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Welcome to Logic, Algebra and Truth Degrees 2010!

Mathematical Fuzzy Logic (MFL) is the subdiscipline of mathematical
logic devoted to the study of formal systems of fuzzy logic. It has been a
fairly active research field for more than two decades, since scholars undertook
the task of providing solid formal foundations for deductive systems arising
from Fuzzy Set Theory by realizing that these systems could be seen as a spe-
cial kind of many-valued logics. This approach turned out to be very fruitful
when Petr Hájek collected the results of the first systematic study of fuzzy
logics in his monograph Metamathematics of Fuzzy Logic (Kluwer, 1998), a
true landmark of the field. This book, together with other influential works
by prominent researchers, was the start of an ambitious scientific agenda
aiming to the study of all aspects of fuzzy logics, including algebraic se-
mantics, proof systems, game-theoretic semantics, functional representation,
first-order and higher-order logics, decidability and complexity issues, model
theory, philosophical issues and applications. Moreover, it was made clear
that these systems of fuzzy logic constitute a particular family of substruc-
tural logics, a central topic for the broad community of researchers studying
non-classical logics. Since substructural logics typically enjoy good proof
systems and algebraic semantics based on classes of residuated lattices, this
connection shed great light on MFL and led to further avenues of research.

In order to promote and organize research in the field at the international
level, the Working Group on Mathematical Fuzzy Logic (MathFuzzLog) was
established under the auspices of the European Society for Fuzzy Logic and
Technology (EUSFLAT) in September 2007. Since then it has grown and
now includes almost all scholars working on MFL across the globe, with
more than 90 members from more than 20 countries. It has its own web site
(http://www.mathfuzzlog.org) which can be edited by any member of the
group to share information and resources of common interest. Moreover, the
group has promoted special issues on MFL in mainstream logic journals and
organized specific workshops and special sessions at broader international
conferences.

Among them, a central activity of the group is to organize its official
conference Logic, Algebra and Truth Degrees (LATD) every two years. It is
intended to be the main event of our community: besides being the conference
where we all can meet and share the latest developments of our field, it
also aims to bring together prominent researchers from neighboring fields,
and become an excellent opportunity to enjoy fruitful discussion between
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researchers with different and complementary background. These goals were
already achieved in the first LATD in Siena, Italy in September 2008. That
conference was dedicated to Franco Montagna on the occasion of his 60th
birthday, was attended by 65 participants, and included 8 invited lectures
and 29 contributed talks in a single track.

Now we meet again, in the very historical center of Prague, for the second
LATD. This time the conference is dedicated to Petr Hájek in the year of
his 70th birthday. The numbers show its consolidation as the major event in
MFL: over 65 participants, 8 invited lectures, 2 tutorials, and 35 contributed
talks (some in parallel tracks). Again, invited lecturers include prominent
senior experts along with outstanding young researchers from our field and
its neighboring areas. Contributed talks will quite exhaustively showcase
the various current trends of research in MFL and related topics. Further-
more, this time we will enjoy two alternative tutorial lectures (3 hours each)
intended to introduce the participants to some specific topics in MFL. An-
other special part of the program will be the session on Wednesday afternoon
devoted to our working group, where its goals, activities and future will be
discussed. Those participants who are not members of the group are kindly
invited to attend the session and even to join MathFuzzLog if they think
that part of their research activities lie within its scope. In the social aspect
of the program, we will enjoy a welcome party on Tuesday evening and the
conference banquet on Friday evening.

We thank all the members of the program and organizing committees for
their effort in preparing the conference and all the participants to be here,
and we wish everybody a pleasant time in Prague and a fruitful conference.

Petr Cintula and Carles Noguera
Coordinators of MathFuzzLog
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Truth Degrees, Relevance, and
Paraconsistency

Arnon Avron∗

The intuition and use of degrees of truth is usually associated with fuzzi-
ness, and so with the family of logics known as “fuzzy logics”. However, the
idea is relevant, and has successfully been used, also in connection with other
notions and families of logics. Our main goal in this talk is to describe some
of its applications for paraconsistent logics and for relevance logics.

Our starting point is the logic RMI∼
→. This logic is most naturally ob-

tained from the sequent calculus for R∼
→, the purely intensional (or “multi-

plicative”) fragment of the relevant logic R, by viewing sequents as consisting
of finite sets of formulas on both side of ⇒ (rather than as multisets or se-
quences of formulas). This is equivalent to adding the converse of contraction
(also known as “expansion” or “anti-contraction”) to the usual sequential for-
mulation of R∼

→ (the latter has exchange and contraction, but not weakening,
as its structural rules, and the usual multiplicative rules for negation, con-
junction, and implication as its logical rules). Thus the logical rules of RMI∼

→

for its multiplicative conjunction (or “fusion”) are:

(⊗ ⇒)
Γ, ϕ, ψ ⇒ ∆

Γ, ϕ⊗ ψ ⇒ ∆

Γ1 ⇒ ∆1, ϕ Γ2 ⇒ ∆2, ψ

Γ1,Γ2 ⇒ ∆1,∆2, ϕ⊗ ψ
(⇒ ⊗)

The most important property of RMI∼
→ is that unlike R∼

→, it has a very
useful and effective semantics. In fact, already in [1] it was shown that
RMI∼

→ is weakly sound and complete with respect to a certain sequence
A = {An | n ∈ N} of finite-valued matrices (where the number of truth-
values in An is n+2). A sentence containing exactly k propositional variables
is provable in RMI∼

→ iff it is valid in Ak, iff it is valid in all elements of A.
Moreover: although RMI∼

→ has no finite (weakly) characteristic matrix, it
has an effective infinite-valued matrix Aω, for which it is again weakly sound

∗School of Computer Science, Tel-Aviv University, Israel, aa@math.tau.ac.il.
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and complete, and in which the matrices in A can all be embedded. The
set of truth-values of Aω is Aω = {t, f, I1, I2, . . .}. The set Dω of designated
values is Aω −{f}, and the operations are defined as follows: ¬t = f, ¬f = t,
¬Ii = Ii, and x ⊗ y = min�A

{x, y}, where �A is defined by: f �A t �A Ii.
An is then simply the submatrix of Aω induced by An = {t, f, I1, I2, . . . , In}.

Now RMI∼
→ is still very much a relevant logic, enjoying major properties

like the variable-sharing property, and a very natural version of the relevant
deduction theorem. However, all these properties are lost once one adds to
RMI∼

→ the “additive” (or extensional) conjunction ∧ and disjunction ∨, to-
gether with the axioms and rules of R for these connectives. The resulting
logic is known as the semi-relevant system RM , the most crucial property of
which is the validity of the linearity axiom (ϕ → ψ) ∨ (ψ → ϕ). In fact, al-
ready RM∼

→, the purely multiplicative fragment of RM , is an unconservative
extension of RMI∼

→ in which the variable-sharing property fails. A sound
and complete cut-free sequential system GRM∼

→ for this system is obtained
by adding to that for RMI∼

→ the following combining rule: from Γ1 ⇒ ∆1

and Γ2 ⇒ ∆2 infer Γ1,Γ2 ⇒ ∆1,∆2.
It is well known that RM∼

→ is sound and weakly complete for the three-
valued matrix A1 described above. However, A1 is not sufficient for char-
acterizing the consequence relation of RM∼

→. Thus ϕ follows from ϕ ⊗ ψ in
A1, although ϕ⊗ ψ 6⊢RM∼

→
ϕ. In order to get a truly adequate semantics for

RM∼
→, it is necessary to introduce the idea of degrees. Let 〈deg,≤〉 be some

linearly ordered set. The consistent matrix based on 〈deg,≤〉 is the matrix in
which the set of truth-values is deg×{t, f}, the set D of designated elements
is deg×{t}, and the operations are defined by: ¬〈a, x〉 = 〈a,¬x〉, and X⊗Y
is min�⊗

{X, Y }, where 〈a, x〉 �⊗ 〈b, y〉 if either a > b or a = b and x ≤ y
(here we assume that f < t). The inconsistent matrix based on 〈deg,≤〉 is
obtained from the consistent one by the addition of one extra element I such
that ¬I = I, and X ⊗ I = I ⊗ X = X for every X ∈ {I} ∪ (deg × {t, f}).
We shall call a the degree of 〈a, x〉, and we define the degree of I to be
some new object 0 which we take to be less than any element of deg. Let
Deg = deg ∪ {0}. RM∼

→ is strongly sound and complete with respect to the
inconsistent matrixM0 in which Deg = [0, 1], and it is sound for every con-
sistent or inconsistent matrix which is based on some linearly ordered set.
This easily implies that RM∼

→ is paraconsistent: ¬p, p 6⊢RM∼
→
q (assign I to p

and some non-designated element to q).
In order to get from the above semantics for RM∼

→ an adequate semantics

2
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for the full system RM , it suffices to follow the usual procedure: Given a
matrix M constructed as above, let X ≤ Y in M iff X → Y ∈ D, where
X → Y = ¬(X ⊗ ¬Y ). Then ≤ is a linear order on M (which can be
characterized by: 〈b, f〉 < 〈a, f〉 < I < 〈a, t〉 < 〈b, t〉 for every a, b such
that a < b in deg). Moreover: X → Y = inf≤{Z | X ⊗ Z ≤ Y }. The
desired semantics for which RM is sound and strongly complete is obtained
by associating the connectives ∨ and ∧ of RM with the lattice operations
induced by ≤.

For comparison with the semantics of standard fuzzy logics, it is interest-
ing to note that the extended matrixM0, for which RM is already strongly
complete, is isomorphic to a matrix in which the set of truth-values is [−1, 1],
the set of designated values is [0, 1], ¬X = −X, X ∨ Y = max{X, Y },
X ∧ Y = min{X, Y }, and X ⊗ Y = min�{X, Y }, where X � Y if either
|X| > |Y | or |X| = |Y | and X < Y . Note that a similar matrix, with identi-
cal interpretations of ¬, ∨ and ∧, can be associated with Lukasiwicz logic.
The only differences are that the set of designated values there is {1}, while
the interpretation of the intensional conjunction & of that logic is given by
X&Y = max{X + Y − 1,−1}.

Another aspect of similarity between RM and standard fuzzy logics is
the proof-theoretical one. The main tool in the proof theory of fuzzy logics
(see [4]) is the use of hypersequential calculi. This is true for RM too. In
fact, already in [2] a sound and complete hypersequential calculus GRM was
provided. It is obtained by adding to the obvious hypersequential version of
GRM∼

→ the hypersequential versions of the standard rules for the additive
connectives, as well as the splitting rule: from Γ1,Γ2 ⇒ ∆1,∆2 | G infer
Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2 | G. That this system admits cut elimination was shown
in [2] using a very complicated syntactic proof. Recently a much simpler (and
modular) semantic proof was found for the following strong cut elimination
theorem (where for G = {Γi ⇒ ∆i|1 ≤ i ≤ m} we denote

⋃m
i=1(Γi ∪∆i) by

FG):

Theorem: Let S ∪ {G} be a finite set of hypersequents in the language of
RM . Then either there is a proof in GRM of G from S in which all cuts are
on formulas from

⋃
H∈S FH, or there is a model of S in M0 which is not a

model of G. (In particular: A hypersequent is valid inM0 iff it has a cut-free
proof in GRM .)

It should be noted that the modular character of the new semantic proof
of this theorem might open the door to modular, non-deterministic semantics

3
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of fragments of RM .
As we said above, RM is paraconsistent, but it is not a relevance logic.

To fully connect the idea of relevance with the idea of degrees, let us return
to RMI∼

→. It is easy to see that the example given above for the case of RM∼
→

and A1 also shows that the characteristic matrix Aω of RMI∼
→ is again not

sufficient for characterizing the consequence relation of this logic. Again this
can be remedied using the idea of degrees. In fact, this can be done using
either of the two approaches described below.

The first approach retains the linearity of the set Deg of degrees (there
is no need to distinguish between deg and Deg here). However, instead of
using deg × {t, f} as the set of truth-values, we use deg × Aω. The set D
of designated values is now deg × Dω. The operations are defined almost
exactly as in the case of RM∼

→. The only difference is that we use �A in the
definition of �⊗ instead of the order ≤ on {t, f}. Note that this time the
partial order ≤ defined by→ and D is not linear, but it does induce a lattice.
As usual, the corresponding lattice operations can be used for adding ∧ and
∨ to the language. However, the adjunction rule for ∧ (from ϕ and ψ infer
ϕ ∧ ψ) fails for the resulting system RMI (see [3]), even though most other
properties that ∧ and ∨ have in R are preserved. In fact, the resulting ∧
serves as a relevant additive conjunction.

