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Abstract

We use the duality of linear programing to obtain exact formulas of
competitive ratio for the semi-online preemptive scheduling on three
and four machines. We use the linear programs from [5]. Namely
we consider the online scheduling and the semi-online scheduling with
known sum of processing times. We solve the linear programs sym-
bolically by examining all basic solution candidates. All solutions are
obtained by a computer but all are verifiable by hand.

1 Introduction

We study the scheduling on uniformly related machines. Every machine has
its speed s, i.e., processing a job with processing time p in a machine with
speed s takes p/s time. Preemption is allowed: each job may be divided into
several pieces, these pieces can be assigned to different machines in disjoint
time slots. The objective is to minimize the makespan, i.e., the length of
a schedule. In the online problem, jobs arrive one-by-one and we need to
assign each incoming job without any knowledge of the jobs that arrive later.
When a job arrives, its assignment at all times must be given and we are not
allowed to change this assignment later. In other words, the online nature
of the problem is given by the ordering of the input sequence and it is not
related to possible preemptions and the time in the schedule.
The online algorithms are evaluated by their competitive ratio, that is the

worst-case ratio between the makespan of the output schedule of the algo-
rithm and the optimal (offline) makespan. I.e., the r-competitive algorithm
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produces at most r times longer schedule than the best possible schedule
for every input sequence. Semi-online problems are derived from the origi-
nal online problem by providing some partial information in advance. The
competitive ratio of studied problems is given by several linear programs,
their dimension depends on number of machines quadratically. We deploy
a method how to solve small parametrized linear programs. We obtain ex-
act competitive ratios for small numbers of machines (up to 4) for various
semi-online scheduling problems this way.
This method is based on duality of linear programing, which says that it

suffices to examine all possible basic solutions. From a geometrical point of
view, we take all intersections of dimension zero of hyperplanes defined by
the linear conditions, and then we test if such an intersection is a feasible
and optimal solution. Note that the feasibility and the optimality of such a
solution also depends on the actual values of the parameters, so the result
typically splits into several cases. Searching through all such intersections
would be tedious work as it requires solving a system of linear equations
and then examining the feasibility of the result. Most of this work can be
automated nowadays as there is various algebraic software available.

2 Definitions of the Problem and Previous

Results

Here we describe the problem in more detail, to clarify which linear programs
we focus on.
We have m machines with speeds s1 ≥ s2 ≥ · · · ≥ sm > 0. We use a

shorthand for the total speed of all machines: S = s1 + s2 + · · ·+ sm. We use
special notation for the ratio α = S−s1

S
= s2+s3+···+sm

s1+s2+s3+···+sm
also, as it occurs in

resulting formulas. The input sequence contains n jobs with processing times
p1, p2, . . . , pn. Note that n is unknown to the online algorithm. Again, we use
a shorthand P = p1 +p2 + · · ·+pn for the total processing time. The optimal
makespan can be computed simply as a maximum of m numbers [15, 8, 3]:

C∗
max = max

{

pmax
1 /s1, . . . , (p

max
1 + · · ·+ pmax

m−1)/(s1 + · · · + sm−1), P/S
}

,
(1)

where pmax
j is j-th maximal job in the input sequence.

We view every semi-online problem as a restriction of set of possible input
sequences of the online problem. Then we define a general semi-online input
restriction to be simply a set Ψ of allowed input sequences. We call an input
sequence a partial input if it is a prefix of some input sequence; the set of
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all partial inputs is denoted pref(Ψ). Thus the partial inputs are exactly the
sequences that the algorithm can see at some point.
We restrict the definition of C∗

max only to Ψ-valid sequences of jobs as in
[5], i.e., C∗,Ψ

max[J ] = C∗
max[J ] for J ∈ Ψ. Then we extend it to the partial

inputs in a natural way, i.e., denoting the least achievable makespan over all
valid continuations of such a partial input:

C∗,Ψ
max[I] = inf{C∗

max[J ] | J ∈ Ψ & I is a prefix of J } . (2)

This simplifies to the similar formula as in (1) for our restrictions. That
is crucial, because then we are able to define C∗,Ψ

max as the minimum value
satisfying several linear inequalities. (We consider the speeds as fixed pa-
rameters, because they are given at the start of the algorithm, while the
processing times are the variables as the algorithm does not know them in
advance.)
We measure how bad are (semi-)online algorithms compared to opti-

mal solution by the competitive ratio. We say that an algorithm is r-
competitive if it manages to generate valid schedule with at most r times
greater makespan than the makespan of the optimal (offline) schedule. For
randomized algorithms we use expectation of the makespan over the random
bits of the algorithm for each input sequence.
The exact analysis of scheduling on two machines was given in [6, 1, 16]

for various semi-online problems, and in many more cases for non-preemptive
scheduling. The paper [5] provides the framework to construct the algorithm
with best possible competitive ratio for arbitrary number of machines and
gives linear programs computing the optimal competitive ratio for several
semi-online problems. We solve these linear programs for the cases of up to
four machines. Below we list the restrictions studied in our paper.

Online scheduling. Here Ψ contains all sequences. In [2] is designed an
optimal online algorithm for all speed vectors, but the competitive ratio is
given implicitly by the linear program, which is solved there up to three
machines. Here we analyze the competitive ratio of four machines.

Known sum of processing times,
∑

pj = P̄ . For a given value P̄ , Ψ
contains all sequences with P = P̄ . The algorithm from [2] is extended in [5]
to all semi-online problems studied in this paper. There is also noted that
the overall ratio is surprisingly the same as in the general online case, but
for m = 2, 1-approximation exists. We analyze the cases of m = 3, 4.

3



Known maximal job size, pmax = p̄. For a given value p̄, Ψ contains all
sequences with max pj = p̄.
It is easy to see that this restriction is equivalent to the case when the

first job is maximal, as any algorithm for that special case can be modified
also for the case when the maximal job arrives later. (It just reserves space
by virtually scheduling job of size pmax, and uses this space as soon as first
job of size pmax occurs.) Thus this restriction also includes non-increasing
jobs. In [18] it is shown that for identical machines, the approximation ratio
is the same as when the jobs are non-increasing. This is not the case for
general speeds [5]. This restriction was introduced in [14] for non-preemptive
scheduling on 2 identical machines. We analyze the cases of m = 2, 3, 4.

Known maximal job size and total processing time,
∑

pj = P̄ & pmax =
p̄. Here the algorithm knows both informations listed above. Scheduling on
two machines is trivial as in

∑

pj = P̄ . We analyze the cases of m = 3, 4.

Inexact partial information. In this case, some of the previously con-
sidered values (optimal makespan, sum of job sizes, maximal job size) is not
known exactly but only up to a certain factor. These variants were studied
first in [20] without preemption. The complete analysis of the preemptive
version with approximately known optimum and maximal processing times
on two machines and approximately known optimum on identical machines
was given in [16]. We give a complete analysis for an approximately known
optimum for three machines, denoted T ≤ C∗

max ≤ βT .

Tightly grouped processing times, denoted p ≤ pj ≤ βp. For given
values p̄ and β, Ψ contains all sequences with pj ∈ [p̄, βp̄] for each j. This
restriction was introduced in [14] for non-preemptive scheduling on 2 identical
machines. The complete analysis of the preemptive version on two machines
was given independently in [1, 12]. The case of three identical machines was
analyzed in [13]. We sketch a complete analysis for two machines, reproving
the results of [1, 12] using our technique.

The paper [17] is probably the first paper which studied and compared several
notions of semi-online algorithms, including the known sum of the processing
times. Some combination of the previous restrictions were studied in [19] for
non-preemptive scheduling on identical machines.
The lower bound, as well as matching algorithm can be found in [5].

