
Computability of Width of Submodular

Partition Functions

Petr Škoda ∗

Department of Mathematics,

Simon Fraser Universtity,

8888 University Drive, Burnaby, BC, V5A 1S6, Canada.

peskoj@kam.mff.cuni.cz

Abstract

The notion of submodular partition functions generalizes many
of well-known tree decompositions of graphs. For fixed k, there are
polynomial-time algorithms to determine whether a graph has tree-
width, branch-width, etc. at most k. Contrary to these results, we
show that there is no sub-exponential algorithm for determining whether
the width of a given submodular partition function is at most two. On
the other hand, we show that for a subclass of submodular partition
functions, which contains tree-width, there exists a polynomial-time
algorithm that decides whether the width is at most k.

1 Introduction

Graph decompositions and width-parameters play a very important role in
algorithmic graph theory (as well as structural graph theory). The most
well-known and studied notions include the tree-width, branch-width and
clique-width of graphs. The importance of these notions lie in the fact that
many NP-complete problems can be decided for classes of graphs of bounded
tree-/branch-width in polynomial time. A classical result of Courcelle [5]
(also see [2]) asserts that every problem expressible in the monadic second-
order logic can be decided in linear time for the class of graphs with bounded

∗The results presented in this paper are based on the author’s master thesis defended
in Spring 2009 at Charles University in Prague. His work on the thesis was partially
supported by the Czech grant GACR 201/09/0197.
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tree-/branch-width. An analogous result for matroids with bounded branch-
width representable over finite fields have been established by Hliněný [6, 7]
and generalized using a more specialized notion of width to all matroids by
Král’ [10].
Most of the algorithms for classes of graphs of bounded width require a

decomposition of an input graph as part of input. Fortunately, optimal tree-
decompositions of graphs can be computed in linear time [3] if the width is
fixed and there are even simple efficient approximation algorithms [4]. For
branch-width, Oum and Seymour [12] recently established that the branch-
decompositions of a fixed width of graphs and matroids can be computed in
polynomial-time (or decided that they do not exist). Their algorithm actually
deals with a more general notion of connectivity functions which are given
by an oracle. A fixed-parameter algorithm for computing optimal branch-
decompositions for matroids represented over finite fields was designed by
Hliněný and Oum [8].
In this paper, we study submodular partition functions introduced by

Amini et al. [1]. This general notion includes both graph tree-width and
branch-width as special cases. We postpone the formal definition to Section 2.
In their paper, Amini et al. [1] presented a duality theorem that implies the
known duality theorems for graph tree-width and graph/matroid branch-
width of Robertson and Seymour [13].
Since the duality, an essential ingredient for some of the known algo-

rithms for computing decompositions of small width, smoothly translates to
this general setting, it is natural to ask whether decompositions of submodu-
lar partition functions with fixed width can be computed in polynomial-time.
In this paper, we show that such an algorithm cannot be designed in gen-
eral. In particular, we present an argument that every algorithm deciding
whether a partition width of an n-element set is at most two must ask an or-
acle the number of queries exponential in n. On a positive side, we were able
to develop notions of loose tangles and loose tangle kits, a key ingredients
of the algorithm of Oum and Seymour [12], and used them to construct a
polynomial-time algorithm for class of submodular partition functions with
bounded partitions. This class includes tree-width. We hope it will be pos-
sible to show that our results can also be adapted for other graph/matroid
width parameters.

2 Notation

In this section, we introduce the notation and concepts used in this paper.
A function f : 2E → N for a finite set E is said to be submodular if the
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following holds for every pair of subsets X, Y ⊆ E:

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) . (1)

A submodular function f is symmetric if f(X) = f(X), for all subsets
X of E. Finally, a connectivity function is a submodular function that is
symmetric and f(∅) = 0.
For a connectivity function f on a ground set E, a branch-decomposition

of f is a pair (T, σ) where T is a ternary tree and σ is a bijection between the
set of leaves of T and E. Every edge e of T naturally defines a bipartition
(Ae, Ae) of the ground set E, i.e., Ae consists of all elements that corresponds
to leaves of T in one of the two components of T \ e. The order of an edge
e of T is the value f(Ae) and the width of a branch-decomposition (T, σ) is
the maximum order of an edge of T . The branch-width of f is the minimum
width of a branch-decomposition of f . This notion includes the notion of the
usual branch-width of graphs and matroids.
There is a dual object to branch-decompositions called a tangle, intro-

duced by Robertson and Seymour [13]. A set T of subsets of E is called an
f -tangle of order k + 1 if T satisfies the following three axioms:

(1) For all A ⊆ E, if f(A) ≤ k, then either A ∈ T or A ∈ T .

(2) If A,B,C ∈ T , then A ∪B ∪ C 6= E.

(3) For all e ∈ E, we have E \ {e} 6∈ T .

Robertson and Seymour [13] proved the following duality theorem be-
tween branch-decompositions and tangles.

Theorem 1 (Robertson and Seymour [13]). Let f be a connectivity function
on a ground set E. There is no f -tangle of order k + 1 if and only if the
branch-width of f is at most k.

We now introduce the concept of submodular partition functions that
provides a unified view on branch-decompositions of connectivity functions
and tree-decompositions of graphs. Throughout the paper, Greek letters will
be used for collections of subsets, i.e., α can stand for a collection A1, . . . , Ak
of subsets of a set E. Note, that the sets in a collection are not ordered in
any way and a set can occur more than once in a collection. The collection α
is a partition if the sets Ai are mutually disjoint and their union is the whole
set E.
There are shorthands for operations with collections of subsets we want

to use: if α is such a collection A1, . . . , Ak and A is another subset, then α∩A
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stands for the collection A1 ∩A, . . . , Ak ∩A. We use α \ A in a similar way.
Finally, [B1, . . . , Bp, α] stands for the collection obtained from α by inserting
sets B1, . . . , Bp to the collection. If α is the empty collection, we omit it from
the notation. Note that empty sets are allowed in the collections.
A partition function is a function from the set of all partitions to non-

negative integers that satisfies ψ([∅, α]) = ψ(α) for every partition α, i.e.,
inserting an empty set to a collection does not change the value of the par-
tition function. A partition function ψ is submodular if the following holds
for every two partitions [A, α] and [B, β]:

ψ([A, α]) + ψ([B, β]) ≥ ψ([A ∪ B, α ∩B]) + ψ([B ∪A, β ∩A]) (2)

We will further assume that ψ([E]) = 0 since shifting all values of a submod-
ular partition function by a constant does not break the property.
Similarly to branch-decompositions, Amini et al. [1] defined a decomposi-

tion tree of a partition function ψ. A decomposition tree on a finite set E is a
tree T with a bijection σ between its leaves and E. Every internal node v of
T corresponds to the partition of E whose parts are the leaves contained in
subtrees of T \ v. A decomposition tree is compatible with a set of partitions
P of E if all partitions corresponding to the internal nodes of T belong to P.
Let Pk[ψ] denote the set of partitions α of E such that ψ(α) ≤ k. The

width of a submodular partition function ψ is the smallest integer k such that
there exists a decomposition tree compatible with Pk[ψ]. The concepts of
submodular partition functions and decomposition trees include graph tree-
width as a special case. Amini et al. [1] generalized submodular partition
functions to include branch-width, path-width and other parameters.
There is a dual object to the decomposition tree called a bramble intro-

duced by Amini et al. [1]. A P-bramble B on E is a set of pairwise intersecting
subsets of E which contains a part of every partition of P. A P-bramble is
called non-principal if it contains no singleton. The duality theorem for
submodular partition functions asserts the following.

