Edge-closure concept in claw-free graphs and stability of forbidden subgraphs

Jan Brousek, Přemysl Holub ^{1,2}

February 10, 2006

Abstract.

Ryjáček introduced a closure concept in claw-free graphs based on local completion of a locally connected vertex. Connected graphs A, for which the class of (C, A)-free graphs is stable under the closure, were completely characterized. In this paper, we introduce a variation of the closure concept based on local completion of a locally connected edge of a claw-free graph. The closure is uniquely determined and preserves the value of the circumference of a graph. We show that the class of (C, A)-free graphs is stable under the edge-closure if $A \in \{H, P_i, N_{i,j,k}\}$.

Keywords: Closure concept, Edge-closure concept, Hamiltonicity, Stable property

AMS Subject Classification (2000): 05C45, 05C35

1 Introduction

In this paper, we consider only finite undirected graphs without loops and multiple edges. We use [1] for terminology and notations not defined here. The *circumference* of a graph G, denoted c(G), is the length of a longest

¹Department of Mathematics, University of West Bohemia, and Institute for Theoretical Computer Science (ITI), Charles University, Universityi 22, 306 14 Pilsen, Czech Republic, e-mail: {holubpre, brousek}@kma.zcu.cz

²Research Supported by Grant No. 1M0021620808 of the Czech Ministry of Education.

cycle in G. A cycle on n vertices is denoted by C_n . A hamiltonian cycle is a cycle in G on |V(G)| vertices. A graph G is said to be hamiltonian, if c(G) = |V(G)|. For a nonempty set $A \subseteq V(G)$, the induced subgraph on A in G is denoted by $\langle A \rangle_G$. The line graph of a graph G is denoted by L(G). We denote by P_i the path on i vertices and we say that the length of a path P is the number of edges of P. For any $A \subset V(G)$, G-A stands for the graph $\langle V(G) \setminus A \rangle_G$. An edge xy is pendant if $d_G(x) = 1$ or $d_G(y) = 1$.

For a connected graph H, a graph G is said to be H-free, if G does not contain a copy of H as an induced subgraph; the graph H will be also referred to in this context as a forbidden subgraph. The graph $K_{1,3}$ will be called the claw and in the special case $H = K_{1,3}$ we say that G is claw-free. The list of frequently used forbidden subgraphs is shown in Figure 1.

Figure 1: Frequently used forbidden subgraphs

Let $x \in V(G)$. The neighbourhood of x, denoted $N_G(x)$, is the set of all vertices adjacent to x. For a nonempty set $A \subset V(G)$, $N_G(A)$ denotes the set of all vertices of G-A adjacent to at least one vertex of A, and $N_G[A] = N_G(A) \cup A$. For an edge $xy \in E(G)$ we set $N_G(xy) = N_G(\{x,y\})$

and $N_G[xy] = N_G[\{x,y\}]$. A vertex $x \in V(G)$ is said to be locally connected if $\langle N_G(x) \rangle$ is connected. A graph G is locally connected if every vertex of G is locally connected. Analogously we define local connectivity of an edge of G. An edge $xy \in E(G)$ is locally connected if $\langle N_G(xy) \rangle$ is connected. A graph G is edge-locally connected if every edge of G is locally connected. For an arbitrary vertex $x \in V(G)$, let $B_x = \{uv | u, v \in N_G(x), uv \notin E(G)\}$ and $G_x = (V(G), E(G) \cup B_x)$. The graph G_x is called the local completion of G at x. A locally connected vertex x with $B_x \neq \emptyset$ is called eligible (in G). We say that a graph F is a closure of G, denoted $F = \operatorname{cl}(G)$, if there is no eligible vertex in F and there is a sequence of graphs G_1, \ldots, G_t and vertices x_1, \ldots, x_{t-1} such that $G_1 = G$, $G_t = F$, x_i is an eligible vertex of G_i and $G_{i+1} = (G_i)_{x_i}$, $i = 1, \ldots t-1$ (equivalently, $\operatorname{cl}(G)$) is obtained from G by a series of local completions at eligible vertices, as long as this is possible). The following basic result was proved by Ryjáček.

Theorem A [9]. Let G be a claw-free graph. Then

- (i) cl(G) is well-defined (i.e., uniquely determined),
- (ii) there is a triangle-free graph F such that cl(G) = L(F),
- (iii) $c(G) = c(\operatorname{cl}(G))$.

Consequently, if G is claw-free, then so is cl(G), and G is hamiltonian if and only if so is cl(G). A claw-free graph G, for which G = cl(G), will be called *closed*. As an immediate consequence of Theorem A can be shown the following:

Theorem B [8]. Let G be a connected locally connected claw-free graph. Then G is hamiltonian.

