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Abstract. A covariant representation of the category of locales
by approximate maps (mimicking a natural representation of con-
tinuous maps between spaces in which one approximates points by
small open sets) is constructed. It is shown that it can be given a
Kleisli shape, as a part of a more general Kleisli representation of
meet preserving maps. Also, we present the spectrum adjunction
in this approximation setting.

Introduction

In the point-free topology one represents a classsical topological
space X, as a rule, as the lattice (frame) O(X) of its open sets,
and a continuous map f : X → Y as the frame homomorphism
O(f) = (U 7→ f−1[U ]) : O(Y ) → O(X). This (contravariant) rep-
resentation is satisfactory in the sense that for a broad class of spaces
(the sober ones, including e.g. all the Hausdorff spaces, or most of
the Scott spaces) f 7→ O(f) is a one-one correspondence between all
the continuous maps f : X → Y and all the frame homomorphisms
h : O(Y ) → O(X). The drawback is the contravariance, which is often
faced formally by simply taking the opposite category of the category
of frames (the category of locales). If one wishes to have the localic
morphisms represented as maps, one can do so by taking the right Ga-
lois adjoints of frame homomorphisms. This has turned out to be useful
in particular in gaining insight into the structure of sublocales, but not
only in that (see [14, 15]). But still we may wish to have a representa-
tion mimicking what is actually happening with (approximated) points
in spaces. Such has been presented in [1], albeit heavily dependent on
a uniform enrichment of the structure. Here we approach this point of
view in the context of mere frames.
The lattice O(X) can be viewed as the system of feasible places;

points, entities with position but no extent, may be seen as approxi-
mated by their open neighbourhoods, preferably very small (one can
pinpoint a point by the system of all of its open neighbourhoods; this
idea is very old, going back at least as far as Caratheodory [3] - note
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that this paper even preceded Hausdorff [4] initiating modern topol-
ogy). Now if such a representation U ∋ x is very small and if f : X → Y
is continuous then f [U ] is a very small set containing f(x). Typically
it is not open, but it can be represented in O(Y ) by small V ⊇ f [U ];
these possible representations constitute a filter f ◦(U) in the frame
O(Y ). Thus we obtain a covariant representation of continuous maps
f : X → Y by specific mappings f ◦ : O(X) → FltO(Y ) which can be
then viewed as approximate maps O(X)

.

−→ O(Y ) (see Section 3) or
special Kleisli morphisms O(X) ⊸ O(Y ).
Note that the relation of the frame homomorphism O(f) : O(Y ) →

O(X) with the original f : X → Y , and with the approximate ex-
tension f ◦ : O(X) → FltO(Y ) is basically the same, namely taking
preimages: the natural preimage of V under f ◦ is

(PREIM)

(f ◦)−1〈V 〉 =
⋃

{U | ∃W ∈ f ◦(U), W ⊆ V } =

=
⋃

{U | V ∈ f ◦(U)} =
⋃

{U | f [U ] ⊆ V } =

=
⋃

{U | U ⊆ f−1[V ]} = f−1[V ].

In this article we extend such representation to the general context
of frames; thus we also obtain an intuitively satisfactory representation
of localic morphisms as approximate maps resp. Kleisli morphisms.

1. Preliminaries

1.1. Posets. In a partially ordered set (X,≤) the standard notation
such as ↑M for the subset {x | x ≥ m, m ∈ M} and ↑a =↑{a} will be
used. Similarly, the standard concepts like that of a filter (proper or
not) will be used without further explaination.
Our posets will be mostly complete lattices, more often then not

distributive.

1.1.1. Recall that a filter F in a lattice L is prime if a ∨ b ∈ F ⇒
(a ∈ F or b ∈ F ). It is completely prime resp. α-prime if

∨

i∈J

ai ∈ F (resp. “. . . and |J | < α”) ⇒ ∃j, aj ∈ F.

1.2. A frame is a complete lattice L satisfying the distributivity law

a ∧
∨

B =
∨

{a ∧ b | b ∈ B}

for all a ∈ L and B ⊆ L. A frame homomorphism h : L → M
preserves arbitrary joins (including the bottom 0) and all finitarymeets
(including the top 1). As usual, the resulting category will be denoted
by

Frm.



APPROXIMATE MAPS AND FILTER MONAD 3

IfX is a topological space we have the frameOX of its open sets, and if
f : L → M is a continuous map thenOf = (U 7→ f−1[U ]) : OY → OX
is a frame homomorphism.
The dual category of Frm is called the category of locales and de-

noted by Loc. Thus, the correspondence O can be viewed as a (co-
variant) functor O : Top→ Loc. The morphisms of Loc are referred
to as localic morphisms or localic maps.
For more about frames see, e.g., [8] or [13].