We consider only nice restrictions, and for these is there proved that the best
possible competitive ratio (even for randomized algorithms) can be computed
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as rΨ(s) = supJ r̄Ψ(s,J ), where:

r̄Ψ(s,J ) =

∑n

j=1 pj
∑n

j=1 sn+1−j · C
∗,Ψ
max[J[j]]

, (3)

where sm+1 = sm+2 = · · · = 0, J is a prefix of Ψ-valid input sequence, J[j]

is a sequence containing first j jobs of the input sequence J and n = |J |.
The lower bound uses the argument of the total processing time available
to (semi-)online algorithm processing n jobs: after the time rC∗,Ψ

max[J[j]] only
n − j machines can be used as the algorithm is r-competitive semi-online,
thus it has all jobs from J[j] finished, and there are only n− j jobs in J \ J[j].
Following simplifications hold for the restrictions studied in this paper:

It suffices to consider only J where jobs are sorted from the smallest to the
largest. Also if n > m, it suffices to consider sequences with first n−m jobs
tiny where only their total processing time is interesting. Then it is easy to
construct linear conditions exactly bounding C∗,Ψ

max[J[n−m+1]], . . . , C
∗,Ψ
max[J[n]],

and construct a linear program with the objective function r̄Ψ(s,J ), where
the job sizes and the optimal makespans are variables. These programs are
already constructed in [5].

3 Online scheduling

The linear program in variables q1, . . . , qm and O1, . . . , Om, follows, each
inequality labeled with corresponding dual variable (z?). The value of the
optimal solution is the competitive ratio of the problem form machines. This
program is already solved for m ≤ 3 in [2].

maximize r = q1 + · · · + qm

subject to

1 = s1Om + s2Om−1 + · · ·+ smO1 (znorm)
q1 + · · · + qk ≤ (s1 + · · ·+ sm)Ok (zk) 1 ≤ k ≤ m
qj + · · · + qk ≤ (s1 + · · ·+ sk−j+1)Ok (zj,k) 2 ≤ j ≤ k ≤ m

qj ≤ qj+1 (z≤,j) 2 ≤ j ≤ m − 1
0 ≤ q1 (z0,1)
0 ≤ q2 (z0,2)

(4)

So we have the linear program and we solve it for all speed combinations of
four machines (m = 4).
The list of the cases follows. We list not only the resulting competitive

ratio and the validity domain of the case, (i.e., the conditions that define
this domain), but also the sizes of the jobs in the input sequence proving the
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lower bound and also the dual coefficients proving that no better bound can
be obtained from (3). Note that the algorithm from [2] matches exactly this
lower bound, i.e., if it fails to achieve some competitive ratio, then it is due
to the bound (3). (Recall the definition α = S−s1

S
.)

Case I Ratio: r =
S

s1 + αs2 + α2s3 + α3s4

Conditions:
(A+: II) s2 ≥ αs1

(B+: IV) s2 + s3 ≥ (α + α2)s1

Common denominator: D = s1 + αs2 + α2s3 + α3s4

Nonbasic dual vars:
z0,1, z0,2, z≤,2, z≤,3,
z2,3, z2,4, z3,4

Jobs:
q1 = α2(S − s1)/D
q2 = α2s1/D
q3 = αs1/D
q4 = s1/D

U.b. coefficients:
znorm = −r

z1 = z2,2 = s4/D
z2 = (s3 − (1 − α)s4)/D
z3 = (s2 − (1 − α)(s3 + αs4))/D
z4 = (s1 − (1 − α)(s2 + αs3 + α2s4))/D

z3,3 = (s3 + αs4)/D
z4,4 = (s2 + αs3 + α2s4)/D

We use a shorthand D for the common denominator of all formulas in our
case description. Conditions state which values of parameters is this case
optimal for. The label (A+: II) of a condition should be read as follows:
The Case I is adjacent to the Case II, where the opposite condition (A-):
s2 ≤ αs1 holds. Jobs give the main input sequence for lower bound. Note
that the adversary may stop the sequence after any number of jobs. (In the
general semi-online case the adversary may need to submit some more jobs,
so that the input will be in Ψ, while maintaining C∗,Ψ

max. But this is not needed
in online scheduling.) The nonbasic dual variables are labels of inequalities,
which we allow to be not tight, i.e., all other inequalities are turned into
equations. The upper bound coefficients are values of nonzero dual variables.
These give the matching upper bound on the competitive ratio, which is
obtained by summing up the corresponding inequalities multiplied by these
coefficients. Note that all nonbasic dual variables have coefficients of zero
value (and thus are not listed), because of the dual complementary slackness
of linear programing.
Now we show how to check the correctness of Case I. The correctness of all

other cases and all other restrictions in this paper can be checked in the same
way. First we check the value of the objective function (using s1 = (1−α)S):

q1 + q2 + q3 + q4 = α2S/D + α(1 − α)S/D + (1 − α)S/D = S/D = r

Then we compute the values of the optima variables O1, . . . , O4. We know
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that basic inequalities are satisfied by equality:

O1
(z1)
= q1/S = α3/D

O2
(z2,2)
= q2/s1 = α2/D = (q1 + q2)/S

(z2)
= O2

O3
(z3,3)
= q3/s1 = α/D = (q1 + q2 + q3)/S

(z3)
= O3

O4
(z4,4)
= q4/s1 = 1/D = (q1 + q2 + q3 + q4)/S

(z4)
= O4 .

The equal signs are labeled by labels of used equalities. Similarly the in-
equality signs are labeled by labels of sufficient conditions in following text.
We can also easily verify that the equation (znorm) holds. We check the

remaining (i.e., nonbasic) inequalities:

(z2,3) q2 + q3 = (α + α2)s1/D
≤A α(s1 + s2)/D = (s1 + s2)O3

(z2,4) q2 + q3 + q4 = (1 + α + α2)s1/D
≤B (s1 + s2 + s3)/D = (s1 + s2 + s3)O4

(z3,4) q3 + q4 = (1 + α)s1/D
≤A (s1 + s2)/D = (s1 + s2)O4 .

We get (z0,1), (z0,2), (z≤,2) and (z≤,3) trivially from α ≤ 1 and S ≥ s1. Thus
we know that our solution is feasible when A+ and B+ holds, so all algorithms
are at least r-competitive for such sets of speeds. The sequence that proves
this is for example: p1 = · · · = p4 = q1/4, p5 = q2, p6 = q3, p7 = q4.
Now we check the optimality of our solution. We check that all upper

bound coefficients are nonnegative with the exception of znorm:

z2D = (s3 − s4) + αs4 ≥ 0
z3D = (s2 − s3) + α(s3 − s4) + α2s4 ≥ 0

z4DS = s1S − s1(s2 + αs3 + α2s4) ≥ 0 .

The coefficient znorm is allowed to be negative, as (znorm) is an equation.
So we have all inequality coefficients nonnegative, thus we add up the in-
equalities multiplied by their respective coefficients, and we use the resulting
inequality:

q1 + q2 + q3 + q4 = (q1 + q2 + q3 + q4)(s1 + αs2 + α2s3 + α3s4)/D
= q1(z1 + z2 + z3 + z4) + q2(z2,2 + z2 + z3 + z4) + q3(z3,3 + z3 + z4)

+ q4(z4,4 + z4)
≤ O1Sz1 + O2(Sz2 + s1z2,2) + O3(Sz3 + s1z3,3) + O4(Sz4 + s1z4,4)
= O1s4S/D + O2s3S/D + O3s2S/D + O4s1S/D
= (O1s4 + O2s3 + O3s2 + O4s1)S/D

+ (O1s4 + O2s3 + O3s2 + O4s1 − 1)znorm

= S/D .
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This proves the optimality of our solution, i.e., there is no better solution
and the algorithm from [2] is r-competitive.
Now we continue the list of the cases:

Case II Ratio: r =
S2

∑4
i=1

∑4
j=i sisj + α(s3 + s4)s4 − s2

4

Conditions:
(A-: I) s2 ≤ αs1

(C+: III) s2 + s3 ≥ α(s1 + s2)

Common denominator: D =
∑4

i=1

∑4
j=i sisj + α(s3 + s4)s4 − s2

4

Nonbasic dual vars:
z0,1, z0,2, z≤,2, z≤,3, z2,2, z2,4, z3,3

Jobs:
q1 = (s3 + s4)(S − s1)/D
q2 = (s3 + s4)s1/D
q3 = s2S/D
q4 = s1S/D

U.b. coefficients:
znorm = −r

z1 = z2,3 = s4S/D
z2 = z3,4 = s3S/D
z3 = (s2S − (s1 + s2)s4)/D
z4 = (s1(s1 + s4) − s2s3

