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Abstract. The strong inclusion, a specific type of subrelation of the order

of a lattice with pseudocomplements, has been used in the concrete case of

the lattice of open sets in topology for an expedient definition of proximity,

and allowed for a natural point-free extension of this concept. A modification

of a strong inclusion for biframes then provided a point-free model also for

the non-symmetric variant. In this paper we show that a strong inclusion

can be non-symmetrically modified to work directly on frames, without prior

assumption of a biframe structure. The category of quasi-proximal frames

thus obtained is shown to be concretely isomorphic with the biframe based

one, and shown to be related to that of quasi-uniform frames in a full analogy

with the symmetric case.

Introduction

In a general setting, a strong inclusion is a subrelation � of the order of a

lattice with pseudocomplements that

• is a sublattice of L × L,

• interpolates,

• satisfies the implication

a ≤ b � c ≤ d ⇒ a ≤ d,

and

• a � b ⇒ b∗ � a∗.

This concept (and term) was, first, introduced by Dowker ([4]) for purposes

of enriched topology. There it naturally appears, e.g as the “completely below”
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relation U ≺≺ V (where U is separated from the complement of V by a real-

valued continuous function), or “U is uniformly below V ” in a uniform space.

In particular, the proximity, a certain enrichment of a topological structure,

originally described by specifying for sets when they are “near” (“proximal” [12])

can be alternatively, and to advantage, described in terms of a strong inclusion

stronger than the inclusion order.

This has proved to be particularly useful in the point-free setting where

the strong inclusion, strengthening the order in a frame (a lattice with
∨

∧-

distributivity, see 1.1) makes for a suitable extension of the classical concept

([7]); imitating the “proximity of elements” makes here good sense only in

(complete) Boolean algebras where it is then equivalent with the strong in-

clusion approach ([13]). It should be noted that besides of the properties above,

the strong inclusion one deals with is further required that

• a � b ⇒ a∗ ∨ b = 1 (implying the “rather below” relation), and

• for each a, a =
∨
{b | b � a} (admissibility of the additional structure).

It turns out that the resulting category of proximity frames is concretely iso-

morphic to that of totally bounded uniform frames (see [7]) and that the com-

pactifiable frames are exactly those that admit strong inclusions (see [1]).

In classical topology it was found useful to generalize proximities by dropping

symmetry. This can be modeled in the point-free (frame) setting ([8], [19]) by

introducing modified strong inclusions on biframes (triples (L, L1, L2) where Li

are specific subframes of L — see 1.1 below) as couples of subrelations �i of

the orders of Li with certain intertwined properties (see 1.2). Thus general-

ized strong inclusions are, again, closely connected with compactifications (of

biframes — see Schauerte [19]).

In our recent paper [15] we have shown, for uniformities, another environment

of the frame structure, that when dropping the symmetry the biframes can be,

essentially, avoided. The question naturally arises whether this can be done

with the (quasi-) proximity as well. In the present paper we answer this ques-

tion in the affirmative introducing (in Section 2) a category of quasi-proximal

frames that enriches the plain frames directly. Such proximal structures make

the picture in the point-free setting more similar to the classical one (where the

bitopologies appear only a posteriori and clarify the discussion in the introduc-

tion of Doitchinov [3]). In Section 3 we prove that this category is concretely

isomorphic with the biframe based one. Finally, in Section 4 the new cate-

gory of quasi-proximal frames is related with that of quasi-uniform frames. It

turns out that the relation is analogous with the symmetric case: namely, there
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is a one-to-one correspondence between quasi-proximities and totally bounded

quasi-uniformities, yielding a concrete isomorphism of the categories.

1. Preliminaries

1.1. Frames and biframes. Recall that a frame is a complete lattice satisfying

the distributivity law

a ∧
∨

i∈I

bi =
∨

i∈I

(a ∧ bi)

and that frame homomorphisms preserve all joins (including the bottom ele-

ment 0) and finite meets (including the top element 1). Frames and frame

homomorphisms are the objects and morphisms of the category Frm.

A biframe is a triple (L, L1, L2) in which L is a frame and L1 and L2 are

subframes of L such that L1 ∪ L2 generates L (in the sense that any element of

L can be expressed as a join of finite meets of elements of L1 ∪ L2); a biframe

homomorphism h : (L, L1, L2) → (M, M1, M2) is a frame homomorphism from L

to M such that the image of Li (i = 1, 2) under h is contained in Mi. Biframes

and biframe homomorphisms are the objects and morphisms of the category

BiFrm. If (L, L1, L2) is a biframe and a ∈ Li (i = 1, 2), the element

a• =
∨

{b ∈ Lj | a ∧ b = 0} (j ∈ {1, 2}, j 6= i)

is the analogue in biframes of the pseudocomplement a∗ =
∨
{b ∈ L | a∧ b = 0}

of an element a of a frame L.

For more about frames the reader can consult [16] or [17], for biframes see [2]

and [19].

1.2. Strong inclusions on biframes: quasi-proximities. A strong inclu-

sion [19] on a biframe (L, L1, L2) is a pair (�1, �2) of relations on L1 and L2

respectively satisfying the following conditions (for i = 1, 2):

(S1) �i is a sublattice of Li × Li.

(S2) a ≤ b �i c ≤ d implies that a �i d.

(S3) a �i b implies that a• ∨ b = 1 (usually denoted by a ≺i b).

(S4) a �i b implies that there exists c ∈ Li with a �i c �i b.

(S5) If a �i b then b• �j a• for j ∈ {1, 2} and j 6= i.

