Computability of Width of Submodular
Partition Functions

Petr Skoda *

Department of Mathematics,
Simon Fraser Universtity,
8888 University Drive, Burnaby, BC, V5A 1S6, Canada.

peskoj@kam.mff.cuni.cz

Abstract

The notion of submodular partition functions generalizes many
of well-known tree decompositions of graphs. For fixed k, there are
polynomial-time algorithms to determine whether a graph has tree-
width, branch-width, etc. at most k. Contrary to these results, we
show that there is no sub-exponential algorithm for determining whether
the width of a given submodular partition function is at most two. On
the other hand, we show that for a subclass of submodular partition
functions, which contains tree-width, there exists a polynomial-time
algorithm that decides whether the width is at most k.

1 Introduction

Graph decompositions and width-parameters play a very important role in
algorithmic graph theory (as well as structural graph theory). The most
well-known and studied notions include the tree-width, branch-width and
clique-width of graphs. The importance of these notions lie in the fact that
many NP-complete problems can be decided for classes of graphs of bounded
tree- /branch-width in polynomial time. A classical result of Courcelle [5]
(also see [2]) asserts that every problem expressible in the monadic second-
order logic can be decided in linear time for the class of graphs with bounded

*The results presented in this paper are based on the author’s master thesis defended
in Spring 2009 at Charles University in Prague. His work on the thesis was partially
supported by the Czech grant GACR 201/09/0197.

tree- /branch-width. An analogous result for matroids with bounded branch-
width representable over finite fields have been established by Hlinény [6, 7]
and generalized using a more specialized notion of width to all matroids by
Kral’ [10].

Most of the algorithms for classes of graphs of bounded width require a
decomposition of an input graph as part of input. Fortunately, optimal tree-
decompositions of graphs can be computed in linear time [3] if the width is
fixed and there are even simple efficient approximation algorithms [4]. For
branch-width, Oum and Seymour [12] recently established that the branch-
decompositions of a fixed width of graphs and matroids can be computed in
polynomial-time (or decided that they do not exist). Their algorithm actually
deals with a more general notion of connectivity functions which are given
by an oracle. A fixed-parameter algorithm for computing optimal branch-
decompositions for matroids represented over finite fields was designed by
Hlinény and Oum [8].

In this paper, we study submodular partition functions introduced by
Amini et al. [1]. This general notion includes both graph tree-width and
branch-width as special cases. We postpone the formal definition to Section 2.
In their paper, Amini et al. [1] presented a duality theorem that implies the
known duality theorems for graph tree-width and graph/matroid branch-
width of Robertson and Seymour [13].

Since the duality, an essential ingredient for some of the known algo-
rithms for computing decompositions of small width, smoothly translates to
this general setting, it is natural to ask whether decompositions of submodu-
lar partition functions with fixed width can be computed in polynomial-time.
In this paper, we show that such an algorithm cannot be designed in gen-
eral. In particular, we present an argument that every algorithm deciding
whether a partition width of an n-element set is at most two must ask an or-
acle the number of queries exponential in n. On a positive side, we were able
to develop notions of loose tangles and loose tangle kits, a key ingredients
of the algorithm of Oum and Seymour [12], and used them to construct a
polynomial-time algorithm for class of submodular partition functions with
bounded partitions. This class includes tree-width. We hope it will be pos-
sible to show that our results can also be adapted for other graph/matroid
width parameters.

2 Notation

In this section, we introduce the notation and concepts used in this paper.
A function f : 2 — N for a finite set E is said to be submodular if the

following holds for every pair of subsets X,Y C E:
fX)+fY) =2 f(XNY)+ f(XUY). (1)

A submodular function f is symmetric if f(X) = f(X), for all subsets
X of E. Finally, a connectivity function is a submodular function that is
symmetric and f(0) = 0.

For a connectivity function f on a ground set E, a branch-decomposition
of fis a pair (T, 0) where T is a ternary tree and o is a bijection between the
set of leaves of T" and E. Every edge e of T naturally defines a bipartition
(A., A,) of the ground set E, i.e., A, consists of all elements that corresponds
to leaves of T' in one of the two components of 7'\ e. The order of an edge
e of T is the value f(A.) and the width of a branch-decomposition (7, 0) is
the maximum order of an edge of T". The branch-width of f is the minimum
width of a branch-decomposition of f. This notion includes the notion of the
usual branch-width of graphs and matroids.

There is a dual object to branch-decompositions called a tangle, intro-
duced by Robertson and Seymour [13]. A set 7 of subsets of E is called an
f-tangle of order k + 1 if 7 satisfies the following three axioms:

(1) For all A C E, if f(A) <k, then either A€ T or A€ 7.
(2) If A,B,C €7, then AUBUC # E.
(3) For alle € E, we have F \ {e} ¢ 7.

Robertson and Seymour [13] proved the following duality theorem be-
tween branch-decompositions and tangles.

Theorem 1 (Robertson and Seymour [13]). Let f be a connectivity function
on a ground set E. There is no f-tangle of order k + 1 if and only if the
branch-width of f is at most k.

We now introduce the concept of submodular partition functions that
provides a unified view on branch-decompositions of connectivity functions
and tree-decompositions of graphs. Throughout the paper, Greek letters will
be used for collections of subsets, i.e., a can stand for a collection Ay, ..., A
of subsets of a set E. Note, that the sets in a collection are not ordered in
any way and a set can occur more than once in a collection. The collection «
is a partition if the sets A; are mutually disjoint and their union is the whole
set L.

There are shorthands for operations with collections of subsets we want
to use: if ais such a collection A4, ..., A and A is another subset, then aNA

stands for the collection A1 N A, ..., A, NA. We use o\ A in a similar way.
Finally, [By, ..., By,] stands for the collection obtained from a by inserting
sets By, ..., B, to the collection. If « is the empty collection, we omit it from
the notation. Note that empty sets are allowed in the collections.

A partition function is a function from the set of all partitions to non-
negative integers that satisfies ¥ ([0, a]) = ¥(«) for every partition «, i.e.,
inserting an empty set to a collection does not change the value of the par-
tition function. A partition function v is submodular if the following holds
for every two partitions [A, a] and [B, 3]:

Y([A a]) +9([B,8]) 2 Y([AUB,anB)) + ¥([BUA,BNA]) (2)

We will further assume that ¥ ([F]) = 0 since shifting all values of a submod-
ular partition function by a constant does not break the property.

Similarly to branch-decompositions, Amini et al. [1] defined a decomposi-
tion tree of a partition function). A decomposition tree on a finite set E' is a
tree T' with a bijection o between its leaves and E. Every internal node v of
T corresponds to the partition of £ whose parts are the leaves contained in
subtrees of 7'\ v. A decomposition tree is compatible with a set of partitions
P of E if all partitions corresponding to the internal nodes of 7" belong to P.