− (1 − α)(s3 + s4)s4)/D
z4,4 = (s2S + (s3 + s4)s4)/D

Case III Ratio: r =
S2

∑4
i=1

∑4
j=i sisj

Conditions: (implicit: B-)
(A-: IV) s2 ≤ αs1

(C-: II) s2 + s3 ≤ α(s1 + s2)

Common denominator: D =
∑4

i=1

∑4
j=i sisj

Nonbasic dual vars:
z0,1, z0,2, z≤,2, z≤,3, z2,2, z2,3, z3,3

Jobs:
q1 = s4S/D
q2 = s3S/D
q3 = s2S/D
q4 = s1S/D

U.b. coefficients:
znorm = −r

z1 = z2,4 = s4S/D
z2 = z3,4 = s3S/D
z3 = z4,4 = s2S/D

z4 = (s1S −
4

∑

i=2

i−1
∑

j=1

sisj)/D
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Case IV Ratio: r =
S

s1 + αs2 + α2s3 + s2
4/S

Conditions: (implicit: C-)
(A+: III) s2 ≥ αs1

(B-: I) s2 + s3 ≤ (α + α2)s1

Common denominator: D = s1 + αs2 + α2s3 + s2
4/S

Nonbasic dual vars:
z0,1, z0,2, z≤,2, z≤,3, z2,2, z2,3, z3,4

Jobs:
q1 = s4/D
q2 = (α(S − s1) − s4)/D
q3 = αs1/D
q4 = s1/D

U.b. coefficients:
znorm = −r

z1 = z2,4 = s4/D
z2 = z3,3 = s3/D
z3 = (s2 − (1 − α)s3)/D
z4 = (s1 − s4(S − s4)/S

− (1 − α)(s2 + s3α))/D
z4,4 = (s2 + αs3)/D

A
− +

C
− +

B
− +

III II IV I

We should also check that all listed cases
cover whole space of the valid parameters
(the speeds of the machines). This is easy,
as condition A splits the space to the cases
I+IV and the cases II+III. Then, I and IV
are separated by B and fully cover the halfs-
pace A+. Similarly II and III are separated
by C and fully cover the halfspace A-. The
diagram to the right of this paragraph represents the situations. It is a de-
cision tree, where the nodes are labeled by the conditions and the leaves
represent the cases.

4 Semi-online scheduling

4.1 Known sum of processing times,
∑

pj = P̄

Here we are given a value P̄ and Ψ contains all J with P = P̄ . Here we
have to solve n − 1 linear programs for each n < m, and take the maximum
of their solutions. The linear program for arbitrary n follows. Note that the
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shorthand S sums all speeds of the machines, i.e., including sn+1, . . . , sm.

maximize r = q1 + q2 + · · ·+ qn

subject to

1 = s1On + s2On−1 + · · ·+ snO1 (znorm)
q1 + · · · + qn ≤ SOk (zk) 1 ≤ k ≤ n − 1
qj + · · · + qk ≤ (s1 + · · ·+ sk−j+1)Ok (zj,k) 1 ≤ j ≤ k ≤ n

qk ≤ qk+1 (z≤,k) 1 ≤ k ≤ n − 1
0 ≤ q1 (z0) .

(5)

Note that the condition (zj,k) is also defined for j = k. Then it simplifies to:

qj ≤ s1Oj (zj,j)

We omit the inequality (zn) as it is implied by (z1,n). (The implication follows
trivially from S = s1 + · · ·+ sn + sn+1 + · · · + sm.)
We now examine the special cases of m = 2, 3 and 4. The linear program

is trivial for n = 1, and we conclude that for m = 2 the approximation ratio
is equal to 1, i.e., there is an optimal algorithm.
We can see this also intuitively: The algorithm starts scheduling the

incoming jobs in the interval [0, T1) where T1 ≥ P̄ /S. Consider the first time
when a job is scheduled at the first real machine M1. It is always possible
to schedule this job at the empty machine M1 so that it completes before
the current optimal makespan. Furthermore, after M1 is used the first time,
the algorithm guarantees that in the interval [0, T1) there is only one real
machine idle at any time. This in turn implies that the remaining jobs can
be completed by time T1, as the total size of all jobs is P̄ ≤ S · T1.

Padding. In [5] we proved a theorem that shows that for any nice restric-
tion Ψ, the restriction Ψ,

∑

pj = P̄ has same overall competitive ratio. I.e.,
adding to any nice restriction the knowledge of the total size of jobs does
not improve the overall approximation ratio. (It turns out, that all stud-
ied restrictions are nice.) This may sound surprising, as for two machines,
knowing the sum allows to generate an optimal schedule, and also for three
machines the improvement is significant.

4.1.1 m = 3

For m = 3, it remains to solve the linear program for n = 2. The ratio splits
to two cases:
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Case I Ratio: r =
(s1 + s2)S

s2(s1 + s2) + s1S
Conditions:
(A+: II) s1(s1 + s2) ≥ s2S

Common denominator: D = s2(s1 + s2) + s1S

Nonbasic dual vars:
z0, z≤,1, z1,1

Jobs:
q1 = s2S/D
q2 = s1S/D

U.b. coefficients:
znorm = −r

z1 = s2(s1 + s2)/D
z1,2 = s1S/D

Case II Ratio: r =
s1(s1 + s2)

s2
1 + s2

2

Conditions:
(A-: I) s1(s1 + s2) ≤ s2S

Common denominator: D = s2
1 + s2

2

Nonbasic dual vars:
z0, z≤,1, z1

Jobs:
q1 = s1s2/D
q2 = s2

1/D

U.b. coefficients:
znorm = −r

z1,2 = s1S/D
z1,1 = z2,2 = s2(s1 + s2)/D

4.1.2 m = 4

Here we solve the linear program for
n = 3. Note, that the competitive
ratio is the maximum of results of
linear programs for all n < m.
The diagram giving overall figure on
how the conditions split the cases is
to the right side of this paragraph.

A
− +

B
− +

I

D
− +

C
− +

VII III E
− +

II

F
− +

V

VI IV
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Case I Ratio: r =
(s1 + s2 + s3)S

(s2 + s3)(s1 + s2 + s3) + s1S
Conditions:
(A+: II,III) (s1 + s2)(s1 + s2 + s3) ≥ (s2 + s3)S

Common denominator: D = (s2 + s3)(s1 + s2 + s3) + s1S

Nonbasic dual vars:
z0, z≤,2, z1,1, z1,2, z2,2, z2,3

Jobs:
q1 = q2 = (s2 + s3)S/(2D)

q3 = s1S/D

U.b. coefficients:
znorm = −r

z2 = s2(s1 + s2 + s3)/D
z1,3 = s1S/D
z1 = s3(s1 + s2 + s3)/D

Case II Ratio: r =
(s1 + s2)(s1 + s2 + s3)S

s2
1S + (s1s3 + s2(S + s3))(s1 + s2 + s3)

Conditions: (implicit: F+)
(A-: I) (s1 + s2)(s1 + s2 + s3) ≤ (s2 + s3)S

(B+: III) s1s3 ≥ s2
2

(C+: IV,V) s1(s1 + s2 + s3) ≥ s3S

Common denominator: D = s2
1S + (s1s3 + s2(S + s3))(s1 + s2 + s3)

Nonbasic dual vars:
z0, z≤,1, z≤,2, z2, z1,1, z2,2

Jobs:
q1 = s3(s1 + s2)S/D
q2 = s2(s1 + s2)S/D
q3 = s1(s1 + s2)S/D

U.b. coefficients:
znorm = −r

z1 = s3(s1 + s2)(s1 + s2 + s3)/D
z1,2 = z3,3 = s2(s1 + s2 + s3)S/D

z1,3 = s2
1S/D

Case III Ratio: r =
(s1 + s2)(s1 + s2 + s3)S

s2
1S + (s1s3 + s2(S + s3))(s1 + s2 + s3)

Conditions:
(A-: I) (s1 + s2)(s1 + s2 + s3) ≤ (s2 + s3)S
(B-: II) s1s3 ≤ s2

2

(D+: VII) s1(s1 + s2)(s1 + s2 + s3) ≥ s2(s2 + s3)S

Common denominator: D = s2
1S + (s1s3 + s2(S + s3))(s1 + s2 + s3)