It can be shown that RMI∼
→ and the full system RMI are strongly sound

and complete with respect to the resulting class of matrices (for the full
system RMI this has been shown already in [3]). In fact, both are again
already strongly complete with respect to the matrixMω obtained by taking
the interval [0, 1] as the underlying set of degrees. In addition, we have:

Theorem: There exists a sequence S of finite submatrices ofMω, for which
RMI∼

→ is finitely strongly sound and complete. More precisely: if Γ is a finite
set of formulas, ϕ is a formula, and the number of propositional variables in
Γ ∪ {ϕ} is k, then Γ ⊢RMI∼

→
ϕ iff there is no element of S having less then

3k elements, in which all formulas of Γ are valid, but ϕ is not. This bound
of 3k cannot be improved. Similar results hold for RMI.

The second approach to providing strongly sound and complete semantics
for RMI∼

→ and RMI is to retain in the consistent case the structure of
deg × {t, f} from the above semantics of RM , but allows 〈deg,≤〉 to be an
inverse tree (rather than a chain). The definitions of D,¬,⊗,→, ≤,∧, and
∨ are then as before, except that now X ⊗ Y is inf�⊗

{X, Y } (rather than
min�⊗

{X, Y }). In the more general case it is possible (but not necessary) to

4
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replace both 〈a, t〉 and 〈a, f〉 by the single element 〈a, I〉 in any case in which
a is a minimal degree. 〈a, I〉 is then designated, and ¬〈a, I〉 = 〈a, I〉. See [3]
for more details.

From the proof-theoretical point of view, RMI∼
→ and RMI again have

strongly sound and complete hypersequential calculi, both admitting strong
cut-elimination. These calculi are very similar to GRM∼

→ and GRMI. The
main difference is that in applications of the combining rule the two premises
should share a common formula. Another difference is that the rules (⇒ ∧)
and (∨ ⇒) may be applied only if the internal context is not empty (thus one
cannot infer G |⇒ ϕ ∧ ψ from G |⇒ ϕ and G |⇒ ψ). Since this restriction
can be imposed on GRM too, only the first difference is really significant.

To conclude, the moral of the above results is as follows. First, degrees of
truth and truth-values are not necessarily the same thing. Second (and more
important): the principle of comparability of degrees of truth or of truth val-
ues should be given up if questions of relevance are taken into consideration.
Third: the construction of the semantics of RM and RMI indicates how
the ideas of relevance can be combined with the idea of fuzziness: just use
deg× [0, 1] instead of deg×{t, f} or deg×Aω. This might open the door for
new promising line of research.

References

[1] Avron A., Relevant entailment—semantics and formal systems, Journal
of Symbolic Logic 49 (1984), 334–342.

[2] Avron A., A Constructive Analysis of RM, Journal of Symbolic Logic
52 (1987), 939–951.

[3] Avron A., Relevance and Paraconsistency—A New Approach. Part I:
Journal of Symbolic Logic 55 (1990), 707–732. Part II: Notre Dame
Journal of Formal Logic 31 (1990), 169–202.

[4] Metcalfe G., Olivetti N., and Gabbay D., Proof Theory for Fuzzy Logics,
Springer, 2009.
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Fuzzy Modal Logics: A First Approach

Félix Bou∗

Classical modal logics were initially designed to deal with philosophical
problems, but since the discovery of Kripke semantics they have found a lot of
applications in some other fields, mainly in computer science (because Kripke
models are nothing less than state transition systems). Briefly, classical
modal logics can be considered as certain fragments of theories of first order
classical logic; these fragments only contain formulas ϕ(x) with one (and only
one) free variable and are built expanding classical propositional logic with
bounded quantifiers:

Universal Bounded Quantifier (�): ∀y(R(x, y)→ ϕ(y))
Existential Bounded Quantifier (♦): ∃y(R(x, y) ∧ ϕ(y))

In latest years there has been a growing interest on studying fuzzy modal
logics, and most of the papers published on the topic [4, 6, 8, 7, 2, 5, 3, 1]
follow the pattern explained in the previous paragraph, i.e., considering fuzzy
modal logics as the bounded fragments of first order fuzzy logics.

In this talk we will introduce the fuzzy modal logics Λ(K,A) (where K is
a class of Kripke frames, and A is a BL chain) [1], and we will summarize
what it is known (and what it is unknown) about these fuzzy modal logics.
The main concern will be about completeness and decidability issues, where
there are a lot of open questions.

References

[1] F. Bou, F. Esteva, L. Godo, and R. Rodríguez. On the minimum many-
valued modal logic over a finite residuated lattice. Journal of Logic and
Computation. To appear, doi:10.1093/logcom/exp062.

[2] X. Caicedo and R. Oscar Rodríguez. Standard Gödel modal logics. Studia
Logica, 94(2):189–214, 2010.

∗Artificial Intelligence Research Inst., CSIC, Catalonia, Spain, fbou@iiia.csic.es.
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[3] M. Cerami, F. Esteva, and F. Bou. Decidability of a description logic over
infinite-valued product logic. In F. Lin, U. Sattler, and M. Truszczynski,
editors, Principles of Knowledge Representation and Reasoning: Proceed-
ings of the Twelfth International Conference, KR 2010, Toronto, Ontario,
Canada, May 9–13, 2010, pages 203–213. AAAI Press, 2010.

[4] P. Hájek. Making fuzzy description logic more general. Fuzzy Sets and
Systems, 154(1):1–15, 2005.

[5] P. Hájek. On fuzzy modal logics S5(C). Fuzzy Sets and Systems,
161(18):2389–2396, 2010.

[6] G. Hansoul and B. Teheux. Completeness results for many-valued
Łukasiewicz modal systems and relational semantics, 2006. Available at
http://arxiv.org/abs/math/0612542.

[7] G. Metcalfe and N. Olivetti. Proof systems for a Gödel modal logic.
In M. Giese and A. Waaler, editors, Proceedings of TABLEAUX 2009,
volume 5607 of LNAI. Springer, 2009.

[8] G. Priest. Many-valued modal logics: a simple approach. The Review of
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SAT in Monadic Gödel Logics:
(Un)Decidability Results and

Applications

Agata Ciabattoni∗

Gödel logics GV are among the main formal systems providing a founda-
tion for reasoning in presence of vagueness. Defined in general over sets of
truth values V which are closed subsets of [0, 1] containing both 0 and 1, GV

are the only many-valued logics which are completely specified by the order
structure of V . This fact characterizes Gödel logics as logics of comparative
truth and renders them an important case of so-called fuzzy logics, see [4].

In this talk I will describe some recent results about satisfiability in
monadic Gödel logics GV , henceforth denoted by SATm

V .
Following [2], I will show that simple conditions on the topological type

of the set of truth values V determine the decidability or the undecidability
of SATm

V . The problem is decidable when 0 is an isolated point in V (i.e.,
0 has Cantor-Bendixon rank |0|CB = 0). Satisfiability in these logics, that
include GV over any finite set ({0, 1} ∈)V , turns out to be equivalent to
satisfiability in classical logic. In the remaining Gödel logics the presence of
at least three predicate symbols, one of which is a constant different from 0 or
1, makes SATm

V undecidable. Furthermore without this constant predicate,
SATm

V remains undecidable for all Gödel logics in which 0 is a limit point of
limit points in V (i.e., |0|CB ≥ 2). Standard Gödel logic, that is Gödel logic
with truth values set V = [0, 1], being a prominent example.

The addition of the projection operator ∆ enhances the expressive power
of Gödel logics and their applicability. However, it renders SATm

V undecidable
for all GV with V infinite.

In [1] we identified a suitable fragment of monadic Gödel logics extended
with ∆ that is powerful enough to formalize important properties of fuzzy
rule-based systems and whose satisfiability problem is decidable. This frag-
ment – we refer to it as FO1

mon – lies between the monadic and the one-variable

∗Technische Universität Wien, Austria, agata@logic.at.
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fragment. SATm
V in FO1

mon is shown to be NP-complete for all GV , even in
presence of an additional, involutive negation ∼.

As proved in [3] the fragment FO1
mon of standard Gödel logic extended

with ∼ captures important features of the system CADIAG-2 (Computer-
Assisted DIAGnosis). Developed at the Medical University of Vienna,
CADIAG-2 is a well performing fuzzy expert system, “MYCIN-like”, assisting
in the differential diagnosis in internal medicine. A satisfiability check on the
formulas formalizing the 20.000 rules of CADIAG-2 allowed the detection of
some errors in its representation of the medical knowledge.

References

[1] M. Baaz, A. Ciabattoni, and N. Preining. First-order satisfiability with
vagueness: an NP-complete fragment. Draft. 2010.
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Weakly Locally Finite MV-Algebras
and Real-Valued Multisets

Roberto Cignoli∗

In [1] a duality was established between locally finite MV-algebras and
multisets. A multiset was defined as a continuous mapping from a Boolean
space into the lattice of generalized natural numbers equipped with the Scott
topology. This lattice is isomorphic to the lattice of the subgroups of Q with
1 as a strong order unit, where Q denotes the additive group of the rational
numbers endowed with the usual order [2]. The continuous maps between
such generalized multisets are to be multiplicity-decreasing with respect to
the divisibility order of generalized natural numbers.

The aim of this talk is to report joint work with Enzo Marra on the
extension of these results to the class of MV-algebras that are locally weakly
finite, i. e., such that all their finitely generated subalgebras split into a
finite direct product of simple MV-algebras. Using the Scott topology on
the lattice of subalgebras of the real unit interval [0, 1] (regarded with its
natural MV-algebraic structure), we construct a ‘real-valued multiset’ over
the (boolean) space of maximal ideals of a locally weakly finite MV-algebra.
Building on this, we obtain a duality for locally weakly finite MV-algebras
that includes as a special case the above-mentioned duality for locally finite
MV-algebras. We give an example that shows that the established duality via
the Scott topology cannot be extended, without non-trivial modifications, to
larger classes of algebras.
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Linearity Issues in the Algebra
of Łukasiewicz Logic

Ioana Leuştean∗

MV-algebras, the algebraic structures of Łukasiewicz ∞-valued logic, were
defined by Chang in 1958 [3]. Their theory was developed extensively af-
ter 1986, when Mundici proved that MV-algebras are categorically equiv-
alent with abelian lattice-ordered groups with strong unit. Consequently,
MV-algebras are twofold structures: generalizations of boolean algebras and
unit intervals of lattice-ordered groups with strong unit (ℓu-groups, shortly).

An MV-algebra [4] is a structure (A,⊕,∗ , 0), where (A,⊕, 0) is an abelian
monoid, (x∗)∗ = x, 0∗ ⊕ x = 0∗ and (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x for all
x, y ∈ A. The real unit interval [0, 1] equipped with the operations x∗ = 1−x
and x⊕ y = min(1, x+ y) is the standard MV-algebra, i.e. an equation holds
in any MV-algebra if and only if it holds in [0, 1]. If we set x⊙y = (x∗⊕y∗)∗

then ⊙ is the Łukasiewicz t-norm on [0, 1]. Note that every MV-algebra A is a
bounded distributive lattice, where x∨y = x⊕(x⊕y∗)∗ and x∧y = (x∗∨y∗)∗

for any x, y ∈ A.
The linearity issues in MV-algebra theory come up from two directions

of research: states and the product operation.
States were defined in [15] as averaging measures. If A is an MV-algebra,

a state is a function s : A → [0, 1] which is normalized ( i.e. s(1A) = 1) and
linear (i.e. s(x ⊕ y) = s(x) + s(y) whenever x ≤ y∗ in A). They generalize
boolean probabilities as well as states on lattice-ordered groups. We shall
not concentrate on the probabilistic interpretation of states in this talk, we
refer instead to [17] for a comprehensive insight on this topic.

Another research direction was to characterize the class of structures
generated by [0, 1] in the language of MV-algebras enriched with the real
product. The investigations led to the definition of PMV-algebras (product

∗Faculty of Mathematics and Computer Science, University of Bucharest, Romania,
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MV-algebras) [6, 13]. The analogue of Mundici’s theorem for these struc-
tures was obtained by Di Nola and Dvurečenskij [6]: there exists a categori-
cal equivalence between PMV-algebras and lattice-ordered rings with strong
unit (ℓu-rings). In [14], Montagna axiomatized the quasivariety generated by
[0, 1] in the language of PMV-algebras.

It seems quite natural to introduce “modules” over such algebras. In [7],
MV-modules are defined as structures corresponding through a categorical
equivalence to lattice-ordered modules with strong-unit (ℓu-modules) over
ℓu-rings. MV-modules over [0, 1] will be called Riesz MV-modules, since
they are unit intervals in Riesz spaces with strong unit u. PMV-algebras
and MV-modules are particular cases of MV-algebras with operators, stud-
ied in [9], where Mundici’s categorical equivalence for these structures is
also proved. A linear function between two MV-algebras A and B is a map
ω : A → B satisfying ω(x) ≤ ω(y)∗ and ω(x ⊕ y) = ω(x) ⊕ ω(y) whenever
x ≤ y∗ in A. An operator on an MV-algebra A is a linear function ω : A→ A.
A normalized operator is also called an internal state by Flaminio and Mon-
tagna in [8], where they introduce SMV-algebras as MV-algebras endowed
with an internal state satisfying some additional properties.