Let Px[t)] denote the set of partitions a of E such that ¢(«) < k. The
width of a submodular partition function v is the smallest integer & such that
there exists a decomposition tree compatible with Pg[i)]. The concepts of
submodular partition functions and decomposition trees include graph tree-
width as a special case. Amini et al. [1] generalized submodular partition
functions to include branch-width, path-width and other parameters.

There is a dual object to the decomposition tree called a bramble intro-
duced by Amini et al. [1]. A P-bramble B on F is a set of pairwise intersecting
subsets of £ which contains a part of every partition of P. A P-bramble is
called non-principal if it contains no singleton. The duality theorem for
submodular partition functions asserts the following.

Theorem 2 (Amini et al. [1]). Let b be a submodular partition function
and k a non-negative integer. There is no decomposition tree compatible
with Py Y] if and only if there is a non-principal Pr[ip]-bramble.

Note that Theorem 2 is proven in [1] for a larger class of weakly submodular
partition functions. In this paper, we restrict our attention only to the class
of submodular partition functions. In particular, the loose tangles defined in
the next section are studied only for submodular partition functions.

3 Loose Tangles

A key ingredient of the algorithm of Oum and Seymour [12] for deciding
whether a connectivity function has branch-width at most & (k is fixed) is
the notion of a loose tangle which we now recall. For a connectivity function
f on a ground set E, a loose f-tangle of order k + 1 is a set 7 of subsets of
E satisfying the following three axioms:

(L1) 0 € T and {e} € 7 for every e € F such that f({e}) < k.
L2) f A,Be7T,CCAUB, and f(C) <k, then C e€T.

(
(L3) EZT.

The following theorem by Oum and Seymour [12] states that the loose
f-tangles are also dual objects to branch-decompositions of connectivity func-

tions.

Theorem 3 (Oum and Seymour [12]). Let f be a connectivity function on
a ground set E. Then, no loose f-tangle of order k + 1 exists if and only if
the branch-width of f is at most k.

Using loose tangles Oum and Seymour [12] managed to construct an
algorithm for deciding whether the branch-width of a connectivity function
is at most k for a fixed k£ in polynomial time when f is given by an oracle.

Similarly to the loose tangles of Oum and Seymour we introduce loose
tangles for submodular partition functions. A loose P-tangle is a set 7 of
subsets of E closed under taking subsets satisfying the following three axioms.

(P1) § € T, {e} € T, for all e € E such that the partition [{e}, {e}] belongs
to P.

(PQ) IfAl,AQ,...,Ap € T, Cl Q Ai, for ¢ = 1,. ., P, [Cl,...,Cp,UleCi] €
P, then U_,C; € T.

(P3) E¢T.
To prove the main theorem of this section, we need a lemma.

Lemma 4. Let ¢ be a submodular partition function on E and [A,al a

partition. Then ¥([A, a]) > ¥([A, A]).
Proof. By submodularity of v,
U([A,a]) +9([0, E]) Z([AUE, an) + ¥([0U A, EN A
The result follows.]

In the following theorem, we show that for classes of partitions of bounded
width, the loose tangle is a dual object to the decomposition tree.

Theorem 5. Let ¢ be a submodular partition function. There is no decom-
position tree compatible with P[] if and only if there is a loose Py[1)]-tangle.

Proof. Suppose there is a decomposition tree (7, 0) compatible with P[]
and a loose Py[¢]-tangle 7. We will show that 7 violates (P3). Choose an
arbitrary leaf x of T" as a root. Every internal node v of T" corresponds to a
partition a,. Let C, be a union of all parts of «, except the one containing
x. Define C, of a leaf v as the singleton o(v). We will show by backward
induction on the distance from x that for every node v of T, the set C,
belongs to 7.

Since T is a decomposition tree of F compatible with Py[¢], there is a
partition [{e}, o] in Pi[], for each e € E. By Lemma 4, ¢([{e}, {e}]) <
Y([{e}, ae]). Hence, [{e}, {e}] belongs to Pi[e)] and {e} is in 7 by (P1). For
an inner node v, all his children u,,...,u, are farther from x than v and
therefore all C,, are in 7. By (P2), since [C,,,...,C,,,UC,,] belongs to
P[], C, = UC,, € T. Finally, let v be the only child of z. Since C, € T
and {o(z)} € 7, by (P2) and Lemma 4, C, U{o(z)} = E also belongs to 7.
(P3) is now violated.

We now prove the opposite implication. A partial decomposition tree for
A C F is a decomposition tree for a partition function 1" on AU {a} defined
as V'([B,f]) = ¥(((B\ {a}) U A, 3)) for a partition [B, 3] where B contains
a. We say that a set A C F is k-branched if there is a partial decomposition
tree for A compatible with Pg[v)].

Define 7 to be a subset of 27 closed under taking subsets, containing all
singletons and all k-branched sets. We will show that 7 is a loose tangle. (P1)
trivially holds since all k-branched singletons are in 7. Let Ay,..., A, € T
and C; C A;, i = 1,...,p, such that [Cy,...,C,,UC;] € Pily]. We can
assume that A; are k-branched (otherwise take such a superset of it instead).

Let Y1,...,Y,, Yi C A;, be such sets that UC; C UY; and ¢([Y1,...,Y,, UY;])
is minimum. We will show that the set UY; is k-branched.

To this end, we modify the partial decomposition tree T; for A; to be
a partial decomposition tree for Y;. At first, we delete from T; all leaves
corresponding to elements not in Y;. We then repeatedly contract all nodes
of degree two or less until we get a ternary tree 7. We claim T is compatible
with Py[¢)]. Suppose for a contradiction that there is an internal node v" of
T! corresponding to an internal node v of T; such that a, & Py[1)]. Assume
i = 1 since we can relabel the parts so. Let [A, a] = «, such that A is the
part of av, that contains A;. We infer from the submodularity of the function

1 that

(A a]) + Y([Y1,Ys,..., Y, UY]) > ¢¥([AUY,anY)))
+([YITUA YN A, .. Y, N A UY; N A

The choice of Y7, ...,Y) yields that
V(YIUAYaNA,...Y,NAUY;NA]) > (Y. .., Y, U0Y)).

Hence, ¥([AUY,anYi]) < ¢([4,a]) <k and T} is compatible with P [¢].

Now, construct a partial decomposition tree T' by connecting 77 to a single
node corresponding to a partition [Y7,...,Y), UY;]. This partition belongs to
Pr[t] since ¥([Y7, ..., Y,, UY;]) < ¢([Cy, ..., Cp, UC;]) < k by the minimality
of Y([Y1,...,Y,,UY:]). Therefore T is a partial decomposition tree for UY;
compatible with P[¢] and thus UY; € 7. Since UC; C UY;, also UC; € T as
required.

