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Abstract. Let κQnt be the category of of κ-quantales, quantales
closed under κ-joins in which the monoid identity is the largest ele-
ment. (κ is an infinite regular cardinal.) Although the lack of lattice
completeness in this setting would seem to mitigate against the tech-
niques which lend themselves so readily to the calculation of frame
quotients, we show how to easily compute κQnt quotients by applying
generalizations of the frame techniques to suitable extensions of this
category.
The second major tool in the analysis is the free κ-quantale over a λ-

quantale, κ ≥ λ. Surprisingly, these can be characterized intrinsically,
and the generating sub-κ-quantale can even be identified. The result
that the λ-free κ-quantales coincide with the λ-coherent κ-quantales
directly generalizes Madden’s corresponding result for κ-frames.
These tools permit a direct and intuitive construction of κQnt colim-

its. We provide two applications: an intrinsic characterization of κQnt

colimits, and of free (over sets) κ-quantales. The latter is a direct gen-
eralization of Whitman’s condition for distributive lattices.

1. Introduction

Factoring frames is a fairly transparent procedure. A frame is a complete
lattice satisfying the distributive law

(
∨

J

ai) ∧ b =
∨

J

(ai ∧ b)

and frame homomorphisms (and, hence, congruences) respect all joins and
finite meets. Thus

Key words and phrases. distributive lattices, κ-quantales and κ-frames, quotients,
colimits.
Both authors gratefully acknowldege the support of project 1M0545 of the Ministry

of Education of the Czech Republic. In addition, the authors would like to express their
thanks to the Faculty Research Fund, and to the Department of Mathematics, of the
University of Denver.

1



2 RICHARD N. BALL AND ALES̆ PULTR

• the completeness yields a canonical representation of the congruence
classes by their largest elements,
• the Heyting operation following from the distributivity law (pre-
serving suprema by the maps x 7→ a ∧ x makes them left Galois
adjoints) provides a simple technique for extending a generating re-
lation; it often explicitly yields the resulting quotient without really
bothering with the congruence itself.

(See, e.g., [5] and [11].) Almost the same holds, more generally, for com-
mutative quantales with top unit with the adjoint to the multiplication in
place of the Heyting operation mentioned.
For distributive lattices, σ-frames, q-lattices, etc., neither of these ad-

vantageous circumstances obtain. Still, by use of suitable extensions we
can exploit the technique of frames/quantales to obtain transparent rep-
resentations of their respective quotient algebras. One of the purposes of
this article is to show how easily this can be done.
Another motivation for our investigation goes back to [3], published in

1993 and related to the much older [2] of 1976. There it was shown how to
obtain colimits of distributive algebras in linear categories using the asso-
ciated colimits of the underlying structures. The important point here is
the parallel between phenomena like obtaining coproducts of commutative
rings as tensor products of the underlying abelian groups, and the quite
analogous construction of coproducts of frames based on coproducts of the
underlying meet-semilattices. Using our technique we can in some cases
(distributive lattices, σ-frames, q-lattices) replace the abstract categorical
construction by a quite explicit one. As an application we present a simple
proof of a basic intrinsic fact of the resulting algebras.

2. Preliminaries

In this section we set out the basic definitions and notation, and then
develop the machinery of quantale quotients. The latter is a generalization
of the corresponding frame technique (see [5] or [11]), and is fundamental
to everything that follows.

2.1. κ-quantales. If M is a subset of a poset (X,≤) we will denote the
down-set generated by M by

↓M = {X : ∃m ∈M, x ≤ m},

and call M a down-set if M = ↓M . We abbreviate ↓{a} to ↓a.
Throughout this article κ and λ designate either infinite regular cardi-

nals, the symbol 0, or the symbol ∞. We assume that 0 ≤ κ ≤ ∞ for
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infinite regular cardinals λ, and we assume that λ ≤ κ. A κ-set is a set of
cardinality strictly less than κ; there are no 0-sets, an ω-set is a finite set,
an ω1-set is a countable set, and any set is an∞-set. A κ-subset of a given
set A is a subset B ⊆ A which is a κ-set; we write B ⊆κ A. If, in a poset
A with subset B, a =

∨
B0 for some B0 ⊆κ B then we will say that a is a

κ-join of elements of B. When the join operation is the union of subsets,
we will speak of a as being a κ-union.
We will be concerned with κ-quantales (L, ·, 1,≤), structures in which

(L, ·, 1) is a commutative monoid and all κ-subsets possess joins, such that

• 1 is the top of (L,≤), and
• the monoid operation distributes over κ-joins.

If there is no danger of confusion, the operation is denoted simply by
juxtaposition. A 0-quantale is simply a commutative monoid, devoid of
order. ℵ0-quantales, the counterparts of distributive lattices, are referred
to as q-lattices. ∞-quantales are referred to as simply quantales. The κ-
morphisms preserve all the assumed suprema and the monoid structure, as
do the congruences. The resulting category will be designated by κQnt; at
whim we will substitute the synonymous notations CMon for 0Qnt and
Qnt for ∞Qnt. Note that in all cases except κ = 0 we have the bottom
element 0 = sup ∅, and that it is preserved by homomorphisms.

Observation 2.1.1. Let L be a κ-quantale, κ > 0.

(1) By distributivity, x · y is monotone in both variables.
(2) xy ≤ x, y, since 1 is the top, and x · 0 = 0 since x · 0 ≤ 1 · 0 = 0.
(3) xy = x∧ y iff the monoid is idempotent, since in that case z ≤ x, y
implies z = z · z ≤ x · y.

We use the term κ-quantale as an abbreviation for commutative κ-
quantale with top unit. In the general theory of quantales these entities are
not necessarily commutative, and the top element does not have to be the
unit of the multiplication. (For more about quantales see, e.g., [4], [9], and
[10].) In the particularly important case of an idempotent multiplication
(that is, of meet), the κ-quantales are precisely the κ-frames; ∞-quantales
are usually called frames, ℵ1-quantales are usually called σ-frames, and the
ℵ0-quantales are,of course, precisely the bounded distributive lattices. The
resulting categories will be denoted by Frm, κFrm, (especially σFrm),
and DLat.