These considerations show that, beyond the probabilistic interpretation,
linear functions between MV-algebras do have a role to play. Also, the rela-
tion between rings (modules) and MV-algebras has to be further analyzed. It
is worth noting that the logical roots of MV-algebras provide a logical insight
on such topics that are not traditionally related to logic.

In this talk, we present some topics involving linearity issues in MV-alge-
bra theory.

1. Łukasiewicz rings, introduced in [1], are exactly those commutative
rings with the property that their lattice of ideals becomes an MV-algebra,
with the Łukasiewicz t-norm defined by the product of ideals and the
MV-algebraic negation defined by the annihilator. It turns out that an
MV-algebra obtained in this manner is always complete and atomic. The
relation between a Łukasiewicz rings and the correspondent MV-algebra of
ideals is also expressed in categorical terms. All these results from [1] bring
a different perspective on the role of rings in the algebra of Łukasiewicz logic
and open further research directions.
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2. State completion, developed in [12], is a standard construction: for ev-
ery MV-algebra A, a state s : A → [0, 1] determines a pseudo-metric
ρs(x, y) = s(d(x, y)) for any x, y ∈ A, where d(x, y) = (x⊙ y∗)⊕ (y ⊙ x∗) is
the Łukasiewicz distance. We say that A is s-complete if (A, ρs) is a Cauchy
complete metric space. If A is a Riesz MV-algebra, then its s-completion is
isomorphic with the unit interval of an L-space with strong unit; L-spaces are
Banach lattices with additive norms (see, e.g., [5]). Using Kakutani’s repre-
sentation for L-spaces [10], we infer that for any s-complete Riesz MV-algebra
A there exists a measure space (X,Ω, µ) such that A is isomorphic with the
unit interval of L1(µ). This result leads to a categorical equivalence between
state complete Riesz MV-algebras and a particular class of metric spaces.

3. Tensor product is a classical construction in linear algebra. In MV-alge-
bra theory, the tensor product was defined by Mundici [16] for two
MV-algebras and generalized in [11] to arbitrary families of MV-algebras.
This allows us to define the tensor algebra TA associated to a given MV-algebra
A, i.e. TA is the tensor product of the family {An}, where An = A for
any n. It is straightforward to define a product such that TA becomes a
PMV-algebra, in which A is embedded. Following the classical theory, this
construction yields an adjunction between MV-algebras and PMV-algebras.
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n-Contractive BL-Logics
Franco Montagna∗

The logic BL has been introduced by Hájek in his book [12] both as a
common fragment of the most important fuzzy logics and as the logic of con-
tinuous t-norms. The continuity of the t-norm is reflected by the divisibility
axiom (φ ∧ ψ) → (φ&(φ → ψ)). Although BL is a contraction-free logic,
divisibility is implied by (but it is not equivalent to) contraction, and hence
it may be regarded as a weak form of contraction. The axiom (S) of strict
negation, ¬(¬φ∧¬¬φ), can also be regarded as a form of contraction, because
it is equivalent to ¬φ→ (¬φ&¬φ), i.e., contraction for negated formulas. An
even more evident form of contraction is the schema φn → φn+1, which will
be called n-contraction and will denoted by Cn. Given any propositional
fuzzy logic L, CnL will denote the extension of L with the axiom schema Cn.
Extensions of fuzzy logics by the schema Cn, and CnMTL in particular, have
been investigated first in [9]. Yet another principle, whose meaning is more
algebraic than proof-theoretic, but which implies some additional interesting
proof-theoretic properties is the principle

(Dn) (φm−1 ↔ (φ→ φn))→ φn

for all m which does not divide n. The logic CnBL added with (Dn) will be
denoted by DCnBL.

While the totally ordered models of CnBL are precisely the ordinal sums
of MV-chains with n + 1 elements at most, the totally ordered models of
DCnBL are precisely the ordinal sums of MV-chains with m + 1 elements,
where m divides n.

The finite embeddability property for BL easily implies that for every
finite set Γ ∪ {φ} of formulas, the following are equivalent:

(1) Γ ⊢BL φ.

(2) For every n > 1, Γ ⊢CnBL φ.

(3) For every n > 0, Γ ⊢DCnBL φ.

∗Department of Mathematics and Computer Science, University of Siena, Italy,
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Hence, in order to check provability of formulas of fixed complexity, it is
sufficient to check provability in CnBL or DCnBL for n sufficiently large.
However, CnBL and especially SCnBL have many other good properties
which are not enjoyed by BL. Most of them have been obtained in two papers
in collaboration with Matteo Bianchi [2] and [3], and are listed below.

• Decision problems, countermodels: for every n, k, there are models Ci
n,k

(i = 1, ..., n) and Sn,k with cardinality (k + 1)n(n+1)
2

and (k + 1)(n+ 1)
respectively, such that A formula φ with k variables is provable in CnBL
iff it is true in Ci

n,k for i = 1, ..., n and φ is provable in DCnBL iff it
is true in Sn,k. Hence, CnBL and SCnBL are co-NP complete. Similar
(and stronger) results hold for SCnBL and for SDCnBL, that is, for
CnBL and DCnBL added with the axiom (S) of strict negation.
• Strong completeness, universal chains: SCnBL, DCnBL and SDCnBL

have a universal chain, that is, a chain for the logic in which all count-
able chains for the logic embed. The same is not true of CnBL with
n > 1. Hence, SCnBL, DCnBL and SDCnBL are strongly complete
with respect to a single chain of the logic.
• Interpolation: for n > 1, none of CnBL, DCnBL, SDCnBL, SDCnBL

has Craig interpolation. Moreover, DCnBL and SDCnBL have deduc-
tive intepolation, while CnBL and SCnBL don’t.
• Completions: a variety V of BL-algebras is closed under completion

if every algebra in V embeds into a complete algebra in V. Then, as
shown by Busanice and Cabrer [7], V is closed under completions iff,
for some n it is a subvariety if the variety of BL-algebras satisfying the
equation xn = xn+1.
• Complexity of the semantics by complete chains: there are no models

on [0, 1] for CnBL or for extensions of CnBL, with the exception of C1BL
which coincides with Gödel logic. Hence, if n > 1, none of the logic
examined so far is sound and complete with respect to the standard
semantics. However, it makes sense to investigate completeness of the
first order version L∀ of a logic L∈ {CnBL,DCnBL, SCnBL, SDCnBL}
with respect to the semantics given by complete chains. It turns out
that an extension L of BL is complete with respect to its complete
chains iff it extends CnBL. It follows: If L is a recursively axiomatiz-
able extension of BL for some n, then the class of L∀ tautologies for
the class of complete L-chains is recursively enumerable iff L extends
CnBL for some n.
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• Supersoundness: the interpretation of first order formulas of a first or-
der fuzzy logic L∀ is restricted to safe structures, that is, to structures
in which every formula has a truth value (this requirement is not auto-
matically satisfied: quantifiers are interpreted as suprema and infima,
which need not exist in the structure). One may wonder what happens
if we also consider interpretations which are not safe, but in which the
formula taken into consideration has a truth value. That is, a formula
φ of L∀ is called supersound if it is true not only in every safe struc-
ture for L∀, but also in every structure in which the truth value of φ is
defined. A logic L∀ is said to be supersound if every theorem of L∀ is
supersound.
Once again, it turns out that if L is an extension of BL, then L∀ is
supersound iff L extends CnBL.

Summing up, contractive BL-logics constitute good approximations of
BL. These logics have important advantages with respect to BL, both from
a computational and from an algebraic point of view.
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Complete Ideal Completions
of Residuated Lattices and

Completeness of Substructural
Predicate Logics

Hiroakira Ono∗

Completions of lattice-ordered algebras have been studied in many litera-
tures on lattices and order. From a logical point of view, regular completions
of residuated lattices will sometimes play an important role, as they often
provide us algebraic completeness of substructural predicated logics. Here,
we say that a completion is regular, when it is a completion with a regular em-
bedding, an embedding preserving all existing joins and meets. (See e.g. [7].)

MacNeille completions are examples of regular completions. By using
them, we can show the algebraic completeness of minimum predicate exten-
sions of standard substructural propositional logics. On the other hand, it is
known that MacNeille completions do not always preserve distributivity.

Now we will focus our attention on complete ideal completions of resid-
uated lattices. The complete ideal completion AK of a given residuated
lattice A is an algebra consisting of all complete ideals of A. Here an ideal
I is said to be complete when the join

∨
S, if exists, belongs to I for every

nonempty subset S of I (see [1, 2]). It can be shown that complete ideal
completions are always regular and moreover preserve infinite join distribu-
tivity. As a logical consequence, the algebraic completeness is shown for
some of distributive substructural predicate logics with the axiom scheme
(∧, ∃) : ∃xϕ(x) ∧ ψ → ∃x(ϕ(x) ∧ ψ).

In the present talk, we will show a preservation theorem under the map-
ping h from the set of all ideals to the set of all complete ideals such that
h(I) = K(I), where K(I) denotes the complete ideal generated by I. The
theorem implies a general result on the algebraic completeness of minimum
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predicate extensions with the axiom scheme (∧, ∃) of distributive substruc-
tural propositional logics.

We will discuss also a close connection between ideal completions and
Kripke-type semantics for substructural propositional logics, introduced in
[10] and [3, 4], and also between complete ideal completions and Kripke-type
semantics for substructural predicate logics, introduced in [6]. The former
is already mentioned in [8], and the latter will be demonstrated by using
Kripke-Joyal semantics in [5].

Complete ideal completions and their logical consequences will be dis-
cussed further in our forthcoming paper [9].
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Admissible Rules and the Leibniz
Hierarchy

James Raftery∗

Many researchers have asked: to what extent can we interpret a logic
plausibly in its own meta-language? Disjunction properties are one manifes-
tation of this concern. A problem in the converse spirit is the derivability
of admissible rules. A rule is admissible in a formal system if its addition
to the system produces no new theorems [7, 16]. A simple example is the
rule of necessitation, x ⊢ �x, which is admissible (and not derivable) in
quasi-normal modal logics. More profoundly, the process of cut elimination
shows that underivable cut rules are admissible in suitable sequent calculi.

Semantic treatments of admissibility cannot rely entirely on the theory of
algebraizable logics [3]. For already, the quasi-normal modal systems and the
cut-free subsystems of substructural logics are not algebraizable. Instead, in
this talk, we analyze admissibility for systems at various levels of the Leibniz
hierarchy, using the tools of abstract algebraic logic [4, 6, 10]. A sample of
results follows.

Fortunately, every deductive system ⊢ has a nontrivial semantics, Mod∗(⊢),
comprising its reduced matrix models, 1 and we can already prove:

Theorem 1. The following conditions on ⊢ and 〈Γ, α〉 are equivalent.

(i) 〈Γ, α〉 is an admissible rule of ⊢.

(ii) Every matrix model of ⊢ is a homomorphic image of one that validates
〈Γ, α〉.

(iii) Every reduced matrix model of ⊢ is a homomorphic image of a sub-
direct product A of reduced matrix models of ⊢, where A validates
〈Γ, α〉.

∗School of Mathematical Sciences, University of KwaZulu-Natal, South Africa,
raftery@ukzn.ac.za.

1 A matrix 〈A, F 〉 is reduced if no congruence of A turns F into a union of congruence
classes, except for the identity congruence [18].
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The surjective homomorphisms in (ii) and (iii) are understood to preserve
the set of designated elements, but they need not reflect this set. Of course,
(iii) looks better in systems where the reduced matrix models are closed un-
der subdirect products. These are exactly the protoalgebraic systems, i.e.,
the ones for which the Leibniz operator Ω is isotonic in the following sense:
whenever 〈A, F 〉 and 〈A, G〉 are matrix models of ⊢, with F ⊆ G, then
ΩAF ⊆ ΩAG. 2 In sentential logics, this amounts to the existence of a set ρ
of binary formulas such that ⊢ ρ(x, x) and x, ρ(x, y) ⊢ y [2].

Corollary 2. A rule 〈Γ, α〉 is admissible in a protoalgebraic system ⊢ iff ev-
ery reduced matrix model of ⊢ is a homomorphic image of one that validates
〈Γ, α〉.

Example 3. The quasi-normal modal system S4MP is not algebraizable,
but it is protoalgebraic. If we add the inference rule x ⊢ �x to S4MP, we
get a familiar system for S4, whose reduced matrix models are just the pairs
〈A, {1}〉 where A is an interior algebra with greatest element 1. The reduced
matrix models of S4MP itself are the pairs 〈A, F 〉 where A is an interior alge-
bra and F a lattice filter of A containing no �–closed lattice filter other than
{1}. Thus, the identity map a 7→ a makes 〈A, F 〉 a homomorphic image of
〈A, {1}〉, witnessing Corollary 2’s criterion for admissibility of the necessita-
tion rule in an extremely simple way. (It is much harder to see Theorem 1
at work in proofs of cut elimination.)

In the Leibniz hierarchy, there are two independent ways of strengthening
protoalgebraicity. We confine the present discussion to sentential systems.