Theorem 2 (Amini et al. [1]). Let ψ be a submodular partition function
and k a non-negative integer. There is no decomposition tree compatible
with Pk[ψ] if and only if there is a non-principal Pk[ψ]-bramble.

Note that Theorem 2 is proven in [1] for a larger class of weakly submodular
partition functions. In this paper, we restrict our attention only to the class
of submodular partition functions. In particular, the loose tangles defined in
the next section are studied only for submodular partition functions.
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3 Loose Tangles

A key ingredient of the algorithm of Oum and Seymour [12] for deciding
whether a connectivity function has branch-width at most k (k is fixed) is
the notion of a loose tangle which we now recall. For a connectivity function
f on a ground set E, a loose f -tangle of order k + 1 is a set T of subsets of
E satisfying the following three axioms:

(L1) ∅ ∈ T and {e} ∈ T for every e ∈ E such that f({e}) ≤ k.

(L2) If A,B ∈ T , C ⊆ A ∪B, and f(C) ≤ k, then C ∈ T .

(L3) E 6∈ T .

The following theorem by Oum and Seymour [12] states that the loose
f -tangles are also dual objects to branch-decompositions of connectivity func-
tions.

Theorem 3 (Oum and Seymour [12]). Let f be a connectivity function on
a ground set E. Then, no loose f -tangle of order k + 1 exists if and only if
the branch-width of f is at most k.

Using loose tangles Oum and Seymour [12] managed to construct an
algorithm for deciding whether the branch-width of a connectivity function
is at most k for a fixed k in polynomial time when f is given by an oracle.
Similarly to the loose tangles of Oum and Seymour we introduce loose

tangles for submodular partition functions. A loose P-tangle is a set T of
subsets of E closed under taking subsets satisfying the following three axioms.

(P1) ∅ ∈ T , {e} ∈ T , for all e ∈ E such that the partition [{e}, {e}] belongs
to P.

(P2) If A1, A2, . . . , Ap ∈ T , Ci ⊆ Ai, for i = 1, . . . , p, [C1, . . . , Cp,∪
p
i=1Ci] ∈

P, then ∪pi=1Ci ∈ T .

(P3) E 6∈ T .

To prove the main theorem of this section, we need a lemma.

Lemma 4. Let ψ be a submodular partition function on E and [A, α] a
partition. Then ψ([A, α]) ≥ ψ([A,A]).

Proof. By submodularity of ψ,

ψ([A, α]) + ψ([∅, E]) ≥ ψ([A ∪E, α ∩ ∅]) + ψ([∅ ∪ A,E ∩A])

= ψ([E, ∅]) + ψ([A,A]).

The result follows.
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In the following theorem, we show that for classes of partitions of bounded
width, the loose tangle is a dual object to the decomposition tree.

Theorem 5. Let ψ be a submodular partition function. There is no decom-
position tree compatible with Pk[ψ] if and only if there is a loose Pk[ψ]-tangle.

Proof. Suppose there is a decomposition tree (T, σ) compatible with Pk[ψ]
and a loose Pk[ψ]-tangle T . We will show that T violates (P3). Choose an
arbitrary leaf x of T as a root. Every internal node v of T corresponds to a
partition αv. Let Cv be a union of all parts of αv except the one containing
x. Define Cv of a leaf v as the singleton σ(v). We will show by backward
induction on the distance from x that for every node v of T , the set Cv
belongs to T .
Since T is a decomposition tree of E compatible with Pk[ψ], there is a

partition [{e}, αe] in Pk[ψ], for each e ∈ E. By Lemma 4, ψ([{e}, {e}]) ≤
ψ([{e}, αe]). Hence, [{e}, {e}] belongs to Pk[ψ] and {e} is in T by (P1). For
an inner node v, all his children u1, . . . , up are farther from x than v and
therefore all Cui

are in T . By (P2), since [Cu1
, . . . , Cup

,∪Cui
] belongs to

Pk[ψ], Cv ≡ ∪Cui
∈ T . Finally, let v be the only child of x. Since Cv ∈ T

and {σ(x)} ∈ T , by (P2) and Lemma 4, Cv ∪ {σ(x)} = E also belongs to T .
(P3) is now violated.
We now prove the opposite implication. A partial decomposition tree for

A ⊆ E is a decomposition tree for a partition function ψ′ on A∪{a} defined
as ψ′([B, β]) = ψ(((B \ {a}) ∪A, β)) for a partition [B, β] where B contains
a. We say that a set A ⊆ E is k-branched if there is a partial decomposition
tree for A compatible with Pk[ψ].
Define T to be a subset of 2E closed under taking subsets, containing all

singletons and all k-branched sets. We will show that T is a loose tangle. (P1)
trivially holds since all k-branched singletons are in T . Let A1, . . . , Ap ∈ T
and Ci ⊆ Ai, i = 1, . . . , p, such that [C1, . . . , Cp,∪Ci] ∈ Pk[ψ]. We can
assume that Ai are k-branched (otherwise take such a superset of it instead).
Let Y1, . . . , Yp, Yi ⊆ Ai, be such sets that ∪Ci ⊆ ∪Yi and ψ([Y1, . . . , Yp,∪Yi])
is minimum. We will show that the set ∪Yi is k-branched.
To this end, we modify the partial decomposition tree Ti for Ai to be

a partial decomposition tree for Yi. At first, we delete from Ti all leaves
corresponding to elements not in Yi. We then repeatedly contract all nodes
of degree two or less until we get a ternary tree T ′

i . We claim T ′
i is compatible

with Pk[ψ]. Suppose for a contradiction that there is an internal node v′ of
T ′
i corresponding to an internal node v of Ti such that αv′ 6∈ Pk[ψ]. Assume
i = 1 since we can relabel the parts so. Let [A, α] = αv such that A is the
part of αv that contains A1. We infer from the submodularity of the function
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ψ that

ψ([A, α]) + ψ([Y1, Y2, . . . , Yp,∪Yi]) ≥ ψ([A ∪ Y 1, α ∩ Y1])

+ ψ([Y1 ∪A, Y2 ∩ A, . . . Yp ∩ A,∪Yi ∩A])

The choice of Y1, . . . , Yp yields that

ψ([Y1 ∪ A, Y2 ∩A, . . . , Yp ∩ A,∪Yi ∩ A]) ≥ ψ([Y1, . . . , Yp,∪Yi]).

Hence, ψ([A∪ Y 1, α∩ Y1]) ≤ ψ([A, α]) ≤ k and T ′
1 is compatible with Pk[ψ].