If £ €T, then FE is k-branched and the partial decomposition tree for £
is actually a decomposition tree for 1) — remove the leaf corresponding to the
empty set and suppress the resulting vertex of degree two. This contradicts
the fact that ¢ does not have a decomposition tree compatible with Py[t].
Therefore, £ ¢ 7T and (P3) holds. We conclude that 7 is a loose Py [t)]-

tangle. []

4 Minimization of submodular functions

Let f be a connectivity function on E. We define a function f,,;, on pairs of
disjoint subsets of E as follows.

fmin(AvB) = min f(Z)

ACZCB

There can be more sets attaining the minimum. Let M (A, B) be the col-
lection of such sets, i.e.,

My(A, B) = {f(Z) = fuin(A, B) | ABZ8B}.

The structure of M (A, B) is quite simple as shown in the following lemma.
We include a short proof for completeness.

Lemma 6. Let f be a connectivity function on E, A, BBE disjoint, and let
X, Y e My(A,B). Then XUY € M;(A,B) and X NY € M;(A, B).

Proof. Compute
2fmin(4, B) = f(X) + f(Y) = f(XNY) + f(XUY)

and note that both f(X NY) > fun(A, B), f(XUY) > fin(A, B). Hence
both inequalities have to hold with equality and X NY € M(A, B) and
XUY e My(A, B). O

It follows from Lemma 6 that there is precisely one set containing all
other sets in M (A, B). Define M¢(A, B) = Z such that Z is maximal with
respect to f(Z) = fun(A, B), ABZBB.

Important and very non-trivial results of Iwata [9] and Schrijver [14] state
that submodular functions can be minimized in strongly polynomial time.
We use an improved result of Orlin [11] saying that a submodular function
on set £, |E| = n, can be minimized in time O (n’y + n®) where v is the
time complexity of an oracle query. Orlin’s result can be used to compute
fmin(A, B) and M (A, B) in polynomial time.

Lemma 7. Let f be a connectivity function on E, A, BRE disjoint, |E| = n.
Then fuin(A, B) can be determined in time O (n®y + n®) where 7 is the time
complexity of an oracle query. Moreover, in total time O(nby + n7), the
mazimal and the minimal set from M (A, B) can be constructed.

Proof. First note, that a function ga g : 24UB _, N defined as gap(X) =
f(X UA) is a submodular function since

gaB(X)+gap(Y)=f(XUA)+ f(YUA)
> f(XUYUA)+ f(XUANYUA))
=gap(XUY)+gap(XNY).

Second, if ZBA U B is such that g4 5(Z) is the minimum of g4 5 then f(Z U
A) = fuin(A, B). Now, we can use result of Orlin [11] that a submodular
function f can be minimized in time J(n°y+n%) and a set Z such that f(2)
is minimum is provided. Note that Z does not have to be maximal with
respect to that. Denote Zy the set for g4 p.

To get the maximal set Z,, for g4 p, obtain Z, as sets for submodular
functions gaufey,n, € € AU B. If gauger,5(Ze) > ga,8(Zp), then there is no
set Z, such that AU {e}B8ZBB and f(Z)aute},B(Z) = 9a,8(Zp) = fwin(A, B).
Hence e ¢ Z,,. Let M = {Z | gavte},5(Z) = fuin(A, B)}. By Lemma 6,
Uzem Z € M. We conclude that Z,,, = UZeeM Z,. There are at most n sets
Z. so we needed)(n) submodular function minimizations giving the claimed
time complexity.

The minimal set Z is obtained as the complement of maximal set M (B, A),

Z = M;(B, A), by symmetry of f. O

The following lemma of Oum and Seymour [12] is critical for our con-
struction of a polynomial-time algorithm for submodular partition functions.

Lemma 8 (Oum and Seymour [12]). For a connectivity function f on E
and a subset Z of E, there exist a subset A of Z and a subset B of Z such
that

max{|A], |B[} < fuin(4, B) = f(2).

Note that a submodular partition function is a connectivity function when
restricted to partitions of size two. We will use ¥/(A) as a shorthand for

P ([A, A)).

Y(A) +¢(B) = ¥([A, A)) + ¢ ([B, B]) = ¥([A, 4]) + ¢([B, B))
[AUB,ANB|)+¥([BUA, BN A))

(
W(
([AUB,AUB]) +¢([An B, AN B))
W(
(G

vl

AUB)+¢Y(ANB)

We can minimalize 1) as a connectivity function and define

Umin(A, B) = min ¢(X)
ABX BB
We say (A1, ..., Ap|B1, ..., B,) is a prepartition of E if sets A; and B;
are disjoint for all =1,...,p, A;,..., A, are pairwise disjoint, A,8B; for all
Jj #iand NY_B; = (). We write (A4;, B;,p) as a shorthand for a preparti-
tion (A;,...,A,|B1, ..., B,). The prepartitions can be understood as restric-
tions for partitions: For every prepartition (A;, B;, p), there exists a partition
[Cy, ..., C,) satisfying ABCBB;, i =1,...,p.
For a submodular partition function ¢ and a prepartition (A;, B;, p) of E
define
Ymin(A;, By, p) = min{y([Ch, ..., C,)) | ABC8B;}.

Similarly as for connectivity functions, we also define a collection M., (A;, B;, p)
of minimal partitions,

M’(/)(A’LJ Bzvp) = {[017 IR Op] | AZBCzBFM ,Qb([clv SRR Op]) = ,Qbmin(Aia Bzvp)}

Note that for two disjoint sets A and B, M, (A, B|B, A) extends the defini-
tion of M (A, B) for a connectivity function f.

The structure of sets My, (A;, B;, p) is richer than that of sets M (A, B).
Let f be a connectivity function, A, B disjoint subsets of £ and r an integer

parameter satisfying fuin(A, B) < r. In order to describe the structure of
My (A;, B;, p), we consider all maximal sets Z such that ABZ8B and f(Z) =

9

r. Note that Lemma 6 implies that there is only one such a Z for r =
fmin(A, B). However, for r > fi.in(A, B) there can be more of them. Define
an r-corolla FY (A, B) of f as a set

FI(A, B) = U{Z | ABZBB, Z inclusion-wise maximal with f(Z) = t}.

t=0

We call sets in F/(A, B) petals.

For a partition submodular function v, we show that it is enough for
minimization to consider partitions created by k-corollas for ¢ (viewed as a
connectivity function).