(S6) For every a ∈ Li, a =
∨
{b ∈ Li | b �i a}.

Note that the more standard strong inclusion in a frame is the � from (�, �)

on (L, L, L).
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A triple ((L, L1, L2), �1, �2) where (�1, �2) is a strong inclusion on the biframe

(L, L1, L2) is called a quasi-proximal frame [7] (proximal biframe in the more re-

cent [8]). Given proximal biframes

((L, L1, L2), �
L
1 , �L

2 ) and ((M, M1, M2), �
M
1 , �M

2 ),

a biframe homomorphism h : (L, L1, L2) → (M, M1, M2) is a proximal biframe

homomorphism if

a �
L
i b implies h(a) �

M
i h(b) (for i = 1, 2 and every a, b ∈ Li).

The category of proximal biframes and proximal biframe homomorphisms will

be denoted by

PBiFrm.

1.3. Quasi-uniform frames. Let L be a frame. A subset C ⊆ L × L is a

paircover [15] of L if
∨

{c1 ∧ c2 | (c1, c2) ∈ C} = 1.

A paircover C of L is strong if, for any (c1, c2) ∈ C, (c1, c2) = (0, 0) whenever

c1 ∧ c2 = 0. For any C, D ⊆ L × L we write C ≤ D (and say that C refines D)

if for any (c1, c2) ∈ C there is (d1, d2) ∈ D with c1 ≤ d1 and c2 ≤ d2. Further

we write

C ∧ D = {(c1 ∧ d1, c2 ∧ d2) | (c1, c2) ∈ C, (d1, d2) ∈ D};

obviously it is a is a paircover again.

For a ∈ L and C, D ⊆ L × L, we set

st1(a, C) =
∨

{c1 | (c1, c2) ∈ C and c2 ∧ a 6= 0},

st2(a, C) =
∨

{c2 | (c1, c2) ∈ C and c1 ∧ a 6= 0},

C−1 = {(c2, c1) | (c1, c2) ∈ C}, and

st(D, C) = {(st1(d1, C), st2(d2, C)) | (d1, d2) ∈ D}

and write

C∗ for st(C, C).

We shall need the following facts from [15, Proposition 2.2]:

Proposition 1.3.1. Let C, D ⊆ L × L and a, b ∈ L. Then:

(1) If a ≤ b then sti(a, C) ≤ sti(b, C).

(2) If C ≤ D then sti(a, C) ≤ sti(a, D).

(3) a ∧ st1(b, C) = 0 iff b ∧ st2(a, C) = 0.

(4) If C is a paircover then a ≤ sti(a, C) and C ≤ C∗.

(5) If C is a paircover then sti(sti(a, C), C) ≤ sti(a, C∗).
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(6) For any frame homomorphism h : L → M , sti(h(a), h[C]) ≤ h(sti(a, C)).

(7) For any frame homomorphism h : L → M , h[C]∗ ≤ h[C∗]. �

Given a non-empty family U of paircovers of L, we write a �
U
i b (i = 1, 2)

whenever sti(a, C) ≤ b for some C ∈ U , and set

Li(U) = {a ∈ L | a =
∨

{b ∈ L | b �
U

i a}} (i = 1, 2).

From [15, Proposition 2.4] we know the following:

Proposition 1.3.2. Let U be a basis for a filter of paircovers of L. Then, for

i = 1, 2:

(1) The relations �
U
i are sublattices of L × L, both stronger than ≤.

(2) For any a, b, c, d ∈ L, a ≤ b �
U
i c ≤ d implies a �

U
i d.

(3) Li(U) are subframes of L. �

A system U of paircovers of L is admissible [15] if (L, L1(U), L2(U)) is a

biframe or, equivalently, if for every a ∈ L, a =
∨
{b ∈ L | b �

U
i a}, where U

denotes the filter of paircovers of L generated by {C ∧ C−1 | C ∈ U}.

Now, an admissible system U of paircovers of L is a quasi-uniformity on L if

it satisfies the following conditions:

(QU1) For any C ∈ U and any paircover D with C ≤ D, then D ∈ U .

(QU2) For any C, D ∈ U there exists a strong E ∈ U such that E ≤ C ∧ D.

(QU3) For any C ∈ U there is a D ∈ U such that D∗ ≤ C.

The pair (L,U) is called a quasi-uniform frame [15]. Let (L,U) and (M,V)

be quasi-uniform frames. A frame homomorphism h : L → M is uniform if

h[C] ∈ V for every C ∈ U . The resulting category will be denoted by

QUFrm.

We say that a quasi-uniform frame (L,U) is totally bounded if for every C ∈ U

there is a finite paircover D ∈ U such that D ≤ C.

Quasi-uniform frames (L,U) have the following crucial properties (see [15,

lemmata 2.6, 3.2, 3.4]):

Consider the interior operator on P(L × L) defined by

int(C) =
⋃

{D ⊆ L × L | D
U

⋐ C},

where

C
U

⋐ D ≡def st(C, U) ≤ D for some U ∈ U .

Proposition 1.3.3. For every C ∈ U we have:
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(1) int(C) ≤ C ≤ int(C∗).

(2) sti(a, int(C)) ∈ Li(U) (i = 1, 2) for every a ∈ L. �

Given U ∈ U , a ∈ L is said to be U-small if

a ≤
∨

{u1 ∧ u2 | (u1, u2) ∈ U, u1 ∧ u2 ∧ b 6= 0}

whenever a ∧ b 6= 0. Let

CU = {(st1(a, int(U)), st2(a, int(U))) | a is an U -small member of L}.