Now, construct a partial decomposition tree T by connecting T ′
i to a single

node corresponding to a partition [Y1, . . . , Yp,∪Yi]. This partition belongs to
Pk[ψ] since ψ([Y1, . . . , Yp,∪Yi]) ≤ ψ([C1, . . . , Cp,∪Ci]) ≤ k by the minimality
of ψ([Y1, . . . , Yp,∪Yi]). Therefore T is a partial decomposition tree for ∪Yi
compatible with Pk[ψ] and thus ∪Yi ∈ T . Since ∪Ci ⊆ ∪Yi, also ∪Ci ∈ T as
required.
If E ∈ T , then E is k-branched and the partial decomposition tree for E

is actually a decomposition tree for ψ— remove the leaf corresponding to the
empty set and suppress the resulting vertex of degree two. This contradicts
the fact that ψ does not have a decomposition tree compatible with Pk[ψ].
Therefore, E 6∈ T and (P3) holds. We conclude that T is a loose Pk[ψ]-
tangle.

4 Minimization of submodular functions

Let f be a connectivity function on E. We define a function fmin on pairs of
disjoint subsets of E as follows.

fmin(A,B) = min
A⊆Z⊆B

f(Z)

There can be more sets attaining the minimum. Let Mf(A,B) be the col-
lection of such sets, i.e.,

Mf(A,B) = {f(Z) = fmin(A,B) | AßZßB}.

The structure ofMf(A,B) is quite simple as shown in the following lemma.
We include a short proof for completeness.

Lemma 6. Let f be a connectivity function on E, A,BßE disjoint, and let
X, Y ∈ Mf(A,B). Then X ∪ Y ∈ Mf(A,B) and X ∩ Y ∈ Mf(A,B).
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Proof. Compute

2fmin(A,B) = f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y )

and note that both f(X ∩ Y ) ≥ fmin(A,B), f(X ∪ Y ) ≥ fmin(A,B). Hence
both inequalities have to hold with equality and X ∩ Y ∈ Mf(A,B) and
X ∪ Y ∈ Mf(A,B).

It follows from Lemma 6 that there is precisely one set containing all
other sets inMf (A,B). Define Mf (A,B) = Z such that Z is maximal with
respect to f(Z) = fmin(A,B), AßZßB.
Important and very non-trivial results of Iwata [9] and Schrijver [14] state

that submodular functions can be minimized in strongly polynomial time.
We use an improved result of Orlin [11] saying that a submodular function
on set E, |E| = n, can be minimized in time Ø(n5γ + n6) where γ is the
time complexity of an oracle query. Orlin’s result can be used to compute
fmin(A,B) andMf(A,B) in polynomial time.

Lemma 7. Let f be a connectivity function on E, A,BßE disjoint, |E| = n.
Then fmin(A,B) can be determined in time Ø(n5γ + n6) where γ is the time
complexity of an oracle query. Moreover, in total time Ø(n6γ + n7), the
maximal and the minimal set fromMf(A,B) can be constructed.

Proof. First note, that a function gA,B : 2A∪B → N defined as gA,B(X) =
f(X ∪ A) is a submodular function since

gA,B(X) + gA,B(Y ) = f(X ∪ A) + f(Y ∪A)

≥ f(X ∪ Y ∪A) + f((X ∪A) ∩ (Y ∪A))

= gA,B(X ∪ Y ) + gA,B(X ∩ Y ).

Second, if ZßA ∪ B is such that gA,B(Z) is the minimum of gA,B then f(Z ∪
A) = fmin(A,B). Now, we can use result of Orlin [11] that a submodular
function f can be minimized in time Ø(n5γ+n6) and a set Z such that f(Z)
is minimum is provided. Note that Z does not have to be maximal with
respect to that. Denote Z∅ the set for gA,B.
To get the maximal set Zm for gA,B, obtain Ze as sets for submodular

functions gA∪{e},B, e ∈ A ∪B. If gA∪{e},B(Ze) > gA,B(Z∅), then there is no
set Z, such that A∪ {e}ßZßB and f(Z)A∪{e},B(Z) = gA,B(Z∅) = fmin(A,B).
Hence e 6∈ Zm. Let M = {Z | gA∪{e},B(Z) = fmin(A,B)}. By Lemma 6,
⋃

Z∈M Z ∈ M. We conclude that Zm =
⋃

Ze∈M
Ze. There are at most n sets

Ze so we needed Ø(n) submodular function minimizations giving the claimed
time complexity.
The minimal set Z is obtained as the complement of maximal setMf(B,A),

Z = Mf(B,A), by symmetry of f .
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The following lemma of Oum and Seymour [12] is critical for our con-
struction of a polynomial-time algorithm for submodular partition functions.

Lemma 8 (Oum and Seymour [12]). For a connectivity function f on E
and a subset Z of E, there exist a subset A of Z and a subset B of Z such
that

max{|A|, |B|} ≤ fmin(A,B) = f(Z).

Note that a submodular partition function is a connectivity function when
restricted to partitions of size two. We will use ψ(A) as a shorthand for
ψ([A,A]).

ψ(A) + ψ(B) = ψ([A,A]) + ψ([B,B]) = ψ([A,A]) + ψ([B,B])

≥ ψ([A ∪ B,A ∩B]) + ψ([B ∪A,B ∩A])

= ψ([A ∪ B,A ∪ B]) + ψ([A ∩ B,A ∩ B])

= ψ(A ∪ B) + ψ(A ∩ B)

We can minimalize ψ as a connectivity function and define

ψmin(A,B) = min
AßXßB

ψ(X)

We say (A1, . . . , Ap|B1, . . . , Bp) is a prepartition of E if sets Ai and Bi

are disjoint for all i = 1, . . . , p, A1, . . . , Ap are pairwise disjoint, AjßBi for all
j 6= i and ∩pi=1Bi = ∅. We write (Ai, Bi, p) as a shorthand for a preparti-
tion (A1, . . . , Ap|B1, . . . , Bp). The prepartitions can be understood as restric-
tions for partitions: For every prepartition (Ai, Bi, p), there exists a partition
[C1, . . . , Cp] satisfying AißCißBi, i = 1, . . . , p.
For a submodular partition function ψ and a prepartition (Ai, Bi, p) of E

define
ψmin(Ai, Bi, p) = min{ψ([C1, . . . , Cp]) | AißCißBi}.

Similarly as for connectivity functions, we also define a collectionMψ(Ai, Bi, p)
of minimal partitions,

Mψ(Ai, Bi, p) = {[C1, . . . , Cp] | AißCißBi, ψ([C1, . . . , Cp]) = ψmin(Ai, Bi, p)}.

Note that for two disjoint sets A and B,Mψ(A,B|B,A) extends the defini-
tion ofMf(A,B) for a connectivity function f .
The structure of setsMψ(Ai, Bi, p) is richer than that of setsMf(A,B).

Let f be a connectivity function, A,B disjoint subsets of E and r an integer
parameter satisfying fmin(A,B) ≤ r. In order to describe the structure of
Mψ(Ai, Bi, p), we consider all maximal sets Z such that AßZßB and f(Z) =
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r. Note that Lemma 6 implies that there is only one such a Z for r =
fmin(A,B). However, for r > fmin(A,B) there can be more of them. Define
an r-corolla F f

r (A,B) of f as a set

F f
r (A,B) =

r
⋃

t=0

{Z | AßZßB,Z inclusion-wise maximal with f(Z) = t}.

We call sets in F f
r (A,B) petals.

For a partition submodular function ψ, we show that it is enough for
minimization to consider partitions created by k-corollas for ψ (viewed as a
connectivity function).