Let \mathcal{C} be a subclass of the class of claw-free graphs. We say that the class \mathcal{C} is stable under the closure (or simply stable) if $\operatorname{cl}(G) \in \mathcal{C}$ for every $G \in \mathcal{C}$. Clearly, the class of CA-free graphs is trivially stable if A is not claw-free or if A is not closed. For the proofs of stability of several graph classes we use the following notation. For an induced subgraph A of G, we say that A is

permanent induced subgraph of G (or simply permanent), if $\langle V(A) \rangle_{cl(G)} \simeq A$. The classes of CZ_2 -free graphs, CB-free graphs and CN-free graphs were extended in [5] as follows. We denote by (see also Fig. 2):

- Z_i , $(i \ge 1)$ the graph which is obtained by identifying a vertex of a triangle with an end vertex of a path of length i
- $B_{i,j}$, $(i \ge j \ge 1)$ the generalized (i,j)-bull, i.e. the graph which is obtained by identifying each of some two distinct vertices of a triangle with an end vertex of one of two vertex-disjoint paths of lengths i,j
- $N_{i,j,k}$, $(i \ge j \ge k \ge 1)$ the generalized (i,j,k)-net, i.e. the graph which is obtained by identifying each vertex of a triangle with an end vertex of one of three vertex-disjoint paths of lengths i,j,k.

Figure 2: Generalized subgraphs Z_i , $B_{i,j}$ and $N_{i,j,k}$

Thus, $B_{1,1} \simeq B$ and $N_{1,1,1} \simeq N$. We will always keep the labeling of the vertices of the graphs Z_i , $B_{i,j}$ and $N_{i,j,k}$ as shown in Fig. 2.

Brousek, Ryjáček and Schiermeyer characterized all connected closed clawfree graphs A for which the CA-free class is stable. **Theorem C** [6]. Let A be a closed connected claw-free graph. Then G being CA-free implies cl(G) is CA-free if and only if

$$A \in \{H, C_3\} \cup \{P_i | i \ge 3\} \cup \{Z_i | i \ge 1\} \cup \{N_{i,j,k} | i, j, k \ge 1\}.$$

The importance of the class of CH-free graphs is shown in the following theorem. Note that the hamiltonicity in general 4-connected claw-free graphs is still an open problem introduced by Thomassen [10] and Matthews and Sumner [7]. For more stable classes and stable properties we refer to [4].

Theorem D [2]. Every 4-connected C H-free graph is hamiltonian.

Let G' be a closed claw-free graph. The order of a largest clique in G' containing an edge e will be denoted by $\omega_{G'}(e)$. Let C be an induced cycle in G' of length k. We say that the cycle C is eligible in G' if $4 \le k \le 6$ and $\omega_{G'}(e) = 2$ for at least k - 3 nonconsecutive edges $e \in E(C)$. For an eligible cycle C in G' let $B_C = \{uv | u, v \in N_{G'}[C], uv \notin E(G')\}$. The graph $G_C = (V(G'), E(G') \cup B_C)$ is called the C-completion of G' at C. For a claw-free graph G, the graph F is a cycle closure of G, denoted $F = \operatorname{cl}_C(G)$, if there is a sequence of graphs G_1, \ldots, G_t such that

- (i) $G_1 = cl(G)$,
- (ii) $G_{i+1} = \operatorname{cl}((G_i)_C)$ for some eligible cycle C in G_i , $i = 1, \ldots, t-1$,
- (iii) $G_t = F$ contains no eligible cycle.

Broersma and Ryjáček proved the following:

Theorem E [3]. Let G be a claw-free graph. Then

- (i) $\operatorname{cl}_C(G)$ is well-defined,
- (ii) $c(G) = c(\operatorname{cl}_C(G))$.

Consequently, a claw-free graph G is hamiltonian if and only if $\operatorname{cl}_C(G)$ is hamiltonian.

In Section 2 we will prove an analogous result for the edge-closure and, in Section 3, we will show that the classes of CH-free graphs, CP_i -free graphs

and $CN_{i,j,k}$ -free graphs are stable under the edge-closure for any $i, j, k \geq 1$. The class of $CB_{i,j}$ -free graphs is not stable for any $i, j \geq 1$.

2 The concept of edge-closure in claw-free graphs

Let G be a claw-free graph and let $xy \in E(G)$. Let $B_{xy} = \{uv | u, v \in N_G[xy], uv \notin E(G)\}$. The edge xy is called *eligible* in G if xy is locally connected in G, $B_{xy} \neq \emptyset$ and xy is not a pendant edge. Let $G_{xy} = (V(G), E(G) \cup B_{xy})$. The graph G_{xy} is called the *local completion* of G at xy.

The following lemma shows that the circumference and the claw-freeness of a claw-free graph G are not affected by local completion of G at an eligible edge of G.

Lemma 1. Let G be a claw-free graph and let xy be a locally connected edge of G such that $\langle N_G[xy] \rangle$ is not complete. Let $B_{xy} = \{uv | u, v \in N_G[xy], uv \notin E(G)\}$ and let G' be the graph with V(G') = V(G) and $E(G') = E(G) \cup B_{xy}$. Then

- (i) the graph G' is claw-free,
- $(ii) \ c(G) = c(G').$

Proof.

1. Suppose that G' is not claw-free. Let H be a claw in G'. Since G is claw-free, $|E(H) \cap B_{xy}| \geq 1$. Since $\langle N_G[xy] \rangle$ is a clique, $|E(H) \cap B_{xy}| \leq 1$. Let $\{z, z_1, z_2, z_3\}$ denote the vertex-set of H, where $zz_1 \in B_{xy}$. Clearly $z_2, z_3 \notin N_G[xy]$, since otherwise $z_1z_2 \in E(G')$ or $z_1z_3 \in E(G')$, a contradiction. If $z_2z_3 \in E(G)$, then clearly $z_2z_3 \in E(G')$, a contradiction again. Since $zz_1 \in B_{xy}$, $z \in N_G[xy]$, and $xz \in E(G)$ or $yz \in E(G)$. But then $\langle \{z, x, z_2, z_3\} \rangle$ or $\langle \{z, y, z_2, z_3\} \rangle$ is a claw in G, which is a contradiction. Hence G' is claw-free.