1.2.1. Convention. By abuse of language we will sometimes
speak of frame homomorphisms h : L → M , preserving arbitrary joins
and finite meets, if L and M are general complete lattices.

1.3. We will use standard concepts of general topology (such as
in, e.g., [9])); since we will deal with phenomena relevant in point-free
topology, we will consider T0- spaces only.

1.3.1. For a point x of a topological space we will set

U(x) = {U ∈ O(X) | x ∈ U}.

Note that U(x) is a completely prime filter in O(X).

1.3.2. A space X is sober (see, e.g., [6],[8]) if (it is T0 and) each meet
irreducible U ∈ O(X) (that is, such U in O(X) that if U = U1 ∩ U2

then U = Ui for some i) is of the form X r {x}.
Equivalently, X is sober if there are no completely prime filters in

O(X) but the U(x).

1.4. For standard images and preimages of subsets under mappings
we will consistently use square brackets, as in f [A] or f−1[B], to avoid
confusion with values f(x), but in particular with the formal preimage
f−1〈B〉 (Introduction, 4.2).

1.5. From category theory we will use the standard facts as e.g. in
the opening chapters of [11], and the basic facts on monads (see 2.2
below).

2. Approximate maps.
Monads and Kleisli morphisms

2.1. A set with aproximate equality briefly, apeset) is a pair A =

(XA,
A
=) consisting of a set XA and a reflective symmetric relation

A
=

on XA. If there is no danger of confusion we will write
.

= for
A
=.

Note. Think of a metric space, a fixed ε > 0 and a precision given
by x
.

= y if ρ(x, y) < ε. Or (and this will be the case in which we
are particularly interested) take a set of approximations of some enti-
ties and x

.

= y if x, y have a common refinement (if they are able to
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approximate the same entity): e.g. (small) open intervals representing
real numbers with x

.

= y amounting to x ∩ y 6= ∅.

2.2. An approximate map (briefly, a-map) f : A
.

−→ B is a relation
f ⊆ XA × XB such that

(A1) for each x ∈ XA there is a y ∈ XB such that (x, y) ∈ f , and

(A2) if x1

A
= x2 and (xi, yi) ∈ f then y1

B
= y2.

2.2.1. Notes. 1. This definition is obtained from the standard defi-
nition of a mapping by replacing the equality by approximate equalities.
2. The reader may wonder about the following aspect of the defi-

nition. The condition (A2) suggests a sort of continuity: if x1 is very
close to x2 then the respective values y1, y2 (defined up to he given
precision) are very close as well. The point is that in this perspective
a standard discontinuous map appears as a multivalued one (take for
instance the f(x) defined as 0 for x ≤ 0 and as 1 for x > 0 then in
the argument “approximately 0” the values are both 0 and 1, not even
approximately equal).

2.2.2. Obviously the identical map XA → XA is an approximate
map A
.

−→ A, and a composition of a-maps (as relations) is an a-map
again. Thus, apesets and a-maps constitute a category.

2.2.3. Although we do not wish to think of an a-map as a multi-
valued map we will write for f : A

.

−→ B

f(x) = {y | (x, y) ∈ f}.

Thus represented, the approximate map appears as a mapping f :
XA → P(XB); in the sequel such maps will be naturally structured.

2.3. Kleisli maps. A monad T = (T, η, µ) in a category C consists
of a functor T : C → C and natural transformations η : Id → T and
µ : TT → T such that µ · ηT = µ ·Tη = id and µ ·µT = µ ·Tµ (see e.g.
[11]). In the equivalent Manes representation ([10]) one has a mapping
T : objC→ objC, a system of morphisms ηA : A → TA and a lifting

f : A → TB 7→ f̃ : TA → TB

satisfying

(1) η̃A = idTA,

(2) f̃ ηa = f , and

(3) ˜̃gf = g̃f̃ .

(The monad in the previous sense is then obtained by setting Tf = η̃Bf

for f : A → B, and µA = ĩdTA.)
With a monad one has associated two canonical categories: the cate-

gory CT of Eilenberg-Moore algebras, and the Kleisli category CT (see,
e.g., [11]). In the sequel we will use the latter. It is as follows.