Proposition 1.3.4. (1) CU is a strong paircover of L contained in L1(U) ×

L2(U).

(2) sti(a, CU) ≤ sti(a, U∗∗) (i = 1, 2).

(3) sti(a, U) ≤ sti(a, CU∗) (i = 1, 2).

(4) CU ≤ U∗∗; if U is strong then U ≤ CU∗. �

2. Quasi-proximities without biframes

Let L be a frame, � a binary relation in L and

L(�) = {a ∈ L | a =
∨

{b ∈ L | b � a}}.

Lemma 2.1. If � is a sublattice of L × L, stronger than ≤ (that is, � ⊆≤),

satisfying

a ≤ b � c ≤ d ⇒ a � d (2.1.1)

then L(�) is a subframe of L.

Proof. Since 0� 0 and 1� 1, then 0, 1 ∈ L(�). Since � ⊆≤, we have
∨
{b ∈ L |

b � a} ≤ a. Let a, b ∈ L(�). Then, since � is closed under finite meets,

a ∧ b =
∨

{a′ ∈ L | a′
� a} ∧

∨
{b′ ∈ L | b′ � b} =

=
∨

{a′ ∧ b′ | a′, b′ ∈ L, a′
� a, b′ � b} ≤

∨
{c ∈ L | c � a ∧ b}

which shows that a ∧ b ∈ L(�).

Now, let ai ∈ L(�) (i ∈ I). Then
∨

i∈I ai =
∨

i∈I

∨
{b ∈ L | b � ai}. For

each such b, b � ai ≤
∨

i∈I ai. Consequently, by (2.1.1),
∨

i∈I ai ≤
∨
{b ∈ L |

b �

∨
i∈I ai} and

∨
i∈I ai ∈ L(�). �

In the sequel we will have to refer to pseudocomplements relatively to distinct

subframes. Therefore we will adopt the following notation: for a subframe K

of a frame L and a ∈ L, we denote by cK(a) the element
∨
{b ∈ K | b ∧ a = 0}.

We have cL(a) = a∗, cK(a) ≤ a∗, cK(0) = 1, cK(1) = 0 and a ≤ cK(cK(a)) for

every a ∈ K.
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Definition 2.2. Let L be a frame. A pair (�1, �2) of relations in L will be

called a strong bi-inclusion on L if for i, j ∈ {1, 2} we have:

(SB1) �i is a sublattice of L × L.

(SB2) a ≤ b �i c ≤ d implies that a �i d.

(SB3) a �i b implies that cL(�j)(a) ∨ b = 1 (j 6= i).

(SB4) a �i b implies that there exists c ∈ L(�i) with a �i c �i b.

(SB5) If a �i b then b∗ �j a∗ for j 6= i.

(SB6) (L, L(�1), L(�2)) is a biframe.

Remarks 2.3. (1) (SB3) implies that each �i (i = 1, 2) is stronger than ≤:

if cL(�j)(a) ∨ b = 1 then a = a ∧ (cL(�j)(a) ∨ b) = a ∧ b. It also implies that

b∗ ≤ cL(�j)(a) whenever a �i b (because cL(�j)(a) ∨ b = 1 and b∗ ∧ b = 0).

(2) For any a, b ∈ L,

a �i b∗ ⇒ a �i cL(�i)(b) (i = 1, 2).

Indeed, by (SB4) there exists c ∈ L(�i) such that a �i c �i b∗. Since c ≤ b∗,

then c∧ b = 0 and consequently c ≤ cL(�i)(b). Therefore a�i cL(�i)(b) by (SB2).

(3) Also, it may be worth mentioning that any pair (�1, �2) satisfying (SB2),

(SB3) and (SB4) satisfies (SB5) if and only if it satisfies

(SB5a) if a �i b then cL(�j)(b) �j cL(�j)(a) for j 6= i.

Indeed:

⇒: If a �i b then, by (SB5), cL(�j)(b) ≤ b∗ �j a∗ and therefore by the preceding

remark cL(�j)(b) �j cL(�j)(a).

⇐: In order to prove (SB5), suppose a �i b and apply (SB4) to get c satisfying

a�ic�ib. By (SB5a) and Remark (1) we obtain b∗ ≤ cL(�j)(b) �j cL(�j)(a) ≤ a∗.

(4) (SB3) is obviously stronger than

(SB3a) a �i b implies that a∗ ∨ b = 1

(since cL(�j)(a) ≤ a∗). However, if (�1, �2) satisfies (SB2) and (SB4) then

it satisfies (SB3) and (SB5) if and only if it satisfies (SB3a) and (SB5a): the

implication “⇒” was already proved in (3) and, conversely, if a �i b then, by

(SB5a), cL(�j)(b) �j cL(�j)(a); applying (SB3a) we get (cL(�j)(b))
∗∨cL(�j)(a) = 1

and thus b ∨ cL(�j)(a) = 1 (since b ≤ (cL(�j)(b))
∗).

(5) In addition, (SB3) may be equivalently replaced by the conjunction

(SB0) for every a, b ∈ L, a �i b ⇒ a ≤ b, and

(SB3b) for every a, b ∈ L(�i), a �i b implies that cL(�j)(a) ∨ b = 1 (j 6= i).
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Indeed, the implication

(SB3) ⇒ (SB0)+(SB3b)

is obvious by the preceding observation. On the other hand, if a �i b then

there exist by (SB4) c, d ∈ L(�i) such that a �i c �i d �i b. Thus, by (SB3b),

cL(�j)(c)∨d = 1. But d ≤ b and cL(�j)(c) ≤ cL(�j)(a) (because a ≤ c) and hence

cL(�j)(a) ∨ b = 1.

