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Abstract.
Ryjacek introduced a closure concept in claw-free graphs based on

local completion of a locally connected vertex. Connected graphs A,
for which the class of (C, A)-free graphs is stable under the closure,
were completely characterized. In this paper, we introduce a variation
of the closure concept based on local completion of a locally connected
edge of a claw-free graph. The closure is uniquely determined and
preserves the value of the circumference of a graph. We show that
the class of (C, A)-free graphs is stable under the edge-closure if A €
{H,P;,N; 1}
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1 Introduction

In this paper, we consider only finite undirected graphs without loops and
multiple edges. We use [1] for terminology and notations not defined here.

The circumference of a graph G, denoted ¢(G), is the length of a longest
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cycle in GG. A cycle on n vertices is denoted by C,. A hamiltonian cycle
is a cycle in G on |V (G)| vertices. A graph G is said to be hamiltonian, if
c(G) = |V(G)|. For a nonempty set A C V(G), the induced subgraph on A
in GG is denoted by (A)g. The line graph of a graph G is denoted by L(G).
We denote by P; the path on i vertices and we say that the length of a path
P is the number of edges of P. For any A C V(G), G—A stands for the graph
(V(G)\ A)g. An edge zy is pendant if dg(x) =1 or dg(y) = 1.

For a connected graph H, a graph G is said to be H -free, if G does not contain
a copy of H as an induced subgraph; the graph H will be also referred to
in this context as a forbidden subgraph. The graph K 3 will be called the
claw and in the special case H = K 3 we say that G is claw-free. The list of

frequently used forbidden subgraphs is shown in Figure 1.

VU U X

The claw C The bull B The wounded W  The hourglass H
The net N

Figure 1: Frequently used forbidden subgraphs

Let © € V(G). The neighbourhood of z, denoted Ng(z), is the set of all
vertices adjacent to z. For a nonempty set A C V(G), Ng(A) denotes

the set of all vertices of G—A adjacent to at least one vertex of A, and
Ng[A] = Ng(A) U A. For an edge xy € FE(G) we set Ng(xy) = No({z,y})



and Ng[ry] = Ngl{z,y}]. A vertex x € V(G) is said to be locally connected
if (Ng(x)) is connected. A graph G is locally connected if every vertex of
GG is locally connected. Analogously we define local connectivity of an edge
of G. An edge zy € E(G) is locally connected if (Ng(zy)) is connected. A
graph G is edge-locally connected if every edge of GG is locally connected.

For an arbitrary vertex z € V(G), let B, = {uv|u,v € Ng(z), wv € E(G)}
and G, = (V(G), E(G) U B;). The graph G, is called the local completion
of G at x. A locally connected vertex x with B, # () is called eligible (in
(). We say that a graph F' is a closure of G, denoted F' = cl(G), if there
is no eligible vertex in F' and there is a sequence of graphs G,...,G; and
vertices x1,...,x;_1 such that G; = G, G; = F, x; is an eligible vertex of G;
and Gi11 = (Gy)g,, i =1,...t—1 (equivalently, cl(G)) is obtained from G by
a series of local completions at eligible vertices, as long as this is possible).

The following basic result was proved by Ryjacek.

Theorem A [9]. Let G be a claw-free graph. Then
(i) cl(G) is well-defined (i.e., uniquelly determined),
(ii) there is a triangle-free graph F' such that cl(G) = L(F),
(iii) ¢(G) = c(cl(G)).

Consequently, if G is claw-free, then so is cl(G), and G is hamiltonian if
and only if so is cl(G). A claw-free graph G, for which G = cl(G), will be
called closed. As an immediate consequence of Theorem A can be shown the

following:

Theorem B [8]. Let G be a connected locally connected claw-free graph.

Then G is hamiltonian.