• The objects are those of C,
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• the morphisms f : A ⊸ B in CT are the morphisms f : A →
TB from C,

• and one has the composition of f : A ⊸ B and g : B ⊸ C
defined by

g ◦ f = µc · Tg · f (= g̃ · f).

Note that the ηA : A → TA, as ηA : A ⊸ A, play the role of the units.
We will speak of the f : A ⊸ B as the Kleisli morphisms, or Kleisli

maps.

3. Approximate maps in frames.
The filter monads

3.1. For a frame L (more generally, for a complete lattice) set

L. = L r {0}

and on L. define an approximate equality by

a
L
= b iff a ∧ b 6= 0.

3.1.1. Notes. 1. Thus 1
L
= a for any a ∈ L which is counterintu-

itive. But consider open sets in a topological space as approximations
of points, the smaller they are (whatever sense one gives to the “small-
ness”) the better. If two such U, V can approximate the same point
they meet, and if they are (small enough to be) satisfactory this make
them close indeed; if at least one of the approximations is bad then
their approximate equality is unsatisfactory as well.
2. More generally, suppose one has approximations of some entities

modelled as a poset (X,≤) with x ≤ y interpreted as “x is a finer
approximation then y” (of whatever one approximates). Then one has
x
.

= y defined by the existence of a common refinement z ≤ x, y (“x
and y are able to approximate the same entity”).

3.2. For a frame homomorphism h : M → L define

h. : L.
.

−→ M.

by setting

(a, b) ∈ h. iff a ≤ h(b).

(h. is indeed an approximate map: (a, 1) ∈ h. for any a, and if a1

L
= a2

and (aibi) ∈ h. then ai ≤ h(bi) and hence 0 6= a1 ∧ a2 ≤ h(b1 ∧ b2), and

b1 ∧ b2 6= 0, that is, b1

M
= b2. – Note that this holds, more generally for

any h preserving ∧ and 0.)
Obviously the correspondence h 7→ h. is (contravariantly) functorial,

and if h 6= g then h. 6= g. (if a = g(b) � h(b) we have a 6= 0 and (a, b) ∈
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g. while (a, b) /∈ h.). Thus, the approximate maps h. : L.
.

−→ M. can
be viewed as representatives of the localic morphisms L → M .

3.3. In the convention of 2.2.3 we have

h.(a) = {b | a ≤ h(b)}.

Obviously h.(a) is a proper filter in M .
To avoid repeated clumsy exclusions of zero we will work with the

entire frames, using the obvious extension

h.(0) = M (= 0FltM).

We have

3.3.1. Observation. For a ∧-homomorphism we have h.(∨i∈J ai) =⋂
i∈J h.(ai).
(Indeed, b ∈ h.(ai) for all i ∈ J iff ∀i ∈ J, ai ≤ h(b) iff

∨
ai ≤ h(b).)

3.4. The categories we will use, and the filter monads. The
basic category will be the category

A

of complete distributive lattices with suprema preserving mappings.
Then we will consider

A◦

the subcategory of A given by the morpisms that preserve all suprema
and, furthermore, reflect zero, that is,

f(a) = 0 implies a = 0.

Finally define categories

B resp. B(α) (α a regular cardinal)

as follows:

• the objects are pairs (L, A) with L an object of A and A a
subset of L, and

• the morphisms f : (L, A) → (M, B) are morphisms f : L → M
from A reflecting joins resp. joins smaller than α, in the sense
that
whenever f(x) ≤

∨
i∈J bi for bi ∈ B, in the latter case with

|J | < α, we have x ≤
∨

i∈J ai with ai ∈ A and f(ai) ≤ bi

for all i.

Note that because of the void J one has in particular that each mor-
phism in B(α) is in A◦.

For L ∈ A set

Flt(L) = ({F ⊆ L | F a filter},⊇)
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(note that it is ordered by the inverse inclusion, and that it is a com-
plete lattice since intersections of filter are filters) and consider

ηL : (a →↑a) : L → FltL.