(I) Weak algebraizability [5] adds the demand that the truth predicate of
⊢ be equationally definable in Mod∗(⊢), i.e., for a suitable set τ of
pairs τ = 〈τℓ(x), τr(x)〉 of unary formulas, every reduced matrix model
〈A, F 〉 of ⊢ satisfies x ∈ F ⇐⇒ & τ∈τ τℓ(x) = τr(x).

(II) Equivalentiality [13] asks that the Leibniz operator be definable, i.e.,
for a suitable set ρ of binary formulas, every matrix model 〈A, F 〉 of ⊢
satisfies 〈x, y〉 ∈ ΩAF ⇐⇒ ρA(x, y) ⊆ F . This facilitates a smooth
generalization of the Lindenbaum-Tarski construction, with ρ in the
role of the bi-conditional ↔. We therefore call ρ a set of equivalence
formulas for ⊢, and ⊢ is said to be finitely equivalential if it has a finite
set of equivalence formulas.

2 ΩAF is the largest congruence of A for which F is a union of congruence classes.
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A further specialization of (II) is

(III) Order algebraizability [14, 15]: This is characterized by the existence of
binary formulas ρ such that the relation x 6F y iff ρ(x, y) ⊆ F defines
a partial order on every reduced matrix model 〈A, F 〉 of ⊢, and

x ⊣⊢
⋃
{ρ(τℓ(x), τr(x)) : τ = 〈τℓ, τr〉 ∈ τ}

for a suitable τ . The displayed rule ensures that the designated el-
ements of a reduced matrix model are also definable in terms of the
partial order, and that the two definitions essentially invert each other.

In (III), by the ρ–ordered algebras of ⊢, we mean the structures 〈A,6F 〉
obtained from all reduced matrix models 〈A, F 〉 of ⊢. Then Corollary 2
becomes

Theorem 4. In a ρ–order algebraizable system ⊢, a rule 〈Γ, α〉 is admissible
iff every ρ–ordered algebra of ⊢ is a homomorphic image of one in which

(
& γ∈Γ, τ∈τ τℓ(γ) 6 τr(γ)

)
=⇒

(
& τ∈τ τℓ(α) 6 τr(α)

)

is valid, where τ is as in (III).

Here, the surjective homomorphism is understood to preserve the partial
order (as well as all operations), but it need not reflect the order.

Example 5. Let RS denote the S–fragment of the relevance logic R, formu-
lated with the Ackermann truth constant t. Slaney and Meyer [17] proved
that every finite rule admissible in R→,∧ is derivable there, i.e., R→,∧ is
structurally complete in the sense of [11]. They asked whether the same
could be said of R→, t or R→. It is convenient to work with R→, ◦, t (where
◦ is fusion). For, although R→, ◦, t is not algebraizable, it is ρ–order alge-
braized by the easily described class of Church monoids, where ρ is {x→ y}.
The corresponding τ is {〈t, x〉} (to be replaced by {〈x → x, x〉} in the
t–free fragments). A Church monoid is a commutative residuated po-monoid
〈A; ◦,→, t,6〉 satisfying x 6 x◦x. It can be shown that every Church monoid
is a homomorphic image of one that satisfies t 6 x → t & t 6 (x → t) →
t =⇒ t 6 x. So, by Theorem 4, the rule 〈{x→ t, (x→ t)→ t}, x〉 is admis-
sible in each of R→,◦, t and R→, t. It is underivable even in the stronger system
of classical logic. These conclusions were drawn in [9], using a detour through
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an algebraizable conservative extension of R→, ◦, t. But no such detour is
needed, as Theorem 4 prescribes nothing more than order algebraizability.

Using a suitable Gentzen system with cut elimination, we can easily show
that the rule 〈{x ◦ y}, x〉 is admissible in R→,◦, t (where it is not derivable).
This, with Theorem 4, yields an un-obvious algebraic result:

Corollary 6. Every Church monoid is a homomorphic image of one that
satisfies t 6 x ◦ y =⇒ t 6 x.

These observations leave open the question of structural completeness for
R→, a.k.a. BCIW. A partial result can be stated, concerning the rule

(†) 〈{(x→ (x→ x))→ x}, x〉,

which is underivable in BCIW.

Theorem 7. Either (†) is admissible in BCIW or every admissible one-var-
iable rule of BCIW is derivable in BCIW.

As in the algebraic theory of (quasi-) varieties, every reduced matrix
model of a finitary deductive system ⊢ is isomorphic to a subdirect prod-
uct of reduced matrix models of ⊢ that are relatively subdirectly irreducible
(RSI) with respect to Mod∗(⊢). The RSI reduced matrix models 〈A, F 〉 are
characterized by the demand that F be completely meet-irreducible in the
⊢ –filter lattice of A, i.e., the lattice of subsets G for which 〈A, G〉 is still a
matrix model of ⊢ [19].

Theorem 8. If ⊢ is finitary and protoalgebraic, and if every finitely gener-
ated RSI reduced matrix model of ⊢ is projective (in the category Mod∗(⊢),
equipped with all matrix homomorphisms), then ⊢ is hereditarily structurally
complete.

(This means that ⊢ and each of its finitary extensions is structurally com-
plete.)

When ⊢ is weakly algebraizable, its reduced matrix models are deter-
mined by their algebra reducts. Let Alg(⊢) be the class of all these reducts.
If ⊢ is algebraizable, then Alg(⊢) will be its equivalent algebraic semantics in
the sense of [3], but we do not need the full force of algebraizability to infer:

Corollary 9. Suppose that ⊢ is finitary and weakly algebraizable. If ev-
ery finitely generated relatively subdirectly irreducible algebra in Alg(⊢) is
projective in Alg(⊢), then ⊢ is hereditarily structurally complete.
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Example 10. The extension of R by the mingle axiom x→ (x→ x) is not
structurally complete, but its negation-less fragment ⊢ (i.e., its →, ◦,∧,∨, t
fragment) is hereditarily structurally complete. This cannot be proved by
generalizing ‘Prucnal’s trick’ from [12]. But the algebraic criterion of Corol-
lary 9 can be applied. Indeed, ⊢ is algebraized by the locally finite variety
of positive Sugihara monoids (PSMs) and it is proved in [8] that every finite
subdirectly irreducible PSM is projective in this variety.

Andrzej Wroński [20] has drawn attention to the significance of overflow
rules. For present purposes, we take these to be finite rules of the form
〈{α1, . . . , αn}, y〉, where y is a variable not occurring in any of α1, . . . , αn.
The main theorem of [20] (and an earlier result of Bergman [1]) can be
generalized as follows:

Theorem 11. Let ⊢ be a finitary, finitely equivalential deductive system
with at least one theorem and at least one non-theorem.

Then every admissible overflow rule of ⊢ is derivable iff, in the first order
language (with equality) of Mod∗(⊢), every existential positive sentence holds
either in all of the nontrivial reduced matrix models of ⊢, or in none of them.

Example 12. Let ⊢ be an axiomatic extension of the S–fragment of FLew

(a.k.a. ‘BCK–logic’ or affine linear logic), where S includes at least → and
⊥. If ⊢ is structurally complete, then Alg(⊢) contains no simple algebra
on more than 2 elements that is n–contractive for a finite n. In particular,
Alg(⊢) contains no finite simple algebra other than the 2–element Boolean
algebra. The proof uses Theorem 11 and the existential positive sentence

∃ x (x→n ⊥ = ⊤ & (x→ ⊥)→ x = ⊤)

where ⊤ is ⊥ → ⊥. This rules out structural completeness—and even
‘overflow-completeness’—for a large class of fuzzy logics.

Let Fm, T and Var be the algebra of formulas, the set of theorems,
and the infinite set of variables of ⊢, and let L∗ abbreviate the free reduced
matrix model 〈Fm/ΩT, T/ΩT 〉. The next theorem strengthens a result of
Prucnal and Wronski [13].

Theorem 13. A [finitely ] equivalential finitary system ⊢ has the property
that all of its admissible [finite] rules are derivable iff Mod∗(⊢) is exactly
UISP(L∗) [resp. ISPPU(L

∗) in the finite case].

25



Logic, Algebra and Truth Degrees Prague, 7–11 September 2010

Here, I, S, P and PU stand, as usual, for closure under isomorphisms,
substructures, products and ultraproducts, while U is defined by

U(K) := {A : every substructure of A on 6 |Var | generators belongs to K}.
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Proof Theory for Fuzzy Logics
George Metcalfe∗

Fuzzy logics are motivated primarily by semantic considerations, in par-
ticular, by the need to represent and reason about truth degrees. However,
as logics, they clearly also have something to do with syntax and proof. This
much is apparent already from their Hilbert-style axiomatizations, which
(with enough patience) produce every theorem of a logic using a few simple
rules and a possibly long list of axiom schema. But while Hilbert systems are
convenient for presenting a wide range of logics directly related to classes of
algebras, they are not so flexible when it comes to searching for, analyzing,
and reasoning about proofs. At each step in a Hilbert system proof, the next
axiom or instance of a rule like modus ponens must be guessed. Much better
are proof systems with more restrictions on how to proceed – ideally, systems
where proofs are analytic: built from the raw material (subformulas) of the
formula proved. Such systems and their applications are the subject of this
tutorial.

Surprisingly perhaps, most fuzzy logics investigated in the literature have
a natural proof-theoretic formulation. They occur (alongside relevant logic,
linear logics, and the full Lambek calculus) as substructural logics in the
framework of Gentzen systems. Typically, Gentzen systems gain flexibility
by dealing with sequents: ordered pairs of sequences (or sets or multisets) of
formulas interpreted as implications. Sequent calculi provide a natural home
for a diverse selection of logics spanning linguistics, philosophy, computer sci-
ence, and mathematics, as well as corresponding directly to important classes
of algebras. For fuzzy logics, however, sequents are not quite enough. A step
up in complexity is required to hypersequents: multisets of sequents inter-
preted as disjunctions of implications. Many fuzzy logics are then obtained
simply by transferring sequent calculi to the hypersequent level and adding
an extra rule (or two). For example, a hypersequent calculus for Gödel logic
is obtained by allowing hypersequent contexts in Gentzen’s sequent calculus
for intuitionistic logic and adding a rule permitting “communication” between
sequents.

∗Math. Institute, University of Bern, Switzerland, george.metcalfe@math.unibe.ch.
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The goal of this tutorial is not only to show how fuzzy logics can be pre-
sented proof-theoretically, but also to explain why proof theory matters for
this field. What can be done with analytic proof systems that cannot be
achieved with algebraic approaches? For many substructural logics, a stan-
dard answer is that such systems are essential to establishing algorithmic
properties like decidability, complexity, and interpolation. In particular, the
only known proofs of decidability for the full Lambek calculus (even at the
first-order level) and, equivalently, the equational theory of residuated lat-
tices, make use of Gentzen systems. For hypersequents, the situation is not so
straightforward. Decidability and complexity results can be obtained in cer-
tain cases, but often the mere existence of an analytic calculus does not help
much. So why bother? This tutorial will focus on two important applications.
First, proof theory can be used to tackle one of the central problems in the
field: standard completeness, showing that a logic is complete with respect
to the intended fuzzy semantics, or, equivalently, to showing that a variety of
algebras is generated by certain distinguished members. Roughly, the idea is
to add a special density rule to a logic that guarantees standard completeness
and then to show proof-theoretically that it can be eliminated. For example,
this method provides the only known proof of the standard completeness
of uninorm logic, or, equivalently, the generation of the variety of semilin-
ear bounded commutative residuated lattices by its members with lattice
reduct [0, 1]. The second area of application is the extension of propositional
fuzzy logics to the first-order level, a step that is somewhat problematic al-
gebraically but completely natural for Gentzen systems. The proof-theoretic
presentation facilitates investigation of key topics such as Herbrand’s theo-
rem and Skolemization, as well as providing a means for tackling (fragments
of) non recursively axiomatizable cases such as first-order Łukasiewicz logic.

The tutorial will assume some familiarity with fuzzy logics but no knowl-
edge of proof theory. Rather, the need for particular structures in proof sys-
tems will be motivated incrementally, starting with simple examples such as
lattices where inequations suffice, then continuing to distributive lattices,
classical logic, and substructural logics like the full Lambek calculus where se-
quents are required, and finally to the case of fuzzy logics and hypersequents.
The focus throughout will be on what the proof-theoretic approach has to
offer a researcher working in the field of mathematical fuzzy logic. Proofs of
key theorems such as cut elimination and density elimination will be given for
simple but instructive cases, many more technical and historical details, may
be found in the monograph [1] and the forthcoming handbook chapter [2].
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Mathematical Fuzzy Logic in
Linguistic Semantics

Vilém Novák ∗

In this paper, we will focus on possible ways how mathematical fuzzy
logic (MFL) can be utilized when dealing with linguistic semantics. We
believe that MFL can bring new tools both to formal as well as computational
semantics [1, 12] because it enables to join classical logical tools used in
linguistics with models of vagueness that is inherently present in the meaning
of natural language expressions.