Let C be a subclass of the class of claw-free graphs. We say that the class
C is stable under the closure (or simply stable) if cl(G) € C for every G € C.
Clearly, the class of C'A-free graphs is trivially stable if A is not claw-free or
if A is not closed. For the proofs of stability of several graph classes we use

the following notation. For an induced subgraph A of G, we say that A is



permanent induced subgraph of G (or simply permanent), if (V(A))q ) =~ A.
The classes of CZs-free graphs, CB-free graphs and C' N-free graphs were
extended in [5] as follows. We denote by (see also Fig. 2):

Zi, (¢ > 1) - the graph which is obtained by identifying a vertex

of a triangle with an end vertex of a path of length i

(1 > j > 1) - the generalized (7, j)-bull, i.e. the graph which is

obtained by identifying each of some two distinct vertices of a triangle

with an end vertex of one of two vertex-disjoint paths of lengths ¢, j

Nijk, (1 >j>k>1)- the generalized (i, j, k)-net, i.e. the graph which is
obtained by identifying each vertex of a triangle with an end vertex

of one of three vertex-disjoint paths of lengths i, j, k.
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Figure 2: Generalized subgraphs Z;, B; ; and N, ;1

Thus, B1; ~ B and Ny13 >~ N. We will always keep the labeling of the
vertices of the graphs Z;, B; ; and N, ;; as shown in Fig. 2.
Brousek, Ryjacek and Schiermeyer characterized all connected closed claw-

free graphs A for which the C'A-free class is stable.



Theorem C [6]. Let A be a closed connected claw-free graph. Then G
being C A-free implies cl(G) is C' A-free if and only if

A€ {H,CYULP]i >3} U{Zi > 1} U{N, 4li, 5,k > 1}.

The importance of the class of C' H-free graphs is shown in the following
theorem. Note that the hamiltonicity in general 4-connected claw-free graphs
is still an open problem introduced by Thomassen [10] and Matthews and

Sumner [7]. For more stable classes and stable properties we refer to [4].
Theorem D [2].  Every 4-connected C' H-free graph is hamiltonian.

Let G’ be a closed claw-free graph. The order of a largest clique in G’
containing an edge e will be denoted by wg(e). Let C' be an induced cycle
in G’ of length k. We say that the cycle C' is eligible in G' if 4 < k < 6
and wgr(e) = 2 for at least k — 3 nonconsecutive edges e € E(C). For an
eligible cycle C' in G’ let Bo = {uwv|u,v € Ng/[C], uv € E(G')}. The graph
Ge = (V(G),E(G") U Be) is called the C-completion of G' at C. For a
claw-free graph G, the graph F is a cycle closure of G, denoted F' = clo(G),
if there is a sequence of graphs G, ..., Gy such that

(i) G = d(G),

(ii) Gip1 = cl((G;)¢) for some eligible cycle C'in G;, i =1,...,t — 1,

(iii) Gy = F contains no eligible cycle.

Broersma and Ryjacek proved the following:

Theorem E [3]. Let G be a claw-free graph. Then
(i) cle(Q) is well-defined,
(i) ¢(G) = e(cle(G)).

Consequently, a claw-free graph G is hamiltonian if and only if clg(G) is
hamiltonian.
In Section 2 we will prove an analogous result for the edge-closure and, in

Section 3, we will show that the classes of C'H-free graphs, C' P;-free graphs



and CN; ; p-free graphs are stable under the edge-closure for any ¢, 5,k > 1.
The class of C'B, ;-free graphs is not stable for any 7,7 > 1.

2 The concept of edge-closure in claw-free
graphs

Let G be a claw-free graph and let xy € E(G). Let By, = {w|u,v €
Nglzy], wv € E(G)}. The edge xy is called eligible in G if xy is locally con-
nected in G, B,, # 0 and xy is not a pendant edge. Let G, = (V(G), E(G)U
B,,). The graph G, is called the local completion of G at zy.

The following lemma shows that the circumference and the claw-freeness of
a claw-free graph G are not affected by local completion of G at an eligible
edge of G.