For a morphism f : L → FltM in A define

f̃ : FltL → FltM by f̃(F ) =
⋃

{f(a) | a ∈ F},

The same formulas can be used in A◦ (η(a) = L =↑0 yields a = 0 and

if f̃(F ) ∋ 0 there is an a ∈ F such that 0 ∈ f(a), and hence a = 0).
Furthermore, in the context of B(α) we will set

Flt(L, A) = (FltL, ηL[A]) = (FltL, {↑a | a ∈ A})

and take the same formulas for η and f̃ as before. This is correct:
if η(a) =↑a ≤

∨
i ↑ai, ai ∈ A, we have ↑a ⊇

⋂
↑ai =↑(

∨
ai) and

hence a ≤
∨

ai;

if f̃(F ) ≤
∨

i ↑bi, bi ∈ B, that is, f̃(F )⊇
⋂

↑bi =↑(
∨

ai) we have∨
bi ∈ f(a) for some a ∈ F ; then f(a) ≤

∨
↑ bi and since f is a

morphism in B(α) we have a ≤
∨

ai with ai ∈ A and f(ai) ≤↑bi; since
a ∈ F we can conclude that F ⊇↑a, that is, F ≤↑a ≤

∨
↑ai.

Finally set

F = (Flt, η,(̃−))

(it will be always obvious in which of the categories we are).

3.4.1. Note. Our categoryA is a full subcategory of the well-known
category of sup-lattices ([7]). One might wish to use just the full sub-
category generated by the frames, but that would not work. We need a
category inhabited also by the filter lattices, and FltL (with the inverse
inclusion order, but this is necessary because of the η) is a co-frame but
not a frame. In fact FltL is typically not even pseudocomplemented.
Take L = O(X) with X a regular T1-space that is not discrete, an
x ∈ X that is not isolated, and the filter U(x) = {U | x ∈ U}. For any
neighbourhood U of x the meet of U(x) and ↑{X r U} in (FltL,⊇),
that is, U(x) ∨ ↑{X r U}, is the zero of (FltL,⊇) (≡ L, since it con-
tains ∅). Then U(x) has no pseudocomplement: if F were such we had
F ⊆↑{X r U} for all U ∋ x. For V ∈ F , V ⊇ X r U for any U ∋ x
and hence V ⊇ X r {x} while V ∩ U 6= ∅ for any U ∈ U(x) since x is
not isolated.

3.4.2. Proposition. F is a monad in any of the categories A, A◦,
B or B(α).

Proof. Obviously any f̃(F ) is a filter. We have to prove that for any
system of filters Fi, i ∈ J ,

(∗) f̃(sup{Fi | i ∈ J}) = f̃(
⋂

i∈J

Fi) =
⋂

i∈J

f̃(Fi) = sup{f̃(Fi) | i ∈ J}.
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Since obviously F ⊆ G implies f̃(F ) ⊆ f̃(G) we have f̃(
⋂

i∈J Fi) ⊆⋂
i∈J f̃(Fi).. On the other hand, if x ∈

⋂
i∈J f̃(Fi) w have x ∈ f̃(Fi) for

all i and there exist ai ∈ Fi with x ∈ f(ai). Thus, x ∈
⋂

i∈J f(ai) =
f(

∨
i∈J ai). Now

∨
ai ∈ Fi, and consequently x ∈

⋂
Fi, and (∗) is

proved.
Further, η(

∨
ai) =↑(

∨
ai) =

⋂
(↑ai) =

∨
η(ai), η̃L(F ) =

⋃
{↑a | a ∈

F} = F and f̃ ηL(a) =
⋃
{f(b) | b ≥ a} = f(a) (as b ≥ a ⇒ f(b) ≤

f(a)).

Finally x ∈ (g̃ · f̃)(F ) iff ∃b ∈ f̃(F ) with x ∈ g(x), that is, iff

(∗∗) ∃a ∈ F∃b ∈ f(a), x ∈ g(b),

and also x ∈ (̃g̃f)(F ) iff ∃a ∈ F, x ∈ g̃(f(a)) iff (∗∗). �

3.4.3. By 3.3.1 we have

Observation. The approximate maps h. : L. .−→ M. are mor-
phisms h. : L ⊸ M in AF.

4. Dual representations

4.1. Besides the category of frames we will be interested in the cat-
egories of complete α-frames (where the distributivity is assumed for
joins of less than α summands), in particular also in complete distribu-
tive lattices (that is, ω0-frames), and in the categories

CLat(∧) resp. CLat(∧, 0)

of complete lattices with ∧-homomorphisms resp. with ∧ homomor-
phisms preserving 0.

4.2. Preimage of an a-map. Recall the observation (PREM) in
the Introduction. More generally we will set for any f : L ⊸ M in AF

(that is, f : L → FltM resp. f : L.
.

−→ M.)

f−1〈b〉 =
∨

{a ∈ L | b ∈ f(a)}.

