Randić index and the diameter of a graph*

Zdeněk Dvořák ${ }^{\dagger}$ Bernard Lidický ${ }^{\ddagger}$ Riste Škrekovski ${ }^{\text {§ }}$

Abstract

The Randić index $R(G)$ of a nontrivial connected graph G is defined as the sum of the weights $(d(u) d(v))^{-\frac{1}{2}}$ over all edges $e=u v$ of G. We prove that $R(G) \geq$ $d(G) / 2$, where $d(G)$ is the diameter of G. This immediately implies that $R(G) \geq$ $r(G) / 2$, which is the closest result to the well-known Grafiti conjecture $R(G) \geq$ $r(G)-1$ of Fajtlowicz [4], where $r(G)$ is the radius of G. Asymptotically, our result approaches the bound $\frac{R(G)}{d(G)} \geq \frac{n-3+2 \sqrt{2}}{2 n-2}$ conjectured by Aouchiche, Hansen and Zheng [1].

1 Introduction

All the graphs considered in this paper are simple undirected ones. The eccentricity of a vertex v of a graph G is the greatest distance from v to any other vertex of G. The radius (resp. diameter) of a graph is the minimum (resp. maximum) over eccentricities of all vertices of the graph. The radius and diameter will be denoted by $r(G)$ and $d(G)$, respectively.

There are many different kinds of chemical indices. Some of them are distance based indices like Wiener index, some are degree based indices like Randić index. The Randić index $R(G)$ of a graph G is defined as

$$
R(G)=\sum_{u v \in E(G)} \frac{1}{\sqrt{\operatorname{deg}(u) \operatorname{deg}(v)}}
$$

It is also known as connectivity index or branching index. Randić [11] in 1975 proposed this index for measuring the extent of branching of the carbon-atom

[^0]skeleton of saturated hydrocarbons. There is also a good correlation between Randić index and several physicochemical properties of alkanes: boiling points, surface areas, energy levels, etc. In 1998 Bollobás and Erdös [2] generalized this index by replacing the square-root by power of any real number, which is called the general Randić index. For a comprehensive survey of its mathematical properties, see the book of Li and Gutman [7], or recent survey of Li and Shi [10]. See also the books of Kier and Hall [5, 6] for chemical properties of this index.

There are several conjectures linking Randić index to other graph parameters. Fajtlowicz [4] posed the following problem:

Conjecture 1. For every connected graph G, it holds $R(G) \geq r(G)-1$.
Caporossi and Hansen [3] showed that $R(T) \geq r(T)+\sqrt{2}-3 / 2$ for all trees T. Liu and Gutman [9] verified the conjecture for unicyclic graphs, bicyclic graphs and chemical graphs with cyclomatic number $c(G) \leq 5$. You and Liu [12] proved that the conjecture is true for biregular graphs, tricyclic graphs and connected graphs of order $n \leq 10$.

Regarding the diameter, Aouchiche, Hansen and Zheng [1] conjectured the following:

Conjecture 2. Any connected graph G of order $n \geq 3$ satisfies

$$
R(G)-d(G) \geq \sqrt{2}-\frac{n+1}{2} \quad \text { and } \quad \frac{R(G)}{d(G)} \geq \frac{n-3+2 \sqrt{2}}{2 n-2}
$$

with equalities if and only if G is a path on n vertices.
Li and Shi [8] proved the first inequality for graphs of minimum degree at least 5 . They also proved the second inequality for graphs on $n \geq 15$ vertices with minimum degree at least $n / 5$.

The Randić index turns out to be quite difficult parameter to work with. Also, Conjecture 1 is quite weak for graphs with small radius; for instance, $R\left(K_{1, n}\right)=\sqrt{n}$, while $r\left(K_{1, n}\right)=1$ for all n. Instead, we work with a different parameter $R^{\prime}(G)$ defined by

$$
R^{\prime}(G)=\sum_{u v \in E(G)} \frac{1}{\max (\operatorname{deg}(u), \operatorname{deg}(v))}
$$

Note that $R(G) \geq R^{\prime}(G)$ for every graph G, with the equality achieved only if every connected component of G is regular. The main result of this paper is the following:

Theorem 3. For any connected graph $G, R^{\prime}(G) \geq d(G) / 2$.

Since $R(G) \geq R^{\prime}(G)$ and $d(G) \geq r(G)$, by our theorem, we immediately obtain that $R(G) \geq r(G) / 2$. This result supports Conjecture 1. Our result solves asymptotically the second claim of Conjecture 2. Let us remark that the bound of Theorem 3 is sharp, with the equality achieved for example by paths of length at least two. Since Conjecture 2 is also tight for paths, in order to prove Conjecture 2 using our technique, it would be necessary to consider the gap $R(G)-R^{\prime}(G)$.

