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Abstract

Thomassen proved that any plane graph of girth 5 is list-colorable

from any list assignment such that all vertices have lists of size two

or three and the vertices with list of size two are all incident with the

outer face and form an independent set. We present a strengthening

of this result, relaxing the constraint on the vertices with list of size

two. This result is used to bound the size of the 3-list-coloring critical

plane graphs with one precolored face.

1 Introduction

All graphs considered in this paper are simple and finite. The concepts of list
coloring and choosability were introduced by Vizing [8] and independently
by Erdős et al. [4]: A list assignment of G is a function L that assigns to
each vertex v ∈ V (G) a list L(v) of colors. An L-coloring is a function ϕ :
V (G) →

⋃

v L(v) such that ϕ(v) ∈ L(v) for every v ∈ V (G) and ϕ(u) 6= ϕ(v)
whenever u, v are adjacent vertices of G. If G admits an L-coloring, then it
is L-colorable. A graph G is k-choosable if it is L-colorable for for every list
assignment L such that |L(v)| ≥ k for all v ∈ V (G).
A well-known result of Grötzsch [5] states that any triangle-free planar

graph is 3-colorable. Since the cycles of length 4 can be easily eliminated,
the main part of the proof of Grötzsch’s theorem concerns graphs of girth
5. Generalizing this result, Thomassen [6] proved that every planar graph
of girth at least 5 is 3-choosable. In fact, he proved the following stronger
claim:

Theorem 1. Let G be a plane graph of girth at least 5 and F a face of G.
Let P be a path in G of length at most 5, such that V (P ) ⊆ V (F ). Let
L be an assignment of lists to the vertices of G such that |L(v)| = 3 for
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v ∈ V (G) \ V (F ), |L(v)| ≥ 2 for v ∈ V (F ) \ V (P ), |L(v)| = 1 for v ∈ V (P ),
the lists of vertices of P give a proper coloring of the subgraph induced by
V (P ), and a vertex v with |L(v)| = 2 is not adjacent to any vertex u with
|L(u)| ≤ 2. Then, G can be L-colored.

Voigt [9] found a triangle-free planar graph that is not 3-choosable, thus
the restriction on the girth of the graph in Theorem 1 cannot be relaxed
without imposing further constraints on 4-cycles—Dvořák et al. [2] proved
that Theorem 1 holds for triangle-free graphs as long as no 4-cycle shares an
edge with a cycle of length at most 5.
On the other hand, the assumption of Theorem 1 that the vertices with

lists of size 2 form an independent set is not the best possible. In fact, the
following claim an easy consequence of Theorem 1 (see e.g. Thomassen [7],
where a slightly stronger version allowing a precolored path of length at most
5 is derived):

Corollary 2. Let G be a plane graph of girth at least 5 and F a face of G.
Let L be an assignment of lists to the vertices of G such that |L(v)| = 3 for
v ∈ V (G) \ V (F ), |L(v)| ≥ 2 for v ∈ V (F ), and

• G does not contain a path v1v2v3 with |L(v1)| = |L(v2)| = |L(v3)| = 2,

• G does not contain a path v1v2v3v4 with |L(v1)| = |L(v2)| = |L(v4)| = 2,
and

• G does not contain a path v1v2v3v4v5v6 with |L(v1)| = |L(v2)| = |L(v5)| =
|L(v6)| = 2.

Then, G can be L-colored.

However, even the assumptions of Corollary 2 turn out to be unnecessarily
restrictive. We show the following strengthening:

Theorem 3. Let G be a plane graph of girth at least 5 and F a face of G.
Let L be an assignment of lists to the vertices of G such that |L(v)| = 3 for
v ∈ V (G) \ V (F ), |L(v)| ≥ 2 for v ∈ V (F ), and

• G does not contain a path v1v2v3 with |L(v1)| = |L(v2)| = |L(v3)| = 2,

• G does not contain a path v1v2v3v4v5 with |L(v1)| = |L(v2)| = |L(v4)| =
|L(v5)| = 2.

Then, G can be L-colored.
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Figure 1: A counterexample for a strengthening of Theorem 6

The proof of this theorem is presented in Section 2. Let us note that the
condition that G does not contain a path v1v2v3v4v5 with |L(v1)| = |L(v2)| =
|L(v4)| = |L(v5)| = 2 cannot be removed, as the graph in Figure 1 cannot be
colored from the prescribed lists.
We also show two applications of Theorem 3, both concerning critical

graphs. Let us start with definitions.
A graph G is k-critical if G is not (k − 1)-colorable, but every proper

subgraph of G is (k − 1)-colorable. We need to generalize the notion of a
critical graphs in two directions: we need to apply it to the list coloring
instead of the ordinary coloring, and we also want to consider the situation
that a subgraph of G is precolored (like e.g. the path P in Theorem 1).
Consider a graph G, a subgraph (not necessarily induced) S ⊆ G and

an assignment L of lists to vertices in V (G) \ V (S). A graph G is strongly
S-critical (with respect to L) if there exists a coloring of S that does not
extend to an L-coloring of G, but extends to an L-coloring of every proper
subgraph G′ ⊂ G such that S ⊆ G′. A graph G is S-critical (with respect
to L) if for every proper subgraph G′ ⊂ G such that S ⊆ G′, there exists a
coloring of S that does not extend to an L-coloring of G, but extends to an
L-coloring of G′. We call a (strongly) S-critical graph G proper if G 6= S.
Note that every strongly S-critical graph is also S-critical, but the converse
is false. If S = ∅ and all vertices have the same list of k colors, then G is
∅-critical (or strongly ∅-critical) if and only if G is (k + 1)-critical.
While the definition of a strongly critical graph may seem more natural,

the notion of a critical graph is often more suitable for both proofs and
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Figure 2: A critical graph bounded by a 12-cycle

applications—for instance, every graph H ⊇ S has an S-critical subgraph
G ⊇ S such that any coloring of S extends to H if and only if it extends to
G (we call such a subgraph G an S-skeleton of H) however, H does not have
to contain a strongly S-critical subgraph with this property.
In [7], Thomassen characterized the F -critical plane graphs of girth 5,

where F consist of a boundary of a face of length at most 12:

Theorem 4. Let G be a plane graph of girth at least 5, with the outer face F
bounded by an induced cycle of length at most 12. Let L be a list assignment
of lists of size three to the vertices of V (G) \ V (F ). If G is proper strongly
F -critical graph, then

(a) ℓ(F ) ≥ 9 and G− V (F ) is a tree with at most ℓ(F ) − 8 vertices, or

(b) ℓ(F ) ≥ 10 and G − V (F ) is a connected graph with at most ℓ(F ) − 5
vertices containing exactly one cycle, and the length of this cycle is 5,
or

(c) ℓ(F ) = 12 and every second vertex of F has degree two and is incident
with a 5-face.

If ℓ(F ) ≤ 11, the complete list of strongly F -critical graphs is provided by
Theorem 4, however for ℓ(F ) = 12, only a necessary condition is given in the
case (c). As the first application of Theorem 3, we complete this classification
by showing that the only F -critical graph satisfying the condition (c) is the
one depicted in Figure 2. The proof is presented in Section 3.
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For ordinary (not list) coloring, Thomassen [7] proved that there are only
finitely many 4-critical graphs of girth 5 embedded in any fixed surface. In
fact, his result allows a constant number of precolored vertices. An alterna-
tive proof with stronger bounds on the sizes of the critical graphs is given by
Dvořák, Král’ and Thomas [3]. Our goal is to prove the same result for the
list-coloring critical graphs. We present our general argument in a followup
paper. As the second application of Theorem 3, we consider the special case
of a plane graph in that vertices incident with one face are precolored. In
Section 4, we show the following bound:

Theorem 5. Let G be a plane graph of girth at least 5 with the outer face
F bounded by a cycle of length at least 10, and L an assignment of lists of
size three to vertices of V (G) \ V (F ). If G is F -critical, then |E(G)| ≤

18ℓ(F ) − 160 and |V (G)| ≤ 37ℓ(F )−320
3

.

Let us note that this bound is much stronger than the ones shown in
Thomassen [7] (who shows that |V (G)| ≤ 2O(ℓ(F )2)) or in Dvořák et al. [3]
(who shows that |V (G)| ≤ cℓ(F ) for a constant c ≈ 106), even though these
papers only consider ordinary 3-coloring.

2 Proof of Theorem 3

For the purpose of the induction, we prove an (unfortunately rather technical)
generalization of Theorem 3. In order to state this generalization, we need
to introduce several definitions.
Let G be a plane graph of girth at least 5. Let F be the outer face of G

and let P = p1 . . . pk be a path with V (P ) ⊆ V (F ). Consider an assignment
L of lists to vertices of V (G) \ V (P ) such that |L(v)| ≥ 2 for each vertex
v and |L(v)| = 3 for each v 6∈ V (F ). Let I0(G,P, L) be the set of vertices
with the list of size two. Let I(G,P, L) = I0(G,P, L) if ℓ(P ) ≤ 2 and
I(G,P, L) = I0(G,P, L)∪V (P ) otherwise. Let us call a vertex v bad if there
exists a path vv1v2 with |L(v1)| = 2 and v2 ∈ I(G,P, L), or a path vv1v2v3v4

with |L(v1)| = |L(v3)| = 2, |L(v2)| = 3 and v4 ∈ I(G,P, L). We say that the
list assignment L is valid if no vertex with list of size two is bad.
Suppose that ℓ(P ) = 4. For a set X ⊆ V (P ), colorings ψ1 and ψ2 of P

are X-different if there exists v ∈ X such that ψ1(v) 6= ψ2(v). We say that
G is class A if

• each of p1 and p5 is adjacent to a vertex with list of size two, and

• there exists a coloring ψ(G,P,L) of P such that if ψ is a coloring of P
{p1, p2, p4, p5}-different from ψ(G,P,L), then ψ extends to an L-coloring
of G.
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Figure 3: A class A and a class B graph.

We say that G is class B if there exists a coloring ψ(G,P,L) of P such that
if ψ is a coloring of P {p1, p3, p5}-different from ψ(G,P,L), then ψ extends to
an L-coloring of G.

Theorem 6. Let G be a plane graph of girth at least 5 with the outer face
F , let P = p1 . . . pk be a path of length at most four such that V (P ) ⊆ V (F ),
and let L be a valid list assignment. Furthermore, if ℓ(P ) = 2, then assume
that p1 or p3 is not bad, and if ℓ(P ) ≥ 3, then assume that no vertex of P
is bad. If G is a proper P -critical graph, then ℓ(P ) = 4 and G is a 5-face,
class A or class B.

Theorem 3 is the special case of Theorem 6 where P is empty. Two exam-
ples of P -critical graphs that are class A or class B and satisfy assumptions
of Theorem 6 are depicted in Figure 3. Let us note that infinitely many such
graphs exist.
Before proving Theorem 6, let us show several observations regarding

critical graphs. Let G be a T -critical graph (with respect to some list as-
signment). For S ⊆ G, a graph G′ ⊆ G is an S-component of G if S ⊆ G′,
T ∩G′ ⊆ S and all edges of G incident with vertices of V (G′)\V (S) belong to
G′. For example, if G is a plane graph with T contained in the boundary of
its outer face and S is a cycle in G, then the subgraph of G consisting of the
vertices and edges drawn the closed disk bounded by S is an S-component
of G.

Lemma 7. Let G be a T -critical graph with list assignment L. Let G′ be an
S-component of G, for some S ⊆ G. Then G′ is S-critical.

Proof. Since G is T -critical, every isolated vertex of G belongs to T , and
thus every isolated vertex of G′ belongs to S. Suppose for a contradiction
that G′ is not S-critical. Then, there exists an edge e ∈ E(G′) \ E(S) such
that every coloring of S that extends to G′ − e also extends to G′. Note
that e 6∈ E(T ). Since G is T -critical, there exists a coloring ψ of T that
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extends to an L-coloring ϕ of G − e, but does not extend to an L-coloring
of G. However, by the choice of e, the restriction of ϕ to S extends to an
L-coloring ϕ′ of G′. Let ϕ′′ be the coloring that matches ϕ′ on V (G′) and ϕ
on V (G) \ V (G). Observe that ϕ′′ is an L-coloring of G extending ψ, which
is a contradiction.

Lemma 7 in conjunction with Theorem 4 describes the subgraphs drawn
inside cycles in plane critical graphs. Since Theorem 4 is only stated for
strongly critical graphs, let us show that it holds for critical graphs as well.

Lemma 8. Let G be a plane graph of girth at least 5, with the outer face F
bounded by an induced cycle of length at most 12. Let L be a list assignment
of lists of size three to the vertices of V (G) \ V (F ). If G is proper F -critical
graph, then G satisfies one of the conditions (a), (b) or (c) of Theorem 4.

Proof. Suppose for a contradiction that G is a counterexample to Lemma 8
with the smallest number of vertices. Since G is proper, there exists a precol-
oring ψ of F that does not extend to an L-coloring of G. Let G′ ⊃ F be the
minimal subgraph of G such that ψ does not extend to G′. Observe that G′

is a proper strongly F -critical graph, thus it satisfies one of the condition (a),
(b) or (c). Since G does not satisfy any of these conditions, there exists an
induced cycle C ⊆ G′ that bounds a face in G′, but not in G. Furthermore,
if G′ satisfies the condition (c), then we may assume that ℓ(C) = 5.
Observe that ℓ(C) ≤ 8, and ℓ(C) ≤ 7 unless ℓ(F ) = 12 and |V (G′) \

V (F )| = 1. Let H be the subgraph of G drawn in the closed disk bounded
by C. Lemma 7 implies that H is a proper C-critical graph. Since G is
the counterexample to Lemma 8 with the smallest number of vertices, C is
not an induced cycle in H . Since G has girth at least 5, we conclude that
ℓ(C) = 8 and C has a chord e such that C ∪ e contains two 5-cycles C1 and
C2. Repeating the same argument for C1 and C2, we conclude that C1 and
C2 are faces of H and V (H) = V (C). It follows that |V (G) \V (F )| = 1, and
thus G satisfies (a). This is a contradiction.