Lemma 1. Let G be a claw-free graph and let xy be a locally connected
edge of G such that (Ng[ry]) is not complete. Let B,, = {uv|u,v €
Nglzyl, wv &€ E(G)} and let G' be the graph with V(G') = V(G) and
E(G") = E(G) U Byy. Then

(¢) the graph G’ is claw-free,

(i7) c(G) = c(G).

Proof.

1. Suppose that G’ is not claw-free. Let H be a claw in G'. Since G
is claw-free, |E(H) N B,,| > 1. Since (Ng[zy]) is a clique, |E(H) N
B,y < 1. Let {z, 21, 22, 23} denote the vertex-set of H, where z2z; €
B,,. Clearly 29,23 ¢ Ng|zy], since otherwise 2120 € E(G') or 2123 €
E(G"), a contradiction. If 2523 € FE(G), then clearly 2523 € E(G'), a
contradiction again. Since zz; € By, 2 € Ng[zy|, and 2z € E(G) or
yz € E(G). But then ({z,x, 22, 23}) or ({z,y, 22,23}) is a claw in G,

which is a contradiction. Hence G’ is claw-free.



2. Clearly ¢(G) < ¢(G’). Consider a locally connected edge xy with in-
complete neighbourhood.

- Suppose that both vertices z, y are locally connected in G. Then,
using the Ryjacek’s closure [9], we complete Ng(z). Let Gy
denote the local completion of G at x. Clearly Ng[z| C Ng,[y]
and Ng, [y] = Nglry]. Let Gy denote the local completion of
G1 at y. Clearly Ng,[r] = Ng,|y] = Nglry] and (Ng,[zy]) is
complete. By Theorem A, ¢(G) = ¢(G2). Since G' = Gq, we
obtain ¢(G) = ¢(G").

- Suppose that = is locally connected in GG, but y not. Let G,
denote the local completion of G at x. Clearly xy is locally
connected in G. Since y is not locally connected in G and G is
claw-free, the subgraph (Ng(y)) consists of exactly two cliques.
Let C; denote the clique of (Ng[y]) such that x € V(C}), let Cy
denote the other clique of (Ng(y)). Note that V(Cs) N Ng(x) =
(), since y is not locally connected in G. Since x € Ng(y),
Ng, [x] C Ng,[y]. Since zy is locally connected in G, there is an
edge uv in G between Cy and (Ng(z))—y, where u € V(Cs) and
v € Ng(x) \ {y}. Since u,v € Ng, (y), the vertex y is locally
connected in G;. After local completion of GG; at y and using the
same argument as in the previous case we obtain ¢(G) = ¢(G’).
Symmetrically we obtain ¢(G) = ¢(G’) if y is locally connected
but x not.

- Suppose that none of z,y is locally connected. Since G is claw-
free, each of (Ng(z)) and (Ng(y)) consists of exactly two cliques.
Let C; denote the clique of (Ng(z)) such that y € V(C), let Cy
denote the other clique of (Ng(x)). Let D; denote the clique of
(Ng(y)) such that x € V(Dy), let Dy denote the other clique of
(Na(y))-

Now we show that V(C3) N V(D) = (. Suppose that z €
V(Cy) NV(Ds). Hence z is a neighbour of both x and y. But



the edge zy is an edge between C); and C5, which makes the
vertex x locally connected in GG, a contradiction.
Since C is a clique, every vertex in V(C1) \ {y} is adjacent to
both x and y, implying (V(C1) \ {y}) C V(D;). Symmetrically
(V(D1) \ {z}) C V(Ch).
Suppose that there is a vertex z € V(G) such that z € V(C) N
V(D). Since zy is locally connected, there is an edge between
z and a vertex ¢ € (V(Cy) UV(Ds3)). But then x or y is locally
connected, a contradiction.
Hence V(Cy) = {y} and V(D) = {z}. Clearly wg(zy) = 2.
Since xy is locally connected, there is an edge ef between C,
and D, such that e € V(C5) and f € V(D,). Now we consider
the cycle C' = ({x,y, f,e}). By the definition of an eligible cycle,
the cycle C' is eligible in . Using the local completion of G at
C we obtain a graph G;. Clearly G’ C G;. By Theorem E,
c(G) = ¢(Gy) and hence ¢(G) = ¢(G').