2 Proof of the main theorem

We prove the theorem by contradiction. In the rest of the paper, assume that G is a connected graph such that $R^{\prime}(G)<d(G) / 2$ and G has the smallest number of edges among the graphs with this property, i.e., $R^{\prime}(H) \geq d(H) / 2$ for every connected graph H with $|E(H)|<|E(G)|$. Let $n=|V(G)|$. For an edge $u v$, a weight of $u v$ is $\frac{1}{\max (\operatorname{deg}(u), \operatorname{deg}(v))}$.

If $d(G)=0$, then $G=K_{1}$ and $R^{\prime}(G)=0=d(G) / 2$. If $1 \leq d(G) \leq 2$, then G has at least one edge; observe that the sum of the weights of the edges incident with the vertex of G of maximum degree is one, thus $R^{\prime}(G) \geq 1 \geq d(G) / 2$. Therefore, $d(G) \geq 3$.

For two vertices x and y of a graph H, let $d_{H}(x, y)$ denote the distance between x and y in H.

Lemma 4. If v is a cut-vertex in G, then all components of $G-v$ except for one consist of a single vertex.

Proof. Assume for a contradiction that $G-v$ has two components with more than one vertex. Then, there exist induced subgraphs $G_{1}, G_{2} \subseteq G$ such that $G_{1} \cup G_{2}=G, V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{v\}$ and $G_{i}-v$ has a component with more than one vertex, for $i \in\{1,2\}$.

For $i \in\{1,2\}$, let G_{i}^{\prime} be the graph obtained from G_{i} by adding $\operatorname{deg}_{G_{3-i}}(v)$ pendant vertices adjacent to v and let v_{i} be one of these new vertices. Observe that $R^{\prime}\left(G_{1}^{\prime}\right)+R^{\prime}\left(G_{2}^{\prime}\right)=R^{\prime}(G)+1$. Furthermore, consider any two vertices $x, y \in$ $V(G)$. If $x, y \in V\left(G_{1}\right)$, then $d_{G}(x, y)=d_{G_{1}^{\prime}}(x, y) \leq d\left(G_{1}^{\prime}\right) \leq d\left(G_{1}^{\prime}\right)+d\left(G_{2}^{\prime}\right)-2$. By symmetry, if $x, y \in V\left(G_{2}\right)$, then $d_{G}(x, y) \leq d\left(G_{1}^{\prime}\right)+d\left(G_{2}^{\prime}\right)-2$. Finally, if say $x \in V\left(G_{1}\right)$ and $y \in V\left(G_{2}\right)$, then $d_{G}(x, y)=d_{G_{1}}(x, v)+d_{G_{2}}(y, v)=d_{G_{1}^{\prime}}\left(x, v_{1}\right)-$ $1+d_{G_{2}^{\prime}}\left(y, v_{2}\right)-1 \leq d\left(G_{1}^{\prime}\right)+d\left(G_{2}^{\prime}\right)-2$. We conclude that $d(G) \leq d\left(G_{1}^{\prime}\right)+d\left(G_{2}^{\prime}\right)-2$.

Since both G_{1}^{\prime} and G_{2}^{\prime} have fewer edges than G, the minimality of G implies that

$$
R^{\prime}(G)=R^{\prime}\left(G_{1}^{\prime}\right)+R^{\prime}\left(G_{2}^{\prime}\right)-1 \geq \frac{d\left(G_{1}^{\prime}\right)}{2}+\frac{d\left(G_{2}^{\prime}\right)}{2}-1 \geq \frac{d(G)}{2},
$$

which contradicts the assumption that G is a counterexample to Theorem 3.

A vertex v is locally minimal if its degree is smaller or equal to the degrees of its neighbors.

Lemma 5. Let $v \in V(G)$ be a locally minimal vertex. Then $\operatorname{deg}(v)=1$, the neighbor of v has degree at least three and $d(G-v)=d(G)-1$.

Proof. Suppose first that $\operatorname{deg}(v)>1$. Let w be a neighbor of v and k the number of neigbors of w distinct from v whose degree is smaller than $\operatorname{deg}(w)$. Note that $k \leq \operatorname{deg}(w)-1$. We have

$$
\begin{aligned}
R^{\prime}(G-v w) & =R^{\prime}(G)-\frac{1}{\operatorname{deg}(w)}+k\left(\frac{1}{\operatorname{deg}(w)-1}-\frac{1}{\operatorname{deg}(w)}\right) \\
& =R^{\prime}(G)-\frac{1}{\operatorname{deg}(w)}+\frac{k}{\operatorname{deg}(w)(\operatorname{deg}(w)-1)} \\
& \leq R^{\prime}(G) .
\end{aligned}
$$

Since v is locally minimal, every neighbor of v has degree at least $\operatorname{deg}(v) \geq 2$, thus by Lemma $4, v$ is not a cut-vertex. It follows that $G-v w$ is connected, hence $d(G-v w) \geq d(G)$. By the minimality of G, we obtain $R^{\prime}(G) \geq R^{\prime}(G-$ $v w) \geq d(G-v w) / 2 \geq d(G) / 2$, which is a contradiction.