In this section, we need only the following corollary of Lemma 8.

Corollary 9. Let G be a plane graph of girth at least 5, with the outer face
F bounded by a cycle of length at most 12. Let L be a list assignment of
lists of size three to the vertices of V (G) \ V (F ). If G is a proper F -critical
graph, then

• ℓ(F ) ≥ 8 and F has a chord, or

• ℓ(F ) = 9 and V (G) \ V (F ) consists of a single vertex v adjacent to
three vertices of F .
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Lemma 7 together with Corollary 9 implies that

if H is an S-critical plane graph of girth at least 5, where S is a subgraph of
the boundary of the outer face of H, then any cycle of length at most 7 in
H bounds a face, the open disk bounded by a cycle of length 8 contains no
vertices, and the open disk bounded by a cycle of length 9 contains at most
one vertex.

(1)
Furthermore, let us recall the following result of Vizing [8]:

Theorem 10. Let G be a 2-connected graph with a list assignment L such
that |L(v)| ≥ deg(v) for each vertex v ∈ V (G). Then G is L-colorable, unless
G is a complete graph or an odd cycle and the lists assigned to all vertices
are the same.

This implies the following:

Lemma 11. Let G be a triangle-free critical graph, S a subgraph of G and
L an assignment of lists to vertices of V (G) \ V (S). Let H be a 2-connected
subgraph of G such that V (H) ∩ V (S) = ∅ and |L(v)| ≥ degG(v) for each
v ∈ V (H). If G is S-critical, then H is an induced odd cycle in G.

Proof. Let H ′ = G[V (H)] be the subgraph of G induced by V (H). Since G
is S-critical, there exists a precoloring ψ of S that extends to an L-coloring
ϕ of G− V (H), but not to an L-coloring of G. Consider the list assignment
L′ such that for v ∈ V (H), L′(v) = L(v) \ Cv, where Cv is the set of colors
of vertices of G− V (H) adjacent to v, according to the coloring ϕ. Observe
that H ′ is 2-connected, H ′ is not L′-colorable, and |L′(v)| ≥ degH′(v) for
each v ∈ V (H). By Theorem 10, since G is triangle-free, H ′ is an odd cycle.
Furthermore, H = H ′, since H is 2-connected.

Let us now proceed with the proof of the main result.

Proof of Theorem 6. Suppose that G together with lists L and a path P
is a counterexample to Theorem 6 such that |V (G)| + |E(G)| is minimal,
and among such graphs, the path P is the longest possible. The path P is
nonempty, as otherwise we can choose an arbitrary vertex of F as p1. As G
is a proper P -critical graph, there exists at least one precoloring of P that
does not extend to an L-coloring of G. By the minimality of G, each vertex
of P has degree at least two. By Lemma 7, each vertex v ∈ V (G) \V (P ) has
degree at least |L(v)|.

Lemma 12. The graph G is 2-connected.
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Proof. Obviously, G is connected. Suppose now that v is a cut vertex of G
and G1 and G2 are induced subgraphs of G such that G = G1 ∪ G2, {v} =
V (G1) ∩ V (G2) and |V (G1)|, |V (G2)| ≥ 2. Let Pi = P ∩Gi if v ∈ V (P ) and
Pi = v otherwise, for i ∈ {1, 2}; by Lemma 7, Gi is Pi-critical. By symmetry,
we may assume that ℓ(P1) ≤ ℓ(P2), and thus ℓ(P1) ≤ ℓ(P )/2 ≤ 2. It follows
that v 6∈ I(G1, P1, L) and I(G1, P1, L) ⊆ I(G,P, L), thus the restriction
of L to V (G1) \ V (P1) is a valid list assignment. If ℓ(P1) = 2, with say
P1 = p1p2p3 and p3 = v, then p1 is not bad in G1, since it is not bad in G.
By the minimality of G, we can apply Theorem 6 to G1, obtaining G1 = P1.
Since |V (G1)| ≥ 2, we conclude that G contains a vertex of degree one, which
is a contradiction.

By Lemma 12, the outer face F of G is bounded by a cycle. A chord of
F is an edge in E(G) \ E(F ) incident with two vertices of V (F ). A t-chord
of F is a path Q = q0q1 . . . qt of length t (t ≥ 2) such that q0 6= qt and
V (Q) ∩ V (F ) = {q0, qt}. Sometimes, we refer to a chord as a 1-chord.

Lemma 13. The cycle F has no chords.

Proof. Suppose that e = uv is a chord of F , and let G1 and G2 be the
two induced subgraphs of G such that G = G1 ∪ G2, uv = G1 ∩ G2 and
G1, G2 6= uv. Note that |V (G1)|, |V (G2)| > 2. If P ⊆ G1, then G2 is uv-
critical by Lemma 7. Since I(G2, uv, L) ⊆ I(G,P, L), the restriction of L
to G2 is a valid list assignment. By the minimality of G, we have G2 = uv,
which is a contradiction. It follows that P 6⊆ G1 and by symmetry, P 6⊆ G2.
Therefore, every chord of F is incident with a vertex of P distinct from p1

and pk.
Suppose now that say |V (P ) ∩ V (G1) \ {u, v}| ≤ 1. In that case, P1 =

(P ∩ G1) + uv has length at most two. By Lemma 7, G1 is P1-critical, and
since I(G1, P1, L) ⊆ I(G,P, L), we conclude that the restriction of L to G1

is a valid list assignment. Furthermore, if ℓ(P1) = 2, then we may assume
that P1 = p1p2p3 with u = p2 and v = p3, and p1 is not bad in G1. By the
minimality of G, we conclude that G1 = P1, which is a contradiction, since
|V (G1)| > 2 and G does not contain a vertex of degree one.
By symmetry, we conclude that |V (P )∩V (Gi)\{u, v}| ≥ 2 for i ∈ {1, 2}.

This implies that k = 5 and V (P ) ∩ {u, v} = p3. Without loss of generality,
u = p3, P ∩G1 = p1p2p3 and P ∩G2 = p3p4p5. Let vi be the neighbor of v in
Gi in the facial walk of F , for i ∈ {1, 2}. Since every chord of F is incident
with a vertex of P , v is not adjacent to a vertex with list of size two except
for v1 and v2.
Suppose now that |L(v1)| 6= 2. By Lemma 7, G1 is P ′

1-critical, where
P ′

1 = p1p2p3v. Note that I(G1, P1, L) \ I(G,P, L) = {v}, and v is not bad, as
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it is not adjacent to a vertex with list of size two in G1. By the minimality
of G, we conclude that G1 = P1, which is a contradiction, since p1 has degree
at least two in G.
By symmetry, |L(v1)| = |L(v2)| = 2. Since L is a valid list assignment,

|L(v)| = 3. By Lemma 7, G1 is P1-critical and G2 is P2-critical, where
P1 = p1p2p3vv1 and P2 = p5p4p3vv2. Note that both G1 and G2 are proper,
since p1 and p5 have degree at least two in G. Let Li be L restricted to
V (Gi)\V (Pi), for i ∈ {1, 2}. Then I(Gi, Pi, Li)\ I(G,P, L) = {v}, and since
v is not adjacent to a vertex with list of size two in Gi, v is not bad.
By the minimality of G, Theorem 6 holds forG1 and G2. Since L is a valid

list assignment for G, by the symmetry between v1 and v2 we may assume
that v1 is not adjacent to a vertex of I(G,P, L), and thus G1 is neither a
5-face nor class A. Therefore, G1 is class B. Let ψ1 = ψ(G1,P1,L). Consider a
precoloring ψ of P that is {p1, p3}-different from ψ1. By the minimality of
G, the precoloring of the path p3p4p5 given by ψ extends to an L-coloring
ϕ2 of G2. The precoloring ψ′ of P1 given by ψ′(pi) = ψ(pi) for i ∈ {1, 2, 3},
ψ′(v) = ϕ2(v) and ψ′(v1) ∈ L(v1)\{ϕ(v)} extends to an L-coloring ϕ1 of G1,
since G1 is class B and ψ′ is {p1, p3, v1}-different from ψ1. We conclude that
ψ extends to the L-coloring ϕ1 ∪ ϕ2 of G.
Suppose that G2 is class A or B, with ψ2 = ψ(G2,P2,L). Analogically

to the previous paragraph, we conclude that any precoloring ψ of P that
is {p5}-different from ψ2 extends to an L-coloring of G. It follows that G
is almost reducible with ψ(G,P,L) = ψ0, where ψ0(p1) = ψ1(p1), ψ0(p3) =
ψ1(p3), ψ0(p5) = ψ2(p5) (ψ0(p2) and ψ0(p4) are arbitrary colors distinct from
the colors used on the rest of P ). This is a contradiction, since G is a
counterexample.
SinceG2 satisfies the conclusion of Theorem 6, G2 is a 5-face and v2p5 is an

edge. Choose c′ ∈ L(v1)\{ψ1(v1)}, c ∈ L(v)\{c′, ψ1(p3)} and d ∈ L(v2)\{c}.
Then, G is class B with ψ(G,P,L) = ψ0, where ψ0(p1) = ψ1(p1), ψ0(p3) = ψ1(p3)
and ψ0(p5) = d: before, we proved that if a precoloring ψ of P is {p1, p3}-
different from ψ0, then ψ extends to an L-coloring of G. If ψ(p3) = ψ1(p3)
and ψ(p5) 6= d, then we can color v by c, v2 by d and v1 by c′. The resulting
coloring of P1 is {v1}-different from ψ1, thus it extends to G1, giving an
L-coloring of G. This is a contradiction, since G is a counterexample to
Theorem 6.

By Lemma 13, P is a subpath of F and by Corollary 9, ℓ(F ) ≥ 9. Also,
ℓ(P ) ≥ 3:

• If P consists of a single vertex p1, then we can add arbitrary neighbor
of p1 in F as p2. Since p1p2 is longer than P and the assumptions of
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Theorem 6 are satisfied, the choice of P implies that G = p1p2, which
is a contradiction.

• If P = p1p2 and p2 is not bad, then let P ′ = xp1p2, where x is the
neighbor of p1 in F . Otherwise, let P ′ = p1p2y, where y is the neighbor
of p2 in F . As p2 is bad with respect to P , it follows that |L(y)| = 2, and
since L is a valid assignment, y is not bad with respect to P ′. Therefore,
the assumptions of Theorem 6 are satisfied. Again, we conclude that
G = P ′, which is a contradiction.

• Suppose that ℓ(P ) = 2 and say p1 is not bad. Let x 6= p2 be the
neighbor of p3 in F . If |L(x)| = 2, then let P ′ = p1p2p3x. Otherwise,
by symmetry we can assume that no neighbor of p1 or p3 has list of
size two. Let y 6= p3 be the neighbor of y in F . If |L(y)| = 2, then let
P ′ = p1p2p3xy, otherwise let P ′ = p1p2p3x. Let L′ be L restricted to
V (G) \ V (P ′).

Observe that I(G,P ′, L′) \ I(G,P, L) ⊆ {p1, p2, p3, x}. We conclude
that if no vertex of P ′ is bad, then L′ is a valid assignment. The
vertices p2 and p3 are not adjacent to a vertex with list of size two,
thus they are not bad. If |L(x)| = 2, then neither p1 nor x are bad with
respect to L, and we conclude that neither of them is bad with respect
to L′. If |L(x)| = 3, then neither p1 nor x are adjacent to a vertex with
list of size two in L′, thus they are not bad. Finally, if y ∈ V (P ′), then
y is not bad with respect to L′, since it is not bad with respect to L
and no other vertex of P ′ is bad. We conclude that the assumptions
of Theorem 6 are satisfied, and since P ′ is longer than P , G satisfies
the conclusions of Theorem 6 with respect to P ′. Since the minimum
degree of G is at least two, we have G 6= P ′, and thus ℓ(P ′) = 4. Note
that G is not a 5-face, as |L(x)| = 3 and x would have degree two. It
follows that G is class A or B. Let ψ0 = ψ(G,P ′,L′).

For any precoloring ψ of P = p1p2p3, we can choose a color c ∈ L(y) \
{ψ0(y)}, color y with c and x by a color in L(x)\{ψ(p3), c}, and extend
this precoloring (which is {y}-different from ψ0) to an L-coloring of G.
This shows that G cannot be a proper P -critical graph, which is a
contradiction.

Let D = {v ∈ V (G) \ V (P ) : |L(v) = 2} ∪ {p1, pk}.

Lemma 14. Let Q = q0 . . . qt be a t-chord of F (t ≤ 4) and let G1, G2 6= Q
be the subgraphs of G such that G = G1∪G2 and G1∩G2 = Q. If all vertices
of P except for p1 and pk belong to V (G1) and G2 does not consist of a single
5-face, then t ≥ 3 and |{q0, q3} ∩D| ≤ t− 3.
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Proof. Suppose for a contradiction that Q does not satisfy the conclusions
of the lemma. By Lemma 13, t ≥ 2. Let Q′ be the path obtained from Q in
the following way: for i ∈ {0, t},

• if qi = p2, then add p1 to Q′,

• if qi = pk−1, then add pk to Q′, and

• if qi 6∈ D and qi is adjacent to a vertex v ∈ V (F )∩V (G2) with |L(v)| =
2, then add v to Q′.