It should be emphasized that MFL is first of all the logic and so, it is
important to apply its power in the development of a mathematical model of
linguistic semantics on the basis of logical analysis of the latter. One of nice
possibilities are methods of the logical analysis of concepts, as developed, e.g.
by P. Materna in [3, 4]. An interesting source of inspiration can be found
also in Montague grammar (cf. [2]).

A useful linguistic system is Functional Generative Description of natural
language developed by P. Sgall, E. Hajičová and J. Panevová in [13] and else-
where. According to this theory, natural language is described on the basis
of functional approach. Namely, the description of a sentence is understood
as a sequence of its representations on certain ordered levels. The lowest
level stresses the outer (sound) form of the sentence while the highest one
represents its meaning. Five levels are differentiated, namely phonetic (PH),
phonemic (PM), morphemic (MR), surface syntactic (SS) and tectogrammat-
ical TR). We will show how MFL can be applied in connection with the
latter.

The meaning of sentence on tectogrammatical level is represented as a de-
pendency tree the root of which represents verb, nodes represent word shapes
and edges represent dependency relations. Labels of nodes in a dependency
tree are word forms (complex units) that consist of elements of the following
categories:

∗Institute for Research and Applications of Fuzzy Modeling, University of Ostrava,
Czech Republic, Vilem.Novak@osu.cz.
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1. Lexical unit; the basic lexical units are nouns, adjectives, adverbs and
verbs.

2. Information about membership in the topic or focus.

3. Grammatemes (morphological meanings) of several categories for each
class of words.

Using mathematical fuzzy logic, we can develop mathematical model of the
meaning of some special lexical units and special expressions (syntagms).
Till now, the most elaborated is the theory of the meaning of evaluative lin-
guistic expressions which are expressions such as small, medium, big, twenty
five, roughly one hundred, very short, more or less strong, not very tall,
about twenty five, roughly small or medium, very roughly strong, etc. They
are interesting for MFL because their meaning is fundamental bearer of the
vagueness phenomenon and, at the same time, a consequence of the indis-
cernibility between objects which can be modeled by a fuzzy equality. Evalu-
ative expressions are related with evaluative predications which are linguistic
syntagms such as weight is small, pressure is very high, extremely rich person,
etc. The verb “is” is here usually taken as a copula joining an object with
its property. In MFL, we can construct semantics of evaluative predications
either as special expressions having its intension, or as propositions having a
truth value in a given model.

The most convenient constituent of MFL suitable for construction of mod-
els mentioned above is higher-order fuzzy logic, namely the fuzzy type theory
(FTT) because it has great explicative power and relatively simple syntax
which is in linguistic theory widely used. In general, FTT can be seen as
extension of classical type theory which has many valued semantics. This is
accomplished by replacing the basic axiom saying “there are just two truth
values” by a set of axioms characterizing the assumed structure (algebra) of
truth values. Though there are several kinds of FTT developed depending
on the algebra of truth values (IMTL, BL, Łukasiewicz, EQ), the most suit-
able for modeling the linguistic semantics seems to be the Łukasiewicz FTT
(Ł-FTT).

The fundamental concepts of the model of semantics are context (=pos-
sible world), intension, and extension. Concerning evaluative expressions, a
formal theory TEv is developed as a special theory of Łukasiewicz fuzzy type
theory.
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The intension of an evaluative expression (or predication) A is obtained
as interpretation of a formula λw λx (Aw)x of Ł-FTT in a special modelM:
Let U be a linearly ordered set U (we usually put U = R).

• In the general theory of semantics, we mean by a context (a possible
world) a state of the world at a given point in time and space. It is very
difficult to formalize such a definition. In case of evaluative expressions,
the situation is simpler. It is argued in [8] that their extensions are
classes of elements taken from some scale. Thus, we identify possible
worlds by contexts which are nonempty, linearly ordered and bounded
sets. Each context is determined by three distinguished limit points:
left bound vL, right bound vR, and a central point vS. Thus we define
context as a triple

w = 〈vL, vS, vR〉, vL, vS, vR ∈ U.

A simple example is the predication “A town”, for example “small town”,
“very big town”, etc. Then, the corresponding context for the Czech
Republic can be 〈3 000, 50 000, 1 000 000〉, while for the USA it can be
〈30 000, 200 000, 10 000 000〉. We introduce a set W of contexts. Each
element w ∈ W gives rise to an interval w = [vL, vR] ⊂ U .

• Let A be an evaluative expression. Its intension Int(A) is modeled as
a function Int(A) : W → F(U) where F(U) is a set of all fuzzy sets
over U .

• The extension Extw(A) of A in the context w ∈ W is a fuzzy set of
elements

Extw(A) = Int(w)(A) ⊂∼ w.

In TEv, the extension of an evaluative expression is obtained as a shifted
horizon where the shift corresponds to a linguistic hedge, which is thus
modeled by a function L→ L.

In our example, the truth value of a “small town having 30 000 inhabitants”
could be, for example, 0.7 in the Czech Republic and 1 in the USA. The full
formal theory including its informal justification, can be found in [8].

Other class of lexical units whose meaning can be modeled using MFL are
intermediate quantifiers analyzed logically in detail in [11]. In general, these
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are special adverbs. In MFL, however, we can hardly model the meaning of
them separately but better as parts of special syntagms of the form

QA are B

where Q is an intermediate quantifier such as many, most, almost all, few,
etc. and A,B can be more complex syntagms. A formal theory of their
meaning and also 105 of generalized syllogisms can be found in [5, 9].

Future development of the theory of semantics of natural language us-
ing MFL can be seen in several respects. First, it is possible to continue
the development of the model of meaning of further lexical units and special
syntagms. A special place is taken by the model of meaning of verbs. These
are characterized by variable complementation (roughly speaking, the num-
ber of dimensions) and many kinds of further aspects. We can continue with
formation of the semantics of sentences, e.g., in the direction initiated in [6].
Another possibility is to extend MFL to become a tool modeling the natural
human reasoning for which it is characteristic to use natural language. This
was started under the name Fuzzy Logic in Broader Sense (FLb) (see [7, 10]).
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Some Categorical Equivalences
Involving Gödel Algebras

Stefano Aguzzoli∗ Tommaso Flaminio† Enrico Marchioni †

The aim of this work is to investigate three categorical equivalences of
Gödel algebras (cf. [2]): the first one involves Idempotent Involutive Uninorm
(IIU in symbols)-algebras (cf. [4]), the second is between Gödel algebras
and the subcategory of Nilpotent Minimum algebras NM+ of those algebras
whose involutive negation has a fix point, and finally the third one is the
subcategory of those Nilpotent Minimum algebras NM− whose negation has
not a fix point.

Recall that a IIU-algebra is a bounded commutative residuated lattices
〈A, ∗,→,≤, e,⊥,⊤〉 satisfying (x→ e)→ e = x (for all x ∈ A), and x∗x = x
for all x ∈ A. To simplify the notation, we write ¬x instead of x → e. The
standard example of IIU-algebra is the system 〈[0, 1], ∗,→, 1

2
, 0, 1〉, where for

every x, y ∈ [0, 1],

x ∗ y =

{
max{x, y} if x+ y > 1
min{x, y} otherwise.

and

x→ y =

{
max{1− x, y} if x ≤ y
min{1− x, y} otherwise.

A NM-algebra is a any algebra in the signature 〈⊙,→,∧,∨,⊥,⊤〉 of type
(2, 2, 2, 2, 0, 0). The variety of NM-algebras is generated by the standard
NM-algebra 〈[0, 1],⊙,⇒, 0, 1〉, where for all x, y ∈ [0, 1],

x⊙ y =

{
min{x, y} if x+ y > 1
0 otherwise.
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and

x⇒ y =

{
1 if x ≤ y
max{1− x, y} otherwise.

The negation of any NM-algebra is defined as ¬x = x⇒ 0, and the equation
¬¬x = x holds in any NM-algebra. An algebra A in the signature of NM, is
said to be a NM−-algebra if the following is satisfied:

¬((¬(x⊙ x)⊙ ¬(x⊙ x)) = (¬(¬x⊙ ¬x))⊙ (¬(¬x⊙ ¬x)).

Consider the signature of NM-algebras, extended by a fresh symbol for
a constant f . In this extended signature, we say that an algebra A is an
NM+-algebra if A satisfies the fix point equation:

¬f = f .

We respectively denote by G, IIU , NM+, and NM− the categories
whose objects are Gödel, IIU, NM+, and NM−-algebras, and having homo-
morphisms as morphisms. Functors between the subdiretly irreducible ele-
ments of any of the above categories can be defined by adapting the Jenei [3]
constructions of connected and disconnected rotations (to respectively define
subdirectly irreducible NM+ and NM− algebras by subdirectly irreducible
Gödel algebras), and an analogous rotation-like construction to define a sub-
directly irreducible IIU-algebra, by a subdirectly irreducible Gödel algebra.
On the other way round, a Gödel algebra can always be defined by restricting
a IIU, NM+, or NM−-algebra on the domain.

The following diagram summarizes the main equivalences:

NM+

(N+)−1

��
G

N−

��

N+

OO

I // IIU
I−1

oo

NM−

(N−)−1

OO

Once the functor I, N+ and N− are defined on subdirectly irreducible alge-
bras, and on morphisms accordingly to the chosen rotation-like construction,
the equivalence follows by the subdirect representation theorem.
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Our investigation is now about the following directions:

(i) We firstly explore if the above introduced functors preserve basic logical
and algebraic properties we know hold for G, NM+, NM−, and IIU .

(ii) Then we want to establish if the proposed categorical equivalence al-
lows to define additional structure to IIU, NM+ and NM−-algebras. In
particular we are interested in showing what states on Gödel algebras
(cf. [1]) correspond once the functors I, N+ and N− are applied. More-
over we address the problem of showing whether de Finetti’s theorem
for states on Gödel algebras extends to IIU, NM+ and NM−-algebras
as well.
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On Similarity in Fuzzy Description
Logics

Eva Armengol∗ Pilar Dellunde∗,† Àngel García-Cerdaña∗

In this paper we explore the possibility of introducing the equality sym-
bol in the languages of Fuzzy Description Logics (FDLs) interpreted as a
similarity relation. In the talk we will present a state of the art concerning
the notion of similarity in some fields of artificial intelligence, and we analyze
some variants of the languages for the FDLs introduced in [10]. The goal is
twofold: dealing with attribute-value representations at the domain objects
level, and integrating the treatment of similarities inside the description lan-
guages and their corresponding knowledge bases.

Description Logics (DLs) are knowledge representation languages built
on the basis of classical logic. DLs allow the creation of knowledge bases
and provide ways to reason on the contents of these bases. A full reference
manual of the field is [1]. The vocabulary of DLs consists of concepts, which
denote sets of individuals, and roles, which denote binary relations among in-
dividuals. From atomic concepts and roles and by means of constructors, DL
systems allow us to build complex descriptions of both concepts and roles.
These complex descriptions are used to describe a domain through a knowl-
edge base (KB) containing the definitions of relevant domain concepts or
some hierarchical relationships among them (Terminological Box or TBox),
and a specification of properties of the domain instances (Assertional Box or
ABox). One of the main issues of DLs is the fact that in both the TBox and
the ABox can be identified with formulas in first-order logic or an extension
of it; therefore we can use reasoning to obtain implicit knowledge from the
explicit knowledge in the KB.
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Fuzzy Description Logics (FDLs) are natural extensions of DLs for deal-
ing with vague concepts, commonly present in real applications (see for in-
stance [21, 22, 20, 2] or [16] for a survey). Hájek [13] proposed to deal with
FDLs taking as basis t-norm based fuzzy logics with the aim of enriching the
expressive possibilities in FDLs and to capitalize on recent developments in
the field of mathematical fuzzy logic. From this perspective, in [10] a family
of DLs was defined. These languages include truth constants for representing
truth degrees, thus allowing the definition of the axioms of the knowledge
bases as sentences of a fuzzy predicate language in much the same way as in
classical DLs.

Similarity has been a central issue for decades in different disciplines,
ranging from philosophy (Leibniz’s Principle of the Identity of Indiscernibles)
and psychology (Tversky’s stimuli judged similarity) to natural sciences (tax-
onomy) and mathematics (geometric similarity). Also in artificial intelligence
similarity plays an important role since the analogy reasoning is behind some
of the early machine learning methods. Particularly, case-based reasoning
methods are based on the principle that “similar problems have similar solu-
tions” where the notion of similarity has a capital importance (see [14]).