Lemma 9. Let ¥ be a submodular partition function on E, (A;, B;,p) a
prepartition of E such that Y¥min(A;, Bi,p) < k, [C1,...,C,) € My(A;i, Bi,p)
a minimal partition, A;BCBB;, i = 1,...,p, and j € {1,...,p} fived. Then
there is a petal D; € F(A;, B;) such that C;BD; and

[Ol \ Dj, Ceey Cj—l \ Dj,Dj, Cj+1 \ Dj, Ceey Cp \ D]] - ./\/lqp(Ai, Bz,p)

Proof. By symmetry, we can assume that j = 1. Let [C1,C,,...,C)] €
My (A;, Bi,p) be a minimal partition, A;BC8B;,i=1,...,p. By Lemma 4,
P(Cr) < Y([Ch,Cyy...,C)) < k. Let r = 9(C}). By definition, there is
Z € FY(Ay, By) such that C18Z, ¢(Z) = (Cy) = r. By submodularity of
v,

([Cr, O Cp)) +0([Z, Z2]) 2 ([C1U Z,Co\ Z,Gy \ Z])
+y([ZUC1, 2\ C1))
- ¢([Z7 Cy \ Z,. "7Cp \ Z]) +¢([ﬁ1, Ol])

Since ¢(Ch) = ¢¥(Z) and [C4, ..., C,] is minimal, we conclude that
P([C1, Co, ..., C)) =y([Z,Co\ Z,...,C, \ Z]).
Hence, [Z,C2\ Z,...,C, \ Z] is the sought partition. O]

Lemma 10. Let ¢ be a submodular partition function on E, (A;, Bi,p) a
prepartition of E. If Ymin(A;, Bi,p) < k, then there is a minimal partition
a € My(A;, Bi,p) of the form

a=[Zy, Zp1\ Zp, Zp-2\ (Zp-1U Zy), ..., Z1 \ {Ui_s 2},

where Z; € F,;p(Ai, B;).

10

Proof. Let € My(A;, B;,p) be a minimal partition. Using Lemma 9, we
will construct a sequence [y, (1, . . ., 8, of minimal partitions in M, (A4;, B;, p)
where 3; is created from 3;,_; by “exchanging” i-th part of the partition (;_;
for a petal. We write 3; = [C}, ..., Ci] where A;8C!8B;, j =1,...,p.

Let By = 3. Define ; as the minimal partition obtained from Lemma 9
applied on ¢-th part of 5;,_1, i.e.,

Gi=1C7'\Z,...,Cimi\ Zi, Z;, Cii \ Ziy ..., C M\ Z4),

where C!7'87; € F,::/’(Ai, B;).
Note that 3; € My(A4;,B;,p), @ = 1,...,p, by Lemma 9. The final
partition o = (3, have form

= [va Zp—l \ va Zp—2 \ (Zp—l U Zp)v SRR Z \ {Uf:2Zp}]v

where Zz ~ F]Z}D(AZ, Bz) L]

The following bound on number of disjoint subsets of £ will be used in
our subsequent proofs. We leave a straightforward proof to the reader.

Lemma 11. The number of subsets of size at most k of an n-element set is
at most 1 +n”*. The number of disjoint pairs of subsets of size at most k of
an n-element set is at most 1 + n?".

We will see that k-corollas will play important role in devising the mini-
mization algorithm for submodular partition functions. The following lemma
shows that k-corollas has always a polynomial size.

Lemma 12. Let f be a connectivity function on E£, A and B disjoint subsets
of E. Then

F(A,B)| <1+,

Moreover, F{ (A, B) can be constructed in time O(n*5 + n**7) where = is
the time complexity of an oracle query.

Proof. Let A and B be fixed disjoint subsets of E. Define Zx = M;(AUX, B)
for XBB. Observe that f(Zxugy) > f(Zx) + 1 for all e € Zxy UB. Let
So = {Zy}. Define S; = {Zxuge | Zx € Si—1,e € Zx UB}, for i > 1, and
S =uUr,S;.

Observe that f(R) > i for every R € S;.

We claim that all petals P € F/(A, B) are contained in S. Let XBP
be a maximal subset such that Zy € S. If Zx = P, then we are done.

11

Otherwise, let e € P\ Zyx. The maximality of Zx with Zx = M;(AU X, B)
and AUX C P C B implies that f(P) > f(Zx). Consequently, Zx € S; for
some ¢ < k. Hence, the set Zxyy) is included in the set S which contradicts
our choice of X.

We have shown that F/(A, B) is contained in the set S. Observe that
every set in S can be constructed as Zx for some X of size at most k. Since
the number of choices of X is at most 1 + n* by Lemma 11, we conclude
that \FJ(A, B)| < 1+ n*. The algorithm is now easy to design: for all (at
most 1 + n*) choices of X, compute M¢(A U X, B). Lemma 7 implies that
the running time of the algorithm can be bounded by @ (n**%y 4+ n*+7).

]

Now, we will use Lemma 10 and 12 to show that it is possible to minimize
a partition function in polynomial time if the number of parts p and the width
k of the assumed partitions are fixed integers.

Lemma 13. Let ¢ be a submodular partition function on E, (A;, Bi,p) a
prepartition of E. There is an algorithm running in time O (nP*y + pn*+6y +
pn*t7T), where vy is the time complexity of an oracle query, that determines
whether there exists a partition 3 € My(A;, B;,p) with ¥(6) < k and if so
it constructs such a partition with minimal ().

Proof. By Lemma 10, if there exists a minimal partition 8 € M (A4;, B;, p)
of width at most k, then there exists also one of the form

b= [Zpa Zp-1 \ Zp, Zp—2 \ (Zp—l U Zp)a s 21\ {Ui?:zZp}]-

Observe that (3 is constructed only from petals. Hence if we try all possible
p-tuples (Zy,...,Z,) where Z; € Fy(A;, B;), then we will find .

By Lemma 12, there are at most @(n*) sets in a k-corolla. There are at
most O (nP*) such p-tuples and for each of them we have to call the function
oracle. Hence we need time ((nP*y). We also have to construct the k-
corollas. By Lemma 12, F}(4;, B;) can be constructed in time O (n*t¢y +
n**7). Thus we can construct all of them in time @ (pn**5y +pn**7). O

5 Loose Tangle Kits

A loose tangle is a collection of sets that contain (usually) exponentially
many sets making it difficult to work with in a polynomial-time algorithm.
Hence Oum and Seymour [12] introduced a more compact structure, loose
tangle kits. A pair (P, u) is called a loose f-tangle kit of order k + 1 if

P={(A,B)| A, BC E,ANB =0, max{|A|,|B[} < fum(A, B) < k}

12

and p: P — 2F is a function satisfying the following three axioms.

(K1) For every e € E, f({e}) < k, there exists (4, B) € P such that A C
{e} € B, f({e}) = fuin(A, B), and e € (A, B).

(K2) If (A,B),(C,D),(F,G) e P, F C X C (u(A,B)uu(C,D))\ G, and
f(X) = fuin(F,G), then X C u(F,G).

(K3) u(®,0) # E.

The notion of loose tangle kits is a notion dual to branch-decompositions
as stated in the next theorem.

Theorem 14 (Oum and Seymour [12]). Let f be a connectivity function on
E. Then, a loose f-tangle of order k+ 1 exists if and only if a loose f-tangle
kit of order k 4+ 1 exists.