Any strong bi-inclusion (�1, �2) on a frame L induces two subframes L(�1)

and L(�2) of L. The triple (L, L(�1), L(�2)) is a biframe by (SB6). The

following proposition provides an alternative to condition (SB6) that avoids

biframes.

Proposition 2.4. Let (�1, �2) be a pair of binary relations in L, both stronger

than ≤ and satisfying (SB1) and (SB2). Then (�1, �2) satisfies (SB6) if and

only if

(SB6′) for each a ∈ L, a =
∨

{b ∈ L | b � a},

where � is the binary relation in L defined by

b � a ≡def ∃a1 ∈ L(�1), ∃a2 ∈ L(�2), a1 ∧ a2 ≤ a, b �1 a1 and b �2 a2.

Proof. ⇒: For each a ∈ L we can write a =
∨

i∈I(a
1
i ∧ a2

i ) for some

{a1
i | i ∈ I} ⊆ L(�1) and {a2

i | i ∈ I} ⊆ L(�2).

Taking into account that, for any i ∈ I,

a1
i = {b ∈ L | b�1a

1
i } and a2

i = {b ∈ L | b�2a
2
i },

it suffices to show that b1 ∧ b2�a1 ∧ a2 whenever b1�1a1 and b2�2a2. This,

however, is an immediate consequence of (SB1) and the definition of �.

⇐: By 2.1, each L(�i) (i = 1, 2) is a subframe of L. It remains to show that

each a ∈ L is a join of finite meets in L(�1) ∪ L(�2).

Let a ∈ L. Then a =
∨

S where S = {b ∈ L | b�a}. For each b ∈ S there

exist ab
1 ∈ L(�1) and ab

2 ∈ L(�2) satisfying b �1 ab
1, b �2 ab

2 and ab
1 ∧ ab

2 ≤ a.

Hence a =
∨

b∈S b ≤
∨

b∈S(ab
1 ∧ ab

2) ≤ a. �

A frame L with a strong bi-inclusion (�1, �2) will be called a quasi-proximal

frame. Given quasi-proximal frames (L, �L
1 , �L

2 ) and (M, �M
1 , �M

2 ), a quasi-

proximal map

h : (L, �L
1 , �L

2 ) → (M, �M
1 , �M

2 )
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is a frame homomorphism h : L → M such that a�
L
i b ⇒ h(a)�

M
i h(b) for every

a, b ∈ L. The resulting category will be denoted by

QPFrm.

Note that our definition of a quasi-proximal frame contains, of course, the

symmetric case of proximal frames (as defined by strong inclusions) [7]: it is a

frame equipped with a strong bi-inclusion (�1, �2) such that �1 = �2.

Quasi-uniform frames provide canonical examples of quasi-proximal frames:

Proposition 2.5. For each quasi-uniform frame (L,U), the triple (L, �U
1 , �U

2 )

is a quasi-proximal frame.

Proof. The properties (SB1) and (SB2) follow from Proposition 1.3.2, and (SB6)

is obvious.

(SB3) Suppose a �
U
i b. Then sti(a, U) ≤ b for some U ∈ U . It suffices to

show that cL(�j)(a) ∨ sti(a, U) = 1. Consider V ∈ U such that V ∗∗∗ ≤ U . By

Proposition 1.3.4, V ≤ CV ∗ and CV ∗ ≤ V ∗∗∗ ≤ U . Therefore sti(a, CV ∗) ≤

sti(a, U). Let

(v1, v2) ∈ CV ∗ ⊆ L1(U) × L2(U).

If uj ∧ a = 0 then uj ≤ cL(�j)(a); otherwise, ui ≤ sti(a, CV ∗) ≤ sti(a, U). This

shows that
∨

{u1 ∧ u2 | (u1, u2) ∈ CV ∗} ≤ cL(�j)(a) ∨ sti(a, U).

Hence cL(�j)(a) ∨ sti(a, U) = 1, since CV ∗ is a paircover.

(SB4) Let sti(a, U) ≤ b for some U ∈ U and take V ∈ U such that V ∗∗ ≤ U . By

Proposition 1.3.3, sti(a, int(V ∗)) ∈ Li(U) = L
�

U

i
. Of course a �

U
i sti(a, int(V ∗)).

On the other hand, by 1.3.1(5),

sti(sti(a, int(V ∗)), V ∗)) ≤ sti(sti(a, V ∗), V ∗)) ≤ sti(a, V ∗∗)sti(a, U) ≤ b

and hence sti(a, int(V ∗)) �
U
i b.

(SB5) Let sti(a, U) ≤ b for some U ∈ U . Then sti(a, U) ∧ b∗ = 0 (j 6= i). By

1.3.1(3), a ∧ stj(b
∗, U) = 0, that is, stj(b

∗, U) ≤ a∗. �

3. The concrete isomorphism QPFrm ∼= QPBiFrm

Given a proximal biframe ((L, L1, L2), �1, �2), let

Φ((L, L1, L2), �1, �2) = (L, �1, �2)
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where, for any a, b ∈ L,

a �i b ≡def ∃ c, d ∈ Li : a ≤ c �i d ≤ b (i = 1, 2).

Proposition 3.1. For any proximal biframe ((L, L1, L2), �1, �2),

Φ((L, L1, L2), �1, �2)

is a quasi-proximal frame.