Nonbasic dual vars:
z0, z≤,1, z≤,2, z2, z1,1, z2,3

Jobs:
q1 = s2(s2 + s3)S/D
q2 = s1(s2 + s3)S/D
q3 = s1(s1 + s2)S/D

U.b. coefficients:
znorm = −r

z1 = s3(s1 + s2)(s1 + s2 + s3)/D
z1,2 = z3,3 = s2(s1 + s2 + s3)S/D
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Case IV Ratio: r =
(s1 + s2)

2S

s2
1(S − s1) + (s1 + s2)(s1s3 + s2(S + s3))

Conditions: (implicit: A-,B+)
(C-: II)) s1(s1 + s2 + s3) ≤ s3S
(E-: V)) s3

1 ≤ s3(s1 + s2)
2

(F+: VI)) s1(s
2
1 + s1s2 + s2

2) ≥ s2
2S

Common denominator: D = s2
1(S − s1) + (s1 + s2)(s1s3 + s2(S + s3))

Nonbasic dual vars:
z0, z≤,1, z≤,2, z2, z1,3, z2,2

Jobs:
q1 = s1(s1 + s2)

2/D
q2 = s2(s1 + s2)(S − s1)/D
q3 = s1(s1 + s2)(S − s1)/D

U.b. coefficients:
znorm = −r

z1 = (s3(s1 + s2)
2 − s3

1)/D
z1,1 = z2,3 = s2

1S/D
z1,2 = z3,3 = s2(s1 + s2)S/D

Case V Ratio: r =
s1(s1 + s2)(s1 + s2 + s3)

s2s3(s1 − s3) + s1(2s1 + s2)(s2 + s3)
Conditions: (implicit: A-)
(B+: VII) s1s3 ≥ s2

2

(C-: II) s1(s1 + s2 + s3) ≤ s3S
(E+: IV,VI) s3

1 ≥ s3(s1 + s2)
2

Common denominator: D = s2s3(s1 − s3) + s1(2s1 + s2)(s2 + s3)

Nonbasic dual vars:
z0, z≤,1, z≤,2, z1, z2, z2,2

Jobs:
q1 = s3s1(s1 + s2)/D
q2 = s2s1(s1 + s2)/D
q3 = s2

1(s1 + s2)/D

U.b. coefficients:
znorm = −r

z1,1 = z2,3 = s3(s1 + s2)(s1 + s2 + s3)/D
z1,2 = z3,3 = s1s2(s1 + s2 + s3)/D

z1,3 = (s3
1 − (s1 + s2)

2s3)/D
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Case VI Ratio: r =
s1(s

2
1 + s1s2 + s2

2)

s3
1 + s2

2(s1 + s3)
Conditions: (implicit: A-,C-)
(B+: VII) s1s3 ≥ s2

2

(E-: V) s3
1 ≤ s3(s1 + s2)

2

(F-: VI) s1(s
2
1 + s1s2 + s2

2) ≤ s2
2S

Common denominator: D = s3
1 + s2

2(s1 + s3)

Nonbasic dual vars:
z0, z≤,1, z≤,2, z1, z2, z1,3

Jobs:
q1 = s1s

2
2/D

q2 = s2
1s2/D

q3 = s3
1/D

U.b. coefficients:
znorm = −r

z1,1 = s3(s
2
1 + s1s2 + s2

2)/D
z1,2 = s1(s

2
1 + s2

2 − s3(s1 + s2))/D
z2,2 = (s3(s1 + s2)

2 − s3
1)/D

z2,3 = s1(s
2
1 − s2s3)/D

z3,3 = s2(s1s2 + s1s3 + s2s3)/D

Case VII Ratio: r =
s1(s1 + s2)(s1 + s2 + s3)

s2
1(s1 + s2) + s2(s1 + s3)(s2 + s3)

Conditions: (implicit: A-)
(B-: V,VI) s1s3 ≤ s2

2

(D-: III) s1(s1 + s2)(s1 + s2 + s3) ≤ s2(s2 + s3)S

Common denominator: D = s2
1(s1 + s2) + s2(s1 + s3)(s2 + s3)

Nonbasic dual vars:
z0, z≤,1, z≤,2, z1, z2, z2,3

Jobs:
q1 = s1s2(s2 + s3)/D
q2 = s2

1(s2 + s3)/D
q3 = s2

1(s1 + s2)/D

U.b. coefficients:
znorm = −r

z1,1 = z2,2 = s3(s1 + s2)(s1 + s2 + s3)/D
z1,2 = s1(s2 − s3)(s1 + s2 + s3)/D
z1,3 = s1(s

2
1 − s2s3)/D

z3,3 = s1(s1 + s3)(s1 + s2 + s3)/D

4.2 Known maximal processing time,

pmax = p̄

Here we are given p̄, the maximal size of a job. We need to compute one linear
program for n ≥ m and n−2 linear programs, one for each n ∈ {2, . . . , n−1}.
We should take the maximum of the results and 1 (that is the result for n = 1)
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to obtain the competitive ratio for given m. The program for n ≥ m follows:

maximize r = p + q1 + · · ·+ qm

subject to

1 = s1Om + · · · + smO1 (znorm)
p + q1 + · · ·+ qk

≤ SOk (zk) 1 ≤ k ≤ m
p ≤ s1Ok (zk,k) 1 ≤ k ≤ m − 1

p + qj+1 + · · ·+ qk

≤ (s1 + · · ·+ sk−j+1)Ok (zj,k) 1 ≤ j < k ≤ m
0 ≤ q1 (z0,1)
0 ≤ q2 (z0,2)

qk ≤ qk+1 (z≤,k) 2 ≤ k ≤ m − 1
qm = p (substitution)

(6)

We omit (z1,m) as it is implied by (zm) as well as (zm,m) implied by (zm−1,m).
The linear program for the sequences of length 2 ≤ n < m is similar:

maximize r = p + q2 + · · · + qn

subject to

1 = s1On + · · ·+ snO1 (znorm)
p ≤ s1Ok (zk,k) 1 ≤ k ≤ n − 1

p + qj+1 + · · ·+ qk

≤ (s1 + · · · + sk−j+1)Ok (zj,k) 1 ≤ j < k ≤ n
0 ≤ q2 (z0,2)

qk ≤ qk+1 (z≤,k) 2 ≤ k ≤ n − 1
qn = p (substitution)

(7)

We omit (zn,n) here also.

4.2.1 m = 2

For two machines we need to solve only (6) for m = 2. The result is covered
by a single case, valid for all combinations of the speeds. But this case is also
valid for greater values of m, although only if the condition A+ is satisfied.
(The condition A+ is trivially satisfied for m = 2.) We include the general
description of the case here:

15



Case I Ratio: r =
S2 + s1S

S2 + s2
1

Conditions:
(A+) s1s2 ≥ (S − s1 − s2)S

Common denominator: D = S2 + s2
1

Nonbasic dual vars:
all but: z1, . . . , zm, znorm,
zi,i for i = 1, . . . , m − 1
Jobs:
p = s2

1S/D
q1 = s1(S − s1)S/D
q2 = · · · = qm−1 = 0

U.b. coefficients:
znorm = −r

i = 1, . . . , m − 2 :
zi,i = sm−i+1S(S + s1)/D

zm−1,m−1 = (s1s2 − (S − s1 − s2)S)S/D
zm−1 = s1(S − s1)S/D

zm = s2
1(S + s1)/D

4.2.2 n = 2

We need to solve also (7) for n = 2 to solve cases when m > 2. This becomes
trivial as there are only two jobs and both have size p in the wost case
sequence. Thus the competitive ratio is 2s1(s1+s2)

s1(s1+s2)+s2

1
+s2

2

here.

4.2.3 m = 3

We have already solved n = 2, thus it suffices to solve (6) for m = 3. Here
we have two cases, one already shown in the solution of m = 2.

Case II Ratio: r =
S2 + 2s1S

S2 + 2s2
1 + s1s2

Conditions:
(A-:I) s1s2 ≤ s3S

Common denominator: D = S2 + 2s2
1 + s1s2

Nonbasic dual vars:
z0,1, z0,2, z1,2, z2,2, z2,3

Jobs:
p = q2 = s1S/D

q1 = (S − s1)S/D

U.b. coefficients:
znorm = −r

z≤,2 = z1 = (s3S − s1s2)/D
z2 = s2(2s1 + S)/D
z3 = s1(2s1 + S)/D

z1,1 = (s2 + 2s3)S/D
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4.2.4 n = 3

Solutions of (7) for n = 3. These are needed to evaluate
the cases of m > 3 machines. The overview on how the
cases split is to the right again.