2.2. Quantale Quotients. Due to the completeness and to the Heyting
structure, quotients of frames are easy to obtain. In this subsection we will
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generalize the frame factorization procedure to quantales, and in later sec-
tions we will use this machinery to factor some structures that do not have
the above advantages. Throughout this section L represents a quantale.
The distributivity a ·

∨
bi =

∨
(a · bi) in L can be interpreted as saying

that the mappings (x 7→ a · x) : L → L preserve all suprema, and hence
they are left Galois adjoints. This gives rise to an operation → on L such
that

ab ≤ c iff a ≤ b→ c.

Let R be a binary relation on L. An element s ∈ S is said to be R-
saturated, or simply saturated, if

∀a, b, c aRb =⇒ (ac ≤ s iff bc ≤ s).

The set of all saturated elements will be denoted by

L/R.

Observation 2.2.1. An arbitrary meet of saturated elements is saturated.
And if s is saturated then so is every element of the form x→ s, x ∈ L.

Proof. We have ac ≤ x→ s iff acx ≤ s iff bcx ≤ s iff bc ≤ x→ s. �

Define a mapping

µR ≡ (x 7→
∧

x≤s∈L/R

s) : L −→ L/R.

We have

Lemma 2.2.2. (1) x ≤ µ(x), µ is monotone, and µµ(x) = µ(x),
(2) µ(xy) = µ(µ(x)µ(y)).

Proof. (1) is trivial. (2) For saturated s we have µ(xy) ≤ s iff xy ≤ s iff
x ≤ y → s iff µ(x) ≤ y → s iff y ≤ µ(x) → s iff µ(y) ≤ µ(x) → s iff
µ(x)µ(y) ≤ s iff µ(µ(x)µ(y)) ≤ s. . �

In the case of frames one has more, namely µ(xy) = µ(x)µ(y). This,
together with the property (1), makes µ a nucleus, one of the basic means
of describing sublocales (generalized subspaces). See, e.g., [5] or [6].

Theorem 2.2.3. L/R is a complete lattice, and if it is endowed with the
multiplication x ∗ y = µ(xy) it becomes a quantale and µR becomes an

quantale morphism L→ L/R.
If aRb then µR(a) = µR(b), and for every quantale morphism h : L →

M such that aRb ⇒ h(a) = h(b) there is a unique quantale morphism
h : L/R→ M such that hµR = h. Moreover, h(a) = h(a) for all a ∈ L/R.
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Proof. L/R is a complete lattice with the supremum
⊔

ai = µ(
∨

ai): in-
deed, if b ≥ ai for all i, and if b ∈ L/R then b ≥

∨
ai, and b = µ(b) ≥

µ(
∨

ai). µ preserves the multiplication by Lemma 2.2.2(2), and for ai ∈ L
we have µ(

∨
ai) ≤ µ(

∨
µ(ai)) =

⊔
µ(ai) ≤ µ(

∨
ai). Thus, µ also preserves

all joins. Since it is onto, this makes L/R a quantale and µ a quantale mor-
phism. Further, if aRb then b ≤ µ(a) since a ≤ µ(a) and µ(a) is saturated.
Hence µ(b) ≤ µ(a) and by symmetry µ(b) = µ(a).
Let h : L → M be such that aRb ⇒ h(a) = h(b). We first claim that

hµ (x) = h (x), x ∈ L. To verify this claim, set

σ(x) =
∨

h(y)≤h(x)

y.

Obviously

(∗) x ≤ σ(x) and hσ(x) = h(x).

Let aRb and ac ≤ σ(x). Then h(bc) = h(ac) ≤ hσ(x) = h(x) and hence
bc ≤ σ(x). Thus, σ (x) is saturated. Combining this fact with (∗) we obtain
that x ≤ µ(x) ≤ σ(x) and hence

h(x) ≤ hµ(x) ≤ hσ(x) = h(x),

which proves the claim.
To complete the proof of the theorem, define h : L/R → M to be the

restriction of h to L/R. Then

h

(
⊔

I

xi

)
= h

(
µ

(
∨

I

xi

))
= h

(
∨

I

xi

)
=
∨

I

h (xi) =
∨

I

h (xi) ,

h (x ∗ y) = h (µ (xy)) = h (xy) = h (x) h (y) = h (x) h (y) ,

so that h is the morphism we seek. �

Often it is easy to find transparent formulas characterizing the saturated
elements which make the quotient fairly transparent (see Section 4 below).
This is sometimes helped by special properties of the initial relation R. We
easily deduce the following

Proposition 2.2.4. Let C be a join basis of L and let R ⊆ L×L be such
that

∀a, b ∈ L ∀c ∈ C aRb ⇒ (ac)R(bc).

Then s ∈ L is R-saturated iff

aRb ⇒ (a ≤ s iff b ≤ s).
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If, moreover, aRb ⇒ a ≤ b this reduces to

aRb ⇒ (a ≤ s ⇒ b ≤ s),

or, trivially rewritten, to

aRb & (a ≤ s) ⇒ b ≤ s.

3. Free κ-quantales

Keeping in mind our convention that 0 ≤ λ ≤ κ ≤ ∞, we have the
forgetful functor Uκ

λ : κQnt → λQnt, which we often use but seldom
mention, and whose adjoint Fλ

κ : λQnt→ κQnt we analyze in this section.
For a given λ-quantale L, we refer to Fλ

κL as the free κ-quantale over L.
We begin by describing F0

κL.

3.1. The free κ-quantale over a commutative monoid . Fix κ > 0.
A pre-ideal in a commutative monoid S is a subset U ⊆ S such that

u ∈ U & s ∈ S =⇒ us ∈ U.