In the fuzzy framework, the notion of similarity was introduced by Zadeh
in [24] as a generalization of the notion of equivalence relation (see [17] for
a historical overview on the notion of t-norm based similarity). As Zadeh
pointed out, one of the possible semantics of fuzzy sets is in terms of simi-
larity: the degree of membership of an object to a fuzzy set can be seen as
the degree of resemblance between this object and prototypes of the fuzzy
set. Thus, an important logical issue is to define a logic of similarity that can
account for the proximity between the boolean interpretations of a proposi-
tional language. Dubois and Prade developed this idea in [8]. Ruspini [18]
presents a formal characterization of the notions of both implication and
consequence of propositional fuzzy logic in terms of the similarity notion
between pairs of possible worlds. Based on his work, Esteva et al. [9] con-
sider graded entailments between sets of propositional formulas induced by
a similarity relation on the set of interpretations. Hájek studies similarities
in fuzzy predicate logics and applies the obtained results to the analysis of
fuzzy control [12]. Bělohlávek [4] presents a general theory of fuzzy relational
systems. Gerla [11] proposes a fuzzy predicate theory whose fuzzy models are
plausible candidates for the notion of approximate similarity. For a reference
about model-theoretic properties of algebras with fuzzy equalities see [6, 4].

Similarity in DLs has been studied by Borgida et al. [3] and D’Amato et
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al. [7] among others, focusing on similarity measures between DL concepts,
and from the logical point of view by Sheremet et al. [19]. D’Amato et al.
take as starting point the idea that measures for estimating concept similarity
have to be able to appropriately consider concept semantics in order to cor-
rectly assess their similarity value. In accordance with this goal the authors
propose a set of properties that a semantic similarity measure should have,
analyze different extensional-based and intensional-based similarity measures
proposed in the literature, and show that these approaches lack some of the
needed properties. Finally, they define a measure for complex descriptions in
some DL languages that is compliant with all of these criteria. Sheremet et
al. propose an integration of logic-based and similarity-based approaches in
classical DLs. They use concept constructors such as ‘in the a-neighborhood
of C’ where a is a positive rational number; or the operator C ⇇ D which is
interpreted by the set of all points in the similarity space that are closer to
the instances of C than to the instances of D. For example, it can be used
to model statements like ‘X resembles C more than D’. Since we want to
study the similarity in FDLs, we explore the possible generalization of both
approaches, [19] and [7], to the fuzzy framework.

Our approach. In this paper we introduce the equality symbol in the
language of FDLs and in their knowledge bases interpreted as a similarity
relation. We also define variants of the languages for the FDLs introduced in
[10]. These variants allow to deal with attribute-value representations at the
domain objects level. The attribute-value representation is commonly used
in artificial intelligence. In this representation, domain objects are sets of
pairs attribute-value, where the value of an attribute may be qualitative or
quantitative (see [23] to clarify the classes of data types). The global similar-
ity between objects has to be seen as an aggregation of the local similarities
of the features (see [15] and [5] for a collection of similarity and aggrega-
tion measures, respectively). To integrate the treatment of similarities inside
knowledge bases, we can take profit of the presence of truth constants in
FDL languages, as it is done in [10]. This fact allows to state graded notions
at the syntactical level for both similarity between objects and similarity be-
tween concepts. As Ruspini suggests in [18], the degree of similarity between
two objects A and B may be regarded as the degree of truth of the vague
proposition “A is similar to B”. Thus, similarity among objects can be seen
as a phenomena essentially fuzzy. Following this idea, the capabilities of a
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FDL language to deal with truth degrees at the syntactical level are specially
relevant in which concerns to a useful treatment of the notion of similarity
in the DLs framework. Therefore, the basic lines of our approach are:

• to represent domain objects by means of sets of pairs attribute-value as
it is commonly done in artificial intelligence. Our goal is to integrate
such representation in the conceptualization of the domain by means
of FDLs.

• to explore the possibility of defining a Similarity Fuzzy Description
Logic, introducing similarity roles and new concept constructors, the
former interpreted as similarities between objects, the later as similar-
ities between concepts. From our point of view the similarity between
objects can be seen as an aggregation of the local similarities between
attributes. Also, the similarity between concepts could be defined from
similarities among objects.

• the use of the truth degrees included in the languages as similarity
degrees between both objects and concepts.
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Kripke-Style Semantics for
Normal Systems

Arnon Avron∗ Ori Lahav ∗

In this paper we describe a generalized framework of sequent calculi,
called normal systems, which is suitable for a wide family of propositional
logics. This family includes classical logic, several modal logics, intuition-
istic logic, its dual, bi-intuitionistic logic, and various finite-valued logics.
We present a general method for providing a non-deterministic finite-valued
Kripke-style semantics for every normal system, and prove a corresponding
general soundness and completeness theorem.

As observed in [3], there are two dual standpoints regarding signed calculi
(or many-sided sequent calculi). In the “positive” interpretation a signed
formula consisting of a sign i and a formula ψ is true, iff i is the truth value
assigned to ψ. In the “negative” interpretation the same signed formula is
true, iff i is not the truth value assigned to ψ (The two approaches practically
coincide in the two-valued case). As in [4], it turns out that the “negative”
interpretation is more suited for our purposes, since it leads to a natural
Kripke-style semantics, that generalizes the well-known two-valued semantics
for the above-mentioned logics. The definitions below (and the notation we
use) reflect this choice.
Definition A signed formula for a propositional language L and a finite
set of signs I is an expression of the form i ÷ ψ, where i ∈ I and ψ is an
L-formula. A sequent is a finite set of signed formulas. The usual two-sided
notation Γ⇒∆ is interpreted as {t÷ ψ | ψ ∈ Γ} ∪ {f ÷ ψ | ψ ∈ ∆}, i.e. a
sequent over I = {t, f}.

Definition

1. A context-restriction is a set of signed formulas. A normal premise
is an expression of the form 〈s, π〉, where s is a sequent and π is a
context-restriction.
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2. A normal rule is an expression of the form: S/C, where S is a finite
set normal premises, and C is a sequent. An application of the normal
rule S/C is any inference step which derives σ(C) ∪ s′ from the set of
sequents {σ(s) ∪ (s′ ∩ π) | 〈s, π〉 ∈ S}, where s′ is a sequent and σ is
an L-substitution.

3. The identity axioms are normal rules of the form ∅/{i÷ p1, j ÷ p1},
for every i, j ∈ I such that i 6= j. The cut rule is the normal rule
{〈i÷ p1, π〉 | i ∈ I}/∅, where π is the set of all signed formulas. The
weakening rules are the normal rules of the form {〈∅, π〉}/i÷ p1 for
every i ∈ I, where π is the set of all signed formulas.

4. A sequential system is called normal iff it consists of normal rules only,
and the identity axioms, cut, and weakening are among its rules.

We give some examples of the variety of derivation rules included in our
normal rule definition:

Classical Implication. Assume I = {t, f}. The following normal rules are
the rules for implication in Gentzen’s LK (see [6])1 :

{〈{t ÷ p1, f ÷ p2}, π1〉}/f ÷ p1 ⊃ p2
{〈{f ÷ p1}, π2〉, 〈{t÷ p2}, π2〉}/t÷ p1 ⊃ p2

where π1 and π2 are the sets of all signed formulas for L and I. Using
a more usual notation, applications of these rules have the form:

Γ, ψ⇒∆, ϕ
Γ⇒∆, ψ ⊃ ϕ

Γ⇒∆, ψ Γ, ϕ⇒∆
Γ, ψ ⊃ ϕ⇒∆

Intuitionistic Implication. Assume I = {t, f}. Consider the previous
two rules for ⊃ where π2 is the same, and π1 is the set of all signed
formulas of the form t÷ ψ. This gives the rules for implication in LJ ′

(see [7]). Using a more usual notation, applications of the second rule
have the form:

Γ, ψ⇒ϕ
Γ⇒∆, ψ ⊃ ϕ

1More precisely, we mean the version of LK, in which the two sides of a sequent consists
of sets of formulas. The same applies to the other systems that we mention.

51



Logic, Algebra and Truth Degrees Prague, 7–11 September 2010

S4’s Box. Assume I = {t, f}. The following normal rules are the rules for
box in S4∗ (see [5]):

{〈{f ÷ p1}, π1〉}/f ÷�p1 {〈{t ÷ p1}, π2〉}/t÷�p1

where π1 is the set of all signed formulas of the form t÷�ψ, and π2 is
the set of all signed formulas for L and I. Using a more usual notation,
applications of these rules have the form:

�Γ⇒ψ
Γ′,�Γ⇒∆,�ψ

Γ, ψ⇒∆
Γ,�ψ⇒∆

3-Valued Lukasiewicz’s Implication. Assume I = {t, I, f}. The follow-
ing normal rules are the rules for implication in NL3 (see [8]):

{〈{f ÷ p1}, π〉, 〈{f ÷ p2, t÷ p1}, π〉}/f ÷ p1 ⊃ p2
{〈{f ÷ p1, I ÷ p1}, π〉, 〈{I ÷ p2, t÷ p1}, π〉}/I ÷ p1 ⊃ p2

{〈{f ÷ p1}, π〉, 〈{t÷ p2}, π〉, 〈{I ÷ p1, I ÷ p2}, π〉}/I ÷ p1 ⊃ p2

where π is the set of all signed formulas for L and I. Using a more
usual notation, applications of these rules have the form:

Γ|∆|Σ, ψ Γ, ϕ|∆|Σ, ψ
Γ, ψ ⊃ ϕ|∆|Σ

Γ, ψ|∆, ψ|Σ Γ|∆, ϕ|Σ, ψ
Γ|∆, ψ ⊃ ϕ|Σ

Γ, ψ|∆|Σ Γ|∆|Σ, ϕ Γ|∆|Σ
Γ|∆, ψ, ϕ|Σ, ψ ⊃ ϕ

Now we define the Kripke semantics induced by any given normal system.
Non-deterministic Kripke-frames for single-conclusion proper sequential cal-
culi were first introduced in [2].
Definition Let G be a normal system. Denote by ΠG the set of context-
restrictions which appear in G.

1. A ΠG-frame is a tuple 〈W,R, v〉, where:

(a) W is a set of elements, andR is a set of preorders onW , consisting
of a preorder .π for every π ∈ ΠG. If π is the set of all signed
formulas, then .π is the identity relation.

(b) v :W ×FrmL → I is a persistent function, i.e. for every π ∈ ΠG:
if i÷ψ ∈ π and v(a, ψ) = i, then v(b, ψ) = i for every b ∈ W such
that a .π b.
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2. Let W = 〈W,R, v〉 be a ΠG-frame.

(a) A sequent s is true in a ∈ W iff there exists i ÷ ψ ∈ s such that
v(a, ψ) 6= i. W is a model of s iff s is true in every a ∈ W .

(b) W respects a normal rule of G, r = S/C, iff for every a ∈ W and
every L-substitution σ: If σ(s) is true in every b ∈ W such that
a .π b for every 〈s, π〉 ∈ S, then σ(C) is true in a.

(c) W is G-legal iff it respects all the rules of G.

We give some examples of the sets of all G-legal frames for important logics:

Classical Logic. Consider the normal system LK. LK includes one sort of
context-restriction, π, which is the set of all signed formulas. Thus we
consider frames with one preorder .π, which is the identity relation.
The persistence condition then vacuously holds. LK-legality reduces
to usual Tarski-style semantics in every element of W .

Intuitionistic Logic. Consider the full normal system LJ ′ from [7]. It has
two sorts of context-restriction: π1 and π2 from the example of intu-
itionistic implication given above. π1 (the set of all signed formulas of
the form t÷ ψ) is used in the right rule for implication, π2 (the set of
all signed formulas) in all the rest. Accordingly, the persistence condi-
tion means here that if v(a, ψ) = t then v(b, ψ) = t for every b ∈ W
such that a .π1 b. Now it is easy to see (using persistence) that a
frame is LJ ′-legal accoding to our definitions iff: (1) v(a, ψ ⊃ ϕ) = t
iff there does not exist an element b ∈ W such that a .π1 b, v(b, ψ) = t
and v(b, ϕ) = f ; and (2) it respects the usual truth-tables of the other
connectives (∧,∨ and ⊥) in every element of W .

S4. Consider the normal system S4∗ from [5]. S4∗ again has two sorts of
context-restriction: π1 and π2 from the example of S4’s Box given
above. Now .π2 is again the identity relation, so the persistence condi-
tion means that if v(a,�ψ) = t then v(b,�ψ) = t for every b ∈ W such
that a .π1 b. Using the fact that .π1 is a preorder, it is easy to see
that a frame is S4∗-legal iff: (1) v(a,�ψ) = t iff v(b, ψ) = t for every
b such that a .π1 b; and (2) it respects the usual truth-tables of the
other connectives in every element of W .
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Our main result is the following:

Theorem (Strong Soundness and Completeness) Let G be a normal system.
There exists a proof in G of a sequent s from a set of sequents S, iff every
G-legal ΠG-frame which is a model of S is also a model of s.

A Compactness property of our semantic consequence relation (for any
given normal system) is an easy corollary of this theorem. Moreover, the
proof of this theorem shows that it is sufficient to consider a narrower class
of frames. We point out two properties of the frames in this class:

1. If {j ÷ ψ | j 6= i} ⊆ π1 whenever i÷ ψ ∈ π2, then .π2 is the inverse of
.π1. In particular, if i÷ ψ ∈ π for every i ∈ I whenever i÷ ψ ∈ π for
some i ∈ I, then .π is symmetric.