Lemma 9. Let ψ be a submodular partition function on E, (Ai, Bi, p) a
prepartition of E such that ψmin(Ai, Bi, p) ≤ k, [C1, . . . , Cp] ∈ Mψ(Ai, Bi, p)
a minimal partition, AißCißBi, i = 1, . . . , p, and j ∈ {1, . . . , p} fixed. Then
there is a petal Dj ∈ F

ψ
k (Aj, Bj) such that CjßDj and

[C1 \Dj , . . . , Cj−1 \Dj, Dj, Cj+1 \Dj, . . . , Cp \Dj ] ∈ Mψ(Ai, Bi, p).

Proof. By symmetry, we can assume that j = 1. Let [C1, C2, . . . , Cp] ∈
Mψ(Ai, Bi, p) be a minimal partition, AißCißBi, i = 1, . . . , p. By Lemma 4,
ψ(C1) ≤ ψ([C1, C2, . . . , Cp]) ≤ k. Let r = ψ(C1). By definition, there is
Z ∈ F

ψ
k (A1, B1) such that C1ßZ, ψ(Z) = ψ(C1) = r. By submodularity of

ψ,

ψ([C1, C2 . . . , Cp]) + ψ([Z,Z]) ≥ ψ([C1 ∪ Z,C2 \ Z, . . . , Cp \ Z])

+ ψ([Z ∪ C1, Z \ C1])

= ψ([Z,C2 \ Z, . . . , Cp \ Z]) + ψ([C1, C1]).

Since ψ(C1) = ψ(Z) and [C1, . . . , Cp] is minimal, we conclude that

ψ([C1, C2, . . . , Cp]) = ψ([Z,C2 \ Z, . . . , Cp \ Z]).

Hence, [Z,C2 \ Z, . . . , Cp \ Z] is the sought partition.

Lemma 10. Let ψ be a submodular partition function on E, (Ai, Bi, p) a
prepartition of E. If ψmin(Ai, Bi, p) ≤ k, then there is a minimal partition
α ∈ Mψ(Ai, Bi, p) of the form

α = [Zp, Zp−1 \ Zp, Zp−2 \ (Zp−1 ∪ Zp), . . . , Z1 \ {∪
p
i=2Zp}],

where Zi ∈ F
ψ
k (Ai, Bi).
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Proof. Let β ∈ Mψ(Ai, Bi, p) be a minimal partition. Using Lemma 9, we
will construct a sequence β0, β1, . . . , βp of minimal partitions inMψ(Ai, Bi, p)
where βi is created from βi−1 by “exchanging” i-th part of the partition βi−1

for a petal. We write βi = [Ci
1, . . . , C

i
p] where AjßC

i
jßBj , j = 1, . . . , p.

Let β0 = β. Define βi as the minimal partition obtained from Lemma 9
applied on i-th part of βi−1, i.e.,

βi = [Ci−1
1 \ Zi, . . . , C

i−1
i−1 \ Zi, Zi, C

i−1
i+1 \ Zi, . . . , C

i−1
p \ Zi],

where Ci−1
i ßZi ∈ F

ψ
k (Ai, Bi).

Note that βi ∈ Mψ(Ai, Bi, p), i = 1, . . . , p, by Lemma 9. The final
partition α = βp have form

α = [Zp, Zp−1 \ Zp, Zp−2 \ (Zp−1 ∪ Zp), . . . , Z1 \ {∪
p
i=2Zp}],

where Zi ∈ F
ψ
k (Ai, Bi).

The following bound on number of disjoint subsets of E will be used in
our subsequent proofs. We leave a straightforward proof to the reader.

Lemma 11. The number of subsets of size at most k of an n-element set is
at most 1 + nk. The number of disjoint pairs of subsets of size at most k of
an n-element set is at most 1 + n2k.

We will see that k-corollas will play important role in devising the mini-
mization algorithm for submodular partition functions. The following lemma
shows that k-corollas has always a polynomial size.

Lemma 12. Let f be a connectivity function on E, A and B disjoint subsets
of E. Then

∣

∣

∣
F
f
k (A,B)

∣

∣

∣
≤ 1 + nk,

Moreover, F f
k (A,B) can be constructed in time Ø(nk+6γ + nk+7) where γ is

the time complexity of an oracle query.

Proof. Let A and B be fixed disjoint subsets of E. Define ZX = Mf (A∪X,B)
for XßB. Observe that f(ZX∪{e}) ≥ f(ZX) + 1 for all e ∈ ZX ∪ B. Let
S0 = {Z∅}. Define Si = {ZX∪{e} | ZX ∈ Si−1, e ∈ ZX ∪B}, for i ≥ 1, and
S = ∪ki=0Si.
Observe that f(R) ≥ i for every R ∈ Si.
We claim that all petals P ∈ F

f
k (A,B) are contained in S. Let XßP

be a maximal subset such that ZX ∈ S. If ZX = P , then we are done.

11



Otherwise, let e ∈ P \ZX . The maximality of ZX with ZX = Mf (A∪X,B)
and A∪X ⊆ P ⊆ B implies that f(P ) > f(ZX). Consequently, ZX ∈ Si for
some i < k. Hence, the set ZX∪{e} is included in the set S which contradicts
our choice of X.
We have shown that F f

k (A,B) is contained in the set S. Observe that
every set in S can be constructed as ZX for some X of size at most k. Since
the number of choices of X is at most 1 + nk by Lemma 11, we conclude
that |F f

k (A,B)| ≤ 1 + nk. The algorithm is now easy to design: for all (at
most 1 + nk) choices of X, compute Mf (A ∪ X,B). Lemma 7 implies that
the running time of the algorithm can be bounded by Ø(nk+6γ + nk+7).

Now, we will use Lemma 10 and 12 to show that it is possible to minimize
a partition function in polynomial time if the number of parts p and the width
k of the assumed partitions are fixed integers.

Lemma 13. Let ψ be a submodular partition function on E, (Ai, Bi, p) a
prepartition of E. There is an algorithm running in time Ø(npkγ+pnk+6γ+
pnk+7), where γ is the time complexity of an oracle query, that determines
whether there exists a partition β ∈ Mψ(Ai, Bi, p) with ψ(β) ≤ k and if so
it constructs such a partition with minimal ψ(β).

Proof. By Lemma 10, if there exists a minimal partition β ∈ Mψ(Ai, Bi, p)
of width at most k, then there exists also one of the form

β = [Zp, Zp−1 \ Zp, Zp−2 \ (Zp−1 ∪ Zp), . . . , Z1 \ {∪
p
i=2Zp}].

Observe that β is constructed only from petals. Hence if we try all possible
p-tuples (Z1, . . . , Zp) where Zi ∈ Fk(Ai, Bi), then we will find β.
By Lemma 12, there are at most Ø(nk) sets in a k-corolla. There are at

most Ø(npk) such p-tuples and for each of them we have to call the function
oracle. Hence we need time Ø(npkγ). We also have to construct the k-
corollas. By Lemma 12, Fk(Ai, Bi) can be constructed in time Ø(nk+6γ +
nk+7). Thus we can construct all of them in time Ø(pnk+6γ + pnk+7).