4.2.1. Lemma. a ≤ f−1〈b〉 iff b ∈ f(a).
Proof. ⇐ is trivial.
⇒ : Let a ≤ f−1〈b〉 =

∨
{c | b ∈ f(c)}. Then by 3.3.1,

f(a) ⊇ f(
∨

{c | b ∈ f(c)}) =
⋂

{f(c) | b ∈ f(c)} ∋ b. �

4.2.2. Proposition. The mapping

f−1〈−〉 : M → L

preserves finite meets.
Proof. Set a = f−1〈b1〉 ∧ f−1〈b2〉. Then a ≤ f−1〈bi〉, i = 1, 2, and

by 4.2.1, b1, b2 ∈ f(a) Since f(a) is a filter we have b1 ∧ b2 ∈ f(a)
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and, again by 4.2.1, f−1〈b1〉 ∧ f−1〈b2〉 = a ≤ f−1〈b1 ∧ b2〉. The other
inequality is trivial. �

4.3. Recall the correspondence from the definition in 3.2 (and 3.4.3)

h : M → L in CLat(∧) 7→ h. : L ⊸ M (in AF).

Theorem. The formulas h 7→ h. and f 7→ f−1〈−〉 are mutually
inverse and constitute two dual equivalences

CLat(∧) ∼=op AF and CLat(∧, 0) ∼=op A◦
F
.

Proof. Set f = h.. Then f−1〈b〉 =
∨
{a | b ∈ f(a)} =

∨
{a | a ≤

h(b)} = h(b). Thus, f−1〈−〉 = h.
For f : L ⊸ M set h = f−1〈−〉. By 4.2.1, a ≤ h(b) iff b ∈ f(a). But

by the definition of h. we also have a ≤ h(b) iff b ∈ h.(a).

Now for the latter. If f reflects 0 then

f−1〈0〉 =
∨

{a ∈ L | 0 ∈ f(a)} = 0

since 0 ∈ f(a) only if a = 0.
If h(0) = 0 and h.(a) = L then 0 ∈ h.(a) and a ≤ h(0) = 0. �

4.4. Recall from the introduction the approximate extension

ϕ◦ : O(X) → Flt O(Y ) (that is, O(X)
.

−→ O(Y ))

defined by

V ∈ ϕ◦(U) iff ϕ[U ] ⊆ V (iff U ⊆ ϕ−1[V ]) .

The filters ϕ◦(U) are (of course) not completely prime, but as a collec-
tion they have a sort of “completely prime behaviour”. Namely,

If
⋃

Vi ∈ ϕ◦(U) we have U ⊆
⋃

ϕ−1[Vi] and hence, if we set
Ui = U ∩ ϕ−1[Vi], we have U =

⋃
Ui and Vi ∈ ϕ◦(Ui)

This leads to the following definition. An a-map f : L ⊸ M (Kleisli
map f : L → FltM from AF resp. A◦

F
) is collectionwise completely

prime (briefly, cc-prime) if

(ccp) whenever
∨

i∈J bi ∈ f(a) there is a decomposition a =
∨

ai such
that bi ∈ f(ai).

More generally, f : L ⊸ M is collectionwise α-prime (briefly, cα-
prime) if

(cαp) whenever
∨

i∈J bi ∈ f(a) and |J | < α there is a decomposition
a =

∨
ai such that bi ∈ f(ai).

If α = ω0 (finite index sets J) one speaks of collectionwise prime (c-
prime) f , and if α = ω1 (countable index sets J) one speaks of σ-prime
f .

4.4.1. Observation. Let h : M → L preserve all joins (resp. all
joins of less than α elements). Then h. : L ⊸ M is cc-prime (resp.
cα-prime).
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(If
∨

bi ∈ h.(a) then a ≤ h(
∨

bi) =
∨

h(bi) and ai = a ∧ h(bi) ≤
h(bi).)

4.4.2. Theorem. In the dualities from 4.3, the frame homomor-
phisms (resp. ∧-homomorphisms preserving joins of less then α ele-
ments, in particular bounded lattice homomorphisms) correspond pre-
cisely to the cc-prime (resp. cα-prime, in particular c-prime) a-maps
f : L ⊸ M .
Proof. It remains to be proved that for an f : L ⊸ M in AF the

preimage f−1〈−〉 preserves joins. We have

f−1〈
∨

J

bi〉 =
∨

{a ∈ L |
∨

J

bi ∈ f(a)}.

Now, if
∨

bi ∈ f(a) then for some K ⊆ J and i ∈ K there are ai,
a =

∨
K ai and bi ∈ f(ai), hence ai ≤ f−1〈bi〉, and a ≤

∨
i f

−1〈bi〉.
Thus,

f−1〈
∨

bi〉 ≤
∨

f−1〈bi〉.