Though a pre-ideal need not be a down-set, a down-set is a pre-ideal in any
quantale by Observation 2.1.1(2), and the pre-ideals of a meet-semilattice
are exactly the down-sets. The smallest pre-ideal containing an element
a ∈ S is obviously the principal pre-ideal

[a] = {as : s ∈ S} .

In particular, in the semilattice case [a] = ↓a. The pre-ideal generated by
an arbitrary subset A ⊆ S is

[A] ≡ {as : a ∈ A, s ∈ S} =
⋃

A

[a] .

Lemma 3.1.1. Let S be a commutative monoid.

(1) If Ui, i ∈ I, are pre-ideals then so is
⋃

I Ui.

(2) If U and V are pre-ideals then U · V = {uv : u ∈ U, v ∈ V } is a
pre-ideal. This operation is associative and commutative. If the

monoid is idempotent, i.e., a meet semilattice, then U · U = U.
(3) U · S = U .
(4) U · (

⋃
I Vi) =

⋃
I (U · Vi).

(5) [a] · [b] = [ab], and [1] = S.

Proof. (1) is trivial. (2) If u ∈ U , v ∈ V and x ∈ S then (uv)x = u(vx)
with vx ∈ V . Associativity, commutativity, and the idempotent case are
obvious. (3) By definition US ⊆ U , but because of the unit we have
US ⊇ U . (4) x ∈ U ·

⋃
Vi iff x = uv with u ∈ U and v ∈

⋃
Ui iff there
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is an i such that x = uv with u ∈ U and v ∈ Vi iff x ∈
⋃

(U · Vi). (5)
Obviously [ab] ⊆ [a] [b], and if u ∈ [a][b] then u = axby = (ab)(xy) ∈ [ab].
[1] = {1x : s ∈ S} = S. �

For a commutative monoid S set

F0
κS ≡ {[A] : A ⊆κ S} ,

endowed with the operations of U · V and κ-unions. We write F0
f for F0

ω,

and we abbreviate F0
∞S to F0S. Further, we define the mapping

ρ0
κS : S → F0

κS

by setting ρ0
κS(a) = [a]. We abbreviate ρ0

∞S to ρ0
S. By Lemma 3.1.1,

F0
κS is a κ-quantale and ρ0

κS is a κ-morphism, one which is readily seen to
be injective. If S is a meet-semilattice (the idempotent case), F0S is the
down-set frame; in particular, F0

fS is a distributive lattice.

Proposition 3.1.2. ρ0
κS : S → F0

κS is the free κ-quantale over the com-
mutative monoid S. That is, for every κ-quantale L and monoid homo-
morphism h : S → L there is precisely one κ-morphism f : F0

κS → L such
that the diagram commutes.

F0
κS L

S

-

�
�

���6
ρ0

κ

f

h

Proof. Since each U ∈ F0
κS has the form [A] =

⋃
A [a], A ⊆κ L, the desired

f has to satisfy the formula

(∗) f(U) =
∨

A

h(a).

This proves the uniqueness of the morphism. Now take (∗) for a definition
of a mapping f : F0

κL → L. This f obviously preserves the assumed
suprema. It preserves the multiplication as well:

f (U) f (V ) =
∨

a∈U,b∈V

h (a)h (b) =
∨

a∈U,b∈V

h (ab) =
∨

c∈UV

h (c) = f (UV ) .

Finally, if b ∈ [a] then b = ax and h(b) = h(a)h(x) ≤ h (a), and we conclude
that f([a]) =

∨
[a] h(b) = h (a). �
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3.2. The free quantale over a λ-quantale, λ > 0. In order to construct
FλL, the free quantale over a λ-quantale L, λ > 0, a good place to start
might be with the free quantale F0Uλ

0L over the commutative monoid Uλ
0L

underlying L. This structure certainly has the freeness we seek, but in the
passage from L to Uλ

0L we have lost the order on L, so that the natural
embedding a 7−→ [a] need not preserve the λ-joins in L. We may restore
the order given on L by identifying [A] with [b] for all A ⊆λ L with b =

∨
A,

that is, by factoring F0L ≡ F0Uλ
0L by the relation

R =
{

([A] , [b]) : A ⊆λ L with b =
∨

A
}

.

We denote the resulting quotient (F0L) /R, by Fλ
∞L and abbreviate this

to FλL, and we denote the quotient map by µ : F0L → Fλ
∞L. Because R

identifies the join of the images of the elements of a κ-subset of L with the
image of its join, the map µρ0

L is a λ-morphism L → FλL; we denote this
morphism by ρλ

∞L, abbreviated to ρλ
L.
1

Proposition 3.2.1. ρλ
L : L → FλL is the free quantale over a λ-quantale

L. That is, for every quantale M and λ-morphism h : L → M there is

precisely one quantale morphism f : FλL→M such that fρλ
L = h.

Proof. When viewed as the underlying monoid homomorphism, h gives
rise (via Proposition 3.1.2 with κ = ∞) to a unique quantale morphism
h′ : F0L→ M such that h′ρ0

L = h. Since, for A ⊆λ L with b =
∨

A,

h′ ([A]) = h′

(
∨

A

[a]

)
=
∨

A

h′ ([a]) =
∨

A

h′ρλ
L (a) =

∨

A

h (a) = h

(
∨

A

a

)

= h (b) = h′ρ0
L (b) = h′ ([b]) ,

it follows that h′ factors through µ, say h′ = fµ. Then fρλ
L = fµρ0

L =
h′ρ0

L = h. And f is unique with this property, for fρλ
L = f ′ρλ

L implies
f = f ′ since ρ0

L [L] = {[a] : a ∈ L} generates F0L as a quantale. �

Let us examine the elements of FλL in more detail. The explicit de-
scription of these elements provided by Proposition 3.2.2 will constitute
the working definition of FλL, and also of the embedding ρλ

L : L → FλL.
A λ-ideal in a λ-quantale L is a down-set U ⊆ L such that

∨
A ∈ U for

all A ⊆λ U . We remind the reader that λ-ideals are pre-ideals because
down-sets are pre-ideals.