Let us now consider the case that $\operatorname{deg}(v)=1$. Then $d(G-v) / 2 \leq R^{\prime}(G-$ $v) \leq R^{\prime}(G)<d(G) / 2$, and thus $d(G-v)<d(G)$. Removing the pendant vertex v cannot decrease the diameter by more than one, thus $d(G-v)=d(G)-1$. Since $d(G) \geq 3$, the neighbor w of v has degree at least two, and if $\operatorname{deg}(w)=2$, then v is the only neighbor of w of degree smaller than $\operatorname{deg}(w)$. It follows that if $\operatorname{deg}(w)=2$, then $R^{\prime}(G-v)=R^{\prime}(G)-1 / 2$. We conclude that $R^{\prime}(G)=$ $R^{\prime}(G-v)+1 / 2 \geq d(G-v) / 2+1 / 2=d(G) / 2$, which is a contradiction. This implies that $\operatorname{deg}(w) \geq 3$.

Let L be the set of vertices of G of degree one. Note that a vertex of G of the smallest degree is locally minimal, thus by Lemma $5, L \neq \emptyset$.

Lemma 6. If the distance between two vertices u and v in G is $d(G)$, then $L \subseteq\{u, v\}$.

Proof. Suppose that there exists a vertex $w \in L \backslash\{u, v\}$. Then w is locally minimal and $d(G-w)=d(G)$, contradicting Lemma 5 .

Lemma 6 implies that $|L| \leq 2$. Lemma 5 shows that all vertices of degree $d>1$ are incident with an edge whose weight is $1 / d$; thus, if many vertices have small degree, then these edges contribute a lot to $R^{\prime}(G)$. On the other hand, if many vertices have large degree, then G has many edges and $R^{\prime}(G)$ is large. Let us now formalize this intuition.
Lemma 7. $d(G)>\sqrt{8(n-3)}-1$, and thus $n \leq\left\lfloor\frac{d^{2}(G)+2 d(G)}{8}\right\rfloor+3$.

Proof. Let $d_{1} \geq d_{2} \geq \ldots \geq d_{n}$ be the degree sequence of G. For $1 \leq i \leq n$, let v_{i} be the vertex of G of degree d_{i}. For each $i \geq 1$, the sum of the weights of the edges incident with v_{i}, but not incident with v_{j} for any $j<i$, is at least $1-(i-1) / d_{i}$. We conclude that the edges incident with the vertices v_{1}, v_{2}, \ldots, v_{t} contribute at least $t-\sum_{i=1}^{t} \frac{i-1}{d_{i}} \geq t-\frac{t(t-1)}{2 d_{t}}$ to $R^{\prime}(G)$. Let t_{0} be the largest integer such that $d_{t_{0}} \geq t_{0}-1$; thus, for each $i>t_{0}, d_{i} \leq d_{t_{0}+1}<\left(t_{0}+1\right)-1=t_{0}$. Then the sum of the weights of the edges incident with the vertices v_{1}, v_{2}, \ldots, $v_{t_{0}}$ is at least $t_{0}-\frac{t_{0}\left(t_{0}-1\right)}{2\left(t_{0}-1\right)}=\frac{t_{0}}{2}$.

By Lemma 5, any vertex $v \notin L$ has a neighbor $s(v)$ with strictly smaller degree. Let $X=\left\{v_{i} s\left(v_{i}\right) \mid i \geq t_{0}+1, v_{i} \notin L\right\}$. Note that the edges in X are pairwise distinct, thus $|X| \geq n-t_{0}-2$. None of the edges in X is incident with the vertices $v_{1}, \ldots, v_{t_{0}}$, hence each of them has weight at least $\frac{1}{t_{0}-1}$, and

$$
\begin{aligned}
R^{\prime}(G) & \geq \frac{t_{0}}{2}+\frac{n-t_{0}-2}{t_{0}-1} \\
& =\frac{t_{0}-1}{2}+\frac{n-3}{t_{0}-1}-\frac{1}{2} \\
& \geq \sqrt{2(n-3)}-\frac{1}{2}
\end{aligned}
$$