The other inequality is trivial. �

4.5. The behaviour of the Manes extension f̃ : FltL → FltM associ-
ated with an a-map f : L ⊸ M from 3.4 corroborates our terminology.
We have

Proposition. Let f : L ⊸ M be a cc-prime resp. cα-prime a-map
and let F be a completely prime resp. an α-prime filter in L. Then

f̃(F ) is completely prime resp. α-prime.

Proof. Let
∨

J bi ∈ f̃(F ) (in the latter case, |J | < α). Then for some
a ∈ F ,

∨
J bi ∈ f(a). Take a =

∨
ai as in (ccp) resp. (cαp). Since a is

in F we have for some i, ai ∈ F and hence bi ∈ f(ai) ⊆ f̃(F ). �

4.5.1. The question naturally arises whether the statement above

can be reversed. That is, suppose f : L ⊸ M is such that f̃ sends
completely prime filters to completely prime ones; is then f cc-prime?
Of course this cannot hold quite generally: a frame may lack completely
prime filters so that the condition may be void, or simply weak in other
cases. One does have, however, a positive result if they abound.

4.5.2. First observe that for any continuous ϕ : X → Y and f = ϕ◦

as in 4.4 one has

f̃(U(x)) = U(ϕ(x))

(indeed, V ∈ f̃(U(x)) iff there is a U ∋ x such that V ∈ ϕ◦(U) iff there
is a U ∋ x such that ϕ[U ] ⊆ V ; by continuity this is iff ϕ(x) ∈ V ).

4.5.3. Lemma. For any topological spaces X and Y let f :
O(X) ⊸ O(Y ) be an a-map and let ϕ : X → Y be a mapping such
that

f̃(U(x)) = U(ϕ(x)).
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Then ϕ is continuous and f = ϕ◦.
Proof. We have to prove that

V ∈ f(U) iff ϕ[U ] ⊆ V.

Let ϕ[U ] ⊆ V and x ∈ U . Then V ∈ U(ϕ(x)) and hence there is
a Wx ∋ x such that V ∈ f(Wx). Now x ∈ U ∪ Wx and hence V ∈
f(U ∩ Wx). Finally, V ∈

⋂
f(U ∩ Wx) = f(

⋃
x(U ∩ Wx)) = f(U).

Conversely, et V ∈ f(U) and x ∈ U . Then V ∈ U(ϕ(x)) and hence
ϕ(x) ∈ U ; thus, ϕ[U ] ⊆ V . �

4.5.4. Proposition. For any topological space X and any sober
space Y , f : O(X) ⊸ O(Y ) is cc-prime iff for each completely prime

F ⊆ O(X), the filter f̃(F ) is completely prime.
Proof. Every completely prime filter in O(Y ) is of the form U(y),

y ∈ Y . Thus, for each x ∈ X we have a y = ϕ(x) such that f̃(U(x)) =
U(ϕ(x)). By Lemma 4.5.3, thus chosen ϕ : X → Y is continuous, and
f = ϕ◦ is cc-prime by 4.4. �

4.5.5. Lemma 5.3.3 also yields a counterpart of the well known
fact on representation of continuous maps into sober spaces by frame
homomorphisms.

Proposition. Let X, Y be topological spaces and let Y be sober.
Then the cc-prime a-maps f : O(X) ⊸ O(Y ) are precisely the ϕ◦ with
ϕ : X → Y continuous maps.
Proof. Let f : O(X) ⊸ O(Y ) be a cc-prime a-map. For x ∈ X we

have the completely prime U(x). By 4.5, f̃(U(x)) is completely prime,
and hence U(y) for some y ∈ Y (uniquely determined since our spaces

are T0). If we denote this y by ϕ(x), we obtain f̃(U(x)) = U(ϕ(x)) and
the statement follows. �

4.6. Theorem. The correspondences h 7→ h. and f 7→ f−1〈−〉
constitute a dual equivalence between Frm resp. αFrm and the full
subcategory of

BF resp. B(α)F

generated by the objects (L, L) where L is a frame resp. α-frame.
Proof. We need to prove that an f : L → FltM is cc-prime resp.

cα-prime iff f : (L, L) → Flt(M, M) is a morphism in B resp. B(α).
We have

∨
i∈J bi ∈ f(a) iff ↑

∨
i bi =

∨
i ↑bi ⊆ f(a) iff f(a) ≤

∨
i ↑bi.