B
− +

III A
− +

II I

Case I Ratio: r =
2s1(s1 + s2)S

s1(s1 + s2)(S + s1) + s2s3(3s1 + s2)
Conditions:
(A+:II) 2s1s3 ≥ s2(s1 + s2)
(B+:III) s1s2 ≥ s3(s1 + s2)

Common denominator: D = s1(s1 + s2)(S + s1) + s2s3(3s1 + s2)

Nonbasic dual vars:
z0,2, z≤,2, z2,2

Jobs:
p = s1(s1 + s2)

2/D
q2 = 2s1s3(s1 + s2)/D

U.b. coefficients:
znorm = −r

z1,1 = 2s3(s1 + s2)S/D
z1,2 = 2s1s2(s1 + s2)S/D
z1,3 = (2s2

1 + (s1 + s2)s3 − s1s2)
· (s1 + s2)/D

z2,3 = (s1s2 − (s1 + s2)s3)S/D

Case II Ratio: r =
(2s1 + s2)S

S2 + s1(s1 − s3)
Conditions:

(A-:I) 2s1s3 ≤ s2(s1 + s2)
(B+:III) s1s2 ≥ s3(s1 + s2)

Common denominator: D = S2 + s1(s1 − s3)

Nonbasic dual vars:
z0,2, z≤,2, z2,3

Jobs:
p = s1S/D

q2 = s2S/D

U.b. coefficients:
znorm = −r

z1,1 = s3(2s1 + s2)S/(s1D)
z1,2 = (s2 + s3)S/D
z1,3 = s1(2s1 + s2)/D
z2,2 = (s1s2 − (s1 + s2)s3)/(s1D)
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Case III Ratio: r =
3s1(s1 + s2)S

(s1(2S + s1 − s3) + s2s3)S − 3s2
1s3

Conditions:
(B-:I,II) s1s2 ≤ s3(s1 + s2)

Common denominator: D = (s1(2S + s1 − s3) + s2s3)S − 3s2
1s3

Nonbasic dual vars:
z0,2, z2,2, z2,3

Jobs:
p = q2 = s1(s1 + s2)S/D

U.b. coefficients:
znorm = −r
z≤,2 = S(s3(s1 + s2) − s1s2)/D
z1,1 = 3s3(s1 + s2)S/D
z1,2 = 3s1s2S/D
z1,3 = 3s2

1(s1 + s2)/D

4.2.5 m = 4

Solutions of (6) for m = 4, the Case I is shown in m = 2. Note that we need
to compare this solutions to the solutions of (7) for n = 1, 2, 3.

The case diagram may look
strange, but this is due to
the fact, that the conditions
A+,B+ and C+ are pairwise
exclusive.

I
+
A

−
IV

−
B

+
II

C
+

−

III

Case II Ratio: r =
S2 + 3s1S

S2 + s1(3s1 + 2s2 + s3)
Conditions:
(B+: IV) s4S ≥ s1(s2 + 2s3)

Common denominator: D = S2 + s1(3s1 + 2s2 + s3)

Nonbasic dual vars:
z≤,1, z≤,2, z1,2, z1,3, z2,2,
z2,3, z2,4, z3,3, z3,4, z4,4

Jobs:
q1 = s1(S − s1)S/D
q2 = q3 = p = s2

1S/D

U.b. coefficients:
znorm = −r
z≤,3 = s4S − s1(s2 + 2s3)/D
z≤,4 = s1((s3 + 2s4)S − s1(2s2 + s3))/D

z1 = s1(s2 + 2s3 + 3s4)S/D
z2 = s1s3(S + 3s1)/D
z3 = s1s2(S + 3s1)/D
z4 = s2

1(S + 3s1)/D
z1,1 = s1(s2 + 2s3 + 3s4)S/D
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Case III Ratio: r =
s1S(2S + s1 + s2)

2s1S2 + s1(s1 − s3)(s1 + s2) − (s1 − s2)s4S
Conditions:
(C+: IV) s1(s3 + s4) ≥ s2S

Common denominator: D = 2s1S
2 + s1(s1 − s3)(s1 + s2) − (s1 − s2)s4S

Nonbasic dual vars:
z≤,1, z≤,2, z≤,3, z1,3, z2,2,
z2,4, z3,3, z3,4, z4,4; z1

Jobs:
q1 = s1(s1 + s2)(S − s1)S/D
q2 = s1(s1(s3 + s4) − s2S)S/D
q3 = p = s2

1(s1 + s2)S/D

U.b. coefficients:
znorm = −r
z≤,4 = s1(s4S

2 + s3s1(s1 + s2)
− s2s1S)/D

z2 = s3s
2
1(2S + s1 + s2)/D

z3 = s1(s4(s1 + s2)S
+ 2s1(s2S − s3(s1 + s2)))/D

z4 = s3
1(2S + s1 + s2)/D

z1,1 = s4s1S(2S + s1 + s2)/D
z2,3 = s1S(s1(s2 + 2s3) − s4S)/D

Case IV Ratio: r =
S(S + 2s1)

S2 + s1(2s1 + s2)
Conditions:

(A-: I) s1s2 ≤ (s3 + s4)S
(B-: II) s4S ≤ s1(s2 + 2s3)
(C-: III) s1(s3 + s4) ≤ s2S

Common denominator: D = S2 + s1(2s1 + s2)

Nonbasic dual vars:
z≤,1, z≤,2, z≤,3, z1,3, z2,3,
z2,4, z3,3, z3,4, z4,4; z1

Jobs:
q1 = s1(S − s1)S/D
q2 = 0

q3 = p = s2
1S/D

U.b. coefficients:
znorm = −r

z≤,4 = z2 = s1((s3 + s4)S − s1s2)/D
z3 = s2s1(S + 2s1)/D
z4 = s2

1(S + 2s1)/D
z1,1 = s4S(S + 2s1)/D
z2,2 = S(s1(s2 + 2s3) − s4S)/D

In the cases I and IV q2 = 0, but we know, that jobs are ordered. Thus we
need to consider inputs p1 = p, p2 = · · · = pn−2 = ǫ, pn−1 = max{ǫ, q3}, pn =
p, where n = q1/ǫ. We approach the bound given by linear program with
ǫ → 0.

4.3 Known max. proc. time and sum of proc. times,
∑

pj = P̄ & pmax = p̄

We are given both the maximal processing time and the sum of the processing
times. We introduce a constant β = P̄−p̄

p̄
to be able to use homogeneity. We
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need to solve n− 1 linear programs as for
∑

pj = P̄ . The linear program for
every n < m follows:

maximize r = p + q2 + · · ·+ qn

subject to

1 = s1On + · · · + s1On (znorm)
(1 + β)p ≤ SOk (zk) 1 ≤ k ≤ n

p ≤ s1Ok (zk,k) 1 ≤ k ≤ n
p + qj+1 + · · · + qk

≤ (s1 + · · ·+ sk−j+1)Ok (zj,k) 1 ≤ j < k ≤ n
q2 + · · ·+ qn ≤ βp (z≤,0)

qn ≤ p (z≤,1)
0 ≤ q2 (z≤,2)

qk−1 ≤ qk (z≤,k) 3 ≤ k ≤ n

(8)

If we want to solve the problem for some number of machines m, we need
to solve all n − 1 linear programs for n < m and take the maximum of
their solutions again. For n = 1 the program is trivial and the resulting
competitive ratio is 1.
Now we list two cases, where the competitive ratio is 1, as the value of the

optimal makespan can be derived from the knowledge of p̄, P̄ and the speeds
of the machines. The linear programs for n ≥ 2 have the results typically
smaller than (or equal to) 1 here, thus the maximum is obtained from the
program for n = 1.

Case I (A+) βs1 ≤ s2: The second machine is fast enough to process all
but the maximal job before the maximal job finishes on the first machine.

Case II (B-) (1+β)(s1 + · · ·+ sn) ≥ nS: Now, all optima are given by the
total processing time, and the algorithm from [3] produces optimal schedule.

4.3.1 n = 2

We list the cases of the solution for (8).
The conditions A+ and B- are mutu-
ally exclusive (e.g., β ≥ 1 separates
them).