where the last inequality holds since $x+y \geq 2 \sqrt{x y}$ for all $x, y \geq 0$. As G is a counterexample to Theorem $3, d(G)>2 R^{\prime}(G) \geq \sqrt{8(n-3)}-1$. This is equivalent to $d^{2}(G)+2 d(G)+1>8(n-3)$. Since both sides of this inequality are integers, $d^{2}(G)+2 d(G) \geq 8(n-3)$, and thus

$$
n \leq\left\lfloor\frac{d^{2}(G)+2 d(G)}{8}\right\rfloor+3 .
$$

Let w be a neigbor of a vertex of degree one. By Lemma 5, w has degree at least three, and since $d(G) \geq 3$, at least one vertex of G is not adjacent to w. We conclude that $n \geq 5$, and by Lemma $7, d(G)>3$. Lemma 5 also implies that the vertices of G of small degree must be close to L :

Lemma 8. If the distance of a vertex v from L is at least $k>0$, then $\operatorname{deg}(v) \geq$ $k+2$.

Proof. By Lemma 5, each vertex not in L has a neighbor of strictly smaller degree, thus there exists a path P from v to L such that the degrees on P are decreasing. Also, the vertex in P that has a neighbor in L has degree at least three. Since P has length at least k, we have $\operatorname{deg}(v) \geq 3+\ell(P)-1 \geq k+2$.

Choose a vertex $v_{0} \in L$, and for each integer i, let L_{i} be the set of vertices of G at the distance i from v_{0}, as illustrated in Figure 1. Let δ_{i} be the minimum

Figure 1: A graph G with vertices partitioned into layers $L_{0}, L_{1}, \ldots, L_{d}$.
and Δ_{i} the maximum degree of a vertex in L_{i}, and let $n_{i}=\left|L_{i}\right|$. Observe that $n_{0}=n_{1}=1, n_{d(G)} \geq 1$ and $n=\sum_{i=0}^{d(G)} n_{i}$. Furthermore, by Lemma 6 , if $|L|>1$ then $n_{d(G)}=1$ and $L=L_{0} \cup L_{d(G)}$.

For an integer i, let $\bar{i}=\min (i, d(G)-i)$. Note that the distance between L and L_{i} is at least \bar{i}. By Lemma 8 , we have $\Delta_{i} \geq \delta_{i} \geq \bar{i}+2$ for $1 \leq i \leq d(G)-1$. Also, since all neighbors of a vertex in L_{i} belong to $L_{i-1} \cup L_{i} \cup L_{i+1}$, it follows that $\Delta_{i} \leq n_{i-1}+n_{i}+n_{i+1}-1$, and thus $n_{i-1}+n_{i}+n_{i+1} \geq \bar{i}+3$.

By Lemma $4, n_{i} \geq 2$ for $2 \leq i \leq d(G)-2$, and thus $n \geq 2 d(G)-2$. Together with Lemma 7, we obtain

$$
2 d(G)-2 \leq n \leq \frac{d^{2}(G)+2 d(G)}{8}+3
$$

which implies $d(G) \leq 4$ or $d(G) \geq 10$. If $d(G)=4$, then $n_{1}+n_{2}+n_{3} \geq \overline{2}+3=5$, and thus $n \geq 7>\frac{d^{2}(G)+2 d(G)}{8}+3$. This contradicts Lemma 7 , hence $d(G) \geq 10$.

Let us now derive some formulas dealing with \bar{i} that we later use to estimate the sizes of the layers L_{i}.

Lemma 9. The following holds:
(a)

$$
\sum_{i=0}^{d(G)} \bar{i} \geq \frac{d^{2}(G)-1}{4}
$$

(b)

$$
\sum_{i=0}^{d(G)} \bar{i}^{2} \geq \frac{d^{3}(G)-d(G)}{12} .
$$

Proof. We use the well-known formulas $\sum_{i=0}^{k} i=\frac{k(k+1)}{2}$ and $\sum_{i=0}^{k} i^{2}=\frac{k(k+1)(2 k+1)}{6}$. If $d(G)$ is odd, then

$$
\sum_{i=0}^{d(G)} \bar{i}=2 \sum_{i=0}^{(d(G)-1) / 2} i=\frac{d^{2}(G)-1}{4}
$$

and

$$
\sum_{i=0}^{d(G)} \bar{i}^{2}=2 \sum_{i=0}^{(d(G)-1) / 2} i^{2}=\frac{d^{3}(G)-d(G)}{12} .
$$