Proof. (SB1) 0�i0 and 1�i1 are trivial. Let a1, a2 �i b. Then a1 ≤ c1 �i d1 ≤ b

and a2 ≤ c2 �i d2 ≤ b for some c1, c2, d1, d2 ∈ Li. Consequently, a1 ≤ c1 �i

d1 ∨ d2 ≤ b and a2 ≤ c2 �i d1 ∨ d2 ≤ b with c1, c2, d1 ∨ d2 ∈ Li. By hypothesis,

c1 ∧ c2 �i d1 ∨ d2 and c1 ∧ c2 ∈ Li. Thus a1 ∧ a2 �i b. Similarly, a1 ∨ a2 ≤

c1 ∨ c2 �i d1 ∨ d2 ≤ b and a1 ∨ a2 �i b.

(SB2) is obvious.

(SB3) First note that Li ⊆ L(�i). Indeed, for each a ∈ Li, since �i ⊆ �i, we

have

a =
∨

{b ∈ Li | b �i a} ≤
∨

{b ∈ L | b �i a} ≤ a.

Now, let a, b ∈ L(�i) and a ≤ c �i d ≤ b with c, d ∈ Li. By hypothesis,

cL(�j)(c) ∨ d = 1 and from the inclusion Li ⊆ L(�i) and the fact that a ≤ c it

follows that

cL(�j)(a) =
∨

{a′ ∈ L(�j) | a′ ∧ a = 0} ≥
∨

{c′ ∈ Lj | c′ ∧ c = 0} = cL(�j)(c).

Hence cL(�j)(a) ∨ b = 1.

(SB4) follows immediately from (S4) and the fact that Li ⊆ L(�i) proved above.

(SB5) By Remark 2.3(3) it suffices to prove (SB5a). Let a, b ∈ L with a �i b,

that is, a ≤ c �i d ≤ b for some c, d ∈ Li. Then, by hypothesis, cL(�j)(d) �j

cL(�j)(c) and, of course, cL(�j)(d), cL(�j)(c) ∈ Lj . Now it suffices to show that

cL(�j)(b) ≤ cL(�j)(d) and cL(�j)(c) ≤ cL(�j)(a). The latter was already proved in

(SB3) above and the former can be proved in a similar way.

(SB6) By Lemma 2.1, each L(�i) is a subframe of L. Since (L, L1, L2) is a

biframe and Li ⊆ L(�i) (i = 1, 2), then immediately (L, L(�1), L(�2)) is also

a biframe. �

Given a quasi-proximal frame (L, �1, �2), let

Ψ(L, �1, �2) = ((L, L(�1), L(�2)), �1|L(�1), �2|L(�2)).

Proposition 3.2. For any quasi-proximal frame (L, �1, �2), Ψ(L, �1, �2) is a

proximal biframe.
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Proof. By hypothesis, (L, L(�1), L(�2)) is a biframe and Ψ(L, �1, �2) satisfies

conditions (S1)-(S5) trivially. It remains to check (S6):

For every a ∈ L(�i), a =
∨
{b ∈ L | b �i a}. But by condition (SB4) there is

some c ∈ L(�i) satisfying b �i c �i a. Therefore a =
∨
{b ∈ L(�i) | b �i a}, as

desired. �

Concerning morphisms, the next result allows us to define Φ(h) = h for every

h ∈ PBiFrm and Ψ(h) = h for every h ∈ QPFrm.

Proposition 3.3. (1) Let h : ((L, L1, L2), �
L
1 , �L

2 ) → ((M, M1, M2), �
M
1 , �M

2 )

be a proximal biframe homomorphism. Then

h : Φ((L, L1, L2), �
L
1 , �L

2 ) → Φ((M, M1, M2), �
M
1 , �M

2 ) ∈ QPFrm.

(2) Let h : (L, �L
1 , �L

2 ) → (M, �M
1 , �M

2 )be a quasi-proximal map. Then

h : Ψ(L, �L
1 , �L

2 ) → Ψ(M, �M
1 , �M

2 ) ∈ PBiFrm.

Proof. (1) We have to check that

∀a, b ∈ Li, a �
L
i b ⇒ h(a) �

M
i h(b) (i = 1, 2).

Let a �
L
i b, that is a ≤ c �

L
i d ≤ b for some c, d ∈ Li. Then, by hypothesis,

h(c), h(d) ∈ Mi and h(a) ≤ h(c)�M
i h(d) ≤ h(b), which shows that h(a) �

M
i h(b).

(2) It suffices to check that h is a biframe map

(L, L(�L
1 ), L(�L

2 )) → (M, M(�M
1 ), M(�M

2 ))

(the rest is obvious). Consider a ∈ L(�L
i ). Since a =

∨
{b ∈ L | b �

L
i a} and

b �
L
i a implies h(b) �

M
i h(a), then

h(a) =
∨

{h(b) | b ∈ L, b �
L
i a} ≤

∨
{c ∈ M | c �

M
i h(a)} ≤ h(a).

Hence h(a) ∈ M(�M
i ). �

Finally, we have:

Theorem 3.4. The functors Ψ and Φ constitute a concrete isomorphism be-

tween QPFrm and PBiFrm.

Proof. It suffices to show that

(a) ΦΨ = IdQPFrm and (b) ΨΦ = IdPBiFrm

on objects.