Now a ≤
∨

i ai with f(ai) ≤↑bi iff we have there bi ∈ f(ai). �

5. Spectra in the approximate setting

In this section we will relate our description of the dual of the cate-
gory of frames to the familiar facts about the dual adjointness between
frames and spaces.
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5.1. By 4.4.2 we have the category of locales represented as

Loc : the subcategory of AF with frames for objects, and all the
f : L ⊸ M that are collectionwise completely prime for mor-
phisms.

5.2. Denote by FltcpL the subset of FltL constituted by the com-
pletely prime filters on L, and by τ(L) the set

{Σa | a ∈ L} where Σa = {F ∈ FltcpL | a ∈ F}.

Obviously

(5.2.1) Σa∧b = Σa ∩ Σb and ΣW

J
ai

=
⋃

J

Σai
,

and hence τ(L) is a topology on FltcpL and we have a space

ΣL = (FltcpL, τ(L)).

Furthermore, for an f : L ⊸ M in Loc define

Σf : ΣL → ΣM

by setting Σf(F ) = f̃(F ). This is correct: by 4.5 if F is in FltcpL then

f̃(F ) is in FltcpM , and the map is continuous since we have

(5.2.2) Σf−1[Σb] = Σf−1〈b〉

(indeed: recall that f−1〈b〉 =
∨
{a ∈ L | b ∈ f(a)} and hence

{F | f̃(F ) ∈ Σb} = {F | ∃a ∈ F, b ∈ f(a)} = {F | f−1〈b〉 ∈ F}).

From the formulas η̃ = id and f̃ ◦ g =
˜̃
f · g = f̃ ·g̃ in 2.3 we immediately

infer that we have obtained a functor

Σ : Loc→ Top.

5.3. Our next aim is to obtain a functor in the opposite direction.
Denote by ΩX = O(X) the frame of open sets of a space X. For a
continuous map ϕ : X → Y we have already defined ϕ◦ : ΩX → Flt ΩY
(Introduction, 4.4), and in 4.4 we have observed that, in the notation
of 5,1, Ω(ϕ) = ϕ◦ : ΩX ⊸ ΩY is a morphism in Loc. We see that
we have Ω(id) = ηΩX , the identity ΩX ⊸ ΩX in Loc, and we easily

check that Ω(fg) = ˜ω(f) · Ω(g) = Ω(f) ◦ Ω(g) in Loc. Thus, we have
a functor

Ω : Top→ Loc.

5.4. The spectrum adjunction. Define

λM : ΩΣL ⊸ L

by setting
λL(U) = {a | U ⊆ Σa}
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(of course, U is one of the Σx’s). We have

5.4.1. Lemma. (1) λ−1

L 〈a〉 = Σa.
(2) (ΩΣf)−1〈Σb〉 = Σf−1〈b〉.
(3) λ = (λL)L is a natural transformation.

Proof. (1)
∨
{U | a ∈ λL(U)} =

⋃
{U | U ⊆ Σa} = Σa.

(2) By (PREIM) in Introduction, and by (5.2.2) we obtain

(ΩΣf)−1〈Σb〉 = (Σf ◦)−1〈Σb〉 = Σf−1[Σb] = Σf−1〈b〉.

(3) First, λL(
⋃

Ui) = {a |
⋃

Ui ⊆ Σa} = {a | ∀i, Ui ⊆ Σa} =⋂
λL(Ui). If

∨
bi ∈ λL(U) then U ⊆ ΣW

bi
=

⋃
Σbi
, and U =

⋃
Ui

where Ui = U ∩ Σbi
with bi ∈ λ(Ui).

To prove that f ◦λL = λM ◦ΩΣf we will use the dual representations
by g−1〈−〉. We have

(λM ◦ ΩΣf)−1〈b〉 = (ΩΣf)−1〈λ−1

M 〈b〉〉 = (ΩΣf)−1〈Σb〉 = Σf−1〈b〉

by (1) and (2), and (f ◦ λL)−1〈b〉 = λ−1

L 〈f−1〈b〉〉 = Σf−1〈b〉 by (1). �

5.4.2. For a space X we have the familiar continuous map

ρX : X → ΣΩX, x 7→ U(x),

(recall 1.3.1.) for which

(∗) ρ−1

X (ΣU) = {x | U(x) ∈ ΣU} = {x | U ∈ U(x)} = U.

Note that for T0-spaces ρX is one-one, and it is onto iff X is sober
(recall 1.3.2) so that (∗) makes it a homeomorphism.
See also 4.5.5.