Let Q′ = q′0q
′
1 . . . q

′
ℓ(Q′) and let L2 be L restricted to V (G2)\V (Q′). Note that

Q′ ⊆ G2: otherwise say p1 ∈ V (G1) and p2 = q0, implying that p3 ∈ V (G2).
Since p3 ∈ V (G1) by the assumptions of the lemma, it follows that p3 = qt,
and by (1), the cycle q0q1 . . . qt bounds a face of length t+ 1. Since the girth
of G is at least 5, we conclude that G2 is a 5-face, which is a contradiction.
Suppose first that 2 ≤ t ≤ 3 and |{q0, qt} ∩D| ≥ t− 1. Subject to these

assumptions, choose Q such that G2 is as small as possible. Observe that
ℓ(Q′) ≤ 3. By Lemma 13 and the minimality of G2, q′i is not adjacent to a
vertex with list of size two in L2, for 1 ≤ i ≤ ℓ(Q′)−1. Also, if x ∈ {q′0, q

′
ℓ(Q′)}

is adjacent to a vertex with list of size two in L2, then x ∈ I(G,P, L). It
follows that L2 is a valid list assignment for G2 with respect to Q′ and no
vertex of Q′ is bad in G2. By Lemma 7 and the minimality of G, it follows
that G2 = Q′, which is a contradiction. We conclude that

|{q0, qt} ∩ D| ≤ t − 2 for any t-chord Q satisfying the assumptions of
Lemma 14.

(2)
Let us now consider a t-chord Q violating the conclusions of Lemma 14

(i.e., |{q0, qt} ∩D| ≥ t − 2), such that G2 is as large as possible. Note that
ℓ(Q′) ≤ 4. By (2) and Lemma 13, if a vertex x ∈ V (Q′) is adjacent to
a vertex with list of size two in L2, then x ∈ {q′0, q

′
ℓ(Q′)} ∩ I(G,P, L). We

conclude that L2 is a valid list assignment for G2 and that no vertex of Q′

is bad in G2. Lemma 7 implies that G2 is a proper Q′-critical graph. By the
minimality of G, ℓ(Q′) = 4 and G2 is class A or B. Let ψ2 = ψ(G2,Q

′,L2). Note
that q′2 6∈ V (F ) and q′0, q

′
4 ∈ D.

If G2 is class A, then let G′ consist of G1 together with two new vertices
x and y and a path q′1xyq

′
3, with the list assignment L

′ given by L′(v) = L(v)
for v ∈ V (G1) \V (P ), L′(x) = {ψ2(q

′
1), c} and L

′(y) = {ψ2(q
′
3), c}, where c is

an arbitrary color distinct from ψ2(q
′
2) and ψ2(q

′
4). If G2 is class B, then let

G′ = G1, L′(v) = L(v) for v ∈ V (G1) \ {q
′
2} and L

′(q′2) = L(q′2) \ {ψ2(q
′
2)}.

Consider any precoloring ψ of P whose restriction to P ∩ G′ extends to an
L′-coloring ϕ of G′, and let ϕ′ be the restriction of ψ ∪ ϕ to V (Q′). If G2 is
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class A, then ϕ′ is {q′1, q
′
3}-different from ψ2, and if G2 is class B, then ϕ′ is

{q′2}-different from ψ2, thus ϕ′ extends to an L2-coloring ofG2. Together with
ϕ, this gives an L-coloring of G extending ψ. Since at least one precoloring
of P does not extend to an L-coloring of G, we conclude that there exists a
precoloring of P ∩G′ that does not extend to an L′-coloring of G′.
Let G′′ be a (P ∩G′)-skeleton of G′. Suppose now that

L′ is a valid list assignment and no vertex of P ∩G′′ is bad.
(3)

In order to apply Theorem 6, we need to show that G′′ is smaller than G,
i.e., that |V (G′′)| + |E(G′′)| ≤ |V (G1)| + |E(G1)| + 5 < |V (G)| + |E(G)|.
This is obvious if |V (G2) \ V (Q)| ≥ 3. Since G2 is not a 5-face, we have
|V (G2) \ V (Q)| ≥ 1 and t ≥ 5 − |V (G2) \ V (Q)|. If |V (G2) \ V (Q)| = 1,
then t = 4, q0, q4 ∈ D and the vertex w ∈ V (G2) \ V (Q) has degree two. It
follows that |L(w)| = 2, and the path q0wq4 contradicts the assumptions of
Theorem 6. Similarly, we exclude the case that |V (G2) \ V (Q)| = 2.
Note that G′′ does not consist of a single 5-face, since F does not have

chords. Also, since not all precolorings of P ∩ G′ extend to an L′-colorings
of G′, G′′ 6= P ∩ G′. By Theorem 6 applied to to G′′ with the path P ∩ G′

and the list assignment L′, we have ℓ(P ) = 4, P ⊆ G′ and G′′ is class A or
B. Let ψ1 = ψ(G′′,P,L′).
If G′′ is class A, then any precoloring of P that is {p1, p2, p4, p5}-different

from ψ1 extends to an L′-coloring of G′′, and thus it also extends to an L′-
coloring of G′ and an L-coloring of G. Also, p1 is adjacent to a vertex w such
that |L′(w)| = 2 in G′′. Note that p1 6∈ {q′1, q

′
3} and by (2), p1 is not adjacent

to q′2, thus w ∈ V (G) and |L(w)| = 2. By symmetry, pk has a neighbor with
list of size two in G. Therefore, G is class A. Similarly, if G′′ is class B, then
G is class B. This is a contradiction, and hence the assumption (3) is false.
Let us now distinguish the two cases regarding whether G2 is class A or

B with respect to the path Q′ and the list assignment L2:

• G2 is class A. Let z be the neighbor of q′0 in G2 with |L(z)| = 2.

Let us recall that in this case the list assignment L′ matches L on
V (G′′) \ V (P ) and G′ contains two additional vertices x and y with
lists of size two. Since (3) is false, we may assume by symmetry that
either q′1 ∈ I(G′′, G′∩P, L′) or |L′(q′1)| = 3 and G′′ contains a path q′1uv
with |L′(u)| = 2 and v ∈ (I(G′′, G′ ∩ P, L′) \ {x, y}) ⊆ I(G,P, L).

By the choice of Q′, either q′1 ∈ V (P ) or |L(q′1)| = 3. Suppose first that
q′1 6∈ V (P ). If q′1 ∈ V (F ), then |L(q′0)| = 2 by the construction of Q′,
and the path zq′0q

′
1uv contradicts the assumption that L is a valid list

assignment. If q′1 6∈ V (F ), then by (2) uq′1q
′
0 is not a 2-chord of F , and
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thus u = q′0. In this case, the path zuv contradicts the assumption that
L is a valid list assignment.

We conclude that q′1 ∈ V (P ). By symmetry and the construction of
Q′, we may assume that q′1 = p2 and q′0 = p1. Note that q′3 6∈ V (P ), as
the girth of G is at least five and q′3 6= p5. It follows that L′ is a valid
list assignment for G′′ with respect to the path P ′ = xp2 . . . pk and no
vertex of this path is bad.

By the minimality of G, this implies that ℓ(P ′) = ℓ(P ) = 4 and G′′

is class A or B with respect to P ′, with ψ0 = ψ(G′′,P ′,L′). If G′′ is
class A with respect to P ′, then p5 is adjacent to a vertex w with
|L(w)| = |L′(w)| = 2. Furthermore, p1 = q′0 is adjacent to z, which has
|L(z)| = 2. Let ψ(G,P,L) be a coloring that matches ψ0 on p2p3p4p5 and
satisfies ψ2(p1) ∈ {ψ(G,P,L)(p1), ψ

(G,P,L)(p2)}. Consider a precoloring ψ
of P . If ψ is {p2, p4, p5}-different from ψ(G,P,L), then ψ is {p2, p4, p5}-
different from ψ0; choose a color of x in L′(x) \ ψ(p2) and extend the
resulting precoloring of P ′ to an L′-coloring of G′′. This implies that
ψ extends to an L-coloring of G. If ψ is not {p2, p4, p5}-different from
ψ(G,P,L), but it is {p1}-different, then ψ(p1) 6= ψ2(p1). In this case, by
Theorem 6 applied to a p2p3p4p5-skeleton of G1 with list assignment L,
we conclude that ψ extends to an L-coloring ϕ of G1, and since ϕ ∪ ψ
is {p1}-different from p2 on Q′, ϕ extends to L2-coloring of G2, giving
an L-coloring of G. We conclude that G is class A. Analogically, if G′′

is class B with respect to P ′, then G is class B. This is a contradiction.

• G2 is class B. The vertex q′2 does not have any neighbor in D by (2).
Since (3) is false, q′2 has a neighbor p ∈ V (P ) \ {p1, pk}. As girth of G
is at least five, q′2 is adjacent to exactly one vertex of P . Since (3) is
false, G2 contains a q′2uv with |L(u)| = 3 and |L(v)| = 2. Since G2 was
chosen to be as large as possible, we may assume that u = q′3, and if
q′4 ∈ V (G1), then v = q′4.

If ℓ(P ) = 4 and q′2 is adjacent to p3, then consider precoloring ψ of
P that does not extend to an L-coloring of G. Choose a color for q′2
from L′(q′2) \ {ψ(p3)}. Let H1, H2 6= q′2p3 be the subgraphs of G1 ∪ P
such that G1 ∪ P = H1 ∪H2, q′2p3 = H1 ∩H2 and p1 ∈ V (H1). By the
minimality of G, Theorem 6 implies that the precoloring of p1p2p3q

′
2

extends to an L-coloring of H1 and the precoloring of p5p4p3q
′
2 extends

to an L-coloring of H2, giving an L′-coloring of G′. This implies that
ψ extends to an L-coloring of G, which is a contradiction.

We conclude that p ∈ {p2, pk−1}, and by symmetry, we may assume
that p = p2. The maximality of G2 implies that q′2 = p2 and q′1 =
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p1. Note that L′ is a valid list assignment with respect to the path
P ′ = q′3p2 . . . pk, and no vertex of this path is bad. By the minimality
of G, ℓ(P ′) = ℓ(P ) = 4 and G′′ is class A or B with respect to the
path P ′. Since q′2 is not adjacent to a vertex with list of size two, we
conclude that G′′ is class B. It follows that G is class B, with with
ψ(G,P,L) matching ψ(G′′,P ′,L′) on p3 and p5 and ψ(G,P,L)(p1) = ψ2(p1).
This is a contradiction.

Let P ′ = p1 . . . pkv1v2v3v4v5 be a subpath of F . As we observed before,
ℓ(F ) ≥ 9. Suppose that k = 5 and ℓ(F ) = 9, i.e., v5 = p1. By Corollary 9,
G contains exactly one vertex v 6∈ V (F ). As p1 and p5 are not bad, v must
be adjacent to p3, v1 and v4, |L(v1)| = |L(v4)| = 3 and |L(v2)| = |L(v3)| = 2,
i.e., G is the class B graph depicted in Figure 3 (L may differ from the list
assignment shown in the figure). Therefore, we may assume that all the
vertices of P ′ are distinct.

Lemma 15. Exactly one of |L(v1)| = 2 and |L(v2)| = 2 is satisfied. Further-
more, if ψ is a precoloring of P that cannot be extended to an L-coloring of
G, then ψ(pk) ∈ L(v1).

Proof. Since pk is not bad, it cannot be the case that |L(v1)| = |L(v2)| = 2.
Let ψ be a precoloring of P that does not extend to an L-coloring of G.
Suppose that |L(v1)| = |L(v2)| = 3 or ψ(pk) 6∈ L(v1). Let N ′ be the set
of neighbors of pk in G. Let N = N ′ \ {pk−1, v1} if ψ(pk) 6∈ L(v1) and
N = N ′ \{pk−1} otherwise. Let L′ be the list assignment obtained from L by
removing ψ(pk) from the lists of all vertices in N . The vertices of N form an
independent set in G. By Lemma 14 and the assumption that |L(v2)| = 3, if
w is a neighbor of a vertex of N and w 6∈ V (P ), then |L(w)| = 3. Similarly,
if w ∈ V (P ), then w 6∈ {p1, p2}, and since the girth of G is at least 5,
w 6∈ {p3, . . . , pk−1}. Therefore, L′ is a valid list assignment for G − pk with
respect to the path P −pk and no vertex of P −pk is bad. By the minimality
of G, we can apply Theorem 6 to a (P −pk)-skeleton of G−pk, and conclude
that ψ can be extended to an L′-coloring of G− pk. Therefore, ψ extends to
an L-coloring of G, which is a contradiction.

Let us define a set X of vertices of G, depending on the sizes of the lists
of vertices v1, . . . , v5 (we exclude the cases forbidden by Lemma 15 and the
assumption that pk is not bad). See Figure 4 for an illustration.

• If |L(v1)| = 2, then |L(v2)| = 3. If |L(v3)| = 3, then let X = {v1}.
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pk v1 v2 v3

X

Figure 4: The definition of the set X. Squares denote vertices with list of
size two.

• If |L(v1)| = |L(v3)| = 2 and |L(v2)| = 3, then |L(v4)| = 3. If |L(v5)| =
3, then let X = {v1, v2, v3}, otherwise let X = {v1, v2, v3, v4}.

• If |L(v1)| = 3, then |L(v2)| = 2. If |L(v3)| = |L(v4)| = 3, then let
X = {v1, v2}.

• If |L(v1)| = |L(v3)| = 3 and |L(v2)| = |L(v4)| = 2, then let X =
{v1, v2, v3}.

• If |L(v1)| = 3 and |L(v2)| = |L(v3)| = 2, then |L(v4)| = 3. If |L(v5)| =
3, then let X = {v1, v2, v3}, otherwise let X = {v1, v2, v3, v4}.

Let m = |X|. Let us fix a precoloring ψ of P that does not extend to an
L-coloring of G. Observe that there exists an L-coloring ϕ = ϕψ of the path
induced by X such that

• ϕ(v1) 6= ψ(pk), and

• if |L(vm+1)| = 2, then ϕ(vm) 6∈ L(vm+1).