We define a similar structure for submodular partition functions which
we also call loose tangle kits. A pair (K, p) is a loose ¥-tangle kit of order
k+1if

K ={(A,B)| A BCEANB =0 max{|AL, | B[} < (A, B) < }
and ;1 : K — 2% is a function satisfying the following three axioms.

(T1) For every e € E, ({e}) < k, there exists (A, B) € K such that
A C {6} C B; ,9/)({6}) - wmin(Aa B)7 and e € M(Aa B)

(T2) If (Al, Bl), ceey (Ap, Bp), (A, B) € K,g = UleCi such that CZB/L(AZ, B,),

i=1,....p, ABCBE, ¢([C1,...,C,,C]) < k and ¢(C) = tuin(A, B),
then CBu(A, B).

(T3) u(0,0) # E.

The following theorem shows that loose tangle kits, similarly to loose
tangles, are also dual objects to decomposition trees of submodular partition
functions.

Theorem 15. Let vy be a submodular partition function on E. Then, a loose
Pr[Y]-tangle of order k + 1 exists if and only if a loose 1-tangle kit of order
k+ 1 exists.

13

Proof. Suppose that 7 is a loose Py[¢)]-tangle of order k + 1. We construct
a loose y-tangle kit of order k£ 4 1 as follows. Let

K ={(A,B)| A,BC E,AN B = 0,max{|Al, |B|} < ¢¥min(A4, B) < k}.
For each (A, B) € K, let
Top = {X | AC X C B thun(A, B) = 9(X), and X € T},
wAB = | X

XGTA’B

If Typ =10, then pu(A, B) = 0.

We will show that (A, B) € T for every (A, B) € K. If T4 p is empty
then u(A,B) =0 € 7. Let X,Y € Ty . By Lemma 6, we have (X UY) =
Ymin (A4, B) < k. By (P2), XUY € 7. Hence XUY € T, 5 and since (A, B)
is a union of sets in 74 g, (A, B) € Ty p87.

Let e € F such that ¢({e}) < k. By Lemma 8, there exists A and B such
that AB{e}B8B, max{|Al,|B|} < ¥({e}) = ¥um(4, B). By (P1), {e} € T.
Hence {e} € T4 5 and e € u(A, B) as required in property (T1).

Let (A1, B1),...,(Ap, By), (A, B) € K, C =UY_,C; such that CiBu(A;, B;),
i=1,...,p, ABCBB, ¥([C4,...,Cp,C]) < k and (C) = ¢min(4, B). As we
have shown that all u(A;, B;) € 7, using (P2), we get that C' € 7. Since
Y(C) = Ymin(A, B) and (A, B) € K, by construction of the loose tangle kit,
CBu(A, B). So (T2) holds.

Since E ¢ T by (P3) and u(0,0) # E, we conclude (K, u) is a loose
-tangle kit of order k + 1.

Conversely, suppose that (K, u) is a loose 1-tangle kit of order k+ 1. We
define

7 = {X | there exists (A, B) € K such that A C X C B,
¢min(A7 B) - f(X)v and X C M(Aa B)}

We claim that 7 is a loose Py[t)]-tangle of order k + 1.

If (e) < k then by (T1) there exists (A, B) € K such that e € u(A, B)
and Ymin(A4, B) = ¥({e}). So {e} € T, ensuring property (P1).

To show (L2), suppose that Ay,..., A, € T, C = U}_,C;, such that
CiBA;,i=1,...,p, and ¥([C4,...,Cp, C]) < k. By construction of 7, there
are (U;,V;) € K such that A Bu(U;,V;),i =1,...,p. By Lemma 8, there exist
U and V such that UBCBV, max{|U/|, |V|} < ¢¥(C) = (U, V). Using (T2)
for (U, V1),..., (U, V,), (U, V) and C, we get that CBu(U, V). Hence C € T
by construction of 7.

Since E # u((,0), by definition of 7, E ¢ T as required by (T3). We
have shown that 7 is a loose Py[t¢)]-tangle of order k + 1. O

14

6 Polynomial-time Algorithm for Submodu-
lar Partition Functions with Bounded Par-
titions

The number of parts play an important role when minimizing submodular
partition functions. We say that a class C of submodular partition functions
on F has k-bounded partitions if there exists b(k) such that for every ¢ € C
and every partition o with more than b(k) non-empty parts, ¥ («) > k.

Theorem 16. Let C be a class of submodular partition functions on E,
|E| = n, with k-bounded partitions. When ¢ € C is given by an oracle, we
can determine in time Q(n3FT2h T2y 4 20 H3RT8, 4 pp 20k T2RE9Y D ophere v s
the time complexity of an oracle query, whether the width of v is at most k.

As in [12], we design an algorithm that either constructs a loose tangle
kit of order k + 1 or shows that no loose tangle kit of order k 4 1 exists.

Algorithm 17. Decide whether the width of a submodular partition function
Y € C is at most k, where C is a class with k-bounded partitions.

(A1) Construct K = {(A, B) | max{|A|, |B|} < ¢¥mm(A, B) < k}.
(A2) Set u(0,0) ={e € E | ¢¥(e) =0}.

(A3) For each e € E such that 0 < ¥(e) < k and all sets B such that
B < ¢Ymin({e}, B) = 1(e), set p({e}, B) = {e}.

(A4) Test whether (T3) holds. If not, then output that there is no loose
W-tangle kit of order k + 1 and stop.

(A5) Test whether (T2) holds for all (A1, By),...,(Apy_1,By_1), (A, B) € K.
If not, then we have C = UC; such that ABCBB, CBu(A;, B;), i =
L...,b=1,¢([C1,...,Cp1,C)) <k, C = thmin(A4, B) and C' Bu(A, B).
Add C to (A, B) thus increasing (A, B) by at least one and go back

to (A4).
(A6) (K,) is a loose i-tangle kit of order k + 1. Stop.

We begin the proof of Theorem 16 by proving the time complexity of
Algorithm 17.

Lemma 18. Algorithm 17 can be implemented to run in time O (n3k+2k+2~ 4
b 20k +3k48~ | pn 2R T3kE9Y yhere v is the time complexity of an oracle query.

15

Proof. The set K is implemented as a list of valid pairs. With each pair
(A, B) € K we associate (A, B) as an incidence vector.

We will count the time the algorithm spends in each step. By Lemma 11,
there are at most @J(n?*) pairs of disjoint subsets with at most k elements.
For each of them we have to determine the minimum separation.By Lemma, 7,
needs time (n?5y 4 n?*6) for step (Al).

The step (A2) consists of testing all elements which can be done @ (n-).
The step (A3) can be implemented by testing all possible sets B, |B| < k, in
time @ (n*y).

In (A4), testing (T3) requires time D (n).