If $d(G)$ is even, then

$$
\sum_{i=0}^{d(G)} \bar{i}=\frac{d(G)}{2}+2 \sum_{i=0}^{d(G) / 2-1} i=\frac{d^{2}(G)}{4}>\frac{d^{2}(G)-1}{4}
$$

and

$$
\sum_{i=0}^{d(G)} \bar{i}^{2}=\frac{d^{2}(G)}{4}+2 \sum_{i=0}^{d(G) / 2-1} i^{2}=\frac{d^{3}(G)+2 d(G)}{12}>\frac{d^{3}(G)-d(G)}{12}
$$

Let R_{i} be the sum of the weights of the edges induced by L_{i} plus half of the weights of the edges joining vertices of L_{i} with vertices of L_{i-1} and L_{i+1}. Observe that $R^{\prime}(G)=\sum_{i \geq 0} R_{i}$. Also, the weight of each edge incident with a vertex of L_{i} is at least $\frac{1}{\max \left(\Delta_{i-1}, \Delta_{i}, \Delta_{i+1}\right)}$, thus $R_{i} \geq \frac{n_{i} \delta_{i}}{2 \max \left(\Delta_{i-1}, \Delta_{i}, \Delta_{i+1}\right)}$. Let $s_{i}=n_{i-1}+n_{i}+n_{i+1}$ and $W_{i}=\frac{n_{i}(\bar{i}+2)}{\max \left(s_{i-1}, s_{i}, s_{i+1}\right)-1}$. Since $\Delta_{i} \leq s_{i}-1$ and $\delta_{i} \geq \bar{i}+2$ for $1 \leq i \leq d(G)-1$, we have $R_{i} \geq W_{i} / 2$ for $2 \leq i \leq d(G)-2$. Note also that $s_{i} \geq \delta_{i}+1 \geq \bar{i}+3$ for $1 \leq i \leq d(G)-1$.

We can now show that it suffices to consider graphs of small diameter.
Lemma 10. The diameter of G is at most 35.
Proof. Suppose that $3 \leq i \leq d(G)-3$. Let

$$
X_{i}=\frac{s_{i}(\bar{i}+1)}{\max \left(s_{i-2}, s_{i-1}, s_{i}, s_{i+1}, s_{i+2}\right)-1} .
$$

Observe that $W_{i-1}+W_{i}+W_{i+1} \geq X_{i}$. Let

$$
M_{i}=s_{i-2}+s_{i-1}+2 s_{i}+s_{i+1}+s_{i+2}+\alpha X_{i},
$$

where $\alpha \geq 0$ is a constant to be chosen later. Let $j \in\{i-2, \ldots, i+2\}$ be the index such that $s_{j}=\max \left(s_{i-2}, s_{i-1}, s_{i}, s_{i+1}, s_{i+2}\right)$.

Recall that $s_{i} \geq \bar{i}+3$, and thus $s_{i-2}, s_{i+2} \geq \bar{i}+1$ and $s_{i-1}, s_{i+1} \geq \bar{i}+2$. If $j=i$, then $\frac{s_{i}}{\max \left(s_{i-2}, s_{i-1}, s_{i}, s_{i+1}, s_{i+2}\right)-1}>1$, and thus

$$
\begin{equation*}
M_{i}>6 \bar{i}+12+\alpha(\bar{i}+1) \geq(6+\alpha) \bar{i}+12+\alpha . \tag{1}
\end{equation*}
$$

On the other hand, if $j \neq i$, then

$$
\begin{align*}
M_{i} & \geq 5 \bar{i}+11+\left(s_{j}-1\right)+\alpha \frac{(\bar{i}+1)(\bar{i}+3)}{s_{j}-1} \\
& \geq 5 \bar{i}+11+2 \sqrt{\alpha(\bar{i}+1)(\bar{i}+3)} \\
& >5 \bar{i}+11+2 \sqrt{\alpha}(\bar{i}+1) \\
& =(5+2 \sqrt{\alpha}) \bar{i}+11+2 \sqrt{\alpha} . \tag{2}
\end{align*}
$$

The expression (2) is smaller or equal to (1), giving the lower bound for M_{i}.
For $m \in\{0,1,2\}$, let B_{m} be the set of integers between 3 and $d(G)-3$ (inclusive) whose remainder modulo 3 is m, and $b_{m}=\max B_{m}$. Let

$$
S=4 n_{0}+2 n_{1}+2 n_{d(G)-1}+4 n_{d(G)}+s_{1}+s_{2}+s_{d(G)-2}+s_{d(G)-1} .
$$