A,B
B− A+

II A−,B+

C,D
I

C+,D−

III
C−,D+

IV
C+,D+

V
C−,D−

VI
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Case III Ratio: r =
2s1(s1 + s2)

s1(s1 + s2) + s2
1 + s2

2

Conditions: (Implicit B+, A-)
(C+:IV) (1 + β)s1 ≤ S
(D-:V) β ≥ 1

Common denominator: D = s1(s1 + s2) + s2
1 + s2

2

Nonbasic dual vars:
z≤,0, z1, z2, z2,2

Jobs:
p = q2 = s1(s1 + s2)/D

U.b. coefficients:
znorm = −r
z≤,1 = s2(s1 + s2)/D
z1,1 = 2s2(s1 + s2)/D
z1,2 = 2s2

1/D

Case IV Ratio: r =
2(s1 + s2)S

2s1S + (1 + β)s2(s1 + s2)
Conditions: (Implicit A-)
(C-:III) (1 + β)s1 ≥ S
(D-:VI) β ≥ 1
(B+:II) (1 + β)(s1 + s2) ≤ 2S

Common denominator: D = 2s1S + (1 + β)s2(s1 + s2)

Nonbasic dual vars:
z≤,0, z2, z1,1, z2,2

Jobs:
p = q2 = (s1 + s2)S/D

U.b. coefficients:
znorm = −r
z≤,1 = (1 + β)s2(s1 + s2)/D

z1 = 2s2(s1 + s2)/D
z1,2 = 2s1S/D

Case V Ratio: r =
(β + 1)s1(s1 + s2)

s1(s1 + s2) + βs2
1 + s2

2

Conditions: (Implicit B+)
(A-:I) βs1 ≥ s2

(C+:VI) (1 + β)s1 ≤ S
(D+:III) β ≤ 1

Common denominator: D = s1(s1 + s2) + βs2
1 + s2

2

Nonbasic dual vars:
z≤,1, z1, z2, z2,2

Jobs:
p = s1(s1 + s2)/D

q2 = βs1(s1 + s2)/D

U.b. coefficients:
znorm = −r
z≤,2 = s2(s1 + s2)/D
z1,1 = (1 + β)s2(s1 + s2)/D
z1,2 = (1 + β)s2

1/D
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Case VI Ratio: r =
(s1 + s2)S

s1S + (s1 + s2)s2

Conditions: (Implicit A-,B+)
(C-:V) (1 + β)s1 ≥ S
(D+:IV) β ≤ 1

Common denominator: D = s1S + (s1 + s2)s2

Nonbasic dual vars:
z≤,1, z2, z1,1, z2,2

Jobs:
p = (s1 + s2)S/((1 + β)D)

q2 = β(s1 + s2)S/((1 + β)D)

U.b. coefficients:
znorm = −r

z≤,2 = z1 = s2(s1 + s2)/D
z1,2 = s1S/D

4.3.2 n = 3

The case list is omitted here, as there are 17 cases with 15 different formulas
of value of optimal solution. Three formulas (in three cases) have value
smaller or equal to 1 (these cases the Cases I and II), thus the maximal lower
bound is obtained for n = 2 or n = 1 in these cases, when considering four
machines. The remaining formulas have value of at least 1.

4.4 Approximately known optimum,

T ≤ C∗
max

≤ βT

We are given lower and upper bound on the optimal makespan in advance
here. We give the upper bound as β times the lower bound, so we can use
homogeneity. Then the ratio does not depend on actual value of the lower
bound T , and it also does not occur in our linear programs. To obtain proper
solution for m machines, we need to solve one linear program for the case of
n ≥ m and m − 2 linear programs each for one n < m (the linear program
for n = 1 is trivial). Then we take the maximum of the solutions as usual.

maximize r = q1 + · · · + qm

subject to

1 = s1Om + s2Om−1 + · · ·+ smO1 (znorm)
q1 + · · · + qk ≤ (s1 + · · ·+ sm)Ok (zk) 1 ≤ k ≤ m
qj + · · · + qk ≤ (s1 + · · ·+ sk−j+1)Ok (zj,k) 2 ≤ j ≤ k ≤ m

qj ≤ qj+1 (z≤,j) 2 ≤ j ≤ m − 1
0 ≤ q1 (z0,1)
0 ≤ q2 (z0,2)

Ok ≤ Ok+1 (zβ,k) 1 ≤ k ≤ m − 1
Om ≤ βO1 (zβ)

(9)
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And for n < m:

maximize r = q1 + · · ·+ qn

subject to

1 = s1On + s2On−1 + · · · + snO1 (znorm)
qj + · · · + qk ≤ (s1 + · · ·+ sk−j+1)Ok (zj,k) 1 ≤ j ≤ k ≤ n

qj ≤ qj+1 (z≤,j) 1 ≤ j ≤ n − 1
0 ≤ q1 (z0)

Ok ≤ Ok+1 (zβ,k) 1 ≤ k ≤ n − 1
On ≤ βO1 (zβ)

(10)

The cases for this problem include also the cases of the generic online prob-
lem, with additional conditions on β. These conditions say when the β is too
large to provide any useful information for the algorithm.

4.4.1 m = 2

For two machines, we need to solve only (9) for m = 2 as the case of n = 1
is trivial. Both cases here give ratio greater than 1, thus giving the final
solution for two machines. The first case is identical to the only case of
online scheduling. The condition A+ says β is large enough.

Case I Ratio: r =
(s1 + s2)

2

s2
1 + s1s2 + s2

2

Conditions:
(A+:II) βs2 ≥ s1 + s2

Common denominator: D = s2
1 + s1s2 + s2

2

Nonbasic dual vars:
z0,1, z0,2, zβ,1, zβ

Jobs:
q1 = s1(s1 + s2)/D
q2 = s2(s1 + s2)/D

U.b. coefficients:
znorm = −r

z1 = z2,2 = s2(s1 + s2)/D
z2 = s2

1/D

Case II Ratio: r =
β(s1 + s2)

βs1 + s2

Conditions:
(A-:I) βs2 ≤ s1 + s2

Common denominator: D = βs1 + s2

Nonbasic dual vars:
z0,1, z0,2, zβ,1, z1

Jobs:
q1 = βs2/D
q2 = βs1/D

U.b. coefficients:
znorm = −r

zβ = s2(s1 + s2)/D
z2 = β(s1 + s2)/D

23



4.4.2 n = 2

Here we solve (10) as this is needed in solutions of cases with more than two
machines.

Case I Ratio: r =
s1(s1 + s2)

s2
1 + s2

2

Conditions:
(A+:II) βs2 ≥ s1

Common denominator: D = s2
1 + s2

2

Nonbasic dual vars:
z0, z≤,1, zβ, zβ,1

Jobs:
q1 = s1s2/D
q2 = s2

1/D

U.b. coefficients:
znorm = −r

z1,1 = z2,2 = s2(s1 + s2)/D
z1,2 = s1(s1 + s2)/D

Case II Ratio: r =
β(s1 + s2)

βs1 + s2

Conditions:
(A-:I) βs2 ≤ s1

Common denominator: D = βs1 + s2

Nonbasic dual vars:
z0, z≤,1, zβ,1, z1,1

Jobs:
q1 = s1/D
q2 = (β(s1 + s2) − s1)/D

U.b. coefficients:
znorm = −r

zβ = s2(s1 + s2)/D
z1,2 = β(s1 + s2)/D

4.4.3 m = 3

In this case we need to take maximum of (9) for m = 3 and (10) for n = 1, 2.
It turns out that the solution of linear program for m = 3 is always maximal
of these three. First two cases are identical to the case of online scheduling.
If B+ or C+ is satisfied then β is large enough and the information about
the optimum is useless in general.
The conditions A-,B+ and C- can not
hold simultaneously, as well as the con-
ditions A+, B- and C+. Thus the cases
split as shown on the diagram.