Most of the time, the algorithm requires for step (A5). For the algorithm
consider all b-tuples of pairs from K, (A, By),..., (A1, By_1), (A, B), ABU
where U = U'~{ u(A;, B;) \ B we compute minimal Z, € M(AU {e},U) for
every e € U \ u(A, B). This can be done in @(n%y + n") time by Lemma, 7.
The correctness of testing (Ab) is shown in the proof of Theorem 16.

If ¥(Ze) = Ymin(A, B), then try to find a minimal partition [P, ..., Py
such that Z, form one part and other parts are subsets of sets u(A;, B;).
That can be done applying Lemma 13 to the prepartition (C;, D;, b) where
Cy = Zo, Dy = Z., C; = 0, D; = n(A;, B;) U Z, for every i = 1,...,b— 1.
Note that necessarily AU {e}B8Z, = P.

If Y([Pr,...,P)]) <k then all conditions of (T2) are satisfied so we set
(A, B) to u(A, B) U Z.. The existence of a partition [Py, ..., P)] can be
determined in @(n"~y + bnf*%~ 4+ bn**7) by Lemma 13. So step (A5) takes
D (3L 4 pp 2Rtk Ty | py20hth8)

We will show that the algorithm will require time at most @O(n
b 2O 3RH8~ | pn 2R H3RH9) for (A5) in total. Since e € Z,, we have increased
1(A, B) by at least one. There are ()(n?*) pairs in K and for each of them
@ can increase at most n times. Hence we can get to step (A5) at most
@(n?*+1) times. The claim follows.

This finishes the proof.

3bk’—|—2k+2,y +

L]
Lemma 19. Let (K, pu) be a loose -tangle kit of order k + 1. Let e € E
such that 0 < ¥({e}) < k. For all ({e},B) € K, if vmin({e}, B) = ¥(e),
then e € p({e}, B).

Proof. By (T1), there exists (A, D) € K such that AB{e}BD, ¥in(A, D) =
Y({e}) and e € (A, D). Let ({e}, B) € K be a pair such that ¢y, ({e}, B) =
Y({e}). Using (T2) for pairs (A, D), ({e}, B) and set C' = {e}, we get
e € u({e}, B) since ¥(C,C) = y({e}) < k. O

Of Theorem 16. Lemma 18 asserts that Algorithm 17 runs in time @ (n30++2k+24 4
b 20k +3k48 1 pp20k+3k+9) - Hence, it is sufficient to prove that the algorithm

16

is correct, i.e., it constructs a loose i-tangle kit of order k£ + 1 if it exists or
shows that none exists.

Suppose there exists a loose ¥-tangle kit (K, /). Let p; be the value of u
at the i-th iteration at the beginning of step (A4). We claim p;(A, B)Bu/'(A, B)
for all (A, B) € K and every i.

First, we check that (T1) holds for (K, u;). If ¥({e}) = O then e €
w(@,0). If 0 < ¢({e}) < k, then, by Lemma 8, there is AB{e}8B such
that max{|Al,|B|} < ¥min(A, B) = ¥({e}). Since () = 0, we know that
A = {e}. In step (A3), we have tested all possible sets B. So (T1) holds and,
since the sets in u never get smaller, (T1) holds through whole algorithm.

When ¢ = 1, by Lemma 19, if e € u;(e, B) then e € p/(e, B). Then the
value of p changes in step (A5). Let (Ay, Bi),...,(Ay1,Bp1),(A,B) €
K be the pairs for which [Py,..., P, is the corresponding partition ob-
tained in step (A5). By assumption we know that ¢ ([P,...,B)]) < k,
PBu(As, BB/ (A, B), U=} P, = Z such that ABZBB and 1(Z) = tmin(A, B).
By (T2), it follows that Z8u/(A, B). So we conclude that p; .1 (A, B)Bu/'(A, B).

Suppose the algorithm failed at step (A4). Then E = (0, 0)Bu' (0, 0)BE.
Hence no loose 1-tangle kit (K, ') of order k + 1 exists and so ¢ has width
at most k.

Suppose the algorithm finished at step (A6) with a pair (K,). We claim
that (K, u) is a loose ¥-tangle kit. We have shown that (K, u) satisfies (T1).
It also satisfies (T3) since it passed the test at (A4). Now, suppose (T2)
is not true and there exists (A, B1),..., (A1, Bp-1),(A,B) € K, C =
UZlC; such that Ciu(A;, By), i = 1,...,b, ABCBB, ¥)(C) = Ymin(A, B),
V([Ch,...,C_1,C]) < k, and C MBu(A,B). Take e € C \ u(A, B). Let
Z, € M(AUe, B) be a minimal one. Since A U eBCBB, ¢(Z,) < ¢(C) =
Ymin(A, B). Hence ¥(Z.) = ¥um(A, B). Since Z, minimal, Z.8C. By sub-
modularity of v,

V([C1, ..., Coor, CN)+0(Ze) 2 W([ChNZe, ..., Coo1NZe, CUZ]) +0(Z.UC).
S_ince Z,UC = C and ¥(C) = ¢(Z,), we get Y([C1 N Z,,...,Co_1N Z,,C U
Z.]) < k and it satisfies all condition required in step (A5) of our algorithm.

That contradicts C' Bu(A, B). Hence (K,) satisfies (T2) and it is a loose
-tangle kit of order £ + 1. Il

7 Computing Tree-width

In this section, we show that Theorem 16 implies that it can be determined
in polynomial time whether tree-width of a graph is at most .

17

We restrict our attention to the following subclass of submodular partition
functions. We say that a submodular partition function ¢ is monotone if for
every partiton [A, B, o] of E, ¥ ([A, B,a]) > ¢ ([AU B, a]). We assert that it
is sufficient to study only partitions with at most three parts for a monotone
submodular partition functions.

It is not difficult to show that a monotone submodular partition function
has an optimal decomposition tree where all nodes have degree at most 3.
On the other hand, it is not clear whether a monotone submodular partition
function of width £ can be modified to a submodular partition function of the
same width with k-bounded partitions for b = 3. Despite this, the following
lemma shows that Algorithm 17 works for monotone submodular partition
functions with parameter b = 3.

Lemma 20. Let vy be a monotone submodular partition function on E. Then
Algorithm 17 with parameters k and b = 3 decides correctly whether the width
of ¥ is at most k.

Proof. Let (K,) be the pair constructed by Algorithm 17. If Algorithm 17
stops in step (A4), then there is no loose ¥-tangle kit of order k£ + 1 since the
constructed p is still contained in any loose 1-tangle kit of order k + 1 (see
the proof of Theorem 16).

If Algorithm 17 stops in step (A6), then no loose 1-tangle was found.
Suppose there is a loose ¢-tangle and hence there are (A;, By), ..., (A, By),
(A, B) € K, C = UL_,C; such that CiBu(A;, B;), ABCBB, ¢(C) = tmin(A, B)
and ¥ ([Cy,...,C,,C]) < k but C Bu(A, B). Choose such pairs that their
number p is as small as possible.