1There is a minor abuse of notation going on here. ρ0

L
is the map a 7−→ [a] from Uλ

0
L

to U0F
0Uλ

0
L, and ρλ

L
is the unique λ-morphism for which Uλ

0
ρλ

L
= Uλ

0
µ ◦ ρ0

L
.
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Proposition 3.2.2. Let L be a λ-quantale. Then a pre-ideal U ⊆ L is
R-saturated iff it is a λ-ideal, i.e.,

FλL = {U : U is a λ-ideal in L} .

For U, V, Vi ∈ Fλ
∞L, i ∈ I,

U · V = ↓{uv : u ∈ U, v ∈ V } ,

∨

I

Vi = ↓

{
∨

A : A ⊆λ

⋃

I

Vi

}

And ρλ
L (a) = ↓a for all a ∈ L.

Proof. The saturation condition for a pre-ideal U ⊆ L is this: for allA ⊆λ L
with b =

∨
A and all pre-ideals V ,

[A] V ⊆ U iff bV ⊆ U.

Taking V = [1] = L and using the implication from left to right, this
condition implies that U is closed under λ-joins. Taking V = [1] and
A = {a, b} with a ≤ b and using the implication from right to left, this
condition implies that U is a down-set. Thus a saturated pre-ideal is a
λ-ideal. On the other hand, it is straightforward to verify that a λ-ideal is
a saturated pre-ideal.
We leave it to the reader to perform the routine verification that the

operations in FλL are as displayed. And ρκ
L (a) = ↓ a just because ↓ a is

the smallest κ-ideal containing a. �

Note that in a λ-frame, and in a bounded distributive lattice in particu-
lar, the pre-ideals are automatically down-sets. However, even in that case
the definition of U · V given in Proposition 3.2.2 differs from that given in
Lemma 3.1.1. In fact, even in the very simplest instance when κ = ℵ0, an
element u1v1 ∨ u2v2 is just majorized by (u1 ∨ u2)(v1 ∨ v2), while there is
no reason that it should lie in {uv : u ∈ U, v ∈ V } itself.

3.3. The free κ-quantale over a λ-quantale, λ > 0. With FλL in hand,
we may now construct Fλ

κL, the free κ-quantale over a given λ-quantale L.
For that purpose, consider a given λ-quantale L. The smallest λ-ideal
containing a subset A ⊆ L is

〈A〉λ ≡ ↓
{∨

B : B ⊆λ A
}

.

(We drop the subscript λ when it is clear from the context.) A λ-ideal U
in L is said to be κ-generated if U is of the form 〈A〉 for some A ⊆κ L. Set

Fλ
κL ≡ {V : V is a κ-generated λ-ideal in L} ,
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a sub-κ-quantale of FλL. Let ρλ
κL : L → Fλ

κL be the codomain restriction
of ρλ

L.

Proposition 3.3.1 (cf. [8, Proposition 1.2]). The free κ-quantale over
a λ-quantale L is Fλ

κL. That is, for each κ-quantale M and λ-morphism
h : L → M there is precisely one κ-morphism f : Fλ

κL → M such that the

diagram commutes.

Fλ
κL M

L

-

�
�

���6
ρλ

κ

f

h

In the case of an idempotent multiplication, i.e., κ-frames, this reproves
the corresponding result of Madden.

Proof. If f is such a homomorphism then for U = 〈A〉 we must have

f(U) = f(
∨

A

↓a) =
∨

A

fρκ
µ(a) =

∨

A

h(a),

hence the only candidate for the morphism in question is the map defined
by the rule f(〈A〉) =

∨
A h (a), A ⊆κ L. This definition is well-defined, for

if 〈A〉 = 〈A′〉 then each element of A lies below a λ-join of elements from A′

and vice-versa, and from this it follows that
∨

A h(a) =
∨

A′ h(a′). Clearly
f preserves κ-joins, and since, as can be easily checked, 〈A〉 · 〈B〉 = 〈AB〉
for A, B ⊆µ L, it follows that, for U = 〈A〉 and V = 〈B〉 in Fλ

κL,

f(UV ) = f (〈A〉 〈B〉) = f (〈AB〉) =
∨

AB

h(ab) =
∨

A

h(a)·
∨

B

h(b) = f(U)f(V ).

We have f(1Fλ
κL) = f(L) = 1 because h(1) = 1, and f(↓a) =

∨
b≤a h(b) =

h(a). �

Propositions 3.1.2 and 3.3.1 give rise to the functor

Fλ
κ : λQnt→ κQnt.

For a λ-morphism h : L→M ,
(
Fλ

κh
)
(〈A〉) = 〈h [A]〉 , A ⊆κ L.

And Fλ
κh ◦ ρλ

κL = ρλ
κL ◦ h.

It is material to our development that the free functors are compatible
in the sense that, for 0 ≤ λ ≤ κ ≤ µ ≤ ∞,

Fκ
µF

λ
κL
∼= Fλ

µL, L ∈ λQnt.
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Proposition 3.3.2. Let 0 ≤ λ ≤ κ ≤ µ ≤ ∞. Then for any λ-quantale L,
the maps

V −→
⋃

V

{〈A〉λ : A ⊆κ U} ←− U

are inverse isomorphisms between Fκ
µF

λ
κL and Fλ

µL.

Proof. We give the proof for λ > 0; the proof for λ = 0 goes along similar
lines. The distinction is necessary because F0

κL consists of κ-generated pre-
ideals, not κ-generated λ-ideals. That is, we cannot speak of λ-ideals when
L has no order.
An element V ∈ Fκ

µF
λ
κL is a µ-generated κ-ideal on Fλ

κL, say V = 〈V0〉κ
for V0 ⊆µ Fλ

κL. Let U ≡
⋃

V ⊆ L. We first claim that U is a µ-generated
λ-ideal on L. Certainly U is a down-set, for if a ≤ u ∈ U then, since u ∈ v
for some v ∈ V and since v is a λ-ideal and hence a down-set, a ∈ v ⊆ U .
To verify that U is closed under λ-joins, consider a0 =

∨
A for A ⊆λ U .