5 Loose Tangle Kits

A loose tangle is a collection of sets that contain (usually) exponentially
many sets making it difficult to work with in a polynomial-time algorithm.
Hence Oum and Seymour [12] introduced a more compact structure, loose
tangle kits. A pair (P, µ) is called a loose f -tangle kit of order k + 1 if

P = {(A,B) | A,B ⊆ E,A ∩B = ∅,max{|A|, |B|} ≤ fmin(A,B) ≤ k}

12



and µ : P → 2E is a function satisfying the following three axioms.

(K1) For every e ∈ E, f({e}) ≤ k, there exists (A,B) ∈ P such that A ⊆
{e} ⊆ B, f({e}) = fmin(A,B), and e ∈ µ(A,B).

(K2) If (A,B), (C,D), (F,G) ∈ P , F ⊆ X ⊆ (µ(A,B) ∪ µ(C,D)) \ G, and
f(X) = fmin(F,G), then X ⊆ µ(F,G).

(K3) µ(∅, ∅) 6= E.

The notion of loose tangle kits is a notion dual to branch-decompositions
as stated in the next theorem.

Theorem 14 (Oum and Seymour [12]). Let f be a connectivity function on
E. Then, a loose f -tangle of order k+1 exists if and only if a loose f -tangle
kit of order k + 1 exists.

We define a similar structure for submodular partition functions which
we also call loose tangle kits. A pair (K,µ) is a loose ψ-tangle kit of order
k + 1 if

K = {(A,B) | A,B ⊆ E,A ∩B = ∅,max{|A|, |B|} ≤ ψmin(A,B) ≤ k}

and µ : K → 2E is a function satisfying the following three axioms.

(T1) For every e ∈ E, ψ({e}) ≤ k, there exists (A,B) ∈ K such that
A ⊆ {e} ⊆ B, ψ({e}) = ψmin(A,B), and e ∈ µ(A,B).

(T2) If (A1, B1), . . . , (Ap, Bp), (A,B) ∈ K, C = ∪pi=1Ci such that Cißµ(Ai, Bi),
i = 1, . . . , p, AßCßB, ψ([C1, . . . , Cp, C]) ≤ k and ψ(C) = ψmin(A,B),
then Cßµ(A,B).

(T3) µ(∅, ∅) 6= E.

The following theorem shows that loose tangle kits, similarly to loose
tangles, are also dual objects to decomposition trees of submodular partition
functions.

Theorem 15. Let ψ be a submodular partition function on E. Then, a loose
Pk[ψ]-tangle of order k + 1 exists if and only if a loose ψ-tangle kit of order
k + 1 exists.

13



Proof. Suppose that T is a loose Pk[ψ]-tangle of order k + 1. We construct
a loose ψ-tangle kit of order k + 1 as follows. Let

K = {(A,B) | A,B ⊆ E,A ∩ B = ∅,max{|A|, |B|} ≤ ψmin(A,B) ≤ k}.

For each (A,B) ∈ K, let

TA,B = {X | A ⊆ X ⊆ B,ψmin(A,B) = ψ(X), and X ∈ T },

µ(A,B) =
⋃

X∈TA,B

X.

If TA,B = ∅, then µ(A,B) = ∅.
We will show that µ(A,B) ∈ T for every (A,B) ∈ K. If TA,B is empty

then µ(A,B) = ∅ ∈ T . Let X, Y ∈ TA,B. By Lemma 6, we have ψ(X ∪Y ) =
ψmin(A,B) ≤ k. By (P2), X∪Y ∈ T . Hence X∪Y ∈ TA,B and since µ(A,B)
is a union of sets in TA,B, µ(A,B) ∈ TA,BßT .
Let e ∈ E such that ψ({e}) ≤ k. By Lemma 8, there exists A and B such

that Aß{e}ßB, max{|A|, |B|} ≤ ψ({e}) = ψmin(A,B). By (P1), {e} ∈ T .
Hence {e} ∈ TA,B and e ∈ µ(A,B) as required in property (T1).
Let (A1, B1), . . . , (Ap, Bp), (A,B) ∈ K, C = ∪pi=1Ci such that Cißµ(Ai, Bi),

i = 1, . . . , p, AßCßB, ψ([C1, . . . , Cp, C]) ≤ k and ψ(C) = ψmin(A,B). As we
have shown that all µ(Ai, Bi) ∈ T , using (P2), we get that C ∈ T . Since
ψ(C) = ψmin(A,B) and (A,B) ∈ K, by construction of the loose tangle kit,
Cßµ(A,B). So (T2) holds.
Since E 6∈ T by (P3) and µ(∅, ∅) 6= E, we conclude (K,µ) is a loose

ψ-tangle kit of order k + 1.
Conversely, suppose that (K,µ) is a loose ψ-tangle kit of order k+1. We

define

T = {X | there exists (A,B) ∈ K such that A ⊆ X ⊆ B,

ψmin(A,B) = f(X), and X ⊆ µ(A,B)}.

We claim that T is a loose Pk[ψ]-tangle of order k + 1.
If ψ(e) ≤ k then by (T1) there exists (A,B) ∈ K such that e ∈ µ(A,B)

and ψmin(A,B) = ψ({e}). So {e} ∈ T , ensuring property (P1).
To show (L2), suppose that A1, . . . , Ap ∈ T , C = ∪pi=1Ci, such that

CißAi, i = 1, . . . , p, and ψ([C1, . . . , Cp, C]) ≤ k. By construction of T , there
are (Ui, Vi) ∈ K such that Aißµ(Ui, Vi), i = 1, . . . , p. By Lemma 8, there exist
U and V such that UßCßV , max{|U |, |V |} ≤ ψ(C) = ψmin(U, V ). Using (T2)
for (U1, V1), . . . , (Up, Vp), (U, V ) and C, we get that Cßµ(U, V ). Hence C ∈ T
by construction of T .
Since E 6= µ(∅, ∅), by definition of T , E 6∈ T as required by (T3). We

have shown that T is a loose Pk[ψ]-tangle of order k + 1.
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6 Polynomial-time Algorithm for Submodu-

lar Partition Functions with Bounded Par-

titions

The number of parts play an important role when minimizing submodular
partition functions. We say that a class C of submodular partition functions
on E has k-bounded partitions if there exists b(k) such that for every ψ ∈ C
and every partition α with more than b(k) non-empty parts, ψ(α) > k.

Theorem 16. Let C be a class of submodular partition functions on E,
|E| = n, with k-bounded partitions. When ψ ∈ C is given by an oracle, we
can determine in time Ø(n3bk+2k+2γ + bn2bk+3k+8γ + bn2bk+2k+9), where γ is
the time complexity of an oracle query, whether the width of ψ is at most k.

As in [12], we design an algorithm that either constructs a loose tangle
kit of order k + 1 or shows that no loose tangle kit of order k + 1 exists.

Algorithm 17. Decide whether the width of a submodular partition function
ψ ∈ C is at most k, where C is a class with k-bounded partitions.

(A1) Construct K = {(A,B) | max{|A|, |B|} ≤ ψmin(A,B) ≤ k}.

(A2) Set µ(∅, ∅) = {e ∈ E | ψ(e) = 0}.

(A3) For each e ∈ E such that 0 < ψ(e) ≤ k and all sets B such that
|B| ≤ ψmin({e}, B) = ψ(e), set µ({e}, B) = {e}.

(A4) Test whether (T3) holds. If not, then output that there is no loose
ψ-tangle kit of order k + 1 and stop.