- 2. Clearly $c(G) \leq c(G')$. Consider a locally connected edge xy with incomplete neighbourhood.
 - Suppose that both vertices x, y are locally connected in G. Then, using the Ryjáček's closure [9], we complete $N_G(x)$. Let G_1 denote the local completion of G at x. Clearly $N_G[x] \subset N_{G_1}[y]$ and $N_{G_1}[y] = N_G[xy]$. Let G_2 denote the local completion of G_1 at y. Clearly $N_{G_2}[x] = N_{G_2}[y] = N_G[xy]$ and $\langle N_{G_2}[xy] \rangle$ is complete. By Theorem A, $c(G) = c(G_2)$. Since $G' = G_2$, we obtain c(G) = c(G').
 - Suppose that x is locally connected in G, but y not. Let G_1 denote the local completion of G at x. Clearly xy is locally connected in G_1 . Since y is not locally connected in G and G is claw-free, the subgraph $\langle N_G(y) \rangle$ consists of exactly two cliques. Let C_1 denote the clique of $\langle N_G(y) \rangle$ such that $x \in V(C_1)$, let C_2 denote the other clique of $\langle N_G(y) \rangle$. Note that $V(C_2) \cap N_G(x) = \emptyset$, since y is not locally connected in G. Since $x \in N_G(y)$, $N_{G_1}[x] \subset N_{G_1}[y]$. Since xy is locally connected in G, there is an edge uv in G between C_2 and $\langle N_G(x) \rangle y$, where $u \in V(C_2)$ and $v \in N_G(x) \setminus \{y\}$. Since $u, v \in N_{G_1}(y)$, the vertex y is locally connected in G_1 . After local completion of G_1 at y and using the same argument as in the previous case we obtain c(G) = c(G'). Symmetrically we obtain c(G) = c(G') if y is locally connected but x not.
 - Suppose that none of x, y is locally connected. Since G is clawfree, each of $\langle N_G(x) \rangle$ and $\langle N_G(y) \rangle$ consists of exactly two cliques. Let C_1 denote the clique of $\langle N_G(x) \rangle$ such that $y \in V(C_1)$, let C_2 denote the other clique of $\langle N_G(x) \rangle$. Let D_1 denote the clique of $\langle N_G(y) \rangle$ such that $x \in V(D_1)$, let D_2 denote the other clique of $\langle N_G(y) \rangle$.

Now we show that $V(C_2) \cap V(D_2) = \emptyset$. Suppose that $z \in V(C_2) \cap V(D_2)$. Hence z is a neighbour of both x and y. But

the edge zy is an edge between C_1 and C_2 , which makes the vertex x locally connected in G, a contradiction.

Since C_1 is a clique, every vertex in $V(C_1) \setminus \{y\}$ is adjacent to both x and y, implying $(V(C_1) \setminus \{y\}) \subset V(D_1)$. Symmetrically $(V(D_1) \setminus \{x\}) \subset V(C_1)$.

Suppose that there is a vertex $z \in V(G)$ such that $z \in V(C_1) \cap V(D_1)$. Since xy is locally connected, there is an edge between z and a vertex $c \in (V(C_2) \cup V(D_2))$. But then x or y is locally connected, a contradiction.

Hence $V(C_1) = \{y\}$ and $V(D_1) = \{x\}$. Clearly $\omega_G(xy) = 2$. Since xy is locally connected, there is an edge ef between C_2 and D_2 such that $e \in V(C_2)$ and $f \in V(D_2)$. Now we consider the cycle $C = \langle \{x, y, f, e\} \rangle$. By the definition of an eligible cycle, the cycle C is eligible in C. Using the local completion of C at C we obtain a graph C1. Clearly C2 is C3. By Theorem C4, C4, and hence C5 is C6.

Now we define the main concept of this paper. Let G be a claw-free graph. We say that a graph F is an *edge-closure* of G, denoted $F = \operatorname{cl}'(G)$, if

- (i) there is a sequence of graphs G_1, \ldots, G_t and edges $e_1, \ldots e_{t-1}$ such that $G_1 = G$, $G_t = F$, e_i is an eligible edge in G_i and $G_{i+1} = (G_i)_{xy}$, $i = 1, \ldots, t-1$,
- (ii) there is no eligible edge in G_t .

Equivalently, cl'(G) is obtained from G by a series of local completions at eligible edges, as long as this is possible.

Theorem 1. Let G be a claw-free graph. Then

- (i) the closure cl'(G) is well defined,
- (ii) $c(G) = c(\operatorname{cl}'(G)).$

Proof.