Then for each a ∈ A there is some va ∈ V such that a ∈ va. Since V is a κ-
ideal, v ≡

∨
A va ∈ V , and since v is a λ-ideal and A ⊆λ v, a0 ∈ v ⊆ U . So

far we have established that U is a λ-ideal. To show that U is µ-generated,
let Av ⊆κ L be such that v = 〈Av〉λ for all v ∈ V0. Then U = 〈A〉λ for
A =

⋃
V0

Av ⊆µ L. This is true because A ⊆ U implies 〈A〉λ ⊆ 〈U〉λ = U .
Moreover, u ∈ U implies u ∈ v for some v ∈ V = 〈V0〉κ, which implies
v ≤

∨
V1 for some V1 ⊆κ V0. But in Fλ

κL,
∨

V1 = ↓
{∨

A′ : A′ ⊆λ

⋃
V1

Av

}
,

so that u ≤
∨

A′ for some A′ ⊆λ

⋃
V1

Av ⊆ A, meaning u ∈ 〈A〉λ. This
proves the first claim.
We next claim that if U is a µ-generated λ-ideal on L, say U = 〈A〉λ

for A ⊆µ L, then VU ≡ {〈A
′〉λ : A′ ⊆κ U} is a µ-generated κ-ideal on Fλ

κL.
First, VU is a down-set, for if 〈A

′′〉λ ≤ 〈A
′〉λ ∈ VU then, since U is a λ-

ideal, A′′ ⊆ 〈A′〉λ ⊆ 〈U〉λ = U , hence 〈A′′〉λ ∈ VU . Secondly, VU is closed
under κ-joins, for if V0 ⊆κ VU , say v = 〈Av〉 ⊆κ U for all v ∈ V0, then
A ≡

⋃
V0

Av ⊆κ U and
∨

V0 = 〈A〉λ ∈ VU . Finally, VU is µ-generated, for
if U = 〈A〉λ for some A ⊆µ L then {↓a : a ∈ A} is a µ-set which generates
VU as a κ-ideal in Fλ

κL.
It remains to show the maps to be inverses of one another. Given U =

〈A〉λ for A ⊆µ L, let VU ≡ {〈A
′〉λ : A′ ⊆κ U}. Clearly U ⊆

⋃
VU , and

⋃
VU

⊆ U since A′ ⊆κ U implies 〈A′〉λ ⊆ 〈U〉λ = U . Given a µ-generated κ-ideal
V on Fλ

κL, put U ≡
⋃

V and VU ≡ {〈A
′〉λ : A′ ⊆κ U}. Clearly V ⊆ VU .

On the other hand, each v ∈ VU is of the form 〈A
′〉λ for some A′ ⊆κ U , so

that for each a ∈ A′ there is some va ∈ V such that a ∈ va. But since V is
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closed under κ-joins we have A′ ⊆ v ≡
∨

A′ va ∈ V , with the result that
〈A′〉λ ⊆ 〈v〉λ = v, and since V is a down-set, 〈A′〉λ ∈ V . �

3.4. λ-coherent κ-quantales. We refer to a κ-quantale of the form Fλ
κL

as λ-free. It is a remarkable fact that λ-free κ-quantales, and even their
generating elements, can be characterized internally. This result is due to
Madden in the case of κ-frames ([8]); we generalize it here to κ-quantales.

Definition 3.4.1 (cf. [8, Definition 1.3]). Let L be a κ-quantale. An
element a ∈ L is called a λ-element if for all A ⊆κ L such that

∨
A ≥ a

there is some A0 ⊆λ A such that
∨

A0 ≥ a. The set of λ-elements of L is
designated Eκ

λL. This set is evidently closed under λ-joins, and we call L
λ-coherent if it forms a generating sub-λ-frame of L. More explicitly, L is
λ-coherent if

• every element of L is a supremum of a κ-set of λ-elements,
• the product of finitely many λ-elements is a λ-element,
• and 1 is a λ-element.

Proposition 3.4.2 (cf. [8, Proposition 1.4]). A κ-quantale is λ-free iff it
is λ-coherent. More precisely, we have the following.

(1) For any λ-quantale L, Fλ
κL is λ-coherent and

Eκ
λF

λ
κL = {↓a : a ∈ L} .

(2) For any λ-coherent κ-frame L, the inclusion Eκ
λL → L lifts to an

isomorphism Fλ
κE

κ
λL→ L. .

Proof. (1) If the displayed equation holds then it is clear that Fλ
κL is λ-

coherent. Now any element of Fλ
κL has the form 〈A〉 for some A ⊆κ L. If

this is a λ-element then it may be expressed as 〈A0〉 for some A0 ⊆λ A, and
hence is of the form ↓ b for b =

∨
A0. On the other hand, if ↓ a ≤

∨
I Ui

for some κ-family {Ui : i ∈ I} of elements of Fλ
κL, then, according to the

description of the join operation provided by Proposition 3.2.2, a ≤
∨

A
for some A ⊆λ

⋃
I Ui. This fact implies the existence of some I0 ⊆λ I such

that A ⊆λ

⋃
I0

Ui, i.e., ↓a ≤
∨

I0
Ui.

(2) The lifted map is 〈A〉 7−→
∨

A for A ⊆κ Eκ
λL, and its inverse is

b 7−→ {a ∈ Eκ
λL : a ≤ b}, b ∈ L. For U ≡ {a ∈ Eκ

λL : a ≤ b} is generated
by any A ⊆κ U for which

∨
A = b, and such a set A exists because L is

λ-coherent. We have

b 7−→ {a ∈ Eκ
λL : a ≤ b} = 〈A〉 7−→

∨
A = b, b ∈ L.
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On the other hand,

U = 〈A〉 7−→
∨

A ≡ b 7−→ {a ∈ Eκ
λL : a ≤ b} ,

and we claim that {a ∈ Eκ
λL : a ≤ b} = U . For if c ∈ U = 〈A〉 it is only

because c is a λ-element such that c ≤
∨

A0 for some A0 ⊆λ A, hence
c ≤

∨
A = b. And if c is a λ-element such that c ≤ b =

∨
A then c ≤

∨
A0

for some A0 ⊆λ S, hence c ∈ 〈A〉. �

4. κ-quantale quotients, κ > 0

The factorization procedure of Subsection 2.2 can now be adjusted for κ-
quantales, and in particular for κ-frames and bounded distributive lattices,
by a simple application of the functor Fκ.

