
A note on packing chromatic number of the

square lattice

Roman Soukal 1

Přemysl Holub 2

Abstract.

The concept of a packing colouring is related to a frequency assignment

problem. The packing chromatic number χp(G) of a graph G is the

smallest integer k such that the vertex set V (G) can be partitioned into

disjoint classes X1, . . . , Xk, where vertices in Xi have pairwise distance

greater than i. In this note we improve the upper bound on the packing

chromatic number of the square lattice.

Keywords: Packing chromatic number, Packing colouring, Square lat-

tice

AMS Subject Classification (2000): 05C15, 05C12

1 Introduction

In this paper we consider only simple undirected graphs. We use [1] for ter-

minology and notation not defined here. Let distG(x, y) denote the distance

between vertices x and y in G. The Cartesian product G�H of graphs G and

H is the graph with vertex set V (G)× V (H), where vertices (x, y) and (x′, y′)

1Department of computer science and engineering, Univerzitni 22, 306 14 Pilsen, Czech

Republic, e-mail: soukal@kiv.zcu.cz. Research supported by the Grant Agency of the Czech

Republic - the project GA 201/09/0097.
2Department of Mathematics, University of West Bohemia, and Institute for Theoretical

Computer Science (ITI), Charles University, Univerzitni 22, 306 14 Pilsen, Czech Republic,

e-mail: holubpre@kma.zcu.cz. Research Supported by Grant No. 1M0545 of the Czech

Ministry of Education.

1



are adjacent whenever xx′ ∈ E(G) and y = y′, or x = x′ and yy′ ∈ E(H). For

two infinite paths P1, P2, the Cartesian product P1�P2 is usually called the

(infinite) square lattice.

The concept of the packing colouring comes from the area of frequency plan-

ning in wireless networks, and was introduced by Goddard et al. in [3] under

the name broadcast colouring. The packing chromatic number of a graph G,

denoted by χp(G), is the smallest integer k such that V (G) can be parti-

tioned into k disjoint sets X1, . . . , Xk, where for each pair of vertices x, y ∈ Xi

distG(x, y) > i, for every i = 1, . . . , k. In other words, vertices with the same

colour i are pairwise at distance greater than i.

Goddard et al. showed in [3] that the packing chromatic number of the infinite

square lattice is finite, more precisely between 9 and 23. Fiala and Lidický in

[2] improved the lower bound to 10, and Schwenk in [8] has shown that the

packing chromatic number of the infinite square lattice is at most 22.

Using a computer we found the following result improving the upper bound of

χp(G) for the infinite square lattice.

Theorem 1. Let G be the infinite square lattice. Then χp(G) ≤ 17.

The square pattern on 24 × 24 vertices (see Figure 1) can be copied for the

whole infinite square lattice.

2 Method and algorithm

In [3] it was shown that to decide if, for a general graph G, χp(G) ≤ 4 is NP-

complete. For this problem we used heuristics based on simulated annealing

(SA).

SA is one of methods to determine a suboptimal solution of combinatorial

problems, mostly NP-complete. This means that there is a large space of ac-

ceptable solutions and it is not possible to find a globally optimal solution in

polynomial time. As its name implies, SA exploits an analogy between the way

in which a metal cools and freezes into a minimum energy crystalline struc-

2



ture (the annealing process) and the search for a minimum in a more general

system. The algorithm is based upon that of Metropolis et al. [6], which was

originally proposed as a means of finding the equilibrium configuration of a

collection of atoms at a given temperature. The connection between this al-

gorithm and mathematical minimization was first noted by Pincus [7], but it

was Kirkpatrick et al. [4] who proposed that it form the basis of an optimiza-

tion technique for combinatorial (and other) problems. SA’s major advantage

over other methods is an ability to avoid becoming trapped at local minima.

The algorithm employs a random search which not only accepts changes that

decrease objective function f , but also some changes that increase it. For

more information about SA we refer to [5]. The main idea of SA algorithm

is that we iteratively search for a xmin ∈ D(f) (where D(f) is a definition

scope of an objective function f) such that f(xmin) is as close as possible to

the minimum of f(x). The searching process is based on a degression of a

temperature t. For a fixed t there are several iterations and in each of these

iterations we choose an arbitrary xp from a neighbourhood of current xmin

(the radius of the neighbourhood depends on a current iteration, higher itera-

tion means smaller neighbourhood). A new xp is accepted with a probability

p = e
f(xmin)−f(xp)

t which means, that a better solution (xp with smaller value of

f(x)) is accepted automatically (p ≥ 1) and a worse solution is accepted with

a specific probability, which decreases with lower temperature t.