(A5) Test whether (T2) holds for all (A1, B1), . . . , (Ab−1, Bb−1), (A,B) ∈ K.
If not, then we have C = ∪Ci such that AßCßB, Cißµ(Ai, Bi), i =
1, . . . , b−1, ψ([C1, . . . , Cb−1, C]) ≤ k, C = ψmin(A,B) and C 6 ßµ(A,B).
Add C to µ(A,B) thus increasing µ(A,B) by at least one and go back
to (A4).

(A6) (K,µ) is a loose ψ-tangle kit of order k + 1. Stop.

We begin the proof of Theorem 16 by proving the time complexity of
Algorithm 17.

Lemma 18. Algorithm 17 can be implemented to run in time Ø(n3bk+2k+2γ+
bn2bk+3k+8γ + bn2bk+3k+9) where γ is the time complexity of an oracle query.
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Proof. The set K is implemented as a list of valid pairs. With each pair
(A,B) ∈ K we associate µ(A,B) as an incidence vector.
We will count the time the algorithm spends in each step. By Lemma 11,

there are at most Ø(n2k) pairs of disjoint subsets with at most k elements.
For each of them we have to determine the minimum separation.By Lemma 7,
needs time Ø(n2k+5γ + n2k+6) for step (A1).
The step (A2) consists of testing all elements which can be done Ø(nγ).

The step (A3) can be implemented by testing all possible sets B, |B| ≤ k, in
time Ø(nkγ).
In (A4), testing (T3) requires time Ø(n).
Most of the time, the algorithm requires for step (A5). For the algorithm

consider all b-tuples of pairs from K, (A1, B1), . . . , (Ab−1, Bb−1), (A,B), AßU
where U = ∪b−1

i=1µ(Ai, Bi) \ B we compute minimal Ze ∈ M(A ∪ {e}, U) for
every e ∈ U \ µ(A,B). This can be done in Ø(n6γ + n7) time by Lemma 7.
The correctness of testing (A5) is shown in the proof of Theorem 16.
If ψ(Ze) = ψmin(A,B), then try to find a minimal partition [P1, . . . , Pb]

such that Ze form one part and other parts are subsets of sets µ(Ai, Bi).
That can be done applying Lemma 13 to the prepartition (Ci, Di, b) where
Cb = Ze, Db = Ze, Ci = ∅, Di = µ(Ai, Bi) ∪ Ze for every i = 1, . . . , b − 1.
Note that necessarily A ∪ {e}ßZe = Pb.
If ψ([P1, . . . , Pb]) ≤ k then all conditions of (T2) are satisfied so we set

µ(A,B) to µ(A,B) ∪ Ze. The existence of a partition [P1, . . . , Pb] can be
determined in Ø(nbkγ + bnk+6γ + bnk+7) by Lemma 13. So step (A5) takes
Ø(n3bk+1γ + bn2bk+k+7γ + bn2bk+k+8).
We will show that the algorithm will require time at most Ø(n3bk+2k+2γ+

bn2bk+3k+8γ + bn2bk+3k+9) for (A5) in total. Since e ∈ Ze, we have increased
µ(A,B) by at least one. There are Ø(n2k) pairs in K and for each of them
µ can increase at most n times. Hence we can get to step (A5) at most
Ø(n2k+1) times. The claim follows.
This finishes the proof.

Lemma 19. Let (K,µ) be a loose ψ-tangle kit of order k + 1. Let e ∈ E

such that 0 < ψ({e}) ≤ k. For all ({e}, B) ∈ K, if ψmin({e}, B) = ψ(e),
then e ∈ µ({e}, B).

Proof. By (T1), there exists (A,D) ∈ K such that Aß{e}ßD, ψmin(A,D) =
ψ({e}) and e ∈ µ(A,D). Let ({e}, B) ∈ K be a pair such that ψmin({e}, B) =
ψ({e}). Using (T2) for pairs (A,D), ({e}, B) and set C = {e}, we get
e ∈ µ({e}, B) since ψ(C,C) = ψ({e}) ≤ k.

Of Theorem 16. Lemma 18 asserts that Algorithm 17 runs in timeØ(n3bk+2k+2γ+
bn2bk+3k+8γ + bn2bk+3k+9). Hence, it is sufficient to prove that the algorithm
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is correct, i.e., it constructs a loose ψ-tangle kit of order k + 1 if it exists or
shows that none exists.
Suppose there exists a loose ψ-tangle kit (K,µ′). Let µi be the value of µ

at the i-th iteration at the beginning of step (A4). We claim µi(A,B)ßµ′(A,B)
for all (A,B) ∈ K and every i.
First, we check that (T1) holds for (K,µi). If ψ({e}) = 0 then e ∈

µ(∅, ∅). If 0 < ψ({e}) ≤ k, then, by Lemma 8, there is Aß{e}ßB such
that max{|A|, |B|} ≤ ψmin(A,B) = ψ({e}). Since ψ(∅) = 0, we know that
A = {e}. In step (A3), we have tested all possible sets B. So (T1) holds and,
since the sets in µ never get smaller, (T1) holds through whole algorithm.
When i = 1, by Lemma 19, if e ∈ µ1(e, B) then e ∈ µ′(e, B). Then the

value of µ changes in step (A5). Let (A1, B1), . . . , (Ab−1, Bb−1), (A,B) ∈
K be the pairs for which [P1, . . . , Pb] is the corresponding partition ob-
tained in step (A5). By assumption we know that ψ([P1, . . . , Pp]) ≤ k,
Pißµ(Ai, Bi)ßµ

′(A,B), ∪b−1
i=1Pi = Z such thatAßZßB and ψ(Z) = ψmin(A,B).

By (T2), it follows that Zßµ′(A,B). So we conclude that µi+1(A,B)ßµ′(A,B).
Suppose the algorithm failed at step (A4). Then E = µ(∅, ∅)ßµ′(∅, ∅)ßE.

Hence no loose ψ-tangle kit (K,µ′) of order k + 1 exists and so ψ has width
at most k.
Suppose the algorithm finished at step (A6) with a pair (K,µ). We claim

that (K,µ) is a loose ψ-tangle kit. We have shown that (K,µ) satisfies (T1).
It also satisfies (T3) since it passed the test at (A4). Now, suppose (T2)
is not true and there exists (A1, B1), . . . , (Ab−1, Bb−1), (A,B) ∈ K, C =
∪b−1
i=1Ci such that Cißµ(Ai, Bi), i = 1, . . . , b, AßCßB, ψ(C) = ψmin(A,B),

ψ([C1, . . . , Cb−1, C]) ≤ k, and C 6 ßµ(A,B). Take e ∈ C \ µ(A,B). Let
Ze ∈ M(A ∪ e, B) be a minimal one. Since A ∪ eßCßB, ψ(Ze) ≤ ψ(C) =
ψmin(A,B). Hence ψ(Ze) = ψmin(A,B). Since Ze minimal, ZeßC. By sub-
modularity of ψ,

ψ([C1, . . . , Cb−1, C])+ψ(Ze) ≥ ψ([C1∩Ze, . . . , Cb−1∩Ze, C∪Ze])+ψ(Ze∪C).