4.1. Construction. Let L be a κ-quantale, κ > 0, and let R be a binary
relation on L. Embed L in FκL via ρκ

L as in Propositions 3.2.1 and 3.2.2,
and then factor FκL by the relation

R̃ = {(↓a, ↓b) : (a, b) ∈ R} ⊆ FκL× FκL,

as per Theorem 2.2.3, resulting in the quotient map µ. Factor µρκ
L into jµ′

for an injection j and surjection µ′, and denote µρκ
L [L] by L/R.

FκL

FκM

L/R (FκL)/R̃

M

L

?
-

-

?

-

@
@

@@R

�
�

��	

�
�

��	

@
@

@@R

h Fκh
j

ρκ
M

ρκ
L

µ′

h

µ

h̃

Proposition 4.1.1. Let L be a κ-quantale, κ > 0, and let R be a binary
relation on L. Then µ′ : L → L/R is the quotient of L factored by the
smallest κ-congruence containing R.

Proof. To verify the claim we must show that an arbitrary κ-morphism
h : L→M such that

(a, b) ∈ R =⇒ h(a) = h(b), a, b ∈ L,

factors through µ′. Since Fκh(↓ a) = ↓ h(a) for all a ∈ L, it follows that

for (↓a, ↓b) ∈ R̃ we have Fκh(↓a) = ↓h(a) = ↓h(b) = Fκh(↓b), and hence
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there is an h̃ such that h̃µ = Fκh. Now if b ∈ µρκ
L[L], that is, if b = µ(↓a)

for some a ∈ L then

h̃j(b) = h̃(µ(↓a)) = Fκh(↓a) = ↓h(a)

is in ρκ
M [M ] and hence, since ρκ

M is one-one, there is a κ-morphism h :

µρκ
L[L]→ M such that ρκ

Mh = h̃j and we have

ρκ
Mhµ′ = h̃jµ′ = h̃µρκ

L = Fκh ◦ ρκ
L = ρκ

Mh

and since ρκ
M is one-one, hµ′ = h. �

A κ-ideal U on L is R-saturated in the sense of Subsection 2.2 iff

∀ a, b, c ∈ L (aRb =⇒ (ac ∈ U ⇐⇒ bc ∈ U)) .

We denote by 〈A〉R the smallest R-saturated κ-ideal containing a subset
A ⊆ L.

Corollary 4.1.2. Let L be a κ-quantale, κ > 0, and let R be a binary
relation on L. Then the map

(a 7−→ 〈a〉R) : L→ {〈a〉R : a ∈ L}

is the quotient of L by the smallest κ-congruence containing R.

Remark 4.1.3. There is nothing like saturation in a κ-quantale. Note,
however, that the quotient above is made up of some of the saturated ele-

ments in FκL. Thus, if these elements are well understood we again have
a transparent description of L/R.

5. Colimits

In this section we describe colimits in the category of κ-quantales, κ > 0.
Since the Fλ

κ-construction from Section 3 preserves idempotence of multi-
plication, if we start in κFrm (in particular, in DLat) we obtain colimits
in κFrm as well. An abstract construction of colimits in categories of a
similar and more general, nature was presented in [3]. The description we
obtain here can, in many cases, be fairly explicit and transparent. An ob-
servation similar to Remark 4.1.3 can be made here as well. We will see
two easy but important applications in Section 6.
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5.1. Construction. Let D = (Li, φij)I be a diagram in κQnt. Consider
the colimit (δi : Li → S)I in CMon, embed S in F0

κS via ρ0
κS as per

Proposition 3.1.2, and then factor F0
κS by the relation

R =

{(
[δi (b)] ,

⋃

A

[δi (a)]

)
: A ⊆κ Li with b =

∨
A, i ∈ I

}

as per Section 4. Label the quotient map µ, and denote the sub-κ-quantale
of F0

κS/R generated by
⋃

I µρ0
κδi [Li] by L. Observe that factoring by this

particular relation R forces the maps µρ0
κδi : Li → F0

κS/R to preserve κ-
joins; let γi : Li → L be the unique κ-morphism whose underlying monoid
homomorphism agrees with µρ0

κδi.

F0
κS

L̃

S

MLi

�
�

���

-

-

�
�

��	 ?
�

?

hi

h′δi

ρ0
κS

f

j

µ′

Proposition 5.1.1. (γi : Li → L)I is a colimit of the diagramD = (Li, φij)I

in κQnt.

Proof. Consider an upper bound (hi : Li → M)I of D in κQnt. First, for-
get the join structure and take the colimit (δi : Li → S) in CMon, thereby
obtaining a unique monoid homomorphism h′ such that h′δi = hi for all i.
Then, since F0

κS is the free κ-quantale over S, find the unique κ-morphism
f such that fρ0

κS = h′. Now for all i ∈ I and all A ⊆κ Li with b =
∨

A,

f

(
⋃

A

[δi (a)]

)
=
∨

A

fρ0
κSδi (a) =

∨

A

h′δi (a) =
∨

A

hi (a) = hi

(∨
A
)

= hi (b)

= h′δi (b) = fρ0
κSδi (b) = f ([δi (b)]) ,

with the result that f factors through µ, say f = jµ. Then, for all i ∈ I,

jγi = jµρ0
κSδi = fρ0

κSδi = h′δi = hi

as desired. The map j is unique with respect to the condition just displayed,
for if kγi = hi for all i then jµρ0

κS = h′ = kµρ0
κS by virtue of the uniqueness

of h′, which implies that jµ = kµ because ρ0
κS [S] generates F0

κS as a κ-
quantale, and this, in turn, implies j = k because µ is surjective. �

Proposition 5.1.1 gives the colimit L as a sub-κ-quantale of F0
κS/R, and

this quotient is literally FκF0
κS/R̃ according to Proposition 4.1.1. But it is

simpler to work with pre-ideals on S, and we might as well since FκF0
κS is
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isomorphic to F0S by Proposition 3.3.2. The question then naturally arises

as to which pre-ideals on S correspond to, i.e., are unions of, R̃-saturated
element of FκF0

κS. We refer to such pre-ideals as being R-saturated.