H

Now we define the main concept of this paper. Let G' be a claw-free graph.
We say that a graph F'is an edge-closure of G, denoted F = cl'(G), if

(i) there is a sequence of graphs Gy,...,G; and edges ej,...e;_1 such
that G; = G, Gy = F, e; is an eligible edge in G; and G, 11 = (G;)y,
r=1,...,t—1,

(ii) there is no eligible edge in G;.
Equivalently, cl'(G) is obtained from G by a series of local completions at

eligible edges, as long as this is possible.

Theorem 1. Let G be a claw-free graph. Then
() the closure cl'(G) is well defined,
(it) c(G) = c(c(G)).

Proof.



1. Let Gy, G5 be two edge-closures of G, suppose that F(G1)\ E(Gs) # 0.
Let Hq,..., H; be the sequence of graphs that yields (G;. Let ¢ be the
smallest integer for which E(H;)\ E(G3) # () and let e = uv be an edge
such that e € E(H;)\ E(G3). Then, since e € E(H;), u,v € Ny, _,[zy],
where zy is eligible in H; ;. But then, since E((Ny,_,(zy))) C E(H;_1) C
E(Gs), (Ng,(xy)) is connected. Hence e = uv € F(Gs), a contradiction

2. Immediately by Lemma 1, part (ii).
[

Corollary 1. Let G be a claw-free graph. Then G is hamiltonian if and
only if cl'(G) is hamiltonian.

Corollary 2. Let GG be a connected edge-locally connected claw-free graph.

Then G is hamiltonian.

The following examples show the independence between the closure intro-
duced by Ryjacek in [9] and the edge-closure (i.e., none of the closures can
be obtained by using the other one). The graph G; shown in Fig. 3 (a) has
no eligible vertex (i.e. cl(G;) = G1) and exactly one eligible edge xy. Using
the edge-closure we obtain a complete graph K (i.e. cl'(G1) = K). The class
of graphs shown in Fig. 3 (b) contains graphs with no eligible vertices, but
cl'(G) is complete again. Elliptical parts represent cliques of order at least
two. Note that in both cases cl(G) = G, but cl'(G) is complete.

The class of graphs shown in Fig. 4 (a) contains graphs such that each vertex
of such graph is eligible, but not every edge of such a graph is eligible. Using
the closures on such a graph we obtain that both closures of such a graph are
cliques. The graph shown in Fig. 4 (b) has four eligible vertices, no eligible
edge, and cl(G) is a clique. Elliptical part represents a clique of order at least

two.



(a) (b)

Figure 3: Closed graphs with eligible edges

3 Stability of forbidden subgraphs

Theorem 2. Let G be a CP;-free graph (i > 1) and let xy € E(G) be an
eligible edge. Then the graph G, is C P;-free.

Proof. If G is CP;-free, then, by Lemma 1, G, is claw-free. Suppose that
H = ({a1,aq,...,a;})q,, is an induced path in G, and let By, = E(Gyy) \
E(G). Since H is induced in G, and G is P;-free, |E(H) N B,,| > 1. But
(Nglz,y])q,, is a clique and H is an induced path, hence |E(H) N B,,| < 1.
Let E(H) N B,y = asa541, where 1 < s < i —1. If a4 € Nglz,y] NV (H)
for some t # 5,5+ 1, then a;as, azas1 € E(G,y), which contradicts the fact
that H is an induced path. Hence V(H) N Ng[z,y| = {as, as+1}. Consider
the following cases:
Case 1: {z,y} € V(H). Then the only possibility (up to symmetry) is that
1 =2, x = a; and y = as since otherwise H is not an induced path.
But zy € F(G), which contradicts the fact that G is P;-free.
Case 2: {z,y}NV(H)| = 1. Up to symmetry we can suppose that x € V(H).
Then x = a; or x = a; since otherwise H is not an induced path in
Gy Up to symmetry suppose that x = a,. Clearly a; = z, as41 = as.