D
− +

IV A,B,C

A+,B+

I
A−,C+

II
B−,C−

III
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Case I Ratio: r =
S

s1 + αs2 + α2s3

Conditions: (Implicit D+)
(A+:II) s2 ≥ αs1

(B+:III) βα2 ≥ 1

Common denominator: D = s1 + αs2 + α2s3

Nonbasic dual vars:
z0, z≤,2, zβ, zβ,1, zβ,2, z2,3

Jobs:
q1 = α2S/D
q2 = αs1/D
q3 = s1/D

U.b. coefficients:
znorm = −r

z1 = z2,2 = s3/D
z2 = (αs1 + (2 − α)s2)/D
z3 = (1 − α)2(S + s3)/D

z3,3 = (s2 + αs3)/D

Case II Ratio: r =
S2

s2
1 + s2

2 + s2
3 + s1s2 + s1s3 + s2s3

Conditions: (Implicit D+)
(A-:II) s2 ≤ αs1

(C+:III) βs3 ≥ S

Common denominator: D = s2
1 + s2

2 + s2
3 + s1s2 + s1s3 + s2s3

Nonbasic dual vars:
z0, z≤,2, zβ, zβ,1, zβ,2, z2,2

Jobs:
q1 = s3S/D
q2 = s2S/D
q3 = s1S/D

U.b. coefficients:
znorm = −r

z1 = z2,3 = s3S/D
z2 = z3,3 = s2S/D

z3 = (s2
1 − s2s3)/D

Case III Ratio: r =
βS

βs1 + βαs2 + s3

Conditions:
(B-:I) βα2 ≤ 1
(C-:II) βs3 ≤ S
(D+:IV) βα ≥ 1

Common denominator: D = βs1 + βαs2 + s3

Nonbasic dual vars:
z0, z≤,2, zβ,1, zβ,2, z1, z2,3

Jobs:
q1 = S/D
q2 = (βα − 1)S/D
q3 = βs1/D

U.b. coefficients:
znorm = −r

zβ = s3S
2/D

z2 = z3,3 = βs2S/D
z3 = (s3S + βs1(s1 + s3))/D
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Case IV Ratio: r =
βS

(β − 1)s1 + S
Conditions: (Implicit B-,C-)
(D-:IV) βα ≤ 1

Common denominator: D = (β − 1)s1 + S

Nonbasic dual vars:
z0, z≤,2, zβ,2, z2,2, z2,3, z3,3

Jobs:
q1 = S/D
q2 = 0
q3 = (β − 1)S/D

U.b. coefficients:
znorm = −r

zβ = (S − s1)S/D
zβ,1 = βs2S/D
z3 = ((β − 1)s1 + S)/D

4.5 Tightly grouped processing times, p ≤ pj ≤ βp.

We are given the lower and upper bound on a processing time of a job. We
have to solve m − 2 for all values of n = 1, . . . , m − 2. And then we have to
solve the case of n ≥ m − 1. The linear programs for n ≤ m look naturally:

maximize r = q1 + q2 + · · · + qn for: n ≤ m (or n ≤ 2m − 2)
subject to

1 = s1On + s2On−1 + · · ·+ snO1 (znorm)
qj + · · · + qk ≤ (s1 + · · ·+ sk−j+1)Ok (zj,k) 1 ≤ j ≤ k ≤ n

qk ≤ qk+1 (z≤,k) 1 ≤ k ≤ n − 1
qn ≤ βq1 (zβ) .

(11)

In fact this scheme can be used also for n = m + 1, . . . , 2m − 2, but using
0 = sm+1 = sm+2 = . . . , we can obtain smaller linear programs. The scheme
of these programs follows, the variable q1 stays for sum of all but last m− 1
jobs.

maximize r = q1 + q2 + · · ·+ qm for: m + 1 ≤ n ≤ 2m − 2
subject to

1 = s1Om + s2Om−1 + · · · + smO1 (znorm)
q1 + · · ·+ qk ≤ (s1 + · · · + sk+n−m)Ok (z1,k) 1 ≤ k ≤ m
qj + · · ·+ qk ≤ (s1 + · · · + sk−j+1)Ok (zj,k) 2 ≤ j ≤ k ≤ m

q1 ≤ (n − m + 1)q2 (z≤,1)
qk ≤ qk+1 (z≤,k) 2 ≤ k ≤ n − 1

(n − m + 1)qm ≤ βq1 (zβ) .
(12)

And at last we have to solve the case where n ≥ 2m − 1. Again we sum
all but last m − 1 jobs to q1. But now, we know there are at least m jobs
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summed up in q1. Thus we can use standard linear program for large number
of jobs, but we have to add some or-conditions. The mathematical program
consists of linear program (13) with additional conditions (14):

maximize r = q1 + q2 + · · ·+ qm for: n ≥ 2m + 1
subject to

1 = s1Om + s2Om−1 + · · · + smO1 (znorm)
q1 + · · ·+ qk ≤ (s1 + · · · + sm)Ok (zk) 1 ≤ k ≤ m
qj + · · ·+ qk ≤ (s1 + · · · + sk−j+1)Ok (zj,k) 2 ≤ j ≤ k ≤ m

qj ≤ qj+1 (z≤,j) 2 ≤ j ≤ m − 1
qm ≤ βq2 (zβ,2)

mqm ≤ βq1 (zβ,1)

(13)

For every integer N ≥ m at least one of following conditions holds:
(N + 1)qm ≤ βq1 (zN+1,β)

q1 ≤ Nq2 (zN,2)
(14)

The conditions (zN,β) and (zN,2) defines the feasibility for q1 consisting of N
jobs. The formulation of (14) shows the forbidden cases. I.e., if there is N
for which (zN+1,β) and (zN,2) does not hold, then there is no N , for which
both (zN,β) and (zN,2) will hold. This can be easily derived from qm ≤ βq2

and β > 1.

Solution for fixed s. This program can be solved efficiently in two steps,
having fixed set of speeds s. First we solve the (13). Let the result be x̄∗. The
x̄∗ is either feasible to (13)+(14) and thus desired optimal solution, or there
is N , for which both (zN+1,β) and (zN,2) are not satisfied by x̄∗, moreover
there is at most one such number and we will denote it N̄∗. Then the optimal
solution to (13)+(14) satisfies either (zN̄∗,2) or (zN̄∗+1,β) by equality. Thus
we solve two more linear programs, namely (13)+(zN̄∗,2) and (13)+(zN̄∗+1,β).
The maximum of these two solutions is the desired solution of (13)+(14).

4.5.1 m = 2

We will solve the case of m = 2 parametrically now. We use an equivalent
(and more natural) reformulation of the (14):

There is integer N ≥ m, for which both following conditions holds:
Nqm ≤ βq1 (zN,β)

q1 ≤ Nq2 (zN,2)
(15)
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We solve the (13)+(15) as a parametrical linear program with an additional
parameter N . Then we examine the outgoing solutions and choose N , for
which are these solutions minimal.
We obtain following solutions (Note that these hold for n ≥ 2m− 1 = 3).

Case I Ratio: r =
(β + N)S

βs1 + NS
Conditions:
(A+: II) Ns1 ≥ βs2

Common denominator: D = βs1 + NS

Nonbasic dual vars:
z2,2, zβ,1, zβ,2, z<,1

Jobs:
q1 = NS/D
q2 = βS/D

U.b. coefficients:
znorm = −r

z1 = (β + N)s2/D
z2 = (β + N)s1/D

zN,β = s2/D

Case II Ratio: r =
S2

s2
1 + s2

2 + s1s2

Conditions:
(A-: I) Ns1 ≤ βs2

Common denominator: D = s2
1 + s2

2 + s1s2

Nonbasic dual vars:
zN,β, zβ,1, zβ,2, z<,1

Jobs:
q1 = s2S/D
q2 = s1S/D

U.b. coefficients:
znorm = −r

z1 = s2S/D
z2 = z2,2 = s2

1/D

It can be easily verified, that the ratio is maximized with N as low as possible,
i.e., for N = 2, even if it means crossing the condition A.