3 Algorithms

In this section we present a pseudocode of used algorithms. This variation

of SA algorithm gives us a colouring of a square pattern that we can repeat

for the whole infinite square lattice, and the obtained colouring is a packing

colouring. Hence we can fill an infinite square grid (each square on 24 × 24

vertices), where each square is represented by our square pattern. The main

idea is to colour as many vertices of a (partially filled) square pattern with a

current colour c as possible. We have a list of the best found patterns and we

3



memorize each pattern (up to symmetric patterns) with maximum number of

vertices coloured with c in this list. Thus we start with putting a colour one

into an empty square pattern, then we continue with putting a colour 2 into a

pattern (patterns) filled with colour one, etc., until at least one pattern from

the list of the best found patterns is whole coloured.

In the pseudocode of Algorithm 1 we use two lists of patterns. The list Γ is

a list of the best found patterns (with the most number of coloured vertices)

after colouring with colour (c− 1). The list ∆ is a list of currently best found

patterns after colouring with c. We also define the following functions:

(i) NonColoured (pattern K) - gives the number of non-coloured vertices in

a pattern K.

(ii) FreeForColour (colour c, pattern K) - gives the number of vertices of

K which can be coloured with a colour c. Note that if none of the

vertices of K is coloured with c, then FreeForColour (colour c, pattern

K) = NonColoured (pattern K), and, on the other hand, if there is a

vertex in K coloured with c, then non-coloured vertices at distance not

greater than c cannot be coloured with c, hence FreeForColour (colour

c, pattern K) < NonColoured (pattern K).

(iii) PlantColour (pattern K, colour c, temperature t) - puts current colour

c in K under a temperature t and returns a modified pattern L. Note

that there is no vertex in L which can be coloured with c.

For a current colour c and for each K ∈ Γ we use the function PlantColour

(pattern K, colour c, temperature t) repeatedly, each time with a different

temperature t (the value of t is decreasing), and we memorize a new list of

patterns ∆. The list ∆ contains patterns in which we placed the current colour

c the most times. If we find a new pattern in which we used the colour c the

same number of times as in patterns in ∆, we add this pattern into ∆. If we

find a new pattern in which we used the colour c more times than in patterns

in ∆, we clear the list ∆ and add this new pattern in it. This means that each

patterns K from the list ∆ has the same (and the smallest found) value of the

function NonColoured (pattern K).

4



The procedure for colouring of a pattern K with a current colour c is based

on the following method, where we set a pattern L as a copy of K. In k

iterations, we are looking for a vertex v which we colour with c. In each

iteration we choose an arbitrary vertex w of L, we get f(w) = FreeForColour

(colour c, pattern L after colouring of w with c), and we accept this vertex w

(and set v = w) with a probability p = e
f(v)−f(w)

t (see SA algorithm), where

f(v) = FreeForColour(c, L after colouring of v with c). Note that in the first

iteration we accept w automatically. After k iterations we colour the vertex v

with c and we repeat this method until FreeForColour (colour c, pattern L)

= 0. When FreeForColour (colour c, pattern L) = 0, we return L to Algorithm

1.

Remark

Let us note that we used this algorithm also for other shapes of pattern, e.g.,

rectangular patterns on 16× 24, 24× 32 vertices and also a square pattern on

32×32 vertices. However, the square pattern on 24×24 vertices gave the best

solutions.