2. If for every formula ψ, i ÷ ψ 6∈ π for at most one i ∈ I, then .π is
anti-symmetric.

In particular:

1. For S5∗ (a calculus for S5, see [5]), it suffices to consider frames with
one equivalence relation.

2. For LJ ′, it suffices to consider frames with an order relation. The same
is true for dual-intuitionistic logic and for bi-intuitionistic logic.

Following this method, one obtains a finite-valued Kripke-style semantics
for any normal system. The semantics is modular, allowing to separately in-
vestigate the effect of every normal rule. Note that for many normal systems,
the resulting semantics is non-deterministic, and the truth-functionality prin-
ciple does not hold. This happens, for example, for any normal system whose
set of rules is a proper subset of any of the above-mentioned normal systems.

We believe that the current work is a good starting point for developing
and investigating sequent calculi for various sorts of combinations of many
valued, intuitionistic, modal, and multi-modal logics. However, it should
be noted that in order to obtain a decision procedure for a normal system
using this semantics, one have to ensure analycity ([1]) of the semantics,
i.e. that every legal frame which is defined on some set of formulas can be
extended to a legal frame defined on all formulas. It is interesting to look
for a general characterization of normal systems which admit this property.
Another important question is how (and in what cases) can we extract a
semantic proof of cut-elimination from our completeness proof. We leave
these questions for a future work.
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Gödel Logics with an Operator that
Shifts Truth Values

Matthias Baaz ∗ Oliver Fasching∗

We consider an extension of [0,1]-Gödel logic by a unary operator o that
adds a constant r ∈ [0, 1] fixed for every interpretation. The set of formulas
in propositional logic valid for all r is known to be axiomatizable by a simple
Hilbert-Frege system that extends BL and IPL and consists only of finitely
many schemata. We answer Hájek’s question of the axiomatization of the for-
mulas valid in a logic enhanced by o where one takes instead of [0,1] a truth-
value set V , {0, 1} ⊆ V ⊆ [0, 1] such that oA is defined for all formulas A.

We consider a language LP
o that comprises a countably infinite set of

propositional variables, connectives ⊥, ⊃, ∧, ∨ with their usual arities as
well as a unary connective o. The semantics of propositional Gödel logics
with o in LP

o is determined by Gödel r-interpretations I; here r ∈ [0, 1] and
I maps formulas to [0, 1] such that

I(A ∧B) = min{I(A), I(B)},

I(A ∨B) = max{I(A), I(B)},

I(o(A)) = min{1, r + I(A)},

I(⊥) = 0,

I(A ⊃ B) =

{
1 if I(A) ≤ I(B),

I(B) if I(A) > I(B).

A formula A is valid if I(A) = 1 holds for all Gödel r-interpretations
I, r ∈ [0, 1]. We introduce the well-known abbreviations ⊤ := ⊥ ⊃ ⊥,
¬A := A ⊃ ⊥, A ≺ B := (B ⊃ A) ⊃ B, A↔ B := (A ⊃ B) ∧ (B ⊃ A) and
define the o-powers o0A := A, on+1A := on oA. We have then, e. g.,

I(A ≺ B) =

{
1 if I(A) < I(B) or I(A) = I(B) = 1,
I(B) if I(A) ≥ I(B).

Dummett [1] proved that the set of valid formulas in propositional Gödel logic
(without o) is axiomatized by the Hilbert-Frege style proof system (GPL)
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that consists of the axiom schema of linearity (LIN) A ⊃ B ∨ B ⊃ A added
e. g. to the system (IPL), which axiomatizes propositional intuitionistic logic:

A ⊃ (B ⊃ A), modus ponens: A A⊃B
B

,
(A ∧ B) ⊃ A, (A ⊃ (B ⊃ C)) ⊃ (A ⊃ B) ⊃ (A ⊃ C),
(A ∧ B) ⊃ B, (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨ B) ⊃ C)),
A ⊃ (A ∨ B), A ⊃ (B ⊃ (A ∧ B)),
B ⊃ (A ∨ B), ⊥ ⊃ A.

One can prove that the set of valid formulas in propositional Gödel logics
with o over [0,1] is given by (GPL) plus the following simple axiom schemata:

(⊥ ≺ o⊥) ⊃ (A ≺ oA)
(⊥ ↔ o⊥) ⊃ (A↔ oA)
(o(A ≺ B))↔ (oA ≺ oB)

The proof employs Dummett’s idea to use chains, i. e. linear orderings of
propositional variables and their o-powers w. r. t. ≺ and ↔, to ‘evaluate’ the
given formula; cf. also [2]. In the proof, a finite counter-model is constructed
for each formula that is not valid.

We will show how the above system of (GPL) plus the three ring axiom
schemata must be extended to obtain an axiomatization of the propositional
Gödel logics with o over a given finite truth-value set V , {0, 1} ⊆ V ⊆ [0, 1],
where all o-operations are defined. An important axiom will be the pigeon
hole principle

p1 ∨ (p1 ⊃ p2) ∨ (p2 ⊃ p3) ∨ . . . ∨ (pn−2 ⊃ pn−1) ∨ (pn−1 ⊃ ⊥).

We can even specify a sequence of truth-value sets (Vi)i such that a formula
is valid in propositional Gödel logics with o over [0,1] if and only if it is valid
over all Vi. Moreover, we will characterize the logics arising from infinite V .

We will also indicate the relation between the above logics, where o shifts
truth-values by a constant, and the logics, where o adds certain monotonous
functions.
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Semantics of Counterfactuals in
Higher-Order Fuzzy Logic

Libor Běhounek ∗ Ondrej Majer †

First-order fuzzy logics are expressive enough to support non-trivial ax-
iomatic theories of fuzzy mathematics. In the framework of Henkin-style
higher-order fuzzy logic [6], several axiomatic theories of fuzzy mathematics
have been developed to an extent which enables a smooth mathematical work
with fuzzy structures (esp. fuzzy sets and fuzzy relations [6, 5, 8]). The ap-
paratus has already been applied to formal semantics of erotetic logic [1] and
propositional dynamic logic [2]; here we propose its application in Lewis-style
semantics of counterfactual conditionals [11].

Counterfactual conditionals are propositions of the form “if it were the
case that A, then it would be the case that B”, where A is an irreal condition
(i.e., is presupposed to be false in the actual world). Interpreting counterfac-
tual conditionals as classical material implication A → B would clearly be
counter-intuitive, as it would render all counterfactuals as true. Intuitively,
however, some counterfactuals are perceived as true (e.g., “if kangaroos had
no tail, they would topple over”) while others as false (e.g., “if kangaroos had
no tail, they would be able to fly”). Logical analysis of counterfactual con-
ditionals therefore requires intensional rather than extensional implication,
which is usually modeled by possible-world semantics. Several proposals of
formal semantics of counterfactuals have been offered; the most influential
analysis was provided independently by David Lewis [11] and Robert Stal-
naker [12]; we shall follow (several variants of) Lewis’ account here.

Lewis’ semantics of counterfactuals is based on comparing the ‘distance’
(in the sense of subjective similarity) between possible worlds: the coun-
terfactual “if it were the case that A, then it would be the case that B” is
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considered true iff the closest worlds in which both A and B are true are
closer to the actual world than closest worlds in which A is true and B is
false. This idea can be rendered in a very natural way by means of higher-
order fuzzy logic: the notion of ‘distance’ can be represented by a fuzzy
similarity (of the worlds), i.e., a fuzzy relation which is reflexive, symmetric,
and transitive (in the sense of fuzzy logic of our choice); the larger the truth
degree of the fuzzy similarity relation, the closer are the worlds to each other.
The apparatus of higher-order fuzzy logic (MTL or stronger) then easily and
naturally accommodates all operations that are needed for internalization of
Lewis’ semantics for counterfactuals.

The reconstruction of Lewis-style semantics can be carried out in (any
extension of) higher-order logic MTL [9], which is arguably the weakest
fuzzy logic suitable for the enterprise of formal fuzzy mathematics [3] (unless
generalizations without the rules of exchange or weakening are considered).
Besides the formal theory of fuzzy relations (esp. theorems on fuzzy similari-
ties, fuzzy orderings, and fuzzified maxima and minima) as developed in [5],
some theorems on fuzzified metric notions (such as the distance from a fuzzy
set) are necessary for the fuzzy semantics of counterfactuals; these theorems
(which form a part of number-free metric theory, cf. [4]) are, nevertheless,
straightforwardly derivable in the framework of higher-order MTL. (Techni-
cal details of the reconstruction of Lewis’ semantics are omitted here due to
space restrictions, but will be presented in the talk.)

Apart from providing a new perspective on Lewis’ semantics, the formal-
ization within the framework of higher-order fuzzy logic offers several advan-
tages compared to the classical definition. First, it automatically accommo-
dates graded counterfactuals (e.g., “If John were tall, then. . . ”—where tall is
a graded predicate whose truth value reflects a person’s height measured in
cm’s). Arguably, most propositions of natural language are gradual in this
sense; and classical rendering of such propositions as bivalent is an idealiza-
tion susceptible to the sorites-style paradoxes. Second, the many-valuedness
of fuzzy logics automatically accommodates the gradual truth of counterfac-
tuals, making it possible to capture the intuition that some counterfactuals
are perceived as truer than others. And third, the structure of truth degrees
makes it possible not only to compare, but also ‘measure’ the ‘distance’ be-
tween possible worlds. Even though measuring the distance by real numbers
would hardly be justifiable (and therefore was rejected by Lewis), the seman-
tics of formal fuzzy logics provides abstract degrees of distance in various
algebras of truth values yielded by algebraic semantics of fuzzy logics.
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The price paid for the formalization of Lewis’ semantics in fuzzy logic is
the necessity of using non-classical reasoning in its description (including cer-
tain peculiar features that are due to the non-idempotent conjunction, cf. [7]).
Nevertheless, the deductive apparatus of fuzzy logic is by now sufficiently de-
veloped and all necessary theorems on fuzzy orderings and similarities either
are already at our disposal [5] or are easily derivable; the non-classical theory
can therefore be developed at a rather low cost.

In the talk, a reconstruction of Lewis’ semantics and an independent
analysis of both graded and bivalent counterfactuals in formal fuzzy logic will
be presented (including the technical details omitted here). Both systems will
then be compared, and the merits of the fuzzy approach will be discussed.
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Gödel Rings

Lawrence P. Belluce∗ Antonio Di Nola†

Enrico Marchioni ‡

Given a distributive lattice one can try to find a representation of this
lattice by relating it to the lattice of ideals of a ring. Von Neumann’s coor-
dinatization theorem is a prime example of this (see [13]) showing that if a
complemented modular lattice L has a finite homogeneous spanning sequence
with at least four elements, then it is coordinatizable, that is, there exists a
von Neumann regular ring R (see [12]) whose lattice of principal right ideals
is isomorphic to L. Somewhat similarly, Bergman [1] showed that an alge-
braic distributive lattice with at most ℵ0 compact elements is isomorphic to
the lattice of ideals of a Von Neumann regular ring. Wehrung proved in [14]
that ℵ0 in Bergman’s result can be replaced by ℵ1 (i.e.: every algebraic dis-
tributive lattice with at most ℵ1 compact elements is isomorphic to the ideal
lattice of a von Neumann regular ring) and has also shown that ℵ1 cannot
be replaced by ℵ2.

In this work we take a different point of view and try to address the fol-
lowing question: What properties does a ring have if we require its semiring
of ideals to be a Gödel algebra?

Let R be a ring, not necessarily commutative nor necessarily with identity.
We assume that R satisfies the condition

(⋆) for all x ∈ R there are s, t ∈ R such that sx = x = xt.
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We want to study a subclass of the above rings whose semiring of ideals
Id(R) can be given the structure of a Gödel algebra. The lattice of ideals and
the semiring of ideals of a ring R are identical as sets but not as algebraic
structures. We choose to force equality so that the semiring product agrees
with the lattice meet. Such rings are called Gödel rings.

A prominent example of Gödel rings are Von Neumann regular rings
(VNR) (see [12, 7]). Recall that a ring R is a VNR ring provided that for
all x ∈ R there is a y ∈ R such that x = xyx. Indeed, the set of ideals
of a VNR can be easily seen to be a Heyting algebra. Moreover, as shown
by Kaplansky [10], if R is the full ring of linear transformations on a vector
space over a division ring, then R is VNR, and its set of ideals forms a chain.
Then Id(R) is indeed a Gödel algebra.

Examples of Gödel rings that are not VNR can be found, for instance, in
the class of Weyl algebras. Indeed (see [8, pg.33]), let F be a field of charac-
teristic 0, and let R = F [x, y] be the ring of polynomials p(x, y) = Σijαijx

iyj

where x, y commute with the elements of F but xy − yx = 1. Such a ring
can be shown to be a Gödel ring.