Since b = 3, p > 3. Let " = C; U (5. Since 1 is monotone, (C") <
P([C1 U Cy, Cs,...,C,, C)) < Ww([Ch,...,CpC)) < k. By Lemma 8, there
is a pair (A, B’) in K satisfying ABC'B8B’, ¥(C") = ¥mi(A’, B'). Now,
(A1, By), (A, Bs), (A", B'),C" = C1 U Cs satisfy all conditions of step (A4).
Hence C'Bu(A’, B'). To derive a contradiction, consider the following pairs
from K, (A',B'),(As,Bs),...,(Ap, B,), (A, B), and take C = C" U |J}_; C.
Y([CLUCy, Cs, ..., C,, C)) < WU([[Cy,...,Cp, C) < k, which contradicts the
minimality of p.]

Amini et. al. [1] showed that tree-width of a graph G = (V, E') with min-
imum degree at least 2 is characterized by a submodular partition function
dg on E, where dg(«) is the size of the border of a, A(«), defined as

A([A1,...,A)) ={z € V(G) | Brvy,zz € E,ay € Aj,xz € Aj,i # j}
da(e) = |Aa)]

18

The tree-width of GG is the width of d; minus one. It is not hard to see that
dc is a monotone submodular partition function. Therefore, Algorithm 17
can be used to determine whether the tree-width of a graph is at most k£ in
polynomial time.

8 Hardness of Submodular Partition Func-
tions

We first have to define several auxiliary functions before we can establish our
hardness result. Let g, be the function g, : 26 — N for £ = {1,...,2n}
defined as g,(X) = min{|X]|,|X|}. We start our exposition with showing
that g, is submodular.

Lemma 21. The function g, is submodular for every n.

Proof. Consider two subsets X and Y. If both | X| <n and |Y| < n, then

gn(X) + gu(Y) = [X[+ [Y| = [X NY|+ [XUY]
> gn(XNY) + g (X UY).

If both | X| > n and |Y| > n, we get the same result by the symmetry of g.

9n(X) + gn(Y) = gn(X) + ga(Y) 2 ga(X NY) + g (X UY)
=g (X UY)+g,(XNY)

So suppose that |X| > n and |Y| < n. We get

gn(X) +gu(Y) = [X[+ [Y[= [X\ Y]+ Y\ X]+2[X NY]
> g(X\Y) 4+ g.(Y\X) = g.(XNY) + g (X NY)
= g (X UY) + g (X NY).

This finishes the proof.]

The function g,, can be extended to a partition function ¢,, on the ground
set £ ={1,...,2n} by setting

on(a) = max g, (A;).

el

A part A; of a is dominating if g,(A;) = ¢,(«). Note that, if « has a part
with at least n elements, then that part is dominating.
We proceed by showing that the function ¢, is submodular.

19

Lemma 22. The function ¢, is submodular for every n.

Proof. We check the following inequality for all partitions [A, | and [B, f]:
dn([A, a]) + du([B, B]) = ¢n([AU B, N B]) + ¢u([BUA, BN A]).

Since one of A, A and one of B, B has at least n elements, at least one of the
parts AUDB or BUA in this inequality has at least n elements and hence it is
dominating. If both AUB and BUA are dominating, then the submodularity
of ¢,, follows from the submodularity of ¢:

On([A; a]) + ¢n([B, B]) 2 gn(A) + gu(B) = gu(A) + gn(B)
> go(ANB) + g.(AUB) = g,(AUB) + g,(AU B)
= ¢u([AUB,an B]) + ¢,([BUA,BNA)
Suppose that AU B is not dominating, so take an A; € « such that A;N B is
dominating. Since |B| > n and A; C A, it holds that ¢,(A;UB) > g,(BUA).
We use this inequality to prove the submodularity as follows:
> ga(Ai N B) + gu(B U A)
= on([AUB,aN B]) + ¢u([BU A, 3N A])

The case when B U A is not dominating follows by symmetry. O

Values of the function ¢, range between 0 and n. We now truncate the
function and define the following partition function ¢, on £ = {1,...,2n}
as follows:

¢n,k:(05) - min{¢n(&)> k}
Next, we show that the function ¢, stays submodular after the truncation.

Lemma 23. The function ¢, is submodular for every n and k.

Proof. Let us consider two partitions [A, «] and [B, 3] that violates the in-
equality (2):

¢n,k([A7a]) + ¢n,k’([375]) > ¢n,k’(["4 U§7O‘ N B]) + ¢n,k([B UZ,@ N A])

Since ¢n (7)) < ¢n(7y) for all partitions -, at least one of ¢,([A4,a]) or
on([B, B]) is larger than k. If both of them are, then the inequality triv-
ially holds. Suppose that ¢,([A, a]) < k. We will show that at least one of
¢n([AU B,a N B)) or ¢,([BU A, 3N A]) is smaller or equal to ¢,([4, a]).

If |[A] > n, then ¢,([AU B,a N B]) < ¢,([4,a]) since AU B is the
dominating part and g,(A U B) < g,(A) < ¢n([4,a]). If |A] < n, then
o ([BUA, BN A]) < ¢u([A,a]) since BU A is the dominating part and
gn(BUA) < g,(A) < ¢,([A, a]). This finishes the proof. O

20

Now, we use the function ¢, 3 to construct partition functions ¢;, and ¢}, 5
which appear in our hardness result. The function ¢} is defined as

. ¢n3(a) if a has at most three non-empty parts, and
Gp() = ~
3 otherwise.
For a partition 3 of {1,...,2n} into n two-element subsets, the function ¢; ,

is then defined as

¢ns(a) if a has at most three non-empty parts,
Op pla) = 2 if « = 3, and

3 otherwise.
First, we show that these functions are submodular.
Lemma 24. The function @), is submodular for every n.

Proof. Observe the following:

o If ¢, 3(a) =0, then also ¢} (a) = 0.
o If ¢,3(a) = 1, then ¢} () = 1 unless « is a set of singletons where
(@) = 3.

o If ¢, 3(a) = 2, then ¢} (a) = 2 unless o has more than three non-empty
parts and every part of o is a pair or a singleton.

Therefore the functions ¢, 3 and ¢ differ only on partitions consisting of
singletons and pairs.