Notice that $S \geq 30$. On one hand, we have $X_{i} \leq W_{i-1}+W_{i}+W_{i+1} \leq 2\left(R_{i-1}+\right.$ $R_{i}+R_{i+1}$), and thus

$$
\begin{aligned}
\sum_{i \in B_{m}} M_{i} & \leq s_{1+m}+s_{2+m}+s_{b_{m}+1}+s_{b_{m}+2}+2 \sum_{i=3+m}^{b_{m}} s_{i}+2 \alpha \sum_{i=2+m}^{b_{m}+1} R_{i} \\
& \leq-S+4 n_{0}+2 n_{1}+2 n_{d(G)-1}+4 n_{d(G)}+2 \sum_{i=1}^{d(G)-1} s_{i}+2 \alpha \sum_{i \geq 0} R_{i} \\
& =-S+6 n+2 \alpha R^{\prime}(G) \\
& <-30+6 n+\alpha d(G) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\sum_{i \in B_{m}} M_{i} & \geq \sum_{i \in B_{m}}((5+2 \sqrt{\alpha}) \bar{i}+11+2 \sqrt{\alpha}) \\
& =(11+2 \sqrt{\alpha})\left|B_{m}\right|+(5+2 \sqrt{\alpha}) \sum_{i \in B_{m}} \bar{i}
\end{aligned}
$$

Summing the two inequalities above over the three choices of m, we obtain

$$
(11+2 \sqrt{\alpha})(d(G)-5)+(5+2 \sqrt{\alpha}) \sum_{i=3}^{d(G)-3} \bar{i}<18 n+3 \alpha d(G)-90 .
$$

Applying Lemma 9 (a), we obtain $\sum_{i=3}^{d(G)-3} \bar{i} \geq \frac{d^{2}(G)-25}{4}$, and thus

$$
\begin{aligned}
(11+2 \sqrt{\alpha})(d(G)-5)+(5+2 \sqrt{\alpha}) \frac{d^{2}(G)-25}{4} & <18 n+3 \alpha d(G)-90 \\
(5+2 \sqrt{\alpha}) d^{2}(G)+4(11+2 \sqrt{\alpha}-3 \alpha) d(G) & <72 n+90 \sqrt{\alpha}-15
\end{aligned}
$$

By Lemma 7, $n \leq \frac{d^{2}(G)+2 d(G)}{8}+3$, and thus
$(5+2 \sqrt{\alpha}) d^{2}(G)+4(11+2 \sqrt{\alpha}-3 \alpha) d(G)<9\left(d^{2}(G)+2 d(G)\right)+90 \sqrt{\alpha}+201$ $(2 \sqrt{\alpha}-4) d^{2}(G)+(26+8 \sqrt{\alpha}-12 \alpha) d(G)<90 \sqrt{\alpha}+201$.

Setting $\alpha=10$, this implies that $d(G)<35.5$, and since $d(G)$ is an integer, the claim of the lemma follows.

Lemma 8 gives a lower bound for the minimum degrees δ_{i} in the layers L_{i}, which can in turn be used to bound the size of the layers and consequently the number of vertices of G. The lower bound on n obtained in this way is approximately $d^{2}(G) / 12$, and thus it does not directly give a contradiction with Lemma 7. However, the following lemma shows that this lower bound on n can be increased if the maximum degree of G is large (let us note that $\left.\Delta(G) \geq \delta_{\lfloor d(G) / 2\rfloor} \geq\lfloor d(G) / 2\rfloor+2\right)$. Together with Lemma 7 , this can be used to bound $\Delta(G)$.

Lemma 11. The following holds: $n \geq(\Delta(G)-\lfloor d(G) / 2\rfloor-2)+\frac{d^{2}(G)+12 d(G)+3}{12}$.
Proof. Let j be an index such that a vertex of the degree $\Delta(G)$ lies in L_{j}, and let B be the set of integers i such that $1 \leq i \leq d(G)-1$ and $3 \mid i-j$. Let $a=\min B-1$ and $b=\max B+1$. Observe that

$$
n=\sum_{i \in B} s_{i}+\sum_{i=0}^{a-1} n_{i}+\sum_{i=b+1}^{d(G)} n_{i} .
$$

For $i \in B$, we have that $s_{i} \geq \delta_{i}+1 \geq \bar{i}+3$. Furthermore, if $j<d(G)$, then $s_{j} \geq \Delta(G)+1 \geq(\bar{j}+3)+(\Delta(G)-\lfloor d(G) / 2\rfloor-2)$, and if $j=d(G)$, then $b=d(G)-2$ and $n_{d(G)-1}+n_{d(G)} \geq \Delta(G)+1>2+(\Delta(G)-\lfloor d(G) / 2\rfloor-2)$. Also, $\bar{i} \geq(\overline{i-1}+\bar{i}+\overline{i+1}) / 3$. Using Lemma 9 (a), we conclude that