Furthermore, if |L(vm+1)| = 3, then vm is the only neighbor of vm+1 that
belongs to I(G,P, L).
Let X ′ = X ∪ {v ∈ {vm+1, pk} : degG(v) = 2} and G′ = G − X ′. Let

N ′ be the set of neighbors of the vertices of X in V (G) \ (X ′ ∪ {pk}). Let
N = N ′ if |L(vm+1)| = 3 and N = N ′ \ {vm+1} if |L(vm+1)| = 3.
Let L′ be the assignment of lists to vertices of G′ obtained from L by

removing the colors of vertices of X given by ϕ from the lists of their
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pk−1 pk v1 v2 v3 v4 v5

x y

pk v1 v2 v3 v4 v5

x

pk v1 v2 v3 v4 v5

x y z

pk v1 v2 v3 v4 v5

x

Figure 5: The obstructions.

neighbors, i.e., from the lists of vertices in N (or, more precisely, N ′; how-
ever, when N 6= N ′, then N ′ \ N = {vm+1}, the only neighbor of vm+1

in X is vm and ϕ(vm) 6∈ L(vm+1)). Additionally, if pk 6∈ X ′, then we set
L′(pk) = {ψ(pk−1), ψ(pk)}, and if ℓ(P ) = 4, then L′(p1) = {ψ(p1), ψ(p2)}.
Let P ′ = p2p3p4 if ℓ(P ) = 4 and P ′ = p1p2p3 if ℓ(P ) = 3. Since ψ does not
extend to an L-coloring of G, we conclude that ψ (restricted to the path P ′)
does not extend to an L′-coloring of G′, either. Let us remark that ℓ(P ′) = 2,
thus the vertices of P ′ do not belong to I(G′, P ′, L′), and we only need to
show that the list assignment is valid and pk−1 is not bad in order to be able
to apply Theorem 6.
First, assume that G does not contain the following configurations, see

Figure 5 for an illustration:

Obstruction A. A path pk−1xy with x, y ∈ N .

Obstruction B. A path vxvm+1, where v ∈ X and x ∈ N .

Obstruction C. A path xyz with x adjacent to pk, y to v2 and z to v4, in
case that v4 ∈ X.

Obstruction D. A vertex in N with two neighbors in X.

By the absence of Obstruction D and Lemma 13, L′ assigns a list of at
least two colors to all vertices of V (G′) \ V (P ′). Since the girth of G is at
least 5 and |X| ≤ 4, the induced subgraph G[N ] contains at most one edge.
By Lemma 13, if pk ∈ V (G′), then pk is not adjacent to any vertex v with
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|L(v)| = 2. By Lemma 14, no vertex of N is adjacent to a vertex with list of
size two in G or to p1 or pk (for vm+1 in case that |L(vm+1)| = 3, the choice
of X implies that m ≤ 3 and vm+2 6∈ I(G,P, L)). Therefore, G′ does not
contain a path u1u2u3 with |L′(u1)| = |L′(u2)| = |L′(u3)| = 2.
Suppose now that two vertices x, y ∈ N are adjacent and there exists a

path xyzuw ⊆ G′ with |L(z)| = 3 and one of the following holds:

• |L(u)| = |L(w)| = 2, or

• ℓ(P ) = 4, u = p1 and |L(w)| = 2, or

• ℓ(P ) = 4, w = p1 and |L(u)| = 2.

Note that x, y 6= vm+1 by the absence of Obstruction B. Let vi ∈ X be
the neighbor of x and vj ∈ X the neighbor of y. If z ∈ V (F ), then let
Q = vjyz, otherwise let Q = vjyzu. Note that Q is a 2- or 3-chord. Let
G1, G2 6= Q be the subgraphs of G such that G = G1 ∪G2, Q = G1 ∩G2 and
P ⊆ G1. Using Lemma 14, we conclude that G2 consists of a single 5-face
and |L(vj)| = 3. It follows that i < j. Furthermore, consider the vertices
vj+1 and vj+2 following vj in the boundary of F . If z ∈ V (F ), then both
vj+1 and vj+2 have degree two. If z 6∈ V (F ), then vj+1 has degree two and
u = vj+2. It follows that |L(vj+1)| = 2 and either |L(vj+2)| = 2 or vj+2 = p1,
and since L is a valid list assignment, u = vj+2 and w = vj+1. Observe
that w 6= p1. The cycle C = vivi+1 . . . vjyx has length at most 6, hence C
bounds a face by (1). All vertices vt with i < t < j have degree two, and
thus |L(vt)| = 2. As G has girth at least 5, i ≤ j − 2, hence |L(vj−1)| = 2.
Since L is a valid list assignment and |L(vj+1)| = 2 and vj+2 ∈ D, we have
i = j − 2 and |L(vi)| = |L(vj)| = 3. Examination of the possible choices of
X shows that these conditions may only be satisfied if j = m. However, in
that case w = vm+1 has degree two in G, and hence w ∈ X ′, contradicting
the assumption that w ∈ V (G′).
Suppose now thatG′ contains a path u1u2u3u4u5 with |L′(u1)| = |L′(u2)| =

|L′(u4)| = |L′(u5)| = 2 and |L′(u3)| = 3. Since L is a valid list assignment
and pk has no neighbor with list of size two in G′, we may assume that
u1, u2 ∈ N and u4, u5 6∈ N . However, this contradicts the previous para-
graph. We conclude that L′ is a valid list assignment for G′ with respect to
the path P ′.
Let us now consider a path pk−1u2u3 with |L′(u2)| = |L′(u3)| = 2. Note

that u2, u3 6= pk. By Lemmas 13 and 14, we have u2, u3 6= p1 and |L(u2)| =
|L(u3)| = 3, and thus u2, u3 ∈ N . This is not possible, as G does not
contain Obstruction A. Finally, consider a path pk−1u2u3u4u5 with |L′(u2)| =
|L′(u4)| = |L′(u5)| = 2 and |L′(u3)| = 3. By Lemma 13, we have either
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u2 = pk or u2 ∈ N . In the former case, Lemmas 13 and 14 imply u4, u5 ∈ N ,
which is a contradiction, since G does not contain Obstruction C. It follows
that u2 ∈ N , and by Lemma 13, u2 6= vm+1. Let vi be the neighbor of u2

in X. The 2-chord pk−1u2vi bounds a 5-face by Lemma 14, hence i = 2,
|L(v1)| = 2 and |L(v2)| = 3. Since |X| ≤ 4 and G has girth 5, u4 and u5

cannot both belong to N . Since no vertex of N is adjacent to a vertex with
list of size two not belonging to N , it follows that u4, u5 6∈ N , and thus
u4 = p1 or |L(u4)| = 2. If u3 ∈ V (F ), then let Q = pk−1u2u3, otherwise let
Q = pk−1u2u3u4. Lemma 14 applied to Q implies that Q together with a
path in the boundary of F bounds a 5-face. However, this contradicts the
existence of the edge u2v2. We conclude that pk−1 is not bad.
Let us summarize the results of the previous few paragraphs:

• If G does not contain Obstruction D, then L′ assigns each vertex of
V (G′) \ V (P ′) at least two colors.

• If additionally G does not contain Obstruction B, then L′ is a valid list
assignment.

• If additionally G does not contain Obstructions A and C, then pk−1 is
not bad.

By the minimality of G, ψ can be extended to an L′-coloring of G′. This
is a contradiction, and thus G contains at least one of the obstructions. Note
that the obstructions are mutually exclusive, hence G contains exactly one of
them. Furthermore, if G does not contain Obstructions B and D (so that L′

is a valid list assignment), then both pk−1 and pk−3 are bad. Let us consider
each obstruction separately:

Obstruction A. Let us recall that this obstruction consists of a path pk−1xy
with x, y ∈ N . By Lemma 14, x is adjacent to v2, |L(v1)| = 2 and
|L(v2)| = 3. It follows that m = 4 and y is adjacent to v4. As v2v3v4yx
is a 5-face, |L(v3)| = 2. As pk is not bad in G, |L(v4)| = 3. Since
v4 ∈ X, |L(v5)| = 2. Therefore, N consists of x, y and other neighbors
of v4. Observe also that L′ is a valid list assignment.

Suppose that p1 is bad in G′. No vertex of N is adjacent to p1 or to a
vertex z with |L(z)| = 2 by Lemma 14 and p1 is not bad in G. Since
p1 is bad in G′, there exists a path p1z1z2xy or a path p1z1z2yx with
|L(z1)| = 2 and |L(z2)| = 3. The former is not possible, as the 2-chord
v2xz2 (if z2 ∈ V (F )) or the 3-chord v2xz2z1 would bound a 5-face by
Lemma 14, contradicting the existence of y. In the latter case, if z2 ∈
V (F ), then z2yv4 is a 2-chord and by Lemma 14, z2yv4v5v6 is a 5-face
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(where v6 is the common neighbor of v5 and z2 in F ), |L(v6)| = 2, and
the path p1z1z2v6v5 shows that p1 is bad in G. Similarly, if z2 6∈ V (F ),
then the 3-chord z1z2yv4 together with the path v4v5z1 bounds a 5-face
and the path p1z1v5 shows that p1 is bad in G. This is a contradiction,
hence p1 is not bad in G′.

If k = 4, this implies that ψ extends to an L-coloring of G. Therefore,
k = 5. Suppose now that a vertex v ∈ N is adjacent to p2. The
corresponding 2-chord bounds a 5-face by Lemma 14, which excludes
the case v = x. If v 6= y were a neighbor of v4, then p2p3p4xyv4v
would be a 7-face by (1), implying that y has degree two. This is a
contradiction, thus v = y. In this case, Lemma 14 implies that v5 is
adjacent to p1, and by (1) G is the class A graph depicted in Figure 3
(L may differ from the list assignment shown in the figure). Therefore,
no vertex of N is adjacent to p2.

Suppose that v ∈ N is adjacent to p3. As the girth of G is at least
5, v 6= x, y, thus v is a neighbor of v4 distinct from y. However, then
p3p4p5v1v2v3v4v would be a separating 8-cycle, which contradicts (1).
Similarly, we conclude that the only neighbor of p4 in N is x.

Let c4 ∈ L(v4) \ L(v5) and c3 ∈ L(v3) \ {c4} be chosen arbitrarily.
Observe that we may assume that ϕψ(v4) = c4 and ϕψ(v3) = c3, inde-
pendently on the precoloring ψ of P . Let P2 = p1p2p3p4x and L2 be
the list assignment for the vertices of V (G′) \ V (P2) obtained from L
by removing c4 from the lists of neighbors of v4. Let us remark that L2

is L′ restricted to V (G′) \ V (P2), thus L2 is a valid list assignment.

We have shown that p1 is not bad and p2, p3 and p4 are not adjacent
to a vertex with list of size two, thus they are not bad, either. Finally,
x has list of size two in the valid list assignment L′, thus x is not
bad. We conclude that a P2-skeleton G2 of G′ satisfies assumptions of
Theorem 6. Since x is not adjacent to p1, G2 is class A or B.

If G2 is class A, then let J = {p1, p2, p4}. Note that p1 is adjacent to
a vertex z in G2 such that |L2(z)| = 2 and z2 6∈ N , thus |L(z)| = 2,
and p5 is adjacent to v1 in G, which has |L(v1)| = 2. If G2 is class B,
then let J = {p1, p3}. Given a precoloring ψ′ of P that is J-different
from ψ(G′,P2,L2), we color X according to ϕ′ = ϕψ′ and choose a color
for x from L(x) \ {ψ′(p4), ϕ

′(v2)}. This precoloring of P2 extends to an
L2-coloring of G2, giving an L-coloring of G.

Choose now c2 ∈ L(v2) \ L(v3) and c1 ∈ L(v1) \ {c2}. If ψ′(p5) 6= c1,
then consider the graph G3 = G− {p5, v1, v2} with list assignment L′′

obtained from L by removing c2 from the list of x. Observe that this
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list assignment is valid and that no vertex of P3 = p1p2p3p4 is bad,
thus ψ extends to an L3-coloring of G3. We extend this coloring to G
by coloring v1 by c1 and v2 by c2. It follows that G is class A or B,
with ψ(G,P,L) matching ψ(G′,P2,L2) on p1, p2 and p3, ψ(G,P,L)(p5) = c1 and
ψ(G,P,L)(p4) chosen so that ψ(G′,P2,L2)(p4) ∈ {ψ(G,P,L)(p4), ψ

(G,P,L)(p5)}.

Obstruction B. That is, G contains a path vxvm+1, where v ∈ X and x ∈
N . By Lemma 14, |L(v)| = |L(vm+1)| = 3, v = vm−2 and |L(vm−1)| =
|L(vm)| = 2. Since vm+1 6∈ X, the inspection of the choice of X shows
that m = 3 and |L(vm+2)| = 3.

Let S be an arbitrary list of two colors such that L(v2)∩L(v3) ⊆ S. Let
G2 = G− {v2, v3}, with the list assignment L2 such that L2(u) = L(u)
for u 6∈ {v1, v4} and L2(v1) ⊆ L(v1) and L2(v4) ⊆ L(v4) be lists of size
two chosen as follows:

• If |S ∩ L(v1)| ≤ 1, then choose L2(v1) disjoint from S and L2(v4)
arbitrarily.

• If |S ∩ L(v4)| ≤ 1, then choose L2(v4) disjoint from S and L1(v4)
arbitrarily.

• Otherwise, S = {a, b} ⊆ L(v1)∩L(v4). Set L2(v1) = {a}∪(L(v1)\
S) and L2(v4) = {b} ∪ (L(v4) \ S).

Observe that any L2-coloring of v1 and v4 extends to an L-coloring of
v2 and v3, thus any precoloring of P that extends to an L2-coloring of
G2 also extends to an L-coloring of G. By Lemma 13, L2 is a valid list
assignment, and no vertex of P other than p1 or pk is bad. If p1 or pk
were bad, then there would exist a path v1uwy ⊆ G2 with |L(u)| = 3,
|L(w)| = 2 and either y = p1 or |L(y)| = 2. However, the 2-chord v1uw
would contradict Lemma 14.