Let us assume for a contradiction that ¢; is not submodular. Since
oi(a) > ¢ns(a) for all partitions «, the violation of the submodularity is
caused by an increase on the right-hand side of (2). Consider partitions
[A, o] and [B, 3] violating (2). Hence, say, v = [A U B,a N B] is that parti-
tion containing only singletons and pairs. Since 7 has all parts of size at most
two, |B| <2. f ANB =0, then B C A and A C B. Therefore v = [A, a,
[BUA, 3N A] = [B,] and the inequality trivially holds. So we can assume
that |B U A| > |B| and since 2n — 2 < | B| < 2n, by the definition of ¢

$n([B,8]) > o, ([BUA, 3N A]) . (3)

Since the number of non-empty parts of ~ is at least 4, the number
of non-empty parts of [A,a] is at least 3 and therefore ¢} ([A,a]) > 2 by
the definition of ¢*. The submodularity follows from (3) and the fact that
o (1) <3 < ¢([A a]) + 1. 0

21

Lemma 25. The function ¢, 4 is submodular for every n > 4 and for every
partition 3 consisting only of two-element sets.

Proof. Since ¢}, and ¢}, ; differ only on the partition 3 where ¢;,(3) > ¢;, 5(3),
3 has to be on the left-hand side of the inequality (2) to violate it. Let [A, o]
and = [C,~] be the partitions violating (2):

s[4, al) + 67 5((C.7]) = 6 5([AUC,aNC) + 67, 4([C U A,y N A])

Since (3 consists only of two-elements sets, |C| = 2. Therefore, ¢}, ﬁ([Aua, an
C]) < 2. To violate (2) it is neccessary to have ¢, 5([A,a]) < 2. If [A] < 2,
then |[CUA| > 2n—|A| and ¢ 5([CUA,vNA]) < ¢ 5([A, a]), contradicting
the assumption. Therefore A has to have at least 2n — 2 elements and it
follows that ¢} 5([AUC,aNC]) < ¢r 5([A, a]).

IfC' C A, then A C C and ¢;, 5([CUA,yNA]) = ¢;, 5([C,7]), contradicting
the assumption. Therefore |[AUC| > |A| giving ¢}, 5([A, a]) > ¢}, 5([AUC, an
C]). Since ¢, 5(8) +1 =3 > ¢} 5([CUA,vN A]), the inequality (2) holds —
a contradiction. [

In the proof of the main theorem we will use the fact that the width
of the function ¢, is three while the width of the modified function ¢, 5 is
two. To see that width of ¢j, 5 is at most two, just consider the following
decomposition tree T' of ¢;, 5. T" has a root x with n children vy, ..., v, each
v; connected to two leaves corresponding to the two elements in ;. Since
o s(az) = ¢, 5(B) = 2 and ¢}, 5(aw,) = 2, fori =1,...,n, the decomposition
tree T' has width two. In the next lemma, we show that the width of ¢ is
three.

Lemma 26. Forn > 4, the width of ¢ is three.

Proof. Let T be a decomposition tree of ¢! of width smaller than three.
We assume there are no nodes of degree two in 7' since we can contract
them obtaining a smaller decomposition tree of the same width. Since every
internal node v of T' of degree larger than three corresponds to a partition
a, of E with more than three parts (thus ¢} («,) = 3), there are no such
vertices in 1" and T is a ternary tree. Consider an arbitrary internal node v
of T" with less than two leaves as neighbors. There has to be such a vertex
v since there are at most n vertices with two leaves as neighbors but there
are 2(n — 1) internal nodes. For such a vertex v, «, contains a part with at
least three elements and at most 2n — 3 elements implying ¢ (c,,) = 3. This
finishes the proof.]

22

We are now ready to establish our hardness result. We assume the exis-
tence of an algorithm and show that it cannot discover a small discrepancy
between a submodular partition function having width three and two.

Theorem 27. There is no sub-exponential algorithm for determining whether
the width of an oracle-given submodular partition function on a set with 2n
elements is at most two.

Proof. Assume that there exists such a sub-exponential algorithm A and run
A for the submodular partition function ¢;. The algorithm A must clearly
output that the width ¢; is at least three. Since the running time of the
algorithm is sub-exponential, for n sufficiently large, there exists a partition

Bof{l,...,2n} into n two-element subsets such that .4 never queries /3 since
the number of such partitions is
(2n)!

=2n—1)(2n—-3)---3-1>n!
nl2r

and A cannot query all of them because of its running time. However, the
algorithm A for ¢;, ; performs the same steps and thus it outputs that the
width of ¢;, 5 is at least three which is not correct. 1

Using Yao’s principle, Theorem 27 also implies the following lower bound
for randomized algorithms:

Corollary 28. For every randomized algorithm determining whether the
width of an oracle-given submodular partition function on a set with 2n el-
ements is at most two, there exists a submodular partition function v such
that the expected running time of the algorithm for 1 is exponential in n.

Acknowledgement

The author would like to thank Daniel Kral’ for suggesting the problem,
inspiring comments on the topic, and giving me a big blue elephant as a
birthday present.

References

[1] Amini, O., Mazoit, F., Nisse, N., and Thomassé, S.: Submodular Parti-
tion Functions. Accepted to Discrete Mathematics (2008)

[2] Arnborg, S., Lagergren, J., and Seese, D.: Easy problems for tree de-
composable graphs. J. of Algorithms 12, 308-340 (1991)

23

3]

[13]

[14]

Bodlaender, H. : A linear time algorithm for finding tree-decompositions
of small treewidth. STAM J. Computing 25, 1305-1317 (1996)

Bouchitté, V., Kratsch, D., Miiller, H., and Todinca, I.: On treewidth
approximations. Discrete Appl. Math. 136(2-3), 183-196 (2004)

Courcelle, B.: The monadic second-order logic of graph I, Recognizable
sets of finite graphs. Information and Computation 85, 12-75 (1990)

Hlinény, P.: A parametrized algorithm for matroid branch-width. STAM
J. Computing 35(2), 259-277 (2005)

Hlinény, P.: Branch-width, parse trees and monadic second-order logic
for matroids. J. Comb. Theory Series B 96, 325-351 (2006)

Hlinény, P. and Oum, S.: Finding branch-decomposition and rank-
decomposition. STAM J. Computing 38(3), 1012-1032 (2008)

Iwata, S., Fleischer, L., and Fujishige, S.: A combinatorial strongly
polynomial algorithm for minimizing submodular functions. J. ACM 48,
761-777 (2001).

Kral’, D.: Decomposition width — a new width parameter for matroids,
arXiv 0904.2785, 2009.

Orlin, J. B.: A Faster Strongly Polynomial Time Algorithm for Sub-
modular Function Minimization. Proc. 12th International COnference

on Integer Programming and Combinatorial Optimization, Ithaca, NY,
USA, (2007).

Oum, S. and Seymour, P.: Testing branch-width. J. Comb. Theory Se-
ries B 97(3), 385-393 (2007)

Robertson, N. and Seymour, P.: Graph minors. X. Obstructions to tree-
decomposition. J. Comb. Theory Series B 52, 153-190 (1991)

Schrijver, A.: A combinatorial algorithm minimizing submodular func-
tions in strongly polynomial time. J. Comb. Theory Series B 80, 346-355
(2000).

24