4.5.2 n = 2

We also have to solve (11) for n = 2 (and the trivial n = 1) to complete the
analysis of the case for two machines. The solution splits to following two
cases:
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Case I Ratio: r =
(β + 1)s1S

(β + 1)s2
1 + s2S

Conditions:
(A+: II) s1 ≥ βs2

Common denominator: D = (β + 1)s2
1 + s2S

Nonbasic dual vars:
z2,2, z≤,1

Jobs:
q1 = s1S/D
q2 = βs1S/D

U.b. coefficients:
znorm = −r

z1,1 = (β + 1)s2S/D
z1,2 = (β + 1)s2

1/D
zβ = s2S/D

Case II Ratio: r =
s1S

s2
1 + s2

2

Conditions:
(A-: I) s1 ≤ βs2

Common denominator: D = s2
1 + s2

2

Nonbasic dual vars:
zβ, z≤,1

Jobs:
q1 = s2s1/D
q2 = s2

1/D

U.b. coefficients:
znorm = −r

z1,1 = z2,2 = s2S/D
z1,2 = s1(s1 − s2)/D

4.5.3 Resulting formula for two machines

The overall ratio for two machines splits into four cases, depending on which
sequence of jobs is the worst satisfying p ≤ pj ≤ βp. The sequences (for p =
1) are: (1, 1, 2 s1

s2
), (1, 1, β), (1, s1

s2
), (1, β). Here we give the explicit formula

after taking the maximum, to show how complex may be the result even if
both relevant solutions of corresponding linear programs split only to two
cases each.
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rp≤pj≤βp(s1, s2, β) =
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1 + s2

2 + s1s2
for 2s1 ≤ βs2

(β + 2)S

βs1 + 2S
for







2s1 ≥ βs2

s1 ≤ βs2

2(s1 − s2) ≤ βs2

(β + 2)S

βs1 + 2S
for

{

s1 ≥ βs2

βs1 − 2s2 ≤ βs2

s1S

s2
1 + s2

2

for







2s1 ≥ βs2

s1 ≤ βs2

2(s1 − s2) ≥ βs2

(β + 1)s1(s1 + s2)

(β + 1)s2
1 + s2S

for

{

s1 ≥ βs2

βs1 − 2s2 ≥ βs2

5 Techniques for solving the Parametrized LPs

The solutions above were obtained by search through a large number of
possibilities (104). This is impossible to do manually and thus we developed
a method how to filter out most of the invalid possibilities by a computer.
Remaining number of possible solutions is small enough to be solved by a
man. Mathematical software Maple 9.5 was used, but any modern algebraical
software should do the task. The description of the method follows.
We use the notation {max cTx | Ax ≤ b} for the primal linear program,

and {minyTb | yTA = cT ,y ≥ 0} for the corresponding dual linear program.
W.l.o.g., the number of the primal variables (the dimension of x) is smaller
than or equal to the number of the dual variables (the dimension of y). (That
is also the case of the linear programs that we solve.)
We use the duality of the linear programing [21], i.e., if there is an optimal

solution to the primal program, then there is a pair of the primal and the
dual basic solutions which are optimal. Then we use the dual complementary
slackness: the primal inequalities not satisfied by equality imply zero values
of the corresponding dual variables. We also use the fact it suffices to examine
the vertices of the polytope. We know that the result is bounded, because
there is universal upper bound on competitive ratio and the input sequence
with at least one nonzero job gives a positive lower bound. Thus we take the
set of the dual variables and we generate all subsets of cardinality equal to the
dimension of the linear program (which is the number of the primal variables
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for all linear programs that we examine). We get all points of intersections
of the conditions this way. We call them the solution candidates. Then we
have to find the points that are feasible and optimal for some valid values of
input parameters. From the duality slackness conditions, there is one to one
mapping between the solution candidates of primal program and the solution
candidates of the dual one. We let the computer automatically examine these
solution candidates.
Now we stick to one arbitrary fixed subset Y of the dual variables and

we describe how the computer helps us to examine the solution pair induced
by this subset. Let Y be a square matrix with yi,i = 1 if i ∈ Y and yi,j = 0
otherwise. Now we have the primal candidate solution satisfying system of
equations Y Ax = Y b and the candidate dual solution satisfying yTA =
cT & yT (I − Y ) = 0. I.e., we set a primal inequality to equality if it
corresponds to some selected dual variable. We set the not selected dual
variables to zero and we change the dual inequalities to equations. We solve
these two sets of linear equations using Maple, and then we examine this
solution pair.
At first we try to filter out the infeasible solution pairs. The feasibility

domain of the solution pair is intersection of feasibility domains of both
solutions, because feasibility of both solutions for some fixed values of the
parameters (the machine speeds) implies also their optimality. So how is
our domain of feasibility defined? The primal solution is feasible when all
inequalities (namely the inequalities corresponding to the not selected dual
variables) are satisfied. The dual solution is feasible when all variables are
nonnegative.
It may happen that either the primal or the dual candidate solution does

not exist, i.e., the system of equations has no solution. But we already know
that optimal competitive ratio is bounded, which contradicts feasibility of
such a solution pair, we eliminate it. The positive lower bound also contra-
dicts feasibility of the solution pair, which has zero value of the resulting
competitive ratio.
Now we examine the domain of feasibility of both primal and dual candi-

date solutions. We developed a heuristic that uses the inequalities between
the parameters (i.e., the speeds of the machines, the inequalities are of the
form si ≥ si+1 and si ≥ 0) and determines the validity of the given inequal-
ity. The outcome of this heuristic is one of the three cases: (i) surely always
valid, (ii) surely always invalid or (iii) there may be values of parameters for
which is the inequality valid and another values for which is the inequality
invalid. Note that inequality that is always valid or always invalid may be
so complex that our heuristic evaluates it as the third case. Our heuristic
also uses the factorization of polynomials to eliminate factors that are always

31



positive or always negative. This decreases the polynomial degree of the in-
equality. So our heuristic may return a simpler inequality that is equivalent
to the original one in the third case.
The feasibility domain is given as a set of inequalities. We use our heuris-

tic on them. If we find an inequality that is always invalid (i.e., for all valid
values of parameters), we eliminate such a solution pair for infeasibility. If
we do not eliminate the pair, we eliminate the inequalities that are surely
always valid, and we replace the inequalities with the simpler versions, if
our heuristic finds some. We try to further eliminate the solution pair for
infeasibility, or to simplify the inequalities defining the feasible region.
Now we are done with single inequalities. So we consider pairs of inequali-

ties. We already have the set of inequalities reduced only to inequalities that
may be invalid for some values of parameters. A pair of such inequalities
may be in contradiction, then the solution pair is infeasible. Or one inequal-
ity may be implied by another one, then we reduce the set of inequalities
defining the feasible region. To test the contradiction or the implication, we
simply try to add or subtract the conditions, one of them possibly multiplied
by a factor from some small predefined set of factors. We test the result for
invalidity using our heuristic again.
After all these computations are done, there remain several solution pairs

that have to be eliminated by hand. There may be a condition too complex
for our heuristic, or there may be three or more conditions in contradiction.
Also, our set of factors for testing contradiction may not contain the factor
needed to prove the contradiction of the two conditions. Number of these
solution pairs vary, but in general there were fewer such solution pairs than
the valid ones. The tools that we developed for the automated part are also
useful here.
At last, sometimes there are more solution pairs with the same compet-

itive ratio. Domains of feasibility of such pairs may overlap, and sometimes
they do. But in all the examined cases there was one or several non overlap-
ping solution pairs, that covered the whole domain of such a formula for the
competitive ratio, while the remaining pairs were superfluous.
We finish our inspection of solutions by finding which cases are neighbor

by which inequality, thus it can be easily verified (even without using the
computer), that the feasibility domains cover the set of all valid values of
parameters (the speeds of machines).

Conclusions. We solve the special cases of m = 3 and m = 4 for the on-
line scheduling and for semi-online scheduling with known sum of processing
times. The online scheduling on four machines was more demanding on the
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computer, as there was
(

12
5

)

= 792 basic solution candidates, all but six were
found infeasible automatically by computer. Four of the remaining six give
the four cases of the optimal competitive ratio. On the other hand, the semi-
online scheduling with known sum of processing times for prefixes of three
jobs (the hardest case when solving four machines), has only

(

10
5

)

= 252 basic
solution candidates, all but 20 were found infeasible, and the remaining 20
cases had to be processed manually. Only seven of them are relevant for the
optimal competitive ratio. Solving these cases exactly is now possible only
using our method (or a similar one), because of the amount of mathematical
(algebraic) operations that must be done to go through all the cases. Our
method can be further improved, but this will not improve our results dra-
matically, because of the exponential case explosion. This work also shows
that the complexity of exact formulas of competitive ratio grows dramatically
with the number of machines.
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