1. Let G_1 , G_2 be two edge-closures of G, suppose that $E(G_1) \setminus E(G_2) \neq \emptyset$. Let H_1, \ldots, H_t be the sequence of graphs that yields G_1 . Let i be the smallest integer for which $E(H_i) \setminus E(G_2) \neq \emptyset$ and let e = uv be an edge such that $e \in E(H_i) \setminus E(G_2)$. Then, since $e \in E(H_i)$, $u, v \in N_{H_{i-1}}[xy]$, where xy is eligible in H_{i-1} . But then, since $E(\langle N_{H_{i-1}}(xy) \rangle) \subset E(H_{i-1}) \subset E(G_2)$, $\langle N_{G_2}(xy) \rangle$ is connected. Hence $e = uv \in E(G_2)$, a contradiction

2. Immediately by Lemma 1, part (ii).

Corollary 1. Let G be a claw-free graph. Then G is hamiltonian if and only if cl'(G) is hamiltonian.

Corollary 2. Let G be a connected edge-locally connected claw-free graph. Then G is hamiltonian.

The following examples show the independence between the closure introduced by Ryjáček in [9] and the edge-closure (i.e., none of the closures can be obtained by using the other one). The graph G_1 shown in Fig. 3 (a) has no eligible vertex (i.e. $\operatorname{cl}(G_1) = G_1$) and exactly one eligible edge xy. Using the edge-closure we obtain a complete graph K (i.e. $\operatorname{cl}'(G_1) = K$). The class of graphs shown in Fig. 3 (b) contains graphs with no eligible vertices, but $\operatorname{cl}'(G)$ is complete again. Elliptical parts represent cliques of order at least two. Note that in both cases $\operatorname{cl}(G) = G$, but $\operatorname{cl}'(G)$ is complete.

The class of graphs shown in Fig. 4 (a) contains graphs such that each vertex of such graph is eligible, but not every edge of such a graph is eligible. Using the closures on such a graph we obtain that both closures of such a graph are cliques. The graph shown in Fig. 4 (b) has four eligible vertices, no eligible edge, and cl(G) is a clique. Elliptical part represents a clique of order at least two.

Figure 3: Closed graphs with eligible edges

3 Stability of forbidden subgraphs

Theorem 2. Let G be a CP_i -free graph (i > 1) and let $xy \in E(G)$ be an eligible edge. Then the graph G_{xy} is CP_i -free.

Proof. If G is CP_i -free, then, by Lemma 1, G_{xy} is claw-free. Suppose that $H = \langle \{a_1, a_2, \ldots, a_i\} \rangle_{G_{xy}}$ is an induced path in G_{xy} and let $B_{xy} = E(G_{xy}) \setminus E(G)$. Since H is induced in G_{xy} and G is P_i -free, $|E(H) \cap B_{xy}| \geq 1$. But $\langle N_G[x,y] \rangle_{G_{xy}}$ is a clique and H is an induced path, hence $|E(H) \cap B_{xy}| \leq 1$. Let $E(H) \cap B_{xy} = a_s a_{s+1}$, where $1 \leq s \leq i-1$. If $a_t \in N_G[x,y] \cap V(H)$ for some $t \neq s, s+1$, then $a_t a_s, a_t a_{s+1} \in E(G_{xy})$, which contradicts the fact that H is an induced path. Hence $V(H) \cap N_G[x,y] = \{a_s, a_{s+1}\}$. Consider the following cases:

Case 1: $\{x,y\} \in V(H)$. Then the only possibility (up to symmetry) is that $i=2, x=a_1$ and $y=a_2$ since otherwise H is not an induced path. But $xy \in E(G)$, which contradicts the fact that G is P_i -free.

Case 2: $|\{x,y\}\cap V(H)|=1$. Up to symmetry we can suppose that $x\in V(H)$. Then $x=a_1$ or $x=a_i$ since otherwise H is not an induced path in G_{xy} . Up to symmetry suppose that $x=a_1$. Clearly $a_s=x$, $a_{s+1}=a_2$. This yields y,a_2,\ldots,a_i to be an induced path on i vertices in G. This

Figure 4: Graphs with complete closure

is a contradiction.

Case 3: $\{x,y\} \cap V(H) = \emptyset$. If both vertices a_s, a_{s+1} have a common neighbour on the edge xy, say x, then the path $a_1, \ldots, a_s, x, a_{s+1}, \ldots, a_i$ is an induced path of length i in G, a contradiction. Symmetrically we obtain a contradiction if we consider the vertex y instead of x. Up to symmetry suppose that $a_sx \in E(G)$ and $a_{s+1}y \in E(G)$. Since $xa_{s+1} \notin E(G)$ and $ya_s \notin E(G)$, the path $a_1, \ldots, a_s, x, y, a_{s+1}, \ldots, a_i$ is an induced path of length i+1 in G, a contradiction.

Note that CP_i -free graphs for i = 1, 2, 3 are trivial.

Theorem 3. Let G be a $CN_{i,j,k}$ -free graph $(i \geq j \geq k \geq 1)$ and let $xy \in E(G)$ be an eligible edge. Then the graph G_{xy} is $CN_{i,j,k}$ -free.