By the minimality of G, we can apply Theorem 6 to a P -skeleton of
G2. Since ψ does not extend to an L2-coloring of G2, we conclude that
ℓ(P ) = 4 andG2 is class A or B. IfG2 is class B, thenG is class B as well.
If G is class A, then p1 is adjacent to a vertex v such that |L2(v)| = 2.
By Lemma 13, v 6∈ {v1, v4}, and thus |L2(v)| = 2. Furthermore, there
exists a coloring ψR = ψ(G2,P,L2) of P and a set R = {p1, p2, p4, p5} such
that any precoloring ψ′ of P that is R-different from ψR extends to an
L-coloring of G. Let us remark that G is not class A, since p5 is not
adjacent to a vertex with list of size two. We postpone the discussion
of this case for later.
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Obstruction C. Let us recall that Obstruction C consists of a path xyz
with x adjacent to pk, y to v2 and z to v4, and v4 ∈ X. As G does
not contain separating 5-cycles, |L(v1)| = |L(v3)| = 2. Since v4 ∈ X,
we have m = 4, and the inspection of the choice of X shows that
|L(v2)| = |L(v4)| = 3 and |L(v5)| = 2. There is no edge other than pkx
between {x, y, z} and V (P )—the only cases that are not excluded by
Lemma 14 and the assumption that the girth of G is at least 5 are the
following:

• y adjacent to p3, but then G would contain a separating cycle
p3 . . . pkv1v2y of length at most 6, contrary to (1).

• z adjacent to pi ∈ {p2, p3, . . . , pk}, but then pipi+1 . . . pkxyz would
bound a face of length at most 7 by (1), implying that x has degree
two, which is a contradiction.

By Lemma 15, L(v1) = {ψ(pk), c1} for some color c1. Suppose first that
L(v2) 6= L(v3) ∪ {c1}. We choose a color c2 ∈ L(v2) \ (L(v3) ∪ {c1}).
Let G2 = G−{v1, v2} and L2 be the list assignment such that L2(y) =
L(y) \ {c2}, L2(pk) = {ψ(pk−1), ψ(pk)}, L2(p1) = {ψ(p1), ψ(p2)} and
L2(v) = L(v) for any other vertex v. Observe that L2 is a valid list
assignment for G2 with respect to the path p2 . . . pk−1 and pk−1 is not
bad. By the minimality of G, ψ extends to an L2-coloring of G2, giving
an L-coloring ofG, which is a contradiction. Therefore, L(v2) = L(v3)∪
{c1}, and thus {ψ(pk)} = L(v1)\ (L(v2)\L(v3)). This implies that any
precoloring ψ′ of P with ψ′(pk) 6= ψ(pk) extends to an L-coloring of G.

Let G3 = G−{v1, v2, v3, y} and choose c ∈ L(y) \L(v3). Let N3 be the
set of neighbors of y in G, excluding v2. Let L3 be the list assignment
for V (G3) \ V (P ) obtained from L by removing c from the lists of
vertices in N3. The vertices of N3 form an independent set. As we
observed before, x is not adjacent to a vertex of P other than pk and
z is not adjacent to any vertex of P . A vertex v ∈ N3 \ {x, z} is not
adjacent to a vertex of V (P ) \ {p3} by Lemma 14. If v were adjacent
to p3, then the open disk bounded by p3 . . . pkv1v2yv would contain the
vertex x, contrary to (1). By Lemma 14, no vertex of N3 is adjacent to
a vertex v with |L(v)| = 2 and there does not exist a path xv1v2 with
|L(v2)| = 2. It follows that L3 is a valid list assignment for G3 and no
vertex of P is bad. By the minimality of G, we conclude that ℓ(P ) = 4
and G3 is class A or B, with ψ3 = ψ(G3,P,L3). If G3 is class A, then let
J = {p1, p2, p4}; in this case, p1 has a neighbor v with |L3(v)| = 2, and
since no vertex of N is adjacent to p1, |L(v)| = 2. Furthermore, p5 is
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adjacent to the vertex v1 with list of size two. If G3 is class B, then let
J = {p1, p3}.

Consider a precoloring ψ′ of P with ψ′(p5) = ψ(p5), such that ψ′ is
J-different from ψ3. This precoloring extends to an L3-coloring of G3.
Furthermore, it also extends to an L-coloring of G: We color y by c, v1

by c1 and v3 by a color c3 ∈ L(v3) different from the color of v4. Observe
that c = c1 or c 6∈ L(v2), thus we can color v2 by a color in L(v2) \
{c1, c3}. Let ψ(G,P,L) match ψ3 on p1, p2 and p3, ψ(G,P,L)(p5) = ψ(p5)
and choose ψ(G,P,L)(p4) so that ψ3(p4) ∈ {ψ(G,P,L)(p4), ψ

(G,P,L)(p5)}. We
conclude that if G3 is class A, then G is class A, and if G3 is class B,
then G is class B.

Obstruction D. I.e., a vertex x ∈ N has two neighbors vi, vj ∈ X. Assume
that i < j. As G has girth at least 5 and |X| ≤ 4, i = 1 and j = 4,
|L(v1)| = |L(v4)| = 3 and |L(v2)| = |L(v3)| = 2. The inspection of the
choice of X implies that |L(v5)| = 2. By Lemma 14, x is not adjacent
to p1 and p2. Since the girth of G is at least 5, x is not adjacent to pk
and pk−1.

Suppose that x is not adjacent to p3. Choose a color c ∈ L(x) \
{ϕ(v1), ϕ(v4)}. Let G2 = G′ − x and let L2 be the assignment ob-
tained from L′ by removing c from the lists of neighbors of x. Let N2

be the set of vertices of V (G2) \ (V (P ) ∪ {v5}) that are adjacent to
v1, x or v4 in G, excluding v5. Each vertex in N2 is adjacent to only
one of vi, x or vj , as G has girth at most 5. Furthermore, the vertices
in N2 form an independent set—if vertices z1, z2 ∈ N2 were adjacent,
then, since the girth of G is at least 5, say z1 would be adjacent to
v1 and z2 to v4. However, by (1) v1xv4z2z1, and x would have degree
two. Similarly, no vertex of N2 is adjacent to pk or v5. By Lemma 14,
|L(v)| = 3 for any v ∈ N2, and no neighbor u of a vertex of N2 satisfies
u = p1 or u 6∈ V (P ) and |L(u)| = 2. We conclude that L2 is a valid list
assignment to G2 with respect to the path P ′.

If ψ extended to an L2-coloring of G2, then it would also extend to an
L-coloring of G, hence this is not the case. By the minimality of G,
we can apply Theorem 6 to a P ′-skeleton of G2, and we conclude that
pk−1 is bad in G2 with the list assignment L2. Since N2∪{pk} forms an
independent set and no vertex of this set is adjacent to another vertex
with list of size two, it follows that there exists a path pk−1z1z2z3 ⊆ G2

with z1 ∈ N2 ∪ {pk}, |L(z2)| = 3 and either z3 = p1 or |L(z3)| = 2.
However, this contradicts Lemma 14.

Therefore, x is adjacent to p3. Since x is not adjacent to pk−1, it follows
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that ℓ(P ) = 4. By (1), p3p4p5v1x is a 5-face. If L(v2) 6= L(v3) or
L(v1) 6= L(v2)∪{ψ(p5)}, then there exists a color c1 ∈ L(v1)\{ψ(p5)}\
(L(v2)∩L(v3)). Observe that that for any c4 ∈ L(v4), the path v1v2v3v4

can be L-colored so that v1 has color c1 and v4 has color c4. Let G3 =
G−{p4, p5, v1, v2, v3} and let L3 be the list assignment obtained from L
by removing c1 from the list of x, and setting L3(p1) = {ψ(p1), ψ(p2)}.
By Lemma 14, x is not adjacent to p1 or a vertex v with |L(v)| = 2,
hence L3 is a valid list assignment for G3 with respect to the path p2p3.
By the minimality of G, the precoloring of p2p3 given by ψ extends
to an L3-coloring of G3, and further to an L-coloring of G, which is a
contradiction. Therefore, L(v1) = {ψ(p5), c2, c3} and L(v2) = L(v3) =
{c2, c3} for some colors c2 and c3, and {ψ(p5)} = L(v1)\L(v2). It follows
that any precoloring ψ′ of P that is {p5}-different from ψ extends to
an L-coloring of G.

Furthermore, L(x) = {ψ(p3), c2, c3}, as if say c2 6∈ L(x), then we could
instead define L3(x) = L(x) \ {c3}, and if ψ(p3) 6∈ L(x), then we could
define L3(x) = (L(x) \ {c2, c3})∪ {ψ(p3)}, obtaining a contradiction in
the same way. Therefore, {ψ(p3)} = L(x) \ L(v2), and any precoloring
ψ′ of P that is {p3}-different from ψ extends to an L-coloring of G. Let
ψR = ψ and R = {p3, p5}.

We proved that ℓ(P ) = 4. Furthermore, we proved that G does not
contain Obstructions A and C, and if G contains Obstruction B or D, there
exists a set R ⊆ V (P ) and coloring ψR of P such that p5 ∈ R, {p3, p4}∩R 6= ∅,
any precoloring ψ′ of P that is R-different from ψR extends to an L-coloring
of G, and if p3 6∈ R, then p1 is adjacent to a vertex with list of size two.
By symmetry of the path P , there exists a set S ⊆ V (P ) and coloring

ψS of P such that p1 ∈ S, {p2, p3} ∩ S 6= ∅, any precoloring ψ′ of P that is
S-different from ψS extends to an L-coloring of G, and if p3 6∈ S, then p5 is
adjacent to a vertex with list of size two.
If p3 ∈ R, then G is class B, with ψ(G,P,L) matching ψR on p3 and p5

and ψ(G,P,L)(p1) = ψS(p1). Symmetrically, if p3 ∈ S, then G is class B. If
p3 6∈ R ∪ S, then G is class A, with ψ(G,P,L) matching ψR on p4 and p5 and
ψS on p1 and p2. This is a contradiction.

3 Critical graphs with outer face of length 12

Theorem 4 (and Lemma 8) provides a characterization of the plane F -critical
graphs of girth 5, where F is the outer face of length at most 12. If ℓ(F ) ≤ 11,
the complete list of F -critical graphs is provided, however for ℓ(F ) = 12, only
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a necessary condition (every second vertex of F is a 2-vertex incident with
a 5-face) is given for one subclass of the critical graphs. Here, we show that
this subclass in fact contains only one graph.

Lemma 16. Let G be a plane graph of girth at least 5, with the outer face
F bounded by an induced cycle of length most 12. Furthermore, suppose that
every second vertex of F has degree two and is incident with a 5-face. Let L
be a list assignment of lists of size three to the vertices of V (G) \ V (F ). If
G is proper F -critical, then G is isomorphic to the graph in Figure 2.

Proof. LetG be a graph satisfying the assumptions of the lemma, and assume
as the induction hypothesis that any such graph G′ with |V (G′)| < |V (G)| is
isomorphic to the graph in Figure 2. Let F = v1v2 . . . v12, where v2, v4, . . . ,
v12 are vertices of degree two incident with 5-faces. In particular, v1, v3, . . . ,
v11 have degree at least three.

The face f has no 2-chord.
(4)

Otherwise, we may assume that there exists a vertex v adjacent to v1 and vk
for 5 ≤ k ≤ 7. We may also assume that v is not adjacent to a vertex vi with
2 ≤ i ≤ k − 1, thus C = v1v2 . . . vkv is an induced cycle of length at most 8.
Since v2 is incident with a 5-face, the open disk bounded by C contains at
least one vertex, contradicting (1).
Suppose that there exists a 2-chord Q = vixyvj such that |i− j| 6= 2, i.e.,

such that no cycle of Q∪F bounds a 5-face. We may assume that i = 1 and
j ≤ 7. By the previous paragraph, the cycle C = v1 . . . vjyx is induced, and
since v2 is incident with a 5-face, the open disk bounded by C contains at
least one vertex. By Lemmas 7 and 8, j = 7 and there is exactly one vertex
v of degree three in the open disk bounded C. However, this is not possible,
as v cannot have two neighbors in F . It follows that

if Q is a 2-chord of F , then Q ∪ F contains a 5-cycle.
(5)

Consider now a 3-chord vixyzvj . Again, we assume that i = 1 and j ≤ 7.
Observe that the cycle C = v1 . . . vjzyx is either the union of two 5-faces
(with j = 5 and y adjacent to v3), or induced. Assume that C is induced.
As in the previous paragraph, we exclude the case j ≤ 6, thus j = 7. Let
C ′ = v7v8 . . . v12v1xyz. By (4) and (5), C ′ is an induced cycle. We apply
Lemmas 7 and 8 to the 10-cycles C and C ′. By the constraints on the
degrees of vertices and sizes of the faces incident with F , we conclude that
there are the following possibilities for C (and symmetrically, for C ′):
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(a) there is a 5-cycle inside C, and the vertices of this 5-cycle are adjacent
to v1, v3, v5, v7 and y, or

(b) there are two adjacent vertices u1 and u2 inside C, u1 is adjacent to v3

and x and u2 is adjacent to v5 and z.

As each of x, y and z has degree at least 3, the configuration (a) must
appear in C and the configuration (b) in C ′ (or vice versa), implying that G
is the graph depicted in Figure 2. Therefore,

any 4-chord together with a path in F bounds a cycle K such that the closed
disk bounded by K is a union of two 5-faces.