This yields y, as, . . ., a; to be an induced path on ¢ vertices in G. This

10



(a) (b)

Figure 4: Graphs with complete closure

is a contradiction.

Case 3: {z,y} NV(H) = 0. If both vertices as, as; have a common neigh-
bour on the edge xy, say x, then the path ay,... a5, 2,a511,...,0a;
is an induced path of length 7 in GG, a contradiction. Symmetrically
we obtain a contradiction if we consider the vertex y instead of =x.
Up to symmetry suppose that a;x € E(G) and a1y € E(G). Since
zras1 € E(G) and ya, € E(G), the path aq, ..., as,2,y, Gsi1, - - -, Q; 18
an induced path of length ¢ + 1 in (G, a contradiction.

O

Note that C'P;-free graphs for ¢ = 1,2, 3 are trivial.

Theorem 3. Let G be a CN,j-free graph (i > j > k > 1) and let
ry € E(G) be an eligible edge. Then the graph G, is C'N, j ;-free.

Proof. If G is C'N,ji-free, then, by Lemma 1, G, is claw-free. Suppose

11



that H = ({by,by,bs,al,... . al,ad, ... a},ab, ..., ai}a,, =~ Nijx and let
B,, = E(Gy,) \ E(G). Let B! = B,, N E(H). Clearly [B7| > 1.

Suppose that {x,y} C V(H). But then, in any case, the subgraph (N¢g[zy])a,,
is complete, implying H is not induced in G, a contradiction.

Now suppose that |V (H)N{x,y}| = 1. Up to symmetry we can suppose that
x € V(H) but y not. Clearly Ng(zy) NV (H) = 1, since otherwise H is not
induced in G,,. This implies that z € {ai, a},ak}. Up to symmetry suppose
that = af. Clearly |Bl!| = 1, since otherwise H is not induced in Gy.
Suppose first that k = 1. Then y is adjacent to by and B, = {bsas}, since
otherwise H is not induced in G,,. Then {by, by, bs,al,..., ai,al, ... ab, y}
induces an N, j in GG, a contradiction. Now we suppose that & > 2. Clearly
as %z ¢ E(G) and afy ¢ E(G), since otherwise H is not induced in G,
Hence B = {a§"'a%} and a§'y € E(G). But then {by,bs,b3,ai,...a}, a3,
..,ab,ab, ... ab7t y} induces an N in G, a contradiction.

Hence none of the vertices z, y belongs to H. Put by = a?, b, = a9 and b3 = a}
and let ajay € B! . Suppose first that s > 0 or u > 0. Then clearly |Bf| = 1,
since otherwise H is not an induced NN; ; in G,,. Suppose that BL, = {aja}'},
r,t €4{1,2,3}and s,u € {1,2,...,i}ifr,t=1,s,uec{l,2,..., j}ifr,t =2
and s,u € {1,2,..., k} if r;t = 3. Clearly r =t and |s — u| = 1, since other-
wise H is not an induced N, ;; in G,. Up to symmetry suppose that r = 3
and u = s + 1. If one of the vertices z, vy, say z, is adjacent to both vertices

s s+1 1 i1 i1 s s+1 k
aj and a3, then {by, by, b3, a5, ..., a\, a3, ..., ab,a3, ..., a5, x,a5 ... a3},

1 1 j 1 k _ .
or {bl, by, b3, a1,...,a%,0a3,...,05, 2,03, ... a3} for s = 0, induces an NV, j ;41

in G, a contradiction. Up to symmetry suppose that xai € E(G), yait* €
E(Q), rai™ ¢ E(G) and yai ¢ E(G). But then {b, by, b3, al, ..., al, al,
abab, o as,my,asth o akY, or {by, by, bs,al, . addd, L d), 1,y al,
..ak} for s = 0, induces an N; ;.2 in G, a contradiction. Hence we have
s =u = 0, ie., Bg/ C {biba, b1b3, bobs}. Moreover zaf, yal ¢ E(G), r =
lands = 1,...,2,r = 2ands = 1,...,j5,r = 3and s = 1,...,k since
otherwise H is not an induced N; ;. We consider the following cases.