Proof. If G is $CN_{i,j,k}$ -free, then, by Lemma 1, G_{xy} is claw-free. Suppose

that $H = \langle \{b_1, b_2, b_3, a_1^1, \dots, a_1^i, a_2^1, \dots, a_2^j, a_3^1, \dots, a_3^k\} \rangle_{G_{xy}} \simeq N_{i,j,k}$ and let $B_{xy} = E(G_{xy}) \setminus E(G)$. Let $B_{xy}^H = B_{xy} \cap E(H)$. Clearly $|B_{xy}^H| \geq 1$.

Suppose that $\{x,y\} \subset V(H)$. But then, in any case, the subgraph $\langle N_G[xy] \rangle_{G_{xy}}$ is complete, implying H is not induced in G_{xy} , a contradiction.

Now suppose that $|V(H) \cap \{x,y\}| = 1$. Up to symmetry we can suppose that $x \in V(H)$ but y not. Clearly $N_G(xy) \cap V(H) = 1$, since otherwise H is not induced in G_{xy} . This implies that $x \in \{a_1^i, a_2^j, a_3^k\}$. Up to symmetry suppose that $x = a_3^k$. Clearly $|B_{xy}^H| = 1$, since otherwise H is not induced in G_{xy} . Suppose first that k = 1. Then y is adjacent to b_3 and $B_{xy}^H = \{b_3a_3^1\}$, since otherwise H is not induced in G_{xy} . Then $\{b_1, b_2, b_3, a_1^1, \ldots, a_1^i, a_2^1, \ldots, a_2^j, y\}$ induces an $N_{i,j,k}$ in G, a contradiction. Now we suppose that $k \geq 2$. Clearly $a_3^{k-2}x \notin E(G)$ and $a_3^ky \notin E(G)$, since otherwise H is not induced in G_{xy} . Hence $B_{xy}^H = \{a_3^{k-1}a_3^k\}$ and $a_3^{k-1}y \in E(G)$. But then $\{b_1, b_2, b_3, a_1^1, \ldots a_1^i, a_2^1, \ldots, a_2^j, a_3^1, \ldots, a_3^{k-1}, y\}$ induces an $N_{i,j,k}$ in G, a contradiction.

Hence none of the vertices x, y belongs to H. Put $b_1 = a_1^0, b_2 = a_2^0$ and $b_3 = a_3^0$ and let $a_r^s a_t^u \in B_{xy}^H$. Suppose first that s > 0 or u > 0. Then clearly $|B_{xy}^H| = 1$, since otherwise H is not an induced $N_{i,j,k}$ in G_{xy} . Suppose that $B_{xy}^H = \{a_r^s a_t^u\},$ $r, t \in \{1, 2, 3\}$ and $s, u \in \{1, 2, \dots, i\}$ if $r, t = 1, s, u \in \{1, 2, \dots, j\}$ if r, t = 2, and $s, u \in \{1, 2, ..., k\}$ if r, t = 3. Clearly r = t and |s - u| = 1, since otherwise H is not an induced $N_{i,j,k}$ in G_{xy} . Up to symmetry suppose that r=3and u = s + 1. If one of the vertices x, y, say x, is adjacent to both vertices a_3^s and a_3^{s+1} , then $\{b_1, b_2, b_3, a_1^1, \ldots, a_1^i, a_2^1, \ldots, a_2^j, a_3^1, \ldots, a_3^s, x, a_3^{s+1}, \ldots, a_3^k\}$, or $\{b_1, b_2, b_3, a_1^1, \dots, a_1^i, a_2^1, \dots, a_2^j, x, a_3^1, \dots, a_3^k\}$ for s = 0, induces an $N_{i,j,k+1}$ in G, a contradiction. Up to symmetry suppose that $xa_3^s \in E(G), ya_3^{s+1} \in$ $E(G), xa_3^{s+1} \notin E(G) \text{ and } ya_3^s \notin E(G). \text{ But then } \{b_1, b_2, b_3, a_1^1, \ldots, a_1^i, a_2^i, \ldots, a_1^i, \ldots, a_1$ \ldots , $a_2^j, a_3^1, \ldots, a_3^s, x, y, a_3^{s+1}, \ldots, a_3^k$, or $\{b_1, b_2, b_3, a_1^1, \ldots, a_1^i, a_2^1, \ldots, a_2^j, x, y, a_3^1, \ldots, a_3^i, a_3^i, a_3^i, \ldots, a_3^i, a_3^$ $\ldots a_3^k$ for s=0, induces an $N_{i,j,k+2}$ in G, a contradiction. Hence we have s = u = 0, i.e., $B_{xy}^H \subset \{b_1b_2, b_1b_3, b_2b_3\}$. Moreover $xa_r^s, ya_r^s \notin E(G), r =$ 1 and $s=1,\ldots,i,\,r=2$ and $s=1,\ldots,j,\,r=3$ and $s=1,\ldots,k$ since otherwise H is not an induced $N_{i,j,k}$. We consider the following cases.