(a) We will show that �|L(�i) = �i. Consider a, b ∈ L with a �i b. By (SB4),

there is c, d ∈ L(�i) such that a�ic�id�ib. Since c �i|L(�i) d then, immediately,
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a �|L(�i) b. On the other hand, if a, b ∈ L are such that a �|L(�i) b then there

exists a pair c, d of elements of L(�i) satisfying a ≤ c �i d ≤ b. Thus a �i b.

(b) It suffices to check that L(�i) = Li for i = 1, 2. Let a ∈ Li. Then, since

�i ⊆ �i, we have

a =
∨

{b ∈ Li | b �i a} ≤
∨

{b ∈ L | b �i a} ≤ a.

Conversely, if a ∈ L(�i), meaning that a ∈ L and a =
∨
{b ∈ L | b �i a}, then

for each such b there is cb, db ∈ Li satisfying b ≤ cb �i db ≤ a. Consequently,

a ≤
∨

{c ∈ Li | c �i a} ≤ a

and, therefore, a ∈ Li. �

Remark 3.5. As a consequence of Proposition 1 of Schauerte [19], every quasi-

proximity (�1, �2) on a frame L induces a compactification of the associated

biframe (L, L(�1), L(�2)). Then by Proposition 3 of [19] this is a zero-dimensional

compactification if and only if a�i b (for a, b ∈ L(�i), i = 1, 2) implies the exis-

tence of c ∈ L(�i) satisfying a ≤ c �i c ≤ b. Note that, by (SB3), c �i c means

that c ∈ L(�i) is complemented in L with complement in L(�j) (j 6= i).

4. Quasi-proximities and quasi-uniformities: total boundedness

To finish we show, in analogy with the spatial case or the symmetric case (see

[5, 7, 9, 12, 13]), that the category QPFrm is isomorphic to the full subcategory

TBQUFm of QUFrm of all totally bounded quasi-uniform frames.

First, we need a few basic facts about paircovers. Let C be a paircover of the

frame L. Set

Cs = {(c1, c2) ∈ C | c1 ∧ c2 6= 0}.

Lemma 4.1. Let C, D be paircovers of the frame L. Then:

(1) Cs is a strong paircover of L.

(2) (C ∧ D)s ≤ Cs ∧ Ds.

(3) C∗ ≤ D → (Cs)
∗ ≤ Ds.

(4) If h : L → M is a frame homomorphism, then (h[C])s ≤ h[Cs].

Proof. (1) and (2) are obvious.

(3) Let (c1, c2) ∈ C with c1 ∧ c2 6= 0. Since sti(ci, Cs) ≤ sti(ci, C) ≤ di (i = 1, 2)

for some (d1, d2) ∈ D and c1 ∧ c2 ≤ st1(c1, Cs) ∧ st2(c2, Cs) ≤ d1 ∧ d2, then

(d1, d2) ∈ Ds.

(4) Suppose h(c1) ∧ h(c2) 6= 0 for (c1, c2) ∈ C. Then h(c1 ∧ c2) 6= 0, hence

c1 ∧ c2 6= 0 and consequently (c1, c2) ∈ Cs. Hence (h(c1), h(c2)) ∈ h[Cs]. �
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Lemma 4.2. Let U be an admissible filter of paircovers of L with property

(QU3), and let Us be the filter of paircovers of L that has {Cs | C ∈ U} as

subbasis. Then (L,Us) is a quasi-uniform frame.

Proof. Us is a filter of paircovers of L which by Lemma 4.1 satisfies the require-

ments (QU1)-(QU3). Since U ⊆ Us, then Li(U) ⊆ Li(Us) (i = 1, 2). Hence

(L, L1(Us), L2(Us)) is also a biframe and Us is admissible. �

Let (L, �1, �2) be a quasi-proximal frame. For any a �1 b we define

C1
a,b = {(1, a∗), (b, 1)}

and for a �2 b we define

C2
a,b = {(a∗, 1), (1, b)}.

Of course, C1
a,b and C2

a,b are paircovers of L.

Proposition 4.3. The filter U of paircovers of L which has as subbasis the fam-

ily of paircovers {Ci
a,b | a �i b, i = 1, 2} satisfies the conditions of the preceding

lemma.

Proof. Let a�1 b. Use (SB4) to select c1, c2 ∈ L(�1) such that a�1 c1 �1 c2 �1 b

and consider C = C1
a,c1

∧ C1
c1,c2

∧ C1
c2,b. Then

C = {(c1, 1), (c1, c
∗

1), (c1, c
∗

2), (c2, a
∗), (c2, c

∗

2), (b, c∗1), (1, c∗2)}.

Since

st1(c1, C) ≤ b, st1(c2, C) ≤ b, st2(c
∗

1, C) ≤ a∗ and st2(c
∗

2, C) ≤ a∗,

we have C∗ ≤ C1
a,b. Similarly, for a �2 b and a �2 c1 �2 c2 �2 b,

(C2
a,c1

∧ C2
c1,c2

∧ C2
c2,b)

∗ ≤ C2
a,b.

This shows that U satisfies (QU3). In order to prove the admissibility of U it

suffices to show that a �i b implies a �
U
i b which is obvious since a �i b implies

sti(a, Ci
a,b) ≤ b. �

Hence the corresponding Us given by the lemma is a quasi-uniformity on L

(which is of course totally bounded). We shall denote it by UF (L, �1, �2).

Proposition 4.4. The correspondence (L, �1, �2) (L,UF (L, �1, �2)) deter-

mines a concrete functor Φ : QPFrm → TBQUFrm.