Case 1: |Bg| = 1. Without loss of generality we can suppose that Bg =

12



{b1by}. Then ({bs3, by, by, ai}) is an induced claw in G, a contradiction.

Case 2: |B!| = 2. Without loss of generality suppose that BY) = {b1by, b1b3}.
Now, up to symmetry, suppose that box € E(G), bsy € E(G), bsx ¢
E(G), by ¢ E(G). Then by is a center of a claw in G, since oth-
erwise H is not induced in G,,. Hence one of the vertices z, y,
say x, is adjacent to both by and b3, since otherwise there is an
induced claw. If xzb; € FE(G), then there is an induced subgraph
H' ~ Nijj1jx on {x,by,bs,a%, ... ad,ab, ... ab,ad, ... ak}. Thus we
can suppose that yb; € E(G) but zb; ¢ E(G). If y is not adja-
cent to any of bo, b3, then there is an induced subgraph H' o~ N, 5
on {z,by,bs,y,al, ... alak,... a4k, ak} in G. If yby € E(G),
then ybs € E(G) too, since otherwise there is an induced claw on
{by,b3,9,al} in G. But then there is an induced subgraph H' ~
Nip1k on {y, by, bs,by,al, ... ai,ad, ... ab,ab, ... ak} in G. Hence
we obtain a contradiction.

Case 3: ny = {b1by, b1b3, bobs}. Nome of the end vertices of zy is adja-
cent to every vertex b;, + = 1,2,3, since otherwise there is an in-
duced claw in G. Let B = {by,by,b3}. Let x be the end vertex of
xy such that |Ng(x) N B| > |Ng(y) N B|. Since B C Ng(z,y) and
|B| = 3, x has exactly two neighbours in B. If y is adjacent to only
one vertex of B, then z is a center of a claw in G, a contradiction.
Thus both vertices x,y have exactly two neighbours in B, moreover
they have exactly one common neighbour in B, since B C Ng(z,y).
Without loss of generality suppose that xby,xby, ybs,ybs € E(G).
This yields that there is an induced subgraph H' ~ N,ij ;i1 on
{x,by,y,b1,al, ... al,ab, ... a} bs,al,... af} in G, a contradiction
again.

]

Theorem 4. The classes of C B, j-free graphs are not stable under the
edge-closure for any 1,7, 1> 5 > 1.

13



Figure 5: Class of C, B, ;-free graphs is not stable under the edge-closure

Proof. Let¢,57 > 1,7 > j and let G be the graph obtained by identifying
each of a pair of nonadjacent vertices of K5 — e with one end vertex of a path
P of length at least i + j + 2. Let xy be an eligible edge of G (for i = j = 2
see Fig. 5). Then G is C B; j-free while G,, = cl'(G) contains an induced
subgraph isomorphic to B; ;. ]

As an immediate consequence of Theorems 2 and 3 we obtain the following

theorem

Theorem 5. The classes of C'P;-free graphs and CN, ; ,-free graphs are
stable under the edge-closure for any ¢ > 5 > k > 1.

ay a;
® Y
as as ay by

Figure 6: A graph G which is Z;-free while G, contains an induced Z;, i > 3

Consider the graph G shown in Fig. 6. When ¢ > 3, the graph G is clearly
Z;-free, while {b1,z,y,a1,..., a;} induces a Z; in G,,. Hence for the class of
C' Z;-free graphs, ¢ > 3, the analogue of Theorems 2 and 3 fails. Nevertheless,

we believe that the analogue of Theorem 5 can be proved in this case.

14



by by

Figure 7: Graph H - hourglass

Conjecture 1. The class of C Z;-free graphs is stable under the edge-

closure for any 1 > 1.
Theorem 6. The class of C' H-free graphs is stable under the edge-closure.