Lemma 5.1.2. A pre-ideal U ⊆ S is R-saturated iff it satisfies the follow-
ing conditions.

(1) For all i ∈ I and all a ≤ b in Li, and for all s ∈ S, if δi (b) s ∈ U
then δi (a) s ∈ U . .

(2) For all i ∈ I and A ⊆κ Li with b =
∨

A, and for all s ∈ S, if
δi (a) s ∈ U for all a ∈ A then δi (b) s ∈ U .

Proof. Let T be an R̃-saturated element of FκF0
κS. Then T is a κ-ideal of

F0
κS, the κ-quantale of κ-generated pre-ideals of S, such that

(∗) (↓ [δi (b)]) · V ⊆ T iff

(
↓
⋃

A

[δi (a)]

)
· V ⊆ T

for all i ∈ I and A ⊆κ Li with b =
∨

A, and for all V ∈ FκF0
κS. (The

down-sets here are taken in F0
κS.) Let U ≡

⋃
T , so that, by Proposition

3.3.2, T = {W ∈ F0
κS : W ⊆ U} . Fix i ∈ I and s ∈ S. Taking V = ↓ [s]

and using the implication from right to left in (∗), we get that, for A ⊆ Li

with b =
∨

A,

{δi (a) s : a ∈ A} ⊆ U =⇒

(
↓
⋃

A

[δi (a)]

)
·V ⊆ T =⇒ (↓ [δi (b)])·V ⊆ T =⇒

=⇒ δi (b) s ∈ U,

which is condition (2) above. Taking V = ↓ [s] and A = {a, b} with
a ≤ b in Li and using the implication from left to right in (∗), we get

δi (b) s ∈ U =⇒ (↓ [δi (b)]) · V ⊆ T =⇒ (↓ {[δi (a)] ∪ [δi (b)]}) · V ⊆ -T =⇒

=⇒ δi (a) s ∈ U,

which is condition (1) above. On the other hand, it is straightforward to
verify that if U satisfies (1) and (2) then T ≡ {W ∈ F0

κS : W ⊆ U} satisfies
(∗). �

Let [A]R designate the smallest R-saturated pre-ideal containing a subset
A ⊆ S. An R-saturated pre-ideal U ⊆ S is said to be κ-generated if it is of
the form [A]R for some A ⊆κ S. We denote the κ-quantale of κ-generated

R-saturated pre-ideals of A by L̃, and, by abuse of notation, we denote the

κ-morphism a 7−→ [a]R by γi : Li → L̃.
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Proposition 5.1.3.
(
γi : Li → L̃

)
I
is a colimit of the diagramD = (Li, φij)I

in κQnt.

6. Application: coproducts

In this section we apply the results of Section 5 to coproducts of κ-
quantales in order to characterized them in Theorem 6.2.2. This requires
that we begin by outlining coproducts in CMon.

6.1. Coproducts in CMon. Let Li, i ∈ J , be a family of monoids. Set
∏

J

′

Li = {(xi) ∈
∏

J

Li : xi = 1 for all but finitely many i},

a submonoid of the product monoid
∏

J Li. Let j ∈ J be fixed. For y ∈ Lj

and x ∈
∏′ Li set

y ∗j x = v, vi =

{
y for i = j

xi for i 6= j
.

That is, y ∗j x is the result of replacing the jth coordinate of x by y and
leaving the other coordinates unchanged. Denote the identity element by
1 ∈

∏′ Li, i.e., 1i = 1 for all i. To avoid confusion with the (categorical)
product

∏
J Si of monoids, and with other structures, we will use the symbol

⊓n
i=1xi or just ⊓i xi for x1 · x2 · · · · · xn.

Consider the mappings

δj = (x 7→ x ∗j 1) : Lj →
∏

J

′Li.

Obviously the δj ’s are homomorphisms. We have

Proposition 6.1.1. (δj : Lj →
∏

′
JLi)J is a coproduct in CMon.

Proof. We have to prove that for any family hj : Lj → M of homomor-
phisms there is precisely one homomorphism h :

∏
′
JLi → M such that

hδi = hi for all i. First, we see that there is at most one such h. For
(xi) ∈

∏
′
JLi let xj1, . . . , xjn

be all the coordinates that are not 1. Then
necessarily

h((xi)) = h(⊓n
k=1(xjk

∗jk
1)) = ⊓hjk

(xjk
).

Now define

h((xi)) = ⊓Jhi(xi).
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This is essentially a finite product since all but finitely many of the hi(xi)’s
are 1. Then h(δj(x)) = hj(x) for all j ∈ J and x ∈ Lj , h(1) = 1, and if
x = (xi) and y = (yi) then, by commutativity,

h(x · y) = h((xiyi)) = ⊓ihi(xiyi) = ⊓ihi(xi) · ⊓ihi(yi) = h(x) · h(y).

�

6.2. Coproducts in κQnt, κ > 0. Now let Li, i ∈ J , be κ-quantales
(in particular bounded distributive lattices). If we view the Li’s for the
moment as their underlying monoids, we may form their CMon coproduct∏′

JLi. The binary relation R of Subsection 5.1 can be written as
{(

[
b ∗j 1

]
,
⋃

A

[a ∗j 1]

)
, A ⊆κ Lj with b =

∨
A, j ∈ J

}
.