5



1 2 1 3 1 2 1 10 1 4 1 9 1 2 1 3 1 2 1 5 1 4 1 14

7 1 5 1 6 1 3 1 2 1 3 1 8 1 5 1 4 1 3 1 2 1 3 1

1 3 1 2 1 4 1 7 1 5 1 2 1 3 1 2 1 11 1 6 1 10 1 2

4 1 9 1 3 1 2 1 3 1 6 1 4 1 7 1 3 1 2 1 3 1 5 1

1 2 1 15 1 5 1 11 1 2 1 3 1 2 1 17 1 5 1 4 1 2 1 3

6 1 3 1 2 1 3 1 4 1 14 1 5 1 3 1 2 1 3 1 7 1 8 1

1 5 1 4 1 16 1 2 1 3 1 2 1 10 1 4 1 13 1 2 1 3 1 2

3 1 2 1 3 1 6 1 5 1 7 1 3 1 2 1 3 1 9 1 5 1 4 1

1 7 1 10 1 2 1 3 1 2 1 4 1 6 1 5 1 2 1 3 1 2 1 11

2 1 3 1 5 1 4 1 8 1 3 1 2 1 3 1 7 1 4 1 6 1 3 1

1 4 1 2 1 3 1 2 1 9 1 5 1 11 1 2 1 3 1 2 1 12 1 5

3 1 6 1 13 1 7 1 3 1 2 1 3 1 4 1 8 1 5 1 3 1 2 1

1 2 1 3 1 2 1 5 1 4 1 15 1 2 1 3 1 2 1 10 1 4 1 9

8 1 5 1 4 1 3 1 2 1 3 1 7 1 5 1 6 1 3 1 2 1 3 1

1 3 1 2 1 11 1 6 1 10 1 2 1 3 1 2 1 4 1 7 1 5 1 2

4 1 7 1 3 1 2 1 3 1 5 1 4 1 9 1 3 1 2 1 3 1 6 1

1 2 1 17 1 5 1 4 1 2 1 3 1 2 1 14 1 5 1 11 1 2 1 3

5 1 3 1 2 1 3 1 7 1 8 1 6 1 3 1 2 1 3 1 4 1 15 1

1 10 1 4 1 9 1 2 1 3 1 2 1 5 1 4 1 16 1 2 1 3 1 2

3 1 2 1 3 1 12 1 5 1 4 1 3 1 2 1 3 1 6 1 5 1 7 1

1 6 1 5 1 2 1 3 1 2 1 11 1 7 1 10 1 2 1 3 1 2 1 4

2 1 3 1 7 1 4 1 6 1 3 1 2 1 3 1 5 1 4 1 8 1 3 1

1 11 1 2 1 3 1 2 1 13 1 5 1 4 1 2 1 3 1 2 1 9 1 5

3 1 4 1 8 1 5 1 3 1 2 1 3 1 6 1 12 1 7 1 3 1 2 1

Figure 1: A pattern on 24 × 24 vertices.

6



Input: size of a pattern n

simulated annealing algorithm constants tmin, tmax, q (tmax > tmin > 0, q ∈ (0, 1)

Output: Γ - list of the best found patterns

// initialization step

Γ := empty list of the best found patterns;

pattern K := new pattern; // a null squared matrix of order n

add K to Γ;

colour c := 1; // c is a current colour

// end of the initialization step

// value of function nonColoured(K) is the same for all patterns K in Γ

// L is the first pattern in Γ

while nonColoured(L) > 0 do
∆ := empty list of patterns;

int p := nonColoured(L);

int m := 0; // m is a maximum number of coloured vertices with current colour c

foreach K in Γ do
t := tmax;

while t > tmin do

T := plantColour(K, c, t); // colour vertices of K with c - see Algorithm 2

int a := p - nonColoured(T ); // a is number of vertices coloured with c in T

if a >= m then

// better possibility for colour c than patterns in ∆

if a > m then

∆ := empty list of patterns; // ∆ is cleared

m := a; // a is a new maximum number of vertices coloured with c

end

if T 6∈ ∆ then
add T to ∆;

end

end

t := t ∗ q; // decrease temperature t

end

end

Γ := ∆; // put all the best found patterns from ∆ to Γ

c := c + 1; // set a new colour c

end

return Γ; // return a list of the best found patterns

Algorithm 1: Main algorithm for determining a pattern of packing

colouring of the square lattice

7



Input: the original pattern K

the current colour c

the simulated annealing parameter t (temperature)

Auxiliary: the simulated annealing algorithm constant k (number of iterations)

Output: pattern L - the original pattern K coloured with c

L := K; // L is a copy of K

// while there is at least one vertex in L which can be coloured with c

while freeForColour(c,L) > 0 do
v := null; // v is a vertex colourable with c, at the beginning we have no such a vertex

// f(v) is a number of vertices we lose for colouring with c while we colour v with c

// at the beginning f(v) is set as a maximum int value, because it will be minimized

int f(v) := max int value;

for i = 1 to k do
w := randomly chosen vertex from L which can be coloured with c;

// f(w) is a number of vertices we lose for colouring with c while we colour w with c

int f(w) := freeForColour(c,L) − freeForColour(c,L with coloured w);

// SA accepts possibility with probability p = e
f(v)−f(w)

t

// if f(v) > f(w) then p > 1 and better possibility is accepted automatically

if random(0, 1) < e
f(v)−f(w)

t then

f(v) := f(w);

v := w;

end

end

colour vertex v with c;

end

return L;

Algorithm 2: Function plantColour(K, c, t)

8



References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications.

Macmillan, London and Elsevier (1976).

[2] J. Fiala, B. Lidický, Packing chromatic number for lattices.

Abstract in: Workshop Cycles and Colourings 2007 (I. Fabrici, M. Horňák,

S. Jendrol’, eds.), IM Preprint, series A, No. 8/2007.

[3] W. Goddard, S.M.Hedetniemi, S.T.Hedetniemi, J.M.Harris, D.F.Rall,

Broadcast chromatic numbers of Graphs.

Ars Combin. 43 (1996), 149-157.

[4] S. Kirkpatrick, C.D. Gerlatt Jr., M.P. Vecchi, Optimization by Simulated

Annealing.

Science 220 (1983), 671-680.

[5] P.J.M. van Laarhoven, E.H.L. Aarts, Simulated Annealing: Theory and

Applications.

Reidel, Dordrecht, Holland (1987).

[6] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller,

Equations of State Calculations by Fast Computing Machines.

J. Chem. Phys. 21 (1953), 1087-1092.

[7] M. Pincus, A Monte Carlo Method for the Approximate Solution of Cer-

tain Types of Constrained Optimization Problems.

Oper. Res. 18 (1970), 1225-1228.

[8] A. Schwenk, personal communication, 2002.

9