(6)
If all the vertices v1, v3, . . . , v11 had degree three, then G−V (F ) would be

a 6-cycle K and all vertices of K would have degree three in G, contradicting
Lemma 11. Therefore, assume that v3 has degree at least 4. Consider a
coloring ϕ of F that does not extend to an L-coloring of G. Let G′ =
G− {v12, v1, v2, v3, v4, v5, v6} and let L′ be the list assignment obtained from
L by removing the colors of v1, v3 and v5 from the lists of their neighbors and
setting L′(v7) = {ϕ(v7), ϕ(v8)} and L′(v11) = {ϕ(v11), ϕ(v10)}. As ϕ does not
extend to an L-coloring of G, G′ together with L′ and the path P = v8v9v10

must violate assumptions of Theorem 6. Observe that as v3 has degree at
least 4, (4), (5) and (6) imply that L′ is a valid list assignment. It follows
that both v8 and v10 are bad. Note that v7 is the only vertex with list of size
two adjacent to v8, and by (4), v7 is not adjacent to any vertex with list of
size two. Therefore, there exists a path v8v7xyz with |L′(y)| = |L′(z)| = 2.
By (4) and (5), y is adjacent to v5, z is adjacent to v3 and v5 has degree
three. Symmetrically, since v10 is bad, v1 has degree three. Similarly,

if vi ∈ V (F ) has degree greater than three, then vi−2 and vi+2 have degree
three.

(7)
For every vertex vi ∈ V (F ) of degree three, let zi be the neighbor of vi

that is not incident with F . Consider now the case that v7, v9 and v11 have
degree three. Then, G contains an 8-cycle C = v3xz5z7z9z11z1y, where x and
y are neighbors of v3. By (1), at least one of x and y has degree two, which
is a contradiction.
Suppose now that v9 and v11 have degree three, and thus v7 has degree

greater than 4. Consider the 10-cycle C = v3xz5uv7wz9z11z1y. Since x, y, u
and w have degree at least three, Lemmas 7 and 8 imply that the open disk
bounded by C contains a 5-cycle D with vertices adjacent to y, x, u, w and
z11. However, then the subgraph G− V (F ) contradicts Lemma 11.
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By symmetry, it is also not the case that both v7 and v9 have degree three.
Suppose that v9 has degree greater than three. By (7), v7 and v11 have degree
three. We applying Lemmas 7 and 8 to the 10-cycle C = yv3xz5z7uv9wz11z1.
Since x, y, u and w have degree at least three, the open disk bounded by C
contains two adjacent vertices p1 and p2, with p1 adjacent to x and u and p2

adjacent to w and y. However, the 4-chord v3xp1uv9 contradicts (6).
Therefore, we may assume that v7 and v11 have degree greater than three

and v9 has degree three. Consider the induced 12-cycle

C = v3x1z5x2v7x3z9x4v11x5z1z6

, and let Y = V (G) \ (V (F ) ∪ V (C)) and G2 = G− (V (F ) \ V (C)). By (4)
and (5), C is an induced cycle. By Lemma 8 and the induction hypothesis
applied to G2 whose outer face is bounded by C,

(a) G[Y ] is a tree with at most 4 vertices, or

(b) G[Y ] is a connected unicyclic graph consisting of a 5-cycle K and at
most two other vertices, or

(c) G2 is isomorphic to the graph in Figure 2.

By (6), each vertex in Y is adjacent to at most one vertex of C. On the other
hand, each of x1, x2, . . . , x6 has at least one neighbor in Y , hence |Y | ≥ 6,
excluding the case (a).
Consider the case (b). Since |Y | ≥ 6, G[Y ] contains at least one vertex

not belonging to K. As G[F ] is unicyclic, it contains a vertex v of degree
one. As the degree of v in G is at least three, v has at least two neighbors in
C, which is a contradiction.
Finally, consider the case (c), i.e., G2 is the graph in Figure 2, with x1,

. . . , x6 being the ≥3-vertices in the outer face. We may assume that x1 and
x4 are the vertices of degree four. Let H be a 2-connected component of
G− (V (F ) ∪ {x1, x4} such that |V (H)| > 2. Then all vertices of V (H) have
degree three in G and H is not an odd cycle, contradicting Lemma 11.

The description of the critical graphs with outer face of length at most
12 follows:

Corollary 17. Let G be a plane graph of girth at least 5, with the outer
face F bounded by an induced cycle of length at most 12. Let L be a list
assignment of lists of size three to the vertices of V (G) \ V (F ). If G is
proper V (F )-critical graph, then

• ℓ(F ) ≥ 9 and G− V (F ) is a tree with at most ℓ(F ) − 8 vertices, or
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• ℓ(F ) ≥ 10 and G − V (F ) is a connected graph with at most ℓ(F ) − 5
vertices containing exactly one cycle, and the length of this cycle is 5,
or

• G is the graph in Figure 2.

4 4-critical graphs

In this section, we prove Theorem 5. Let us note that several of the ideas
(the face weights, dealing with the possibly non-critical graphs created by
the reductions) used in this proof are inspired by the approach of Dvořák et
al. [3]. However, the basic ideas of the proofs are quite different (discharging
vs. precoloring extension). It should be noted that our approach gives better
bounds on the sizes of the critical graphs.
Let w : Z+ → R be the function defined in the following way: w(x) = 0

for x ≤ 4, w(5) = 1/7 and w(x) = x− 5 for x ≥ 6. Note the following basic
properties of the function w:

• w is non-decreasing

• for every x ≥ 5, w(x) ≤ x− 5 + w(5)

• for every x < y, w(x) − w(x− 1) ≤ w(y)− w(y − 1)

The consequence of the last of these properties is the following:

If x+ y = z and x, y ≥ m, then w(x) + w(y) ≤ w(z −m) + w(m).
(8)

Let G be a plane graph with the outer face F , and let F(G) be the set of
faces of G excluding the outer face F . Let the weight w(G) of G be defined
as w(G) =

∑

f∈F(G) w(ℓ(f)).
Let E1 be the set of all cycles of length at least 5. Let E2 be the set

of plane graphs G of girth at least 5 with outer face F bounded by a cycle
such that G− F consists of a chord of F . Let E3 be the set of plane graphs
G of girth at least 5 with outer face F bounded by an induced cycle such
that V (G) \ V (F ) consists of a single vertex of degree three. A graph G is
exceptional if G ∈ E1 ∪E2 ∪E3. Note that if G is exceptional, then

• w(G) ≤ w(ℓ(F )), and

• if G 6∈ E1, then w(G) ≤ w(ℓ(F ) − 3) + w(5), and

• if G 6∈ E1 ∪ E2, then w(G) ≤ w(ℓ(F ) − 4) + 2w(5).
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We prove the following claim, which implies Theorem 5.

Theorem 18. Let G be a plane graph of girth at least 5 with the outer face
F , and L an assignment of lists of size three to vertices of V (G) \ V (F ).
If G is a non-exceptional F -critical graph, then ℓ(F ) ≥ 10 and w(G) ≤
w(ℓ(F ) − 5) + 5w(5).

Note that the bound in Theorem 18 is tight for the graph G whose outer
face F is bounded by an induced cycle, G− V (F ) is 5-cycle C, every vertex
of C has degree three in G and G has only one face of length greater than 5
distinct from F .
Before we proceed with the proof of the theorem, let us introduce several

definitions and auxiliary results. Let G be a plane graph of girth at least 5
with the outer face F . A jump in G is a subgraph of G consisting of two
5-faces v1v2v3yx and v3v4v5zy such that the path v1v2v3v4v5 (the base of the
jump) is a part of the facial walk of F and x, y, z 6∈ V (F ). The path v1xyzv5

is called the body of the jump. The internal vertices of the jump are v2, v3,
v4, x, y and z. Two jumps are disjoint if the sets of their internal vertices are
disjoint. A peeling of G is the subgraph H obtained by removing the internal
vertices of the bases of at most two disjoint jumps. Let B be the outer face
of H . Note that ℓ(B) = ℓ(F ) and w(G) ≤ w(H)+4w(5). Also, by Lemma 7,
if G is F -critical, then H is B-critical.

Lemma 19. Let G be a plane graph of girth at least 5 with the outer face F
and L an assignment of lists of size three to vertices of V (G) \ V (F ). If G
is a proper F -critical graph, then at least one of the following holds:

(a) the outer face of a peeling of G is not bounded by an induced cycle, or

(b) the outer face of a peeling of G has a 2-chord, or

(c) F contains two adjacent vertices of degree two, or

(d) a peeling H of G with the outer face B has a 3-chord Q such that no
cycle in B ∪Q distinct from B bounds a face of G, or

(e) a peeling H of G with the outer face B has a 4-chord Q = v0v1v2v3v4

such that for each cycle K ⊆ B ∪Q distinct from B, the subgraph of G
drawn in the closed disk bounded by K is equal neither to K nor to K
with exactly one chord incident with v2, or

(f) there exists a path uvwx ⊆ G such that u, v, w, x 6∈ V (F ) and each of
u, v, w and x has a neighbor in F , or
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(g) there exists a 4-chord Q = v0v1v2v3v4 of the outer face B of a peeling
H of G such that a cycle C ⊆ B ∪Q distinct from B bounds a face of
G and H contains a jump intersecting C in v0v1, or

(h) there exist a 4-chord Q = v0v1v2v3v4 of the outer face B of a peeling
H of G and 5-faces C1 and C2 of H such that a cycle C ⊆ B ∪ Q
distinct from B bounds a face of G, |V (C1 ∩ B)| = |V (C2 ∩ B)| = 3,
C1 ∩ C = v0v1 and C1 ∩ C = v3v4.

Proof. Suppose that none of (a-h) holds. Then the outer face of G is an
induced cycle, and since G is F -critical, G is 2-connected. By Lemma 8,
since (b) is false, ℓ(F ) ≥ 10.
Let X be the set of vertices of V (G) \ V (F ) that have a neighbor in F .

Since (b) is false, each vertex of X has exactly one neighbor in F . Since
(c) and (d) are false, if x1, x2 ∈ X are adjacent, then there exists a unique
5-face f(x1x2) = x1x2v1v2v3, where v1v2v3 is a part of the facial walk of F .
Similarly, if x1x2x3 is a path with x1, x2, x3 ∈ X, then the 5-faces f(x1x2) and
f(x2x3) intersect F in consecutive segments. It follows that G[X] is either a
cycle, or a union of paths. Note that G[X] cannot be a cycle of length three,
since the girth of G is at least 5. Since (f) is false, G[X] is a union of paths
of length at most two.
For i ∈ {0, 1, 2}, let Xi be the set of vertices x ∈ X such that the maximal

path in G[X] that contains x has length i. Note that each path P in G[X2]
corresponds to a jump; let this jump be denoted by j(P ). Let Y be the set
of vertices of V (G) \ (V (F ) ∪ X2) that have a neighbor in X2. Note that
X ∩ Y = ∅.
Suppose that a vertex y ∈ Y has two neighbors inX. Let x1 be a neighbor

of y in X2 and x2 ∈ X another neighbor in X. Note that F has a 4-chord
Q = v1x1yx2v2. As X ∩ Y = ∅, y is not adjacent to a vertex of F , and
since (e) is false, Q ∪ F contains a cycle K 6= F bounding a face. However,
the 4-chord Q together with the jump containing x1 implies that G satisfies
(g), which is a contradiction. Therefore, each vertex in Y has exactly one
neighbor in X (and this neighbor belongs to X2).
Consider now two adjacent vertices y1, y2 ∈ Y . For i ∈ {1, 2}, let Ji be

the jump in that yi has a neighbor. Suppose that J1 6= J2, and let H be
the peeling of G obtained by removing the internal vertices of the base of J1.
Let B be the outer face of H . Then B has a 4-chord Q = x1y1y2x2v, with
xi belonging to the body of Ji, for i ∈ {1, 2}. Note that y2 does not have
a neighbor in B, as y2 6∈ X, and since (e) is false, Q ∪ B contains a cycle
K 6= B bounding a face of G. However, Q together with the jump J2 implies
that G satisfies (g), which is a contradiction. It follows that J1 = J2, and
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as G has girth at least 5, y1y2 together with a path in X2 (a subpath of the
body of J1) bounds a 5-face f(y1y2). As both neighbors in X of the vertices
of any edge y1y2 ∈ E(G[Y ]) must belong to the same jump, we conclude that
E(G[Y ]) does not contain a path of length two.
Let Y1 ⊆ Y be the set of vertices that are incident with an edge in G[Y ].

Note that G[X1 ∪Y1] is 1-regular. Suppose that a vertex v ∈ V (G)\ (V (F )∪
X ∪ Y ) has two neighbors z1, z2 ∈ X1 ∪ Y1. For i ∈ {1, 2}, let z′i be the
neighbor of zi in X1∪Y1, and vi the neighbor of zi in f(ziz

′
i) distinct from z′i.

There exists a peeling H of G with the outer face B such that f(ziz
′
i)−{zi, z

′
i}

is a subpath of B for i ∈ {1, 2}. Then, Q = v1z1vz2v2 is a 4-chord of B. As
v 6∈ X ∪ Y , v does not have a neighbor in B, and since (e) is false, Q ∪ B
contains a cycle K 6= B bounding a face of G. However, Q together with the
faces f(z1z

′
1) and f(z2z

′
2) implies thatG satisfies (h), which is a contradiction.

Therefore, no vertex in V (G)\ (V (F )∪X ∪Y ) has two neighbors in X1 ∪Y1.
As G is critical and G 6= F , there exists a precoloring ψ of F that does

not extend to an L-coloring of G. Since each vertex of X2 has list of size
three, only one neighbor in F and G[X2] is a union of paths, there exists an
L-coloring ψ1 of G[V (F )∪X2] extending ψ. Let G1 = G−(V (F )∪X2) and let
L1 be the list assignment for G1 such that L1(v) = L(v) if v has no neighbor
in V (F ) ∪ X2 and L1(v) = L(v) \ ψ1(x) if x ∈ V (F ) ∪ X2 is the (unique)
neighbor of v. Note that each vertex of G1 has list of size at least two, and
the set of vertices with lists of size two is a subset of Z = X0∪X1∪Y . As we
proved in the previous paragraphs, G[Z] does not contain a path of length
three and there does not exist a path z1z2vz3z4 ⊆ G1 with z1, z2, z4, z5 ∈ Z.
Therefore, G1 with the list assignment L1 satisfies assumptions of Theorem 3
and G1 has an L1-coloring ϕ. However, ψ1 ∪ ϕ is an L-coloring of G that
extends ψ, which is a contradiction.