Lemma. ρ = (ρX)X is a natural transformation.
Proof. We have

ΣΩϕ(ρX(x)) = ϕ̃◦(U(x)) =
⋃

{ϕ◦(U) | x ∈ U} =

= {V | ∃U, x ∈ U, ϕ[U ] ⊆ V } = {V | ϕ(x) ∈ V } = ρX(ϕ(x)). �

5.4.3. Proposition. Σ is right adjoint to Ω, with the adjunction
units λ and ρ.
Proof. In the composition

ΣL
ρΣL−−−→ ΣΩΣL

ΣλL−−−→ ΣL

we have ΣλL(ρΣL(F ) = λ̃L(U(F )) =
⋃
{λL(Σa) | a ∈ F} =⋃

{{b | Σa ⊆ Σb} | a ∈ F} = F.

To prove the identity resulting from the composition

Ω(X)
ΩρX

⊸ ΩΣΩ(X)
λΩ(X)

⊸ Ω(X)

we will use the dual representation by the preimages g−1〈−〉 similarly
like in 5.4.1(3). We have

(λΩX ◦ ΩρX)−1〈U〉 = (ΩρX)−1〈λ−1

ΩX〈U〉〉 = (ρ◦
X)−1〈ΣU〉 = ρ−1

X [ΣU ] = U
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by 5.4.1(1) and (PREIM) in Introduction. �

5.5. Remark. All that was proved in this section can be done, more
generally, for the category of locales modified to Locα with complete
distributive lattices for objects and collectionwise α-prime f : L ⊸ M
for morphisms. This is why we have formally introduced the extra
symbol τ(L) for the topology {Σa | a ∈ L} - in the more general
context the topology is just generated by {Σa | a ∈ L} - and why we
have used the symbol U working with the λ (see 5.4) - in the more
general context it is not necessarily one of the Σa.
It may be of interest that in the case of α = ω0 the construction yields

a fragment of Priestley duality ([12]) restricted to complete distributive
lattices.

References

[1] B. Banaschewski and A. Pultr, A General View of Approximation, Applied
Categorical Structures 14 (2006), 165-190.

[2] B. Banaschewski and A. Pultr, Cauchy points of uniform and nearness frames,
Quaestiones Mathematicae 19 (1-2) (1996), 101-127.

[3] C. Caratheodory, Über die Begrenzung einfach zusamenhängender Gebiete,
Math. Annalen 73 (1913).

[4] F. Hausdorff, Grundzüge der Mengenlehre, Veit & Co., Leipzig (1914).
[5] Martin Hötzel Escardó, Injective spaces in the filter monad, Department of
Computing, Edinburg University (preprint, 1997)

[6] A. Grothendieck and J. Dieudonné, Éléments de géométrie algebrique, tome I:
le langage des schémas, I.H.E.S. Publ.Math., no.4.

[7] A. Joyal and M. Tierney, An extension of the Galois theory of Grothendieck,
Memoirs of the AMS 51 Number 309 (1984).

[8] P.T. Johnstone, Stone spaces, Cambridge Studies in Advanced Math. No 3,
Cambridge University Press, Cambridge, 1983.

[9] J.L Kelley, General Topology, The University Series of Higher Mathematics, D.
Van Nostrand 1955.

[10] E. Manes, Algebraic Theories, Graduate Texts in Mathematics 26, Springer-
Verlag, New York Heidelberg Berlin 1976.

[11] S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, New
York 1971.

[12] H.A. Priestley, Ordered topological spaces and the representation of distributive
lattices, Proc. London Math. Soc. 324 (1972), 507–530.

[13] A. Pultr, Frames, Chapter in: Handbook of Algebra, Vol.3, (Ed. by M.
Hazewinkel), Elsevier 2003. 791-858.

[14] J. Picado and A. Pultr, Sublocale sets and sublocale lattices, Archivum Math-
ematicum 42,4 (2006), 409–418.

[15] J. Picado and A. Pultr, Locales treated mostly in a covariant way, Textos de
matemática 41, Dep. de Matemática, Univ. de Coimbra (2008).

Department of Mathematics and Statistics, McMaster University,
1280 Main St. W, Hamilton, Ontario L8S 4K1, Canada



APPROXIMATE MAPS AND FILTER MONAD 15

Department of Applied Mathematics and ITI, MFF, Charles Univer-
sity, CZ 11800 Praha 1, Malostranské nám. 25
E-mail address : pultr@kam.ms.mff.cuni.cz