Proof. Suppose that cl'(G) contains an induced H. Let Gy,..., G; be a
sequence of graphs such that G; = G, G, = cI'(G) and G411 = (G,)w, where
uv is an eligible edge in (G;)u, j = 1,..., t—1. Let s be the smallest number
such that G, contains a permanent H as an induced subgraph. Suppose
that s = 1, i.e., Gy = G. Let V(H) = {b, b1, by,b3,b,} and we will always
keep the labeling of the vertices of the graph H as shown in Figure 7.

Let xy be an eligible edge in G such that Gy = G, and let Bﬁ/ = B,,NE(H).

Clearly |Bfl| > 1. Consider following cases:

Case 1: Both vertices x,y belong to V(H). Clearly z # b, and y # b, since
otherwise H is not induced in GG5. Up to symmetry suppose that x = b,
and y = by. Then exactly one of the edges bx, by, say bx, does not
belong to E(H). Hence Bi = {bx}. Since zy is not pendant, there is
a vertex a € V(G) \ V(H) such that ax € E(G). Since xy is locally
connected, there is an a,b-path P in (Ng(zy)). Choose P and a in
such a way that P is shortest possible. Then every internal vertex of
P is a neighbour of y but not of z (for the case ab € E(G), ar € E(G)
since otherwise b is a center of a claw). Let z denote the neighbour of
b on P. Since yz € E(G), there is at least one of the edges b3z, byz

in Gy, for some k > 1, since otherwise {b, 2z, v, b3, by} is an induced H

15



Case 2:

is GG, a contradiction. Choose k smallest possible with this property.
If by is eligible in Gy, then b3y € E(G}), which contradicts the fact
that H is permanent. Since by is not eligible in GGy, there is a vertex
c € V(G)\ Ng(zy) such that bc € E(G) and ¢ is not in the component
of N¢, (by) containing bs, by, x and V(P) \ {b}. Then bsc € E(Gy) or
byc € E(Gy), since otherwise b is a center of a claw in G. But then by

is eligible in G, a contradiction.

Exactly one of the vertices x, y, say x, belongs to V(H). Clearly x # b,
since otherwise H is not induced in G5. Up to symmetry suppose that
x = by. Then Bf! C {bsb, by, bx} and V(BL) C {b, by, x}. If |BL| = 3,
then clearly by € E(G), boy € E(G), which implies that {y,b, b, x}
induces a claw in G, a contradiction.

Subcase 2.1: byb € Bﬁj. Since b € Ng(xy), exactly one of the edges
bx, by belongs to E(G), since otherwise there is an induced H
in G. Suppose that bz € E(G). Since xy is locally connected,
there is a by, b-path P in (Ng(zy)). Choose P shortest possible
and let z be the neighbour of b on P.

- If 2z € E(G), then b3z € E(G) and byz € E(G), since
otherwise b is a center of a claw in G.

- If xz € E(G), then there is at least one of the edges b3z,
byz in Gy for some k > 1, since otherwise {b, z,y, b3, b4}
is an induced H is GG, a contradiction. Choose k& smallest
possible with this property.

Hence there is at least one of the edges b3z, sz in Gy. If by
is eligible in Gy, then b3y € E(G}), which contradicts the fact
that H is permanent. Since by is not eligible in G, there is a
vertex ¢ € V(@) \ Ng(zy) such that be € E(G) and ¢ is not in
the component of Ng, (by) containing bs, by, x and V(P) \ {b}.
Then bsc € E(Gy) or byc € E(Gy), since otherwise b is a center
of a claw in GG. But then by is eligible in Gj, a contradiction.
Suppose that bx ¢ E(G). Hence by € E(G). But then we are
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in a symmetric situation interchanging the roles of x and y, a
contradiction.

Subcase 2.2: bob € E(G). Suppose that bx € F(G). Then byx €
E(G), since otherwise {b, z, by, b3} induces a claw in GG. But then
{b, z,by, b3, b, } induces an H in G, a contradiction. If by € E(G),
then we are in a symmetric situation interchanging the roles of

x and y, a contradiction again.