Proof. It remains to check that for any quasi-proximal map

h : (L, �L
1 , �L

2 ) → (M, �M
1 , �M

2 ),

h : (L,UF (L, �L
1 , �L

2 )) → (M,UF (M, �M
1 , �M

2 ))
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is a quasi-uniform map. By Lemma 4.1(4) it suffices to show that

h[Ci
a,b] ∈ UF (M, �M

1 , �M
2 )

whenever a �i b (i = 1, 2).

Suppose a �i b and apply (SB4) to select c ∈ L(�i) such that a �i c �i b. By

(SB3), a∗ ∨ c = 1, which in turn implies that h(c)∗ ≤ h(a∗):

a∗ ∨ c = 1 ⇒ h(a∗) ∨ h(c) = 1 ⇒ h(c)∗ = h(c)∗ ∧ (h(a∗) ∨ h(c)) = h(c)∗ ∧ h(a∗).

Hence

C1
h(c),h(b) = {(1, h(c)∗), (h(b), 1)}

refines h[C1
a,b] = {(1, h(a∗), (h(b), 1)} and

C2
h(c),h(b) = {(h(c)∗, 1), (1, h(b))}

refines h[C2
a,b] = {(h(a∗), 1), (1, h(b))}. �

On the other hand, going back to Proposition 2.5, we have:

Proposition 4.5. The correspondence (L,U) (L, �U
1 , �U

2 ) determines a con-

crete functor Ψ : TBQUFrm → QPFrm.

Proof. Let h : (L,U) → (M,V) be a quasi-uniform map. We need to show that

h : (L, �U

1 , �U

2 ) → (M, �V

1 , �V

2 )

is a quasi-proximal map, that is, a �
U
i b implies h(a) �

V
i h(b). But a �

U
1 b

means that sti(a, U) ≤ b for some U ∈ U and, by the statement (6) in 1.3.1,

sti(h(a), h[U ]) ≤ h(b). Since h[U ] ∈ V this makes h(a) �
V
i h(b), as required. �

Theorem 4.6. The functors Φ and Ψ constitute a concrete isomorphism be-

tween QPFrm and TBQUFrm.

Proof. We want to show that ΨΦ = IdQPFrm and ΦΨ = IdTBQUFrm. After 4.4 and

4.5 there is nothing left to prove for morphisms.

Now for the objects. We have

ΦΨ((L,U)) = Φ((L, �U

1 , �U

2 )) = (L,UF (L, �U

1 , �U

2 )) and

ΨΦ((L, �1, �2)) = Ψ((L,UF (L, �1, �2))) = (L, �
UF (L,�1,�2)
1 , �

UF (L,�1,�2)
2 ),

so that we need to prove that

(a) UF (L, �U

1 , �U

2 ) = U and (b) �
UF (L,�1,�2)
i = �i for i = 1, 2.

(a) Let Ci
a,b be a subbasic paircover of UF (L, �U

1 , �U
2 ). Then a �

U
i b, that is,

sti(a, U) ≤ b for some U ∈ U .
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Suppose i = 1 and let (u1, u2) ∈ U . If u2 ∧ a 6= 0 then u1 ≤ st1(a, U) ≤ b and

(u1, u2) ≤ (b, 1); otherwise, u2 ≤ a∗ so (u1, u2) ≤ (1, a∗). Hence U ≤ C1
a,b which

shows that C1
a,b ∈ U . The case i = 2 proceeds similarly. Thus UF (L, �U

1 , �U
2 ) ⊆

U .

Now let U ∈ U and select a strong paircover V ∈ U such that V ∗ ≤ U . Since

U is totally bounded, there is a finite F ⊆ V such that F is still a paircover:

F = {(c1, d1), (c2, d2) . . . , (cn, dn)}, ci ∧ di 6= 0,

n∨

i=1

(ci ∧ di) = 1.

Since (st1(ci, V ), st2(di, V )) ≤ (ui, vi) for some (ui, vi) ∈ U (i = 1, 2, . . . , n), it

follows that ci �
U
1 ui and di �

U
2 vi. It suffices now to show that for

C := C1
c1,u1

∧ C1
c2,u2

∧ · · · ∧ C1
cn,un

∧ C2
d1,v1

∧ C2
d2,v2

∧ · · · ∧ C2
dn,vn

,

the corresponding strong paircover Cs (which belongs to UF (L, �U
1 , �U

2 )) is a

refinement of U .

Any element (x, y) in C is of the form

(ui1 ∧ui2 ∧· · ·∧uik ∧d∗

j′
1

∧d∗

j′
2

∧· · ·∧d∗

j′
n−l

, vj1 ∧vj2 ∧· · ·∧vjl
∧c∗i′

1

∧c∗i′
2

∧· · ·∧c∗i′
n−k

)

where

I = {i1, i2, . . . , ik}, I ′ = {i′1, i
′

2, . . . , i
′

n−k}

and

J = {j1, j2, . . . , jl}, J ′ = {j′1, j
′

2, . . . , j
′

n−l}

are partitions of n = {1, 2, . . . , n}.

If I ∩J 6= ∅ then (x, y) ≤ (uα, vα) ∈ U for α ∈ I ∩J . Otherwise, if I ∩J = ∅

then I ′ ∪ J ′ = n (and k + l = n). Since

(x, y) ≤ (d∗

j′
1

∧ d∗

j′
2

∧ · · · ∧ d∗

j′
n−l

, c∗i′
1

∧ c∗i′
2

∧ · · · ∧ c∗i′
n−k

)

this in turn implies that

x ∧ y ≤
n∧

i=1

(c∗i ∨ d∗

i ).