Case 1: $|B_{xy}^H| = 1$. Without loss of generality we can suppose that $B_{xy}^H =$

 $\{b_1b_2\}$. Then $\langle\{b_3,b_1,b_2,a_3^1\}\rangle$ is an induced claw in G, a contradiction. Case 2: $|B_{xy}^H|=2$. Without loss of generality suppose that $B_{xy}^H=\{b_1b_2,b_1b_3\}$. Now, up to symmetry, suppose that $b_2x\in E(G)$, $b_3y\in E(G)$, $b_3x\not\in E(G)$, $b_2y\not\in E(G)$. Then b_2 is a center of a claw in G, since otherwise H is not induced in G_{xy} . Hence one of the vertices x,y, say x, is adjacent to both b_2 and b_3 , since otherwise there is an induced claw. If $xb_1\in E(G)$, then there is an induced subgraph $H'\simeq N_{i+1,j,k}$ on $\{x,b_2,b_3,a_1^0,\ldots,a_1^i,a_2^1,\ldots,a_2^j,a_3^1,\ldots,a_3^k\}$. Thus we can suppose that $yb_1\in E(G)$ but $xb_1\not\in E(G)$. If y is not adjacent to any of b_2,b_3 , then there is an induced subgraph $H'\simeq N_{i+2,j,k}$ on $\{x,b_2,b_3,y,a_1^0,\ldots,a_1^i,a_2^1,\ldots,a_2^j,a_3^1,\ldots,a_3^k\}$ in G. If $yb_2\in E(G)$, then $yb_3\in E(G)$ too, since otherwise there is an induced claw on $\{b_2,b_3,y,a_2^1\}$ in G. But then there is an induced subgraph $H'\simeq N_{i+1,j,k}$ on $\{y,b_2,b_3,b_1,a_1^1,\ldots,a_1^i,a_2^1,\ldots,a_2^j,a_3^1,\ldots,a_3^k\}$ in G. Hence we obtain a contradiction.

Case 3: $B_{xy}^H = \{b_1b_2, b_1b_3, b_2b_3\}$. None of the end vertices of xy is adjacent to every vertex b_i , i=1,2,3, since otherwise there is an induced claw in G. Let $B=\{b_1,b_2,b_3\}$. Let x be the end vertex of xy such that $|N_G(x) \cap B| \geq |N_G(y) \cap B|$. Since $B \subset N_G(x,y)$ and |B|=3, x has exactly two neighbours in B. If y is adjacent to only one vertex of B, then x is a center of a claw in G, a contradiction. Thus both vertices x,y have exactly two neighbours in B, moreover they have exactly one common neighbour in B, since $B \subset N_G(x,y)$. Without loss of generality suppose that $xb_1, xb_2, yb_2, yb_3 \in E(G)$. This yields that there is an induced subgraph $H' \simeq N_{i+1,j+1,k}$ on $\{x,b_2,y,b_1,a_1^1,\ldots,a_1^i,a_2^1,\ldots,a_2^j,b_3,a_3^1,\ldots,a_3^k\}$ in G, a contradiction again.

Theorem 4. The classes of $CB_{i,j}$ -free graphs are not stable under the edge-closure for any $i, j, i \geq j \geq 1$.

Figure 5: Class of $C, B_{i,j}$ -free graphs is not stable under the edge-closure

Proof. Let $i, j \geq 1$, $i \geq j$ and let G be the graph obtained by identifying each of a pair of nonadjacent vertices of $K_5 - e$ with one end vertex of a path P of length at least i + j + 2. Let xy be an eligible edge of G (for i = j = 2 see Fig. 5). Then G is $C B_{i,j}$ -free while $G_{xy} = \operatorname{cl}'(G)$ contains an induced subgraph isomorphic to $B_{i,j}$.

As an immediate consequence of Theorems 2 and 3 we obtain the following theorem

Theorem 5. The classes of CP_i -free graphs and $CN_{i,j,k}$ -free graphs are stable under the edge-closure for any $i \geq j \geq k \geq 1$.

Figure 6: A graph G which is Z_i -free while G_{xy} contains an induced Z_i , $i \geq 3$

Consider the graph G shown in Fig. 6. When $i \geq 3$, the graph G is clearly Z_i -free, while $\{b_1, x, y, a_1, \ldots, a_i\}$ induces a Z_i in G_{xy} . Hence for the class of C Z_i -free graphs, $i \geq 3$, the analogue of Theorems 2 and 3 fails. Nevertheless, we believe that the analogue of Theorem 5 can be proved in this case.

Figure 7: Graph H - hourglass

Conjecture 1. The class of CZ_i -free graphs is stable under the edgeclosure for any $i \geq 1$.

Theorem 6. The class of C H-free graphs is stable under the edge-closure.

Proof. Suppose that cl'(G) contains an induced H. Let G_1, \ldots, G_t be a sequence of graphs such that $G_1 = G$, $G_t = cl'(G)$ and $G_{j+1} = (G_j)_{uv}$, where uv is an eligible edge in $(G_j)_{uv}$, $j = 1, \ldots, t-1$. Let s be the smallest number such that G_{s+1} contains a permanent H as an induced subgraph. Suppose that s = 1, i.e., $G_s = G$. Let $V(H) = \{b, b_1, b_2, b_3, b_4\}$ and we will always keep the labeling of the vertices of the graph H as shown in Figure 7. Let xy be an eligible edge in G such that $G_2 = G_{xy}$, and let $B_{xy}^H = B_{xy} \cap E(H)$. Clearly $|B_{xy}^H| \geq 1$. Consider following cases:

Case 1: Both vertices x, y belong to V(H). Clearly $x \neq b$, and $y \neq b$, since otherwise H is not induced in G_2 . Up to symmetry suppose that $x = b_1$ and $y = b_2$. Then exactly one of the edges bx, by, say bx, does not belong to E(H). Hence $B_{xy}^H = \{bx\}$. Since xy is not pendant, there is a vertex $a \in V(G) \setminus V(H)$ such that $ax \in E(G)$. Since xy is locally connected, there is an a, b-path P in $\langle N_G(xy) \rangle$. Choose P and a in such a way that P is shortest possible. Then every internal vertex of P is a neighbour of y but not of x (for the case $ab \in E(G)$, $ax \in E(G)$ since otherwise b is a center of a claw). Let b denote the neighbour of b on b. Since b is a center of a claw one of the edges b is an induced b in b for some b is an induced b in b for some b is an induced b in b for some b is an induced b in b for some b is an induced b in b for some b is an induced b in b for some b is an induced b in b for some b is an induced b in b for some b is an induced b in b for some b is an induced b in b for some b is an induced b in b for some b is an induced b in b for some b is an induced b in b for some b induced b in b for some b induced b in b for b for b for b induced b induced b in b for b for b for b induced b in b for b for

is G, a contradiction. Choose k smallest possible with this property. If by is eligible in G_k , then $b_3y \in E(G_k)$, which contradicts the fact that H is permanent. Since by is not eligible in G_k , there is a vertex $c \in V(G) \setminus N_G(xy)$ such that $bc \in E(G)$ and c is not in the component of $N_{G_k}(by)$ containing b_3 , b_4 , x and $V(P) \setminus \{b\}$. Then $b_3c \in E(G_k)$ or $b_4c \in E(G_k)$, since otherwise b is a center of a claw in G. But then by is eligible in G_k , a contradiction.

- Case 2: Exactly one of the vertices x, y, say x, belongs to V(H). Clearly $x \neq b$, since otherwise H is not induced in G_2 . Up to symmetry suppose that $x = b_1$. Then $B_{xy}^H \subset \{b_2b, b_2x, bx\}$ and $V(B_{xy}^H) \subset \{b, b_2, x\}$. If $|B_{xy}^H| = 3$, then clearly $by \in E(G)$, $b_2y \in E(G)$, which implies that $\{y, b, b_2, x\}$ induces a claw in G, a contradiction.
 - Subcase 2.1: $b_2b \in B_{xy}^H$. Since $b \in N_G(xy)$, exactly one of the edges bx, by belongs to E(G), since otherwise there is an induced H in G. Suppose that $bx \in E(G)$. Since xy is locally connected, there is a b_2 , b-path P in $\langle N_G(xy) \rangle$. Choose P shortest possible and let z be the neighbour of b on P.
 - If $xz \notin E(G)$, then $b_3z \in E(G)$ and $b_4z \in E(G)$, since otherwise b is a center of a claw in G.
 - If $xz \in E(G)$, then there is at least one of the edges b_3z , b_4z in G_k for some k > 1, since otherwise $\{b, z, y, b_3, b_4\}$ is an induced H is G, a contradiction. Choose k smallest possible with this property.

Hence there is at least one of the edges b_3z , b_4z in G_k . If by is eligible in G_k , then $b_3y \in E(G_k)$, which contradicts the fact that H is permanent. Since by is not eligible in G_k , there is a vertex $c \in V(G) \setminus N_G(xy)$ such that $bc \in E(G)$ and c is not in the component of $N_{G_k}(by)$ containing b_3 , b_4 , x and $V(P) \setminus \{b\}$. Then $b_3c \in E(G_k)$ or $b_4c \in E(G_k)$, since otherwise b is a center of a claw in G. But then by is eligible in G_k , a contradiction. Suppose that $bx \notin E(G)$. Hence $by \in E(G)$. But then we are

in a symmetric situation interchanging the roles of x and y, a contradiction.

- Subcase 2.2: $b_2b \in E(G)$. Suppose that $bx \in E(G)$. Then $b_2x \in E(G)$, since otherwise $\{b, x, b_2, b_3\}$ induces a claw in G. But then $\{b, x, b_2, b_3, b_4\}$ induces an H in G, a contradiction. If $by \in E(G)$, then we are in a symmetric situation interchanging the roles of x and y, a contradiction again.
- Case 3: None of the vertices x, y belongs to V(H). If, up to symmetry, b_1 or b_2 belongs to $N_G(xy)$, then none of the vertices b_3, b_4 belongs to $N_G(xy)$ since otherwise H is not induced in G_2 . Up to symmetry we can suppose that $V(H) \cap N_G(xy) \subset \{b, b_1, b_2\}$. If $B_{xy}^H = \{b_1b_2\}$, then b is a center of a claw in G, a contradiction. Hence $b \in V(B_{xy}^H)$, implying that $b \in N_G(xy)$. Since G is H-free, the vertex b is a neighbour of exactly one of the vertices x, y. Up to symmetry suppose that $bx \in E(G)$.
 - Subcase 3.1 $|B_{xy}^H| = 3$. If x is a neighbour of all of the vertices b, b_1, b_2 , then $\{x, b, b_1, b_2\}$ induces a claw in G, a contradiction. Hence x is a neighbour of exactly one of the vertices b_1, b_2 . Up to symmetry suppose that $b_1x \in E(G)$, implying that $yb_2 \in E(G)$. Then $b_1y \in E(G)$, since otherwise x is a center of a claw. Since xy is locally connected, there is a b_1, b -path P in $\langle N_G(xy) \rangle$. Choose P shortest possible and let z be the neighbour of b on P.
 - If $xz \notin E(G)$, then $b_3z \in E(G)$ and $b_4z \in E(G)$, since otherwise b is a center of a claw in G.
 - If $xz \in E(G)$, then there is at least one of the edges b_3z , b_4z in G_k for some k > 1, since otherwise $\{b, z, y, b_3, b_4\}$ is an induced H is G, a contradiction. Choose k smallest possible with this property.