$$
\begin{aligned}
n & \geq \Delta(G)-\lfloor d(G) / 2\rfloor-2+\sum_{i=a}^{b}\left(\frac{\bar{i}}{3}+1\right)+a+(d(G)-b) \\
& \geq \Delta(G)-\lfloor d(G) / 2\rfloor-8 / 3+\sum_{i=0}^{d(G)}\left(\frac{\bar{i}}{3}+1\right) \\
& \geq \Delta(G)-\lfloor d(G) / 2\rfloor-5 / 3+d(G)+\frac{d^{2}(G)-1}{12} \\
& =(\Delta(G)-\lfloor d(G) / 2\rfloor-2)+\frac{d^{2}(G)+12 d(G)+3}{12} .
\end{aligned}
$$

Next, we show that the maximum degree of G is large. This, combined with the previous lemma, will give us a contradiction.

Lemma 12. Let $k=\lceil d(G) / 2\rceil$, and let $d_{1} \geq d_{2} \geq \ldots \geq d_{n}$ be the degree sequence of G. Then $\sum_{i=1}^{k} d_{i} \geq \frac{d^{3}(G)+12 d^{2}(G)+35 d(G)+288}{72}$, and thus $\Delta(G) \geq$ $\left\lceil\frac{d^{3}(G)+12 d^{2}(G)+35 d(G)+288}{72 k}\right\rceil$.
Proof. For $1 \leq i \leq n$, let v_{i} be the vertex of G of degree d_{i}. Let k_{i} be the number of neighbors of v_{i} in $\left\{v_{j} \mid j>i\right\}$. Note that $\sum_{i=1}^{n} k_{i}=|E(G)|=\frac{1}{2} \sum_{i=1}^{n} d_{i}$, $R^{\prime}(G)=\sum_{i=1}^{n} \frac{k_{i}}{d_{i}}$ and $0 \leq k_{i} \leq d_{i}$.

Let m be the index such that there exists a sequence $x_{1}, x_{2}, \ldots, x_{n}$ satisfying

- $x_{i}=d_{i}$ for $1 \leq i \leq m-1$,
- $0 \leq x_{m}<d_{m}$,
- $x_{i}=0$ for $m+1 \leq i \leq n$, and
- $\sum_{i=1}^{n} x_{i}=|E(G)|$.

Since $\frac{a}{b}+\frac{c}{d} \geq \frac{a+1}{b}+\frac{c-1}{d}$ when $b \geq d$, we conclude that

$$
\frac{d(G)}{2}>R^{\prime}(G)=\sum_{i=1}^{n} \frac{k_{i}}{d_{i}} \geq \sum_{i=1}^{n} \frac{x_{i}}{d_{i}} \geq m-1
$$

i.e., $m \leq\lceil d(G) / 2\rceil$. Furthermore, $\sum_{i=1}^{m} d_{i} \geq 1+\sum_{i=1}^{n} x_{i}=1+|E(G)|$.

Let $t_{i}=n_{i-1} \delta_{i-1}+n_{i} \delta_{i}+n_{i+1} \delta_{i+1}$. Note that

$$
t_{i} \geq n_{i-1}(\overline{i-1}+2)+n_{i}(\bar{i}+2)+n_{i+1}(\overline{i+1}+2) \geq s_{i}(\bar{i}+1)
$$

for $2 \leq i \leq d(G)-2$. Also, $t_{2} \geq s_{2}(\overline{2}+1)+n_{2}$ and $t_{d(G)-2} \geq s_{d(G)-2}(\overline{d(G)-2}+$ 1) $+n_{d(G)-2}$. Using Lemma $9(\mathrm{~b})$, we obtain

$$
\begin{aligned}
6|E(G)| \geq & 3 \sum_{i=0}^{d(G)} n_{i} \delta_{i} \\
= & 3 \delta_{0} n_{0}+3 \delta_{d(G)} n_{d(G)}+2 \delta_{1} n_{1}+2 \delta_{d(G)-1} n_{d(G)-1}+\delta_{2} n_{2}+ \\
& +\delta_{d(G)-2} n_{d(G)-2}+\sum_{i=2}^{d(G)-2} t_{i} \\
\geq & 3\left(n_{0}+n_{d(G)}\right)+6\left(n_{1}+n_{d(G)-1}\right)+5\left(n_{2}+n_{d(G)-2}\right)+\sum_{i=2}^{d(G)-2} s_{i}(\bar{i}+1)
\end{aligned}
$$