But
n∨

i=1

(ci ∧ di) = 1 ⇒
n∧

i=1

(ci ∧ di)
∗ = 0 ⇒

n∧

i=1

(c∗i ∨ d∗

i ) = 0.

Hence x ∧ y = 0 and (x, y) /∈ Cs.

(b) If a �i b then Ci
a,b ∈ UF (L, �1, �2). Since sti(a, Ci

a,b) ≤ b we have

a �
UF (L,�1,�2)
i b.
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Conversely, suppose for some U ∈ UF (L, �1, �2) we have sti(a, U) ≤ b (i = 1

or i = 2). Our aim is to show that a �i b. We may assume that

U = C1
a1

1
,b1

1

∧ C1
a1

2
,b1

2

∧ · · · ∧ C1
a1

n,b1n
∧ C2

a2

1
,b2

1

∧ C2
a2

2
,b2

2

∧ · · · ∧ C2
a2

m,b2m

where a1
α �1 b1

α for α = 1, 2, . . . , n and a2
β �2 b2

j for β = 1, 2, . . .m. Any element

(u1, u2) in U is of the form
(
b1
α1

∧ b1
α2

∧ · · · ∧ b1
αk
∧(a2

β′
1

)∗ ∧ (a2
β′
2

)∗ ∧ · · · ∧ (a2
β′

m−l
)∗,

b2
β1

∧ b2
β2

∧ · · · ∧ b2
βl
∧ (a1

α′
1

)∗ ∧ (a1
α′

2

)∗ ∧ · · · ∧ (a1
α′

n−k
)∗

)

where

A = {α1, α2, . . . , αk}, A′ = {α′

1, α
′

2, . . . , α
′

n−k}

is a partition of n = {1, 2, . . . , n} and

B = {β1, β2, . . . , βl}, B′ = {β ′

1, β
′

2, . . . , β
′

m−l}

is a partition of m = {1, 2, . . . , m}. Select c1
α, d1

α ∈ L such that

a1
α �1 c1

α �1 d1
α �1 b1

α for every α ∈ n

and c2
β, d2

β ∈ L such that

a2
β �2 c2

β �2 d2
β �2 b2

β for every β ∈ m.

By (SB5), (c2
β)∗ �1 (a2

β)∗ for every β ∈ m and (c1
α)∗ �2 (a1

α)∗ for every α ∈ n.

Suppose (u1, u2) ∈ U is such that

u1 =
∧

α∈A

b1
α ∧

∧

β∈B′

(a2
β)∗ and u2 =

∧

β∈B

b2
β ∧

∧

α∈A′

(a1
α)∗,

with A ∪ A′ = n, A ∩ A′ = ∅, B ∪ B′ = m, B ∩ B′ = ∅. Then set

ũ1 =
∧

α∈A

d1
α ∧

∧

β∈B′

(c2
β)∗ and ũ2 =

∧

β∈B

d2
β ∧

∧

α∈A′

(c1
α)∗.

Clearly ũ1 �1 u1 and ũ2 �2 u2. Therefore u∗
1 �2 (ũ1)

∗ and u∗
2 �1 (ũ2)

∗.

Let j ∈ {1, 2}, j 6= i, and

U1 = {(u1, u2) ∈ U | uj ∧ a = 0}, U2 = {(u1, u2) ∈ U | uj ∧ a 6= 0}.

This is a partition of U . Now, by the first De Morgan law (which holds in any

frame),

a ≤
∧

{u∗

j | (u1, u2) ∈ U1} = (
∨

{uj | (u1, u2) ∈ U1})
∗. (4.6.1)

Since U is finite and ũj �j uj , we have
∨

{ũj | (u1, u2) ∈ U1} �j

∨
{uj | (u1, u2) ∈ U1}
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and then by (SB5)

(
∨

{uj | (u1, u2) ∈ U1})
∗

�i (
∨

{ũj | (u1, u2) ∈ U1})
∗. (4.6.2)

But {(ũ1, ũ2) | (u1, u2) ∈ U} is a paircover of L (it coincides with the paircover

C1
c1
1
,d1

1

∧ C1
c1
2
,d1

2

∧ · · · ∧ C1
c1n,d1

n
∧ C2

c2
1
,d2

1

∧ C2
c2
2
,d2

2

∧ · · · ∧ C2
c2m,d2

m
).

This means that

1 =
∨

(u1,u2)∈U

(ũ1 ∧ ũ2) ≤
∨

{ũj | (u1, u2) ∈ U1} ∨
∨

{ũi | (u1, u2) ∈ U2}

which immediately implies that

(
∨

{ũj | (u1, u2) ∈ U1})
∗ ≤

∨
{ũi | (u1, u2) ∈ U2}

≤
∨

{ui | (u1, u2) ∈ U2} = sti(a, U) ≤ b.
(4.6.3)

By (4.6.1), (4.6.2) and (4.6.3) we have a �i b as desired. �

Remark 4.7. The dual adjoint situation between quasi-uniform spaces and

quasi-uniform frames established in [15] by functors

Ω : QUnif → QUFrm and Σ : QUFrm → QUnif

restricts immediately to a dual adjunction

QProx⇆ QPFrm

between the categories of quasi-proximal spaces and quasi-proximal frames (since

for each totally bounded quasi-uniform space (X, µ), Ω(X, µ) is a totally bounded

quasi-uniform frame and for each totally bounded quasi-uniform frame (L,U),

the quasi-uniform space Σ(L,U) is also totally bounded).
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