The following claims allow us to deal with the configurations described
in Lemma 19.

Lemma 20. Let G be a plane graph of girth at least 5 with the outer face F
and L an assignment of lists of size three to vertices of V (G)\V (F ). Suppose
that G is a non-exceptional F -critical graph and H is a peeling of G. Then
H is not exceptional.

Proof. Suppose thatH is exceptional. Since G is not exceptional, there exists
a jump J ⊆ G such that the body v1xyzv5 of J is a part of the boundary of
the outer face of H . As H is exceptional, x or z (say x) has degree two in H .
However, then x has degree two in G as well, contradicting the criticality of
G.
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Lemma 21. Let G be a plane graph of girth at least 5 with the outer face F
and L an assignment of lists of size three to vertices of V (G)\V (F ). Suppose
that G is a non-exceptional F -critical graph and H is a peeling of G with the
outer face B such that B is not an induced cycle. Let H1 and H2 be induced
subgraphs of H such that H = H1 ∪ H2, H1 6= H1 ∩H2 6= H2 and H1 ∩ H2

is either a vertex of B, or a chord of B. Let Bi be the outer face of Hi for
i ∈ {1, 2}. If H1, H2 ∈ E1, then ℓ(F ) = ℓ(B1) + ℓ(B2).

Proof. If H1 ∩ H2 is a chord of B, then H ∈ E2 contrary to Lemma 20. It
follows that ℓ(F ) = ℓ(B1) + ℓ(B2).

Lemma 22. Let G be a plane graph of girth at least 5 with the outer face
F and L an assignment of lists of size three to vertices of V (G) \ V (F ).
Suppose that G is a non-exceptional F -critical graph and H is a peeling of
G with the outer face B bounded by an induced cycle. Let Q be a 2-chord of
B and H1, H2 6= Q be induced subgraphs of H such that H = H1 ∪ H2 and
H1 ∩ H2 = Q. If H1 ∈ E1, then H2 6∈ E1 ∪ E2. Furthermore, if H2 ∈ E3,
then w(G) ≤ w(H) + 2w(5).

Proof. If H2 ∈ E1, then the vertex of V (Q) \ V (B) has degree two, contra-
dicting the criticality of G. If H2 ∈ E2, then H ∈ E3, contrary to Lemma 20.
Suppose for a contradiction that H2 ∈ E3 and w(G) > w(H) + 2w(5), i.e.,
H was obtained from G by removing the internal vertices of the bases of two
jumps J1 and J2. Let xi and yi be the internal vertices of the bodies of Ji
that have degree two in Ji, for i ∈ {1, 2}. Since x1, y1, x2 and y2 have degree
greater than two in G, each of them is adjacent to a vertex of V (H) \ V (B).
However, then each vertex of V (G) \ V (F ) has degree three, G − V (F ) is
2-connected and not an odd cycle, which contradicts Lemma 11.

Lemma 23. Let G be a plane graph of girth at least 5 with the outer face F
and L an assignment of lists of size three to vertices of V (G)\V (F ). Suppose
that G is a non-exceptional F -critical graph that does not have properties (a)
and (b) of Lemma 19, and that v1 and v2 are two adjacent vertices of degree
two in G. Let G1 be the graph obtained from G by identifying v1 with v2,
and F1 the outer face of G1. Then ℓ(F1) = ℓ(F )−1, G1 is a non-exceptional
F1-critical graph and the girth of G1 is at least 5.

Proof. Note that v1, v2 ∈ V (F ), and thus ℓ(F1) = ℓ(F ) − 1. Let v0v1v2v3 be
the subpath of F containing v1 and v2. Since G does not satisfy (b), v0 and
v3 do not have a common neighbor, and thus the girth of G1 is at least 5.
Also, for any precoloring ψ of F there exists a precoloring ψ1 of F1 matching
ψ on V (F ) \ {v1, v2}, and ψ extends to an L-coloring of a subgraph of G if
and only if ψ1 extends to an L-coloring of the corresponding subgraph of G2,
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thus G1 is F1-critical. Since G is not exceptional and subdividing an edge of
the outer face of an exceptional graph results in an exceptional graph, G1 is
not exceptional.

Lemma 24. Let G be a plane graph of girth at least 5 with the outer face F
and L an assignment of lists of size three to vertices of V (G)\V (F ). Suppose
that G is a non-exceptional F -critical graph that does not have properties (a)
and (b) of Lemma 19. Let Q be a 3-chord of B and H1, H2 6= Q be induced
subgraphs of H such that H = H1 ∪ H2, H1 ∩ H2 = Q and H1, H2 6∈ E1.
Then at least one of H1 and H2 is not exceptional.

Proof. Since G does not have the properties (a) and (b), H − V (B) is not a
tree, thus |V (H) \V (B)| ≥ 5 V (H) \V (B) \V (Q)| ≥ 3. This implies that at
least one of H1 and H2 has at least two vertices not incident with the outer
face, and thus it is not exceptional.

Lemma 25. Let G be a plane graph of girth at least 5 with the outer face F
and L an assignment of lists of size three to vertices of V (G)\V (F ). Suppose
that G is a non-exceptional F -critical graph that does not have properties (a)
and (b) of Lemma 19. Let Q = v0v1v2v3v4 be a 4-chord of B and H1, H2 6= Q
be induced subgraphs of H such that H = H1 ∪ H2, H1 ∩ H2 = Q and for
i ∈ {1, 2}, Hi 6∈ E1 and if Hi ∈ E2, then v2 has degree two in Hi. Then
H1, H2 6∈ E2, and at least one of H1 and H2 is not exceptional.

Proof. Suppose that say H1 ∈ E2, and let B1 be the outer face of H1. Since
the chord of B1 is not incident with v2, B has either a chord or a 2-chord,
contradicting the assumption that G does not have properties (a) and (b).
Since the girth of G is at least 5, if H1 ∈ E3, then at least two of v1, v2

and v3 have degree two in H1. Symmetrically, if H2 ∈ E3, then at least two
of v1, v2 and v3 have degree two in H2. Therefore, if H1, H2 ∈ E3, then at
least one of v1, v2 and v3 has degree two in G, which is a contradiction. It
follows that at most one of H1 and H2 is exceptional.

We are now ready to prove the main theorem of this section.

Proof of Theorem 18. We proceed by induction on ℓ(F ) and the number of
edges of G. If ℓ(F ) ≤ 11, then the claim follows from Lemma 8. Suppose
that ℓ(F ) ≥ 12 and Theorem 18 holds for all graphs with the outer face of
length at most ℓ(F )− 1, as well all graphs with outer the face of length ℓ(F )
and fewer edges than G.
The graph G satisfies at least one of the conclusions of Lemma 19. If

G has the property (a), then let H1, H2 ⊆ G be the subgraphs of G as in
Lemma 21, with outer faces B1 and B2. Note that ℓ(B1)+ ℓ(B2) ≤ ℓ(F )+ 2,

33



and thus ℓ(B1), ℓ(B2) ≤ ℓ(F ) − 3. By Lemma 7, Hi is Bi-critical for i ∈
{1, 2}. If {H1, H2} 6⊆ E1, then by symmetry assume that H1 6∈ E1. By
the induction hypothesis, w(H1) ≤ w(ℓ(B1) − 3) + 2w(5), and thus w(G) ≤
w(H)+4w(5) = w(H1)+w(H2)+4w(5) ≤ w(ℓ(B1)−3)+w(ℓ(B2))+6w(5).
Note that ℓ(B1) ≥ 8 and ℓ(B2) ≥ 5, thus by (8), w(ℓ(B1) − 3) + w(ℓ(B2)) ≤
w(ℓ(B1) + ℓ(B2) − 8) + w(5) ≤ w(ℓ(F ) − 6) + w(5) ≤ w(ℓ(F ) − 5) − w(5).
We conclude that w(G) ≤ w(ℓ(F ) − 5) + 5w(5).
On the other hand, ifH1, H2 ∈ E1, then w(G) = w(H1)+w(H2)+4w(5) =

w(ℓ(B1)) + w(ℓ(B2)) + 4w(5) ≤ w(ℓ(B1) + ℓ(B2) − 5) + 5w(5) = w(ℓ(F ) −
5) + 5w(5). Therefore, we may assume that G does not have the property
(a). This implies that G is 2-connected.
Suppose that G has the property (b). Let Q, H1 and H2 be the subgraphs

of G as in Lemma 22, and let B1 and B2 be the outer faces of H1 and H2,
respectively. Note that ℓ(B1) + ℓ(B2) = ℓ(F ) + 4, and since the girth of
G is at least 5, it follows that ℓ(B1), ℓ(B2) < ℓ(F ). If {H1, H2} ∩ E1 6= ∅,
then by symmetry assume that H1 ∈ E1. By Lemma 22, H2 6∈ E1 ∪ E2.
By the induction hypothesis and Lemma 22, if H2 ∈ E3, then w(G) ≤
w(H1) + w(H2) + 2w(5) ≤ w(ℓ(B1)) + w(ℓ(B2) − 4) + 4w(5). If H2 6∈ E3,
then w(G) ≤ w(H1) +w(H2) + 4w(5) ≤ w(ℓ(B1)) + w(ℓ(B2) − 5) + 9w(5) ≤
w(ℓ(B1))+w(ℓ(B2)−4)+4w(5). By (8), w(ℓ(B1))+w(ℓ(B2)−4) ≤ w(ℓ(B1)+
ℓ(B2)−9)+w(5) = w(ℓ(F )−5)+w(5), and thus w(G) ≤ w(ℓ(F )−5)+5w(5).
On the other hand, itH1, H2 6∈ E1, then w(G) ≤ w(H1)+w(H2)+4w(5) ≤

w(ℓ(B1) − 3) + w(ℓ(B2) − 3) + 6w(5) ≤ w(ℓ(B1) + ℓ(B2) − 11) + 7w(5) =
w(ℓ(F )− 7)+7w(5) ≤ w(ℓ(F )− 5)+5w(5). Therefore, we may assume that
G does not have the property (b).
Suppose that v1 and v2 are adjacent vertices of degree two in G, and

let G1 and F1 be as in Lemma 23. Let f 6= F be the face of G incident
with v1v2. Then ℓ(f) ≥ 6 and w(G) = w(G1) + w(ℓ(f)) − w(ℓ(f) − 1). By
induction hypothesis, w(G1) ≤ w(ℓ(F1)− 5) + 5w(5) = w(ℓ(F )− 6) + 5w(5).
This implies that ℓ(f) − 1 < ℓ(F1) = ℓ(F ) − 1. We conclude that w(G) ≤
w(ℓ(F )−6)+w(ℓ(f))−w(ℓ(f)−1)+5w(5) ≤ w(ℓ(F )−5)+5w(5). Therefore,
assume that G does not have the property (c).
Suppose that G has the property (d). Let Q, H1 and H2 be the subgraphs

of G as in Lemma 24, and let B1 and B2 be the outer faces of H1 and H2,
respectively. Note that ℓ(B1) + ℓ(B2) = ℓ(F ) + 6. Since H1, H2 6∈ E1, we
have ℓ(B1), ℓ(B2) ≥ 8, and thus ℓ(B1), ℓ(B2) < ℓ(F ). By Lemma 24, we may
assume that B2 is not exceptional, and thus ℓ(B2) ≥ 10. By the induction
hypothesis, w(G) ≤ w(H1)+w(H2)+4w(5) ≤ w(ℓ(B1)−3)+w(ℓ(B2)−5)+
10w(5). By (8), w(ℓ(B1)−3)+w(ℓ(B2)−5) ≤ w(ℓ(B1)+ ℓ(B2)−13)+w(5),
and thus w(G) ≤ w(ℓ(F ) − 7) + 11w(5) ≤ w(ℓ(F ) − 5) + 5w(5). Therefore,
assume that G does not have the property (d).
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Suppose that G has the property (e). Let Q, H1 and H2 be the subgraphs
of G as in Lemma 25, and let B1 and B2 be the outer faces of H1 and H2,
respectively. By Lemma 25 and symmetry, we assume that H1 6∈ E1∪E2 and
H2 is not exceptional, and thus ℓ(B1) ≥ 9 and ℓ(B2) ≥ 10. Note that ℓ(B1)+
ℓ(B2) = ℓ(F ) + 8, hence ℓ(B1), ℓ(B2) < ℓ(F ). By the induction hypothesis,
w(G) ≤ w(H1) + w(H2) + 4w(5) ≤ w(ℓ(B1) − 4) + w(ℓ(B2) − 5) + 11w(5).
By (8), w(ℓ(B1) − 4) + w(ℓ(B2) − 5) ≤ w(ℓ(B1) + ℓ(B2) − 14) + w(5), and
thus w(G) ≤ w(ℓ(F ) − 6) + 11w(5) ≤ w(ℓ(F ) − 5) + 5w(5). It follows that
we can assume that G does not have the property (e).
Suppose that G has the property (f). Since G does not have the properties

(a-d), there exists a path v0v1 . . . v6 ⊆ F such that u is adjacent to v0, v to
v2, w to v4 and x to v6, and the closed disk bounded by v0v1 . . . v6xwvu
consists of three 5-faces of G. Let G′ = G − {v1, v2, . . . , v5} and let F ′ be
the outer face of G′. Observe that G′ is F ′-critical, ℓ(F ′) = ℓ(F ) − 1 and
w(G) = w(G′) + 3w(5). Since u and x have degree at least three in G, they
have degree at least three in G′. Also, u is not adjacent to x, since the
girth of G is at least 5, thus G′ 6∈ E1 ∪ E2. By the induction hypothesis,
w(G′) ≤ w(ℓ(F ′) − 4) + 2w(5) = w(ℓ(F ) − 5) + 2w(5). We conclude that
w(G) ≤ w(ℓ(F ) − 5) + 5w(5). Therefore, assume that G does not have the
property (f).
Let us now prove the following claim:

Let H be a peeling of G with the outer face B, and ψ a precoloring of B
that does not extend to an L-coloring of H. Let Q = v0v1v2v3v4 be a 4-
chord of B such that a cycle C 6= B in B ∪ Q bounds a face of G. Then,
L(v1) ⊆ L(v2) ∪ {ψ(v0)}.