$d(G)$	$L B_{d(G)}$	$U B_{d(G)}$	$d(G)$	$L B_{d(G)}$	$U B_{d(G)}$
10	8	6	23	23	19
11	8	5	24	26	22
12	10	7	25	26	23
13	10	7	26	29	26
14	12	9	27	30	27
15	12	9	28	33	30
16	14	11	29	34	31
17	15	11	30	37	34
18	17	13	31	38	35
19	17	13	32	41	39
20	20	16	33	42	41
21	20	17	34	45	44
22	23	19	35	46	45

Table 1: Values of the lower bound $L B_{d(G)}$ and the upper bound $U B_{d(G)}$ for $\Delta(G)$ from proof of Theorem 3.

$$
\begin{aligned}
& \geq 38+\sum_{i=2}^{d(G)-2} s_{i}(\bar{i}+1) \\
& \geq 38+\sum_{i=2}^{d(G)-2}(\bar{i}+3)(\bar{i}+1) \\
& \geq \frac{d^{3}(G)+12 d^{2}(G)+35 d(G)+216}{12} .
\end{aligned}
$$

It follows that

$$
\sum_{i=1}^{m} d_{i} \geq \frac{d^{3}(G)+12 d^{2}(G)+35 d(G)+288}{72}
$$

Since $k \geq m$, the lemma holds.
We are now ready to finish the proof.
Proof of Theorem 3. By Lemma 10, the diameter of the minimal counterexample G is at most 35 . Also, as we observed before, $d(G) \geq 10$. Lemmas 7 and 11 imply that

$$
\Delta(G) \leq\lfloor d(G) / 2\rfloor+5+\left\lfloor\frac{d^{2}(G)+2 d(G)}{8}\right\rfloor-\left\lceil\frac{d^{2}(G)+12 d(G)+3}{12}\right\rceil .
$$

We denote this upper bound on $\Delta(G)$ by $U B_{d(G)}$. Lemma 12 gives a lower bound on $\Delta(G)$, which we denote by $L B_{d(G)}$. For $10 \leq d(G) \leq 35$, it holds that
$U B_{d(G)}<L B_{d(G)}$, which is a contradiction. See Table 1 for values of $L B_{d(G)}$ and $U B_{d(G)}$.

References

[1] M. Aouchiche, P. Hansen and M. Zheng, Variable neighborhood search for extremal graphs. 19. Further conjectures and results about the Randić index, MATCH Commun. Math. Comput. Chem. 58 (2007), 83-102.
[2] B. Bollobás and P. Erdös, Graphs of extremal weights, Ars Combin. 50 (1998), 225-233.
[3] G. Caporossi and P. Hansen, Variable neighborhood search for extremal graphs 1: The AutographiX system, Discrete Math. 212 (2000), 29-44.
[4] S. Fajtlowicz, On conjectures of Graffiti, Discrete Math. 72 (1988), 113118.
[5] L. B. Kier and L. H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.
[6] L. B. Kier and L. H. Hall, Molecular Connectivity in structure-Activity Analysis, Research Studies Press-Wiley, Chichester(UK), 1986.
[7] X. Li and I. Gutman, Mathematical Aspects of Randić - Type Molecular Structure Descriptors, Mathematical Chemistry Monographs No.1, Kragujevac, 2006.
[8] X. Li and Y. Shi, On the Randić index and the diameter, the average distance, manuscript, 2009.
[9] B. Liu and I. Gutman, On a conjecture on Randíc indices, MATCH Commun. Math. Comput. Chem. 62 (2009), 143-154.
[10] X. Li and Y. Shi, A survey on the Randić index, MATCH Commun. Math. Comput. Chem. 59 (2008), 127-156.
[11] M. Randić, On characterization of molecular branching, J. Amer. Chem. Soc. 97 (1975), 6609-6615.
[12] Z. You and B. Liu, On a conjecture of the Randić index, Discrete Appl. Math. 157 (2009), 1766-1772.

[^0]: *Supported by the CZ-SL bilateral project MEB 090805 and BI-CZ/08-09-005.
 ${ }^{\dagger}$ Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University, Malostranské náměstí 25, 11800 Prague, Czech Republic. E-mail: rakdver@kam.mff.cuni.cz. Supported by Institute for Theoretical Computer Science (ITI), project 1M0545 of Ministry of Education of Czech Republic.
 ${ }^{\ddagger}$ Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University, Malostranské náměstí 25, 11800 Prague, Czech Republic. E-mail: bernard@kam.mff.cuni.cz.
 ${ }^{\text {§ }}$ Department of Mathematics, University of Ljubljana, Jadranska 19, 1111 Ljubljana, Slovenia. Partially supported by Ministry of Science and Technology of Slovenia, Research Program P1-0297. E-mail: skrekovski@gmail.com.

