\left(H^{\prime}\right)+w(C)+2 w(5) \leq w(\ell(F)-\ell(C)-1)+w(C)+7 w(5)$.

If $\ell(F)-\ell(C)=6$, then, since $\ell(F) \geq 12$, we have $\ell(C) \geq 6$ and $w(\ell(F)-$ $\ell(C)-1)+w(C)=(\ell(F)-\ell(C)-6+w(5))+(\ell(C)-5)=\ell(F)-11+w(5)=$ $w(\ell(F)-5)+w(5)-1$. If $\ell(F)-\ell(C)>6$, then $w(\ell(F)-\ell(C)-1)+w(C) \leq$ $(\ell(F)-\ell(C)-6))+(\ell(C)-5+w(5))=w(\ell(F)-5)+w(5)-1$. Therefore, $w(H) \leq w(\ell(F)-5)+8 w(5)-1$ and $w(G) \leq w(\ell(F)-5)+12 w(5)-1 \leq$ $w(\ell(F)-5)+5 w(5)$.

Theorem 18 implies that the number of vertices of a F-critical plane graph of girth at least 5 is linear in $\ell(F)$:

Proof of Theorem 5. If G is exceptional, then $|E(G)| \leq \ell(F)+3<18 \ell(F)-$ 160 , and $|V(G)| \leq \ell(F)+1<\frac{37 \ell(F)-320}{3}$, since $\ell(F) \geq 10$. Therefore, assume that G is not exceptional.

For each $x \geq 5$, we have $w(x) \geq w(5) x / 5$. By Theorem 18,

$$
\begin{aligned}
2 w(5)|E(G)| / 5 & =w(5) \ell(F) / 5+\sum_{f \in F F(G)} w(5) \ell(f) / 5 \\
& \leq w(5) \ell(F) / 5+\sum_{f \in \mathcal{F}(G)} w(\ell(f)) \\
& =w(5) \ell(F) / 5+w(G) \\
& \leq w(5) \ell(F) / 5+w(\ell(F)-5)+5 w(5) \\
& \leq(1+w(5) / 5) \ell(F)-10+6 w(5)
\end{aligned}
$$

Therefore, $|E(G)| \leq(1+5 / w(5)) \ell(F) / 2-25 / w(5)+15=18 \ell(F)-160$.
As the minimum degree of G is at least 2 and all vertices except for those in f have degree at least three, we get $3|V(G)|-\ell(F) \leq 2|E(G)| \leq$ $36 \ell(F)-320$, and hence $|V(G)| \leq \frac{37 \ell(F)-320}{3}$.

5 Concluding remarks

The bound on $|V(G)|$ in Theorem 5 can be improved by $\ell(F) / 6$ by a slightly more involved argument, first eliminating ≤ 2-chords and edges joining vertices of degree two. However, the bound seems to be far from the correct one for large values of $\ell(F)$.

As the number of vertices of an F-critical graph is linear in $\ell(F)$, the number of such graphs is at most exponential in $\ell(F)$ (Denise et al. [1]). On the other hand, every tree with k leaves and all internal vertices of degree three gives rise to an F-critical graph with $\ell(F)=3 k$, thus the number of F-critical graphs is exponential in $\ell(F)$.

The proof of Theorem 18 can be converted to an algorithm to generate the critical graphs in the straightforward way-each critical graph G contains a configuration described by Lemma 19, and this configuration can be used to derive G from smaller critical graphs. This algorithm could be practical for small values of $\ell(F)$, say $\ell(F)<20$.

A slightly unsatisfactory part of the proof of Theorem 18 concerns dealing with the cases (g) and (h) of Lemma 19, where the reduced graph H^{\prime} is not a subgraph of G drawn inside a cycle of G. It would be more appealing to have a proof that avoids such non-trivial reductions, giving a better understanding of the structure of the critical graphs, as well as a faster algorithm to generate them.

References

[1] A. Denise, M. Vasconcellos and D. Welsh, The random planar graph, Congr. Numer. 113 (1996), 61-79.
[2] Z. Dvořák, B. Lidický and R. Škrekovski, 3-choosability of triangle-free planar graphs with constraint on 4-cycles, accepted to SIAM Journal on Discrete Mathematics.
[3] Z. Dvořák, D. Král' and R. Thomas, Three-coloring triangle-free graphs on surfaces III. 4-critical graphs, manuscript.
[4] P. Erdős, A. L. Rubin and H. Taylor, Choosability in graphs, Combinatorics, graph theory and computing, Proc. West Coast Conf., Arcata/Calif. 1979, 125-157, 1980.
[5] H. Grötzsch, Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 8 (1959), 109-120.
[6] C. Thomassen, 3-list-coloring planar graphs of girth 5, J. Comb. Theory Ser. B 64 (1995), 101-107.
[7] C. Thomassen, The chromatic number of a graph of girth 5 on a fixed surface, J. Combin. Theory Ser. B 87 (2003), 38-71.
[8] V. G. Vizing, Vertex colorings with given colors (in Russian), Metody Diskret. Analiz, Novosibirsk 29 (1976), 3-10.
[9] M. Voigt, A not 3-choosable planar graph without 3-cycles, Discrete Math. 146 (1995), 325-328.

[^0]: *Charles University, Prague, Czech Republic. E-mail: rakdver@kam.mff.cuni.cz.
 ${ }^{\dagger}$ National Institute of Informatics, Tokyo, Japan. E-mail: k_keniti@nii.ac.jp.