Case 3: None of the vertices x,y belongs to V(H). If, up to symmetry, b; or by
belongs to Ng(zy), then none of the vertices b3, by belongs to Ng(xy)
since otherwise H is not induced in GG5. Up to symmetry we can suppose
that V(H) N Ng(xy) C {b,b1,bo}. If B = {b1by}, then b is a center
of a claw in (G, a contradiction. Hence b € V(ny), implying that
b € Ng(zy). Since G is H-free, the vertex b is a neighbour of exactly
one of the vertices z, y. Up to symmetry suppose that bx € E(G).

Subcase 3.1 |Bf;| = 3. If z is a neighbour of all of the vertices b, by, b,
then {x, b, b1, bo} induces a claw in G, a contradiction. Hence x is
a neighbour of exactly one of the vertices by, b;. Up to symmetry
suppose that bjx € F(G), implying that yb, € E(G). Then
biy € E(G), since otherwise x is a center of a claw. Since xy is
locally connected, there is a by, b-path P in (Ng(xy)). Choose
P shortest possible and let z be the neighbour of b on P.

- If 2z € E(G), then b3z € E(G) and byz € E(G), since
otherwise b is a center of a claw in G.

- If 2z € E(G), then there is at least one of the edges b3z,
byz in Gy for some k > 1, since otherwise {b, z,y, b3, b4}
is an induced H is GG, a contradiction. Choose k smallest
possible with this property.

Hence there is at least one of the edges b3z, byz in Gy. If bx
is eligible in Gy, then b3z € F(Gy), which contradicts the fact
that H is permanent. Since bx is not eligible in G}, there is a
vertex ¢ € V(G) \ Ng(zy) such that be € F(G) and c¢ is not in
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the component of Ng, (by) containing bs, by, x and V(P) \ {b}.
Then bsc € E(Gy,) or byc € E(Gy), since otherwise b is a center
of a claw in G. But then bz is eligible in Gy, a contradiction.

Subcase 3.2: |BJl| = 2. Suppose that bib, € BL. If, up to symme-
try, b1b € E(G), then bjz € E(G) since otherwise b is a center
of a claw. But then {b,x,b;,bs, bs}induces an H is G, a con-
tradiction. Hence b1by € E(G), implying that Bl = {b1b, byb}.
Since xy is locally connected, there is a by, b-path P in (Ng(zy)).
Choose P shortest possible and let z be the neighbour of b on
P.

- If 2z € E(G), then b3z € E(G) and byz € E(G), since
otherwise b is a center of a claw in G.

- If xz € E(G), then there is at least one of the edges b3z,
byz in Gy for some k > 1, since otherwise {b, z,y, b3, b4}
is an induced H is GG, a contradiction. Choose k smallest
possible with this property.

Hence there is at least one of the edges b3z, byz in Gi. If bx
is eligible in Gy, then b3z € F(Gy), which contradicts the fact
that H is permanent. Since bz is not eligible in Gy, there is a
vertex ¢ € V(G) \ Ng(zy) such that be € E(G) and c¢ is not in
the component of Ng, (by) containing bs, by, x and V(P) \ {b}.
Then bsc € E(Gy,) or byc € E(Gy), since otherwise b is a center
of a claw in G. But then bz is eligible in Gy, a contradiction.
Subcase 3.3: |BfL| = 1. If Bl = byb,, then b is a center of a claw
in (G, a contradiction. Up to symmetry suppose that Bﬁl = D1b.
Then byx € E(G), since otherwise b is a center of a claw in G.
But then {b, by, x, b3, by} induces an H is G, a contradiction.

]

The following example shows a class of C, H-free nontrivial graphs. Con-

sider a graph G consisting of two cliques C, C5 of arbitrary orders and of
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a matching M such that each edge of M has one end-vertex in C'; and the

other end-vertex in (.
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