According to Propositions 5.1.3 and 6.1.1, the κQnt coproduct consists of
those pre-ideals U ⊆

∏′

JLi which are R-saturated in the sense of Lemma
5.1.2. At this point it becomes both relevant and useful to view

∏′

JLi as a
partially ordered set in the product order, and this permits the conditions
of Lemma 5.1.2 to be nicely simplified:

(1) part (1) becomes the condition that U be a down-set, and
(2) part (2) becomes the condition that, for all j ∈ J and A ⊆κ Lj with

b =
∨

A, and for all x ∈
∏′

JLi,

A ∗j x ⊆ U =⇒ b ∗j x ∈ U .

The set A can be empty, and hence we have, in particular, that any R-
saturated down-set contains

O ≡ {(xi) : ∃ j (xj = 0)},

and O itself is R-saturated. Denote the κ-quantale of κ-generated R-
saturated down-sets of

∏′

JLi by
⊕

J Li, denote the smallest R-saturated
down-set containing a given subset A ⊆

∏′

JLi by ↓R A, and denote by
γi : Li →

⊕
J Li the κ-morphism

a 7−→ ↓R
(
a ∗i 1

)
, a ∈ Li.

An important observation in this connection is that

↓R
(
a ∗i 1

)
= ↓

(
a ∗i 1

)
∪O,

since ↓
(
a ∗i 1

)
∪O clearly satisfies properties (1) and (2) above.

Our development is summarized in Theorem 6.2.1, a direct generalization
to κ-quantales of Johnstone’s description of the frame coproduct ([5, p.
59]).
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Theorem 6.2.1. Let κ > 0. The family (γi : Li →
⊕

J Li)J is a κQnt

coproduct of the family (Li)J .

Theorem 6.2.1 permits a characterization of the coproduct in κQnt in a
manner independent of its construction.

Theorem 6.2.2. Let κ > 0. A family (υi : Li → L)J of κ-morphisms is a
κQnt coproduct of the family (Li)J iff it has these properties.

(1)
⋃

J υi [Li] generates L.
(2) For any I0 ⊆ω J and I1 ⊆κ J , and for any ai ∈ Li, i ∈ I0, and

bj ∈ Lj, j ∈ I1,

⊓I0υi (ai) ≤
∨

I1

υj (bj) =⇒ ∃ i ∈ I0 ∩ I1 (ai ≤ bi) .

Proof. To verify the forward direction we must show that (γi : L→
⊕

J Li)
has the second property above, since it clearly has the first. Since ⊓I0γi (ai) =(
↓⊓I0

(
ai ∗i 1

))
∪O, this follows from the fact that

∨

J

γj (bj) =
⋃

J

γj (bj) =

(
⋃

J

↓
(
bj ∗j 1

)
)
∪O.

i.e., that (
⋃

J ↓
(
bj ∗j 1

)
) ∪ O is R-saturated. This is a consequence of the

fact that different bj ’s are chosen from different Lj ’s, and is easily verified.
Now suppose that (υi : Li → L) is a family of κ-morphisms satisfying

(1) and (2), and let υ :
⊕

J Li → L be the unique κ-morphism such that
υγi = υi for all i. This map is surjective as a consequence of the assumption
that

⋃
J υi [Li] generates L; it remains only to show that it is injective as

well.
A member of

⊕
J Li has the form ↓R S for S ⊆κ

∏′

JLi, and if we write
each s ∈ S in the form s = ⊓Is

(
ai ∗i 1

)
for Is ⊆ω I, where ai ∈ Li for

i ∈ Is, then by necessity

υ (↓R S) =
∨

S

⊓
Is

υi (ai) .

Suppose υ (↓R S) = υ (↓R T ) for S, T ⊆κ

∏′

JLi, i.e.,

∨

S

⊓
Is

υi (ai) =
∨

T

⊓
It

υj (bj)
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for Is, It ⊆ω I, t ∈ T , s ∈ S. Fix s0 ∈ S, and denote the set of choice
functions by

Θ ≡

{
θ : T →

⋃

T

Itr : θ (t) ∈ It, t ∈ T

}
.

For each θ ∈ Θ we have

⊓Is0
υi (ai) ≤

∨

S

⊓
Is

υi (ai) =
∨

T

⊓
It

υj (bj) ≤
∨

T

υθ(t)

(
bθ(t)

)
,

so that by (2) there is some i ∈ Is0
and t ∈ T such that θ (t) = i and

ai ≤ bi. It follows that there must be some t0 ∈ T for which It0 ⊆ Is0
and

ai ≤ bi for all i ∈ It0 . This implies

s0 = ⊓Is0
ai ≤ ⊓It0

ai ≤ ⊓It0
bj = t0.

Since s0 was arbitrarily chosen from S, we conclude that ↓R S ≤ ↓R T ,
and since the argument is symmetrical in S and T , that ↓R S ≤ ↓R T . �

6.3. Free κ-quantales (over sets). When specialized to the coproduct
of free κ-quantales over a single generator, Theorem 6.2.2 yields 6.3.1, the
generalization to κ-quantales of Whitman’s condition for the free generation
of a lattice ([12]).

Theorem 6.3.1. Let L be a κ-quantale, κ > 0, generated by a subset X.
Then L is freely generated by X iff for any X0 ⊆ω X and Y ⊆κ X, and for
any choice of integers nx, my ∈ Z

+, x ∈ X0, y ∈ Y ,

⊓
X0

xnx ≤
∨

Y

ymy =⇒ ∃ x ∈ X0 ∩ Y (nx ≥ my) .

Proof. L is freely generated by S iff L is isomorphic to the free κ-quantale
on |X| generators, i.e., the coproduct of |X| many copies of the the free
κ-quantale on a single generator. Since the latter is clearly F0

kS, where S is
the free commutative monoid on one generator, and since S is clearly the
multiplicative monoid

{(
1
2

)n
: n ∈ Z+

}
, the result follows from Theorem

6.2.1. �
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