Since Ze ∪ C = C and ψ(C) = ψ(Ze), we get ψ([C1 ∩ Ze, . . . , Cb−1 ∩ Ze, C ∪
Ze]) ≤ k and it satisfies all condition required in step (A5) of our algorithm.
That contradicts C 6 ßµ(A,B). Hence (K,µ) satisfies (T2) and it is a loose
ψ-tangle kit of order k + 1.

7 Computing Tree-width

In this section, we show that Theorem 16 implies that it can be determined
in polynomial time whether tree-width of a graph is at most k.
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We restrict our attention to the following subclass of submodular partition
functions. We say that a submodular partition function ψ is monotone if for
every partiton [A,B, α] of E, ψ([A,B, α]) ≥ ψ([A∪B, α]). We assert that it
is sufficient to study only partitions with at most three parts for a monotone
submodular partition functions.
It is not difficult to show that a monotone submodular partition function

has an optimal decomposition tree where all nodes have degree at most 3.
On the other hand, it is not clear whether a monotone submodular partition
function of width k can be modified to a submodular partition function of the
same width with k-bounded partitions for b = 3. Despite this, the following
lemma shows that Algorithm 17 works for monotone submodular partition
functions with parameter b = 3.

Lemma 20. Let ψ be a monotone submodular partition function on E. Then
Algorithm 17 with parameters k and b = 3 decides correctly whether the width
of ψ is at most k.

Proof. Let (K,µ) be the pair constructed by Algorithm 17. If Algorithm 17
stops in step (A4), then there is no loose ψ-tangle kit of order k+1 since the
constructed µ is still contained in any loose ψ-tangle kit of order k + 1 (see
the proof of Theorem 16).
If Algorithm 17 stops in step (A6), then no loose ψ-tangle was found.

Suppose there is a loose ψ-tangle and hence there are (A1, B1), . . . , (Ap, Bp),
(A,B) ∈ K, C = ∪pi=1Ci such that Cißµ(Ai, Bi), AßCßB, ψ(C) = ψmin(A,B)
and ψ([C1, . . . , Cp, C]) ≤ k but C 6 ßµ(A,B). Choose such pairs that their
number p is as small as possible.
Since b = 3, p > 3. Let C ′ = C1 ∪ C2. Since ψ is monotone, ψ(C ′) ≤

ψ([C1 ∪ C2, C3, . . . , Cp, C]) ≤ ψ([[C1, . . . , Cp, C]) ≤ k. By Lemma 8, there
is a pair (A′, B′) in K satisfying A′ßC ′ßB′, ψ(C ′) = ψmin(A

′, B′). Now,
(A1, B1), (A2, B2), (A

′, B′), C ′ = C1 ∪ C2 satisfy all conditions of step (A4).
Hence C ′ßµ(A′, B′). To derive a contradiction, consider the following pairs
from K, (A′, B′), (A3, B3), . . . , (Ap, Bp), (A,B), and take C = C ′ ∪

⋃p

i=3
Ci.

ψ([C1 ∪ C2, C3, . . . , Cp, C]) ≤ ψ([[C1, . . . , Cp, C]) ≤ k, which contradicts the
minimality of p.

Amini et. al. [1] showed that tree-width of a graph G = (V,E) with min-
imum degree at least 2 is characterized by a submodular partition function
δG on E, where δG(α) is the size of the border of α, ∆(α), defined as

∆([A1, . . . , Ap]) = {x ∈ V (G) | ∃xy, xz ∈ E, xy ∈ Ai, xz ∈ Aj, i 6= j}

δG(α) = |∆(α)|
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The tree-width of G is the width of δG minus one. It is not hard to see that
δG is a monotone submodular partition function. Therefore, Algorithm 17
can be used to determine whether the tree-width of a graph is at most k in
polynomial time.

8 Hardness of Submodular Partition Func-

tions

We first have to define several auxiliary functions before we can establish our
hardness result. Let gn be the function gn : 2E → N for E = {1, . . . , 2n}
defined as gn(X) = min{|X|, |X|}. We start our exposition with showing
that gn is submodular.

Lemma 21. The function gn is submodular for every n.

Proof. Consider two subsets X and Y . If both |X| ≤ n and |Y | ≤ n, then

gn(X) + gn(Y ) = |X| + |Y | = |X ∩ Y | + |X ∪ Y |

≥ gn(X ∩ Y ) + gn(X ∪ Y ).

If both |X| > n and |Y | > n, we get the same result by the symmetry of g.

gn(X) + gn(Y ) = gn(X) + gn(Y ) ≥ gn(X ∩ Y ) + gn(X ∪ Y )

= gn(X ∪ Y ) + gn(X ∩ Y )

So suppose that |X| > n and |Y | ≤ n. We get

gn(X) + gn(Y ) = |X| + |Y | = |X \ Y | + |Y \X| + 2|X ∩ Y |

≥ gn(X \ Y ) + gn(Y \X) = gn(X ∩ Y ) + gn(X ∩ Y )

= gn(X ∪ Y ) + gn(X ∩ Y ).

This finishes the proof.

The function gn can be extended to a partition function φn on the ground
set E = {1, . . . , 2n} by setting

φn(α) = max
i∈I

gn(Ai).

A part Ai of α is dominating if gn(Ai) = φn(α). Note that, if α has a part
with at least n elements, then that part is dominating.
We proceed by showing that the function φn is submodular.
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Lemma 22. The function φn is submodular for every n.

Proof. We check the following inequality for all partitions [A, α] and [B, β]:

φn([A, α]) + φn([B, β]) ≥ φn([A ∪B, α ∩B]) + φn([B ∪A, β ∩A]).

Since one of A,A and one of B,B has at least n elements, at least one of the
parts A∪B or B∪A in this inequality has at least n elements and hence it is
dominating. If both A∪B and B∪A are dominating, then the submodularity
of φn follows from the submodularity of g:

φn([A, α]) + φn([B, β]) ≥ gn(A) + gn(B) = gn(A) + gn(B)

≥ gn(A ∩ B) + gn(A ∪B) = gn(A ∪B) + gn(A ∪ B)

= φn([A ∪B, α ∩B]) + φn([B ∪A, β ∩A])

Suppose that A∪B is not dominating, so take an Ai ∈ α such that Ai ∩B is
dominating. Since |B| ≥ n and Ai ⊆ A, it holds that gn(Ai∪B) ≥ gn(B∪A).
We use this inequality to prove the submodularity as follows:

φn([A, α]) + φn([B, β]) ≥ gn(Ai) + gn(B) ≥ gn(Ai ∩B) + gn(Ai ∪ B)

≥ gn(Ai ∩ B) + gn(B ∪A)

= φn([A ∪ B, α ∩B]) + φn([B ∪ A, β ∩A])

The case when B ∪ A is not dominating follows by symmetry.

Values of the function φn range between 0 and n. We now truncate the
function and define the following partition function φn,k on E = {1, . . . , 2n}
as follows:

φn,k(α) = min{φn(α), k}.

Next, we show that the function φn stays submodular after the truncation.

Lemma 23. The function φn,k is submodular for every n and k.

Proof. Let us consider two partitions [A, α] and [B, β] that violates the in-
equality (2):

φn,k([A, α]) + φn,k([B, β]) ≥ φn,k([A ∪B, α ∩B]) + φn,k([B ∪A, β ∩ A]).