Hence there is at least one of the edges b_3z , b_4z in G_k . If bx is eligible in G_k , then $b_3x \in E(G_k)$, which contradicts the fact that H is permanent. Since bx is not eligible in G_k , there is a vertex $c \in V(G) \setminus N_G(xy)$ such that $bc \in E(G)$ and c is not in

the component of $N_{G_k}(by)$ containing b_3 , b_4 , x and $V(P) \setminus \{b\}$. Then $b_3c \in E(G_k)$ or $b_4c \in E(G_k)$, since otherwise b is a center of a claw in G. But then bx is eligible in G_k , a contradiction.

Subcase 3.2: $|B_{xy}^H| = 2$. Suppose that $b_1b_2 \in B_{xy}^H$. If, up to symmetry, $b_1b \in E(G)$, then $b_1x \in E(G)$ since otherwise b is a center of a claw. But then $\{b, x, b_1, b_3, b_4\}$ induces an H is G, a contradiction. Hence $b_1b_2 \in E(G)$, implying that $B_{xy}^H = \{b_1b, b_2b\}$. Since xy is locally connected, there is a b_1 , b-path P in $\langle N_G(xy) \rangle$. Choose P shortest possible and let z be the neighbour of b on P.

- If $xz \notin E(G)$, then $b_3z \in E(G)$ and $b_4z \in E(G)$, since otherwise b is a center of a claw in G.
- If $xz \in E(G)$, then there is at least one of the edges b_3z , b_4z in G_k for some k > 1, since otherwise $\{b, z, y, b_3, b_4\}$ is an induced H is G, a contradiction. Choose k smallest possible with this property.

Hence there is at least one of the edges b_3z , b_4z in G_k . If bx is eligible in G_k , then $b_3x \in E(G_k)$, which contradicts the fact that H is permanent. Since bx is not eligible in G_k , there is a vertex $c \in V(G) \setminus N_G(xy)$ such that $bc \in E(G)$ and c is not in the component of $N_{G_k}(by)$ containing b_3 , b_4 , x and $V(P) \setminus \{b\}$. Then $b_3c \in E(G_k)$ or $b_4c \in E(G_k)$, since otherwise b is a center of a claw in G. But then bx is eligible in G_k , a contradiction.

Subcase 3.3: $|B_{xy}^H| = 1$. If $B_{xy}^H = b_1 b_2$, then b is a center of a claw in G, a contradiction. Up to symmetry suppose that $B_{xy}^H = b_1 b$. Then $b_1 x \in E(G)$, since otherwise b is a center of a claw in G. But then $\{b, b_1, x, b_3, b_4\}$ induces an H is G, a contradiction.

The following example shows a class of C, H-free nontrivial graphs. Consider a graph G consisting of two cliques C_1 , C_2 of arbitrary orders and of

18

a matching M such that each edge of M has one end-vertex in C_1 and the other end-vertex in C_2 .

References

- [1] J.A. Bondy, U.S.R. Murty: Graph theory with applications Macmillan, London and Elsevier (1976).
- [2] H.J. Broersma, M. Kriessell, Z. Ryjáček: On factors of 4-connected clawfree graphs Journal of Graph Theory 37 (2001), 125-136.
- [3] H.J. Broersma, Z. Ryjáček: Strengthening the closure concept in clawfree graphs
 Discrete Mathematics 233 (2001), 55-63.
- [4] H.J. Broersma, Z. Ryjáček, I. Schiermeyer: Closure concepts a survey Graphs and Combinatorics 16 (2000), 17-48.
- [5] J. Brousek, O. Favaron, Z. Ryjáček: Forbidden subgraphs, hamiltonicity and closure in claw-free graphs Discrete Mathematics 196 (1999), 29-50.
- [6] J. Brousek, Z. Ryjáček, I. Schiermeyer: Forbidden subgraphs, stability and hamiltonicity Discrete Mathematics 197/198 (1999), 143-155.
- [7] M.M. Matthews, D.P. Sumner: Hamiltonian results in $K_{1,3}$ -free graphs Journal of Graoh Theory 8 (1984), 139-146.
- [8] D.J. Oberly, D.P. Sumner: Every connected locally connected nontrivial graph with no induced claw is hamiltonian Journal of Graph Theory 3 (1979), 351-356.
- [9] Z. Ryjáček: On a closure concept in claw-free graphs Journal of Combinatorial Theory Ser. B. 70 (1997), 217-224.

[10] C. Thomassen: Reflections on graph theory Journal of Graph Theory 10 (1986), 309-324.