(9)

Proof. Suppose for a contradiction that there exists a color c ∈ L(v1)\L(v2)∪
{ψ(v0)}. Let d be a new color that does not appear in the lists of any of
the vertices of V (H) \ V (B). Let N1 ⊆ V (H) \ V (B) be the set of vertices
that are adjacent to v1 and N2 ⊆ V (H) \ V (B) be the set of vertices that
are adjacent to v4. Note that N1 and N4 are disjoint, since v1 and v4 do not
have a common neighbor other than v0.
If v0 is adjacent to v4, then let H1 = H − v0v4, otherwise let H1 =

H− (V (C)\V (Q)). Let H2 be the graph obtained from H1 by identifying v1

with v4 to a new vertex v, and let H3 = H2 − vv2. Let B′ be the outer face
of H2. Let L′ be the list assignment obtained from L by replacing the color
c in the lists of vertices of N1 and the color ψ(v4) in the lists of vertices of
N2 by d. Let H ′ be a B′-skeleton of H3 with respect to the list assignment
L′. Note that ℓ(B′) = ℓ(F ) + 5 − ℓ(C) ≤ ℓ(F ) and |E(H ′)| < |E(G)|.
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Suppose that H ′ contains a cycle K ′ of length at most 4. Note that
v ∈ V (K ′) and K ′ corresponds to a path P of length ℓ(K ′) between v1 and
v4 in H such that v1v2 6∈ E(P ). Since the girth of G is at least 5, the shortest
path in between v1 and v2 in H − v1v2 has length at least 4, thus v2 6∈ V (P ).
It follows that P ∪ v1v2v3v4 contains a cycle of length at most 7 containing
the path v1v2v3. By (1), such a cycle bounds a face, implying that v2 has
degree two. This is a contradiction, thus H ′ has girth at least 5.
Let ψ′ be the precoloring of B′ that matches ψ on V (B′)\{v} and ψ′(v) =

d. Suppose that ψ′ extends to an L′-coloring of H ′, and thus also to an L′-
coloring ϕ′ ofH3. By the choice of c, c 6∈ L(v2), and thus d 6∈ L′(v2). It follows
that no vertex of H3 except for v is colored by d. Also, no vertex of N1∪{v0}
is colored by c and no vertex ofN2 is colored by ψ(v4). Therefore, the coloring
ϕ given by ϕ(v1) = c and ϕ(w) = ϕ′(w) for w ∈ V (H) \ (V (B) ∪ {v1} is an
L-coloring of G extending ψ, which is a contradiction. We conclude that ψ′

does not extend to an L′-coloring of H ′, and thus H ′ 6∈ E1. Since G does
not have properties (a) and (b), B′ does not have a chord and no vertex of
H ′ has more than two neighbors in B′, thus H ′ 6∈ E2 ∪ E3, and H ′ is not
exceptional and ℓ(B′) ≥ 10.
AsH ′ has fewer edges thanG, by the induction hypothesis we get w(H ′) ≤

w(ℓ(B′) − 5) + 5w(5). Therefore, every face f ∈ F(H ′) has length at most
ℓ(f) ≤ ℓ(B′) − 5 = ℓ(F ) − ℓ(C) < ℓ(F ).
Consider H ′ as a subgraph of H2. Let f0 be the face of H3 such that the

edge vv2 of H2 is drawn in the open disk bounded by f0, and let K0 be the
cycle in H obtained from f0 by replacing v by the path C − {v2, v3}. For
a cycle K ⊆ H , let H(K) be the subgraph of H drawn in the closed disk
bounded by K. Note that w(H) = w(H(K0)) +

∑

f∈F(H′)\{f0}
w(H(f)). For

each face f ∈ F(H ′) \ {f0}, the induction hypothesis implies w(H(f)) ≤
w(ℓ(f)). As v1v2 ∈ E(H(K0)), we have H(K0) 6∈ E1, thus ℓ(K0) ≥ 8 and
ℓ(f0) = ℓ(K0)− 2 ≥ 6. Since ℓ(K0) = ℓ(f0)+ ℓ(C)− 3 ≤ ℓ(F )− 3 < ℓ(F ), by
the induction hypothesis we have w(H(K0)) ≤ w(ℓ(f0) + ℓ(C)− 6) +w(5) ≤
w(ℓ(f0)) + ℓ(C) − 6 + 2w(5). Therefore,

w(H) = w(H(K0)) +
∑

f∈F(H′)\{f0}

w(H(f))

≤



w(ℓ(f0)) +
∑

f∈F(H′)\{f0}

w(ℓ(f))



 + ℓ(C) − 6 + 2w(5)

= w(H ′) + ℓ(C) − 6 + 2w(5)

≤ w(ℓ(B′) − 5) + ℓ(C) − 6 + 7w(5)

= w(ℓ(F )− ℓ(C)) + ℓ(C) − 6 + 7w(5)
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Figure 6: The configurations in properties (g) and (h).

≤ w(ℓ(F )− 5) + 8w(5) − 1.

It follows that w(G) ≤ w(ℓ(F ) − 5) + 12w(5) − 1 ≤ w(ℓ(F ) − 5) + 5w(5),
which is a contradiction.

Since G does not have properties (a-f), we conclude that G has properties
(g) or (h), i.e., there exists a peeling H of G with the outer face B, and
Q = v0v1v2v3v4 a 4-chord of B such that a cycle C 6= B in B ∪ Q bounds a
face C, and either

• a jump with base w1w2w3w4v0 and body w1x1x2v1v0, or

• two 5-faces w1w2v0v1x1 and w3w4v4v3x2, with w1w2v0, w3w4v4 ⊆ B.

See Figure 6 for an illustration. In the former case, let R = {w2, w3, w4, v0}.
In the latter case, let R = {w2, w4, v0, w4}.
As H 6= B is B-critical, there exists a precoloring ψ of B that does

not extend to an L-coloring of H . Let X1 = L(v1) \ {ψ(v0)} and X3 =
L(v3) \ ψ{v4}. By (9), X1 ∪ X3 ⊆ L(v2), and since |X1|, |X3| ≥ 2 and
|L(v2)| = 3, there exists a color c ∈ X1∩X3. Let H1 = G−(V (C)\V (Q))−R
and let H2 be the graph obtained from H1 by identifying v1 with v3 to a
new vertex v. Let B′ be the outer face of H2. Let H ′ be a B′-skeleton
of H2, with respect to the restriction of L to V (H2) \ V (B′). Note that
ℓ(B′) = ℓ(F ) − ℓ(C) + 4 < ℓ(F ).
Suppose that H ′ contains a cycle K of length at most 4. Then v ∈ V (K)

and H1 contains a path P of length ℓ(K) between v1 and v3. Note that
v2 6∈ V (P ), since the girth of G is at least 5. Therefore, P ∪ v1v2v3 is a cycle
of length at most 6, and by (1), it bounds a face. It follows that v2 has degree
two, which is a contradiction. It follows that H ′ has girth at least 5.
Let ψ′ be the precoloring of B′ that matches ψ on V (F ) ∩ V (B′), with

ψ′(v) = c and the colors of x1 ∈ L(x1) and x2 ∈ L(x2) chosen so that ψ′

is a proper coloring of B′. Suppose that ψ′ extends to an L-coloring of H ′,
and thus also to an L-coloring ϕ′ of H2. Setting ϕ(v1) = ϕ(v3) = c and
ϕ(z) = ϕ′(z) for z ∈ V (H) \ (V (B) ∪ {v1, v3}, we obtain an L-coloring of H
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extending ψ, which is a contradiction. Therefore, ψ′ does not extend to G′,
and G′ 6∈ E1. Furthermore, since G does not have properties (a), (b) and
(d), B′ has no chords and no vertex of H ′ has more than two neighbors in
B′, hence H ′ is not exceptional and ℓ(B′) ≥ 10.
By the induction hypothesis, w(H ′) ≤ w(ℓ(B′) − 5) + 5w(5) = w(ℓ(F ) −

ℓ(C)−1)+5w(5). It follows that each face ofH ′ has length at most ℓ(B′)−5 =
ℓ(F ) − ℓ(C) − 1 < ℓ(F ).
Consider H ′ as the subgraph of H2. If vv2 6∈ E(H ′), then let f0 be the

face of H ′ such that the closed disk bounded by f0 contains the edge vv2.
Let K0 ⊆ H be the cycle obtained from f0 by replacing v by the path C−v2.
Since v1v2, v3v2 ∈ E(H(K0)), it follows that H(K0) 6∈ E0∪E1 and ℓ(K0) ≥ 9.
Also, ℓ(K0) = ℓ(f0) + ℓ(C) − 2 ≤ ℓ(F ) − 3. By the induction hypothesis,
w(H(K0)) ≤ w(ℓ(K0)−4)+2w(5) = w(ℓ(f0)+ℓ(C)−6)+2w(5) ≤ w(ℓ(f0))+
ℓ(C) − 6 + 3w(5). Also, for each f ∈ F(H ′) \ {f0}, w(H(f)) ≤ w(ℓ(f)). If
vv2 ∈ E(H ′), then we let K0 = C and w(H(K0))) = w(C). Note that in
addition to the faces contained in the graphsH(f) for f ∈ F(H ′)\{f0} and in
H(K0), H has two more 5-faces. Since ℓ(C)−6+3w(5) < w(C), we conclude
that w(H) ≤ w(H ′) + w(C) + 2w(5) ≤ w(ℓ(F )− ℓ(C) − 1) + w(C) + 7w(5).
If ℓ(F )−ℓ(C) = 6, then, since ℓ(F ) ≥ 12, we have ℓ(C) ≥ 6 and w(ℓ(F )−

ℓ(C)−1)+w(C) = (ℓ(F )−ℓ(C)−6+w(5))+(ℓ(C)−5) = ℓ(F )−11+w(5) =
w(ℓ(F )−5)+w(5)−1. If ℓ(F )−ℓ(C) > 6, then w(ℓ(F )−ℓ(C)−1)+w(C) ≤
(ℓ(F )− ℓ(C)− 6)) + (ℓ(C)− 5 +w(5)) = w(ℓ(F )− 5) +w(5)− 1. Therefore,
w(H) ≤ w(ℓ(F ) − 5) + 8w(5) − 1 and w(G) ≤ w(ℓ(F ) − 5) + 12w(5) − 1 ≤
w(ℓ(F ) − 5) + 5w(5).

Theorem 18 implies that the number of vertices of a F -critical plane graph
of girth at least 5 is linear in ℓ(F ):

Proof of Theorem 5. If G is exceptional, then |E(G)| ≤ ℓ(F )+3 < 18ℓ(F )−

160, and |V (G)| ≤ ℓ(F )+ 1 < 37ℓ(F )−320
3

, since ℓ(F ) ≥ 10. Therefore, assume
that G is not exceptional.
For each x ≥ 5, we have w(x) ≥ w(5)x/5. By Theorem 18,

2w(5)|E(G)|/5 = w(5)ℓ(F )/5 +
∑

f∈FF (G)

w(5)ℓ(f)/5

≤ w(5)ℓ(F )/5 +
∑

f∈F(G)

w(ℓ(f))

= w(5)ℓ(F )/5 + w(G)

≤ w(5)ℓ(F )/5 + w(ℓ(F ) − 5) + 5w(5)

≤ (1 + w(5)/5)ℓ(F ) − 10 + 6w(5).
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Therefore, |E(G)| ≤ (1 + 5/w(5))ℓ(F )/2− 25/w(5) + 15 = 18ℓ(F ) − 160.
As the minimum degree of G is at least 2 and all vertices except for

those in f have degree at least three, we get 3|V (G)| − ℓ(F ) ≤ 2|E(G)| ≤

36ℓ(F ) − 320, and hence |V (G)| ≤ 37ℓ(F )−320
3

.

5 Concluding remarks

The bound on |V (G)| in Theorem 5 can be improved by ℓ(F )/6 by a slightly
more involved argument, first eliminating ≤ 2-chords and edges joining ver-
tices of degree two. However, the bound seems to be far from the correct one
for large values of ℓ(F ).
As the number of vertices of an F -critical graph is linear in ℓ(F ), the

number of such graphs is at most exponential in ℓ(F ) (Denise et al. [1]). On
the other hand, every tree with k leaves and all internal vertices of degree
three gives rise to an F -critical graph with ℓ(F ) = 3k, thus the number of
F -critical graphs is exponential in ℓ(F ).
The proof of Theorem 18 can be converted to an algorithm to generate

the critical graphs in the straightforward way—each critical graph G contains
a configuration described by Lemma 19, and this configuration can be used
to derive G from smaller critical graphs. This algorithm could be practical
for small values of ℓ(F ), say ℓ(F ) < 20.
A slightly unsatisfactory part of the proof of Theorem 18 concerns dealing

with the cases (g) and (h) of Lemma 19, where the reduced graph H ′ is not a
subgraph of G drawn inside a cycle of G. It would be more appealing to have
a proof that avoids such non-trivial reductions, giving a better understanding
of the structure of the critical graphs, as well as a faster algorithm to generate
them.
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