Since φn,k(γ) ≤ φn(γ) for all partitions γ, at least one of φn([A, α]) or
φn([B, β]) is larger than k. If both of them are, then the inequality triv-
ially holds. Suppose that φn([A, α]) < k. We will show that at least one of
φn([A ∪ B, α ∩B]) or φn([B ∪ A, β ∩ A]) is smaller or equal to φn([A, α]).
If |A| ≥ n, then φn([A ∪ B, α ∩ B]) ≤ φn([A, α]) since A ∪ B is the

dominating part and gn(A ∪ B) ≤ gn(A) ≤ φn([A, α]). If |A| < n, then
φn([B ∪ A, β ∩ A]) ≤ φn([A, α]) since B ∪ A is the dominating part and
gn(B ∪ A) ≤ gn(A) ≤ φn([A, α]). This finishes the proof.
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Now, we use the function φn,3 to construct partition functions φ∗
n and φ

∗
n,β

which appear in our hardness result. The function φ∗
n is defined as

φ∗
n(α) =

{

φn,3(α) if α has at most three non-empty parts, and
3 otherwise.

For a partition β of {1, . . . , 2n} into n two-element subsets, the function φ∗
n,β

is then defined as

φ∗
n,β(α) =







φn,3(α) if α has at most three non-empty parts,
2 if α = β, and
3 otherwise.

First, we show that these functions are submodular.

Lemma 24. The function φ∗
n is submodular for every n.

Proof. Observe the following:

• If φn,3(α) = 0, then also φ∗
n(α) = 0.

• If φn,3(α) = 1, then φ∗
n(α) = 1 unless α is a set of singletons where

φ∗
n(α) = 3.

• If φn,3(α) = 2, then φ∗
n(α) = 2 unless α has more than three non-empty

parts and every part of α is a pair or a singleton.

Therefore the functions φn,3 and φ∗
n differ only on partitions consisting of

singletons and pairs.
Let us assume for a contradiction that φ∗

n is not submodular. Since
φ∗
n(α) ≥ φn,3(α) for all partitions α, the violation of the submodularity is
caused by an increase on the right-hand side of (2). Consider partitions
[A, α] and [B, β] violating (2). Hence, say, γ = [A ∪ B, α ∩ B] is that parti-
tion containing only singletons and pairs. Since γ has all parts of size at most
two, |B| ≤ 2. If A ∩ B = ∅, then B ⊆ A and A ⊆ B. Therefore γ = [A, α],
[B ∪ A, β ∩A] = [B, β] and the inequality trivially holds. So we can assume
that |B ∪A| > |B| and since 2n− 2 ≤ |B| < 2n, by the definition of φ∗

n

φ∗
n([B, β]) > φ∗

n([B ∪A, β ∩A]) . (3)

Since the number of non-empty parts of γ is at least 4, the number
of non-empty parts of [A, α] is at least 3 and therefore φ∗

n([A, α]) ≥ 2 by
the definition of φ∗

n. The submodularity follows from (3) and the fact that
φ∗
n(γ) ≤ 3 ≤ φ∗

n([A, α]) + 1.
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Lemma 25. The function φ∗
n,β is submodular for every n ≥ 4 and for every

partition β consisting only of two-element sets.

Proof. Since φ∗
n and φ

∗
n,β differ only on the partition β where φ

∗
n(β) > φ∗

n,β(β),
β has to be on the left-hand side of the inequality (2) to violate it. Let [A, α]
and β = [C, γ] be the partitions violating (2):

φ∗
n,β([A, α]) + φ∗

n,β([C, γ]) ≥ φ∗
n,β([A ∪ C, α ∩ C]) + φ∗

n,β([C ∪ A, γ ∩A])

Since β consists only of two-elements sets, |C| = 2. Therefore, φ∗
n,β([A∪C, α∩

C]) ≤ 2. To violate (2) it is neccessary to have φ∗
n,β([A, α]) ≤ 2. If |A| ≤ 2,

then |C ∪A| ≥ 2n−|A| and φ∗
n,β([C ∪A, γ∩A]) ≤ φ∗

n,β([A, α]), contradicting
the assumption. Therefore A has to have at least 2n − 2 elements and it
follows that φ∗

n,β([A ∪ C, α ∩ C]) ≤ φ∗
n,β([A, α]).

If C ⊆ A, then A ⊆ C and φ∗
n,β([C∪A, γ∩A]) = φ∗

n,β([C, γ]), contradicting
the assumption. Therefore |A∪C| > |A| giving φ∗

n,β([A, α]) > φ∗
n,β([A∪C, α∩

C]). Since φ∗
n,β(β) + 1 = 3 ≥ φ∗

n,β([C ∪A, γ ∩A]), the inequality (2) holds —
a contradiction.

In the proof of the main theorem we will use the fact that the width
of the function φ∗

n is three while the width of the modified function φ
∗
n,β is

two. To see that width of φ∗
n,β is at most two, just consider the following

decomposition tree T of φ∗
n,β. T has a root x with n children v1, . . . , vn each

vi connected to two leaves corresponding to the two elements in βi. Since
φ∗
n,β(αx) = φ∗

n,β(β) = 2 and φ∗
n,β(αvi

) = 2, for i = 1, . . . , n, the decomposition
tree T has width two. In the next lemma, we show that the width of φ∗

n is
three.

Lemma 26. For n ≥ 4, the width of φ∗
n is three.

Proof. Let T be a decomposition tree of φ∗
n of width smaller than three.

We assume there are no nodes of degree two in T since we can contract
them obtaining a smaller decomposition tree of the same width. Since every
internal node v of T of degree larger than three corresponds to a partition
αv of E with more than three parts (thus φ∗

n(αv) = 3), there are no such
vertices in T and T is a ternary tree. Consider an arbitrary internal node v
of T with less than two leaves as neighbors. There has to be such a vertex
v since there are at most n vertices with two leaves as neighbors but there
are 2(n− 1) internal nodes. For such a vertex v, αv contains a part with at
least three elements and at most 2n− 3 elements implying φ∗

n(αv) = 3. This
finishes the proof.
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We are now ready to establish our hardness result. We assume the exis-
tence of an algorithm and show that it cannot discover a small discrepancy
between a submodular partition function having width three and two.

Theorem 27. There is no sub-exponential algorithm for determining whether
the width of an oracle-given submodular partition function on a set with 2n
elements is at most two.

Proof. Assume that there exists such a sub-exponential algorithm A and run
A for the submodular partition function φ∗

n. The algorithm A must clearly
output that the width φ∗

n is at least three. Since the running time of the
algorithm is sub-exponential, for n sufficiently large, there exists a partition
β of {1, . . . , 2n} into n two-element subsets such that A never queries β since
the number of such partitions is

(2n)!

n!2n
= (2n− 1)(2n− 3) · · ·3 · 1 ≥ n!

and A cannot query all of them because of its running time. However, the
algorithm A for φ∗

n,β performs the same steps and thus it outputs that the
width of φ∗

n,β is at least three which is not correct.

Using Yao’s principle, Theorem 27 also implies the following lower bound
for randomized algorithms:

Corollary 28. For every randomized algorithm determining whether the
width of an oracle-given submodular partition function on a set with 2n el-
ements is at most two, there exists a submodular partition function ψ such
that the expected running time of the algorithm for ψ is exponential in n.
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