Our main result states that every Gödel ring R is a subdirect product
of prime Gödel rings Ri, and the Gödel algebra Id(R) associated to R is
subdirectly embeddable as an algebraic lattice into

∏
i Id(Ri), where each

Id(Ri) is the algebraic lattice of ideals of Ri that can be equipped with
the structure of a Gödel algebra. Moreover, the mapping associating to each
Gödel ring its Gödel algebra of ideals is functorial from the category of Gödel
rings with epimorphisms into the full subcategory of frames whose objects
are Gödel algebras and whose morphisms are complete epimorphisms.
Representation Theorem If R is a Gödel ring, then

1. R is a subdirect product of subdirectly irreducible prime Gödel rings
Ri;

2. Id(R) →֒
∏

i Id(Ri);

3. each Id(Ri) is an algebraic Gödel algebra with a unique atom.

Furthermore, we study the connection between prime ideals of a Gödel
ring and prime complete ideals of its related Gödel algebra and we show that
the related spectra are homeomorphic.
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Leibniz Interpolation Properties

Leonardo Cabrer ∗ José Gil-Férez ∗

In the framework of Abstract Algebraic Logic (see [2] for a general sur-
vey) a number of different interpolation properties have been considered:
Maehara Interpolation Property, Robinson Interpolation Property, and De-
ductive Interpolation Property among others (see [1] as well as the references
therein).

In [3], Kihara and Ono introduce some new notions of interpolation
for substructural logics. For instance, one of the interpolation properties
that they study is the following: for any arbitrary pair of formulas ϕ, ψ, if
⊢ (ϕ\ψ) ∧ (ψ\ϕ), then there exists a formula δ with variables var(δ) ⊆
var(ϕ) ∩ var(ψ) such that

⊢ (ϕ\δ) ∧ (δ\ϕ) and ⊢ (δ\ψ) ∧ (ψ\δ).

In the same paper they present algebraic characterizations for all these no-
tions and investigate their relation with the usual interpolation properties.
The authors also remark: “only a few properties specific to FL-algebras or
residuated lattices are used in our discussion,” and they propose the study
of these interpolation properties in a more general setting. The objective of
the present paper is to give an answer to that remark by exhibiting a gen-
eral framework in which these interpolation properties can be expressed and
characterized by means of algebraic tools.

First, we note that ∇(x, y) = {(x\y) ∧ (y\x)} is a set of equivalence for-
mulas (in the sense of Abstract Algebraic Logic) for the subestructural logics,
that is, it defines the Leibniz congruences of their models. In particular, for
every theory Γ and every pair of formulas ϕ, ψ,

Γ ⊢ ∇(ϕ, ψ) ⇔ 〈ϕ, ψ〉 ∈ ΩΓ.

This motivates the choice of the equivalential logics, i.e., logics having a set
of equivalence formulas, as our general setting.
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We introduce a family of what we call ‘Leibniz’ interpolation properties, in
which we are mainly interpolating pairs of elements in the Leibniz congruence
of a particular free algebra. Applied to the case of substructural logics, some
of them coincide with those introduced in [3].

The first notion of interpolation that we introduce is the Leibniz Inter-
polation Property (LIP). A sentential logic S has the LIP if for every set
of formulas Γ and every pair of formulas ϕ, ψ, if 〈ϕ, ψ〉 ∈ ΩΓ, then there
exists a formula δ with variables var(δ) ⊆ var(Γ, ϕ) ∩ var(Γ, ψ) such that
〈ϕ, δ〉, 〈δ, ψ〉 ∈ ΩΓ, where Γ = CnS(Γ) is the theory of S generated by Γ. By
adding new conditions we can strengthen this property in several different
ways.

In the context of equivalential logics, we find characterizations for these
interpolations properties in terms of categorical properties of their classes of
reduced models, reduced algebras, or both. We say that a family of matrices
C has approximating pullbacks for (pairs of) strict morphisms if whenever
f : A B and g : A  C is a pair of strict matrix morphisms, there exists
a pullback and onto matrix morphisms ρB, ρC rendering commutative the
following diagram:

B B′
ρBoooo

  A
AA

AA

A
??
f ??~~~~~

��

g ��@
@@

@@

%%

99

�
?

E

C C ′
ρCoooo

>>}}}}}

(1)

We prove that every equivalential logic S satisfies the LIP, and this implies
that the category Mod

∗S of its reduced models has approximating pullbacks
for strict matrix morphisms. For the others interpolations properties we find
characterizations, by strengthening the conditions in Diagram (1).

Three of the notions that we introduce and deserve a special attention
are the Relative Leibniz, Robinson-Leibniz, and Maehara-Leibniz Interpola-
tion Properties. They are the natural generalizations of three of the interpo-
lation properties considered in [3] for substructural logics. We investigate the
relation of these properties with those studied by Czelakowsky and Pigozzi
in [1] and obtain the following result for the equivalential logics satisfying
the G-rule, that is, the regularly algebraizable logics.
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Theorem. For every regularly equivalential logic S, we have the following
implications:

(i) The Relative Interpolation Property implies Interpolation Property.

(ii) The Robinson-Leibniz Interpolation Property implies the Robinson In-
terpolation Property.

(iii) The Maehara-Leibniz Interpolation Property implies the Maehara In-
erpolation Property.
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Compatible Operators on
Residuated Lattices

Jose Luis Castiglioni∗ Hernan Javier San Martín∗,†

This work provides a possible generalization to the context of residuated
lattices of frontal operators in the sense of the article [5].

Let L be a residuated lattice (RL for short) and f : L → L a function.
It is possible to give a complete characterization for the compatibility of f
with respect to every congruence on L. This characterization generalizes that
given in [2] for commutative RLs and allow us to prove that some functions
generalizing frontal operators are compatible.

Frontal operators in Heyting algebras were studied in [3, 5, 6]. They are
always compatible, but not necessarily new or implicit in the sense of [1].
Classical examples of new implicit frontal operators are the functions γ, (Ex-
ample 3.1 of [1]), the successor (Example 5.2 of [1] and [4]), and Gabbay’s
operation (Example 5.3 of [1]).

Let L be a RL. We say that τ : L→ L is a T -left pre-frontal operator (T lp
for short) if there exists a binary term T in the language of residuated lattices
such that for every Heyting algebra H , we have that TH(x, y) = y → x and
for every x, y ∈ L the following equations hold:

(l1) τ(x) ≤ y ∨ T (x, y),

(l2) e ≤ τ(e),

(l3) (x\y) ∧ e ≤ τ(x)\τ(y).

If τ satisfies the additional equation

(f) τ(x) ∧ τ(y) ≤ τ(x ∧ y),
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we say that τ is a T-left frontal operator (T lf for short).
Similarly we define T -right pre-frontal operators (Trp for short) and

T -right frontal operators (Trf for short).
It can be seen that both T lp and Trp functions are compatible. In any

commutative residuated lattice (CRL for short), τ is T lp (resp. T lf) if and
only if it is Trp (resp. Trf). In this case we simply say that τ is T-pre-frontal
(T-frontal respectively). We write Tp and Tf as shorthands for them.

Theorem: Let H be a Heyting algebra, τ : H → H a function.
The following conditions are equivalent:

(a) τ is Tf .

(b) τ is a frontal operator.

Let L be a RL. For every y ∈ L we define y0 = e and for k ≥ 1,
yk = yk−1.y. Fix a natural number n. We define the functions

←−
S n : L → L

and
−→
S n : L→ L through the following equations:

(LS1n)
←−
S n(x)

n\x ≤
←−
S n(x).

(LS2n)
←−
S n(x) ≤ y ∨ (yn\x).

(RS1n) x/
−→
S n(x)

n ≤
−→
S n(x).

(RS2n)
−→
S n(x) ≤ y ∨ (x/yn).

Proposition: Let L be a RL. Then the following conditions hold:

(a)
←−
S n is a T lp taking T (x, y) = yn\x. Moreover,

←−
S n(e) = e.

(b) If the underlying lattice of L is distributive then
←−
S n is a T lf .

(c)
←−
S n is characterized by

←−
S n(x) = min{y ∈ L : yn\x ≤ y}.

Similarly for the case
−→
Sn.

If L is a CRL, note that there exists Sn (see Section 5 of [2]) iff there exist
−→
S n and

←−
S n, being Sn =

−→
S n =

←−
S n. For n = 1 we write S. This function is

called successor function.

Let L be a RL with first element and fix a natural number n. We define
the functions ←−γn : L→ L and −→γn : L→ L through the following equations:

(Lg1n) ←−γn(0)
n\0 ≤ ←−γn(0).

(Lg2n) ←−γn(0) ≤ y ∨ (yn\0).
(Lg3n) ←−γn(x) = x ∨←−γn(0).

(Rg1n) 0/−→γn(0)
n ≤ −→γn(0).

(Rg2n) −→γn(0) ≤ y ∨ (0/yn).
(Rg3n) −→γn(x) = x ∨ −→γn(0).
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Proposition: Let L be a RL with first element and n a natural number.
Then the following conditions hold:

(a) ←−γn is a T lp taking T (x, y) = x ∨ (yn\x).

(b) If the underlying lattice of L is distributive then ←−γn is a T lf. Moreover,
in this case ←−γn preserves ∧.

(c) Function ←−γn is characterized by ←−γn(x) = min{y ∈ L : (yn\0) ∨ x ≤ y}.

There is a similar proposition for the case −→γn. When L be a CRL with
first element we write γn in place of ←−γn or −→γn; for n = 1 we write γ. This
function will be called gamma function.

Let L be a RL with first element. For every x ∈ L we define l(x) = x\0

and r(x) = 0/x. Fix a natural number n. We define the functions
←−
Gn : L→ L

and
−→
Gn : L→ L through the following equations:

(LG1n) (
←−
Gn(x)

n\x)∧rl(x) ≤
←−
Gn(x). (RG1n) (x\

−→
Gn(x)

n)∧lr(x) ≤
−→
Gn(x).

(LG2n)
←−
Gn(x) ≤ y∨((yn\x)∧rl(x)). (RG2n)

−→
Gn(x) ≤ y∨((x/yn)∧lr(x)).

Proposition: Let L be a RL with first element and fix a natural number n.
Then the following conditions hold:

(a)
←−
Gn is a T lp taking T (x, y) = yn\x. Moreover,

←−
Gn(e) = e.

(b) Function
←−
Gn is characterized by

←−
Gn(x) = min{y ∈ L : (yn\x) ∧ rl(x) ≤ y}.

There is a similar proposition for the case
−→
Gn.

When L be a CRL with first element we write Gn in place of
←−
Gn or

−→
Gn;

for n = 1 we write G. This function will be called Gabbay’s function.

Let V be a variety of algebras of type F and let ǫ(C) be a set of identities
of type F ∪C where C is a family of new function symbols. We say that ǫ(C)
defines implicitly C, if in each algebra A ∈ V there is at most one family
{fH : Hn → H}f∈C such that (A, fA)f∈C satisfies the universal closure of the
equations in ǫ(C) (in this case we say that each f is given by equations).

70



Logic, Algebra and Truth Degrees Prague, 7–11 September 2010

In [2] (sections 4 and 5) a condition is given on a function P (x, y) in a
commutative residuated lattice L that imply that the function x 7→ min{y ∈
L : P (x, y) ≤ y} is equational and compatible when defined. Inspirited by
[2] one can ask whether conditions on functions P (x, y) and Q(x, y) in a
residuated lattice L imply that the function x 7→ min{y ∈ L : P (x, y) ≤
Q(x, y)} is equational and compatible when defined. We present a sufficient
condition for equationally and compatibility; finally we give some examples
of these functions.
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Implicational Logics vs. Order
Algebraizable Logics

Petr Cintula∗ Carles Noguera†

Although many logical systems have an equivalence connective which is
either a primitive symbol or definable by a single formula in two variables,
there is a long-established tradition of Abstract Algebraic Logic which con-
siders equivalence connectives definable by means of (possibly infinite and
parameterized) sets of formulae. This allows for a well known classification
of logics with a good algebraic semantics partly based on their (definable)
equivalence connectives: the Leibniz hierarchy of protoalgebraic logics (see
e.g. [2]). This classification has been refined in the paper [1] where we have
presented the hierarchy of implicational logics. The main idea consists in
shifting the focus from equivalence to implication connectives. Indeed, we
say that a logic L is weakly p-implicational if there is a set of formulae in
two variables (and possibly with parameters) such that L proves its reflexiv-
ity, modus ponens, transitivity and congruence property w.r.t. all primitive
connectives. By requiring additional properties to this connective we ob-
tain a number of subclasses of logics. Since the symmetrization of a weak
p-implication is an equivalence, weakly p-implicational logics coincide with
protoalgebraic logics and our classification turns out to be a refinement of
Leibniz hierarchy. Furthermore, each weak p-implication induces a preorder
in the matrices for the logic which becomes an order in reduced matrices.
We have characterized which logics in the hierarchy are complete w.r.t. the
matrices where the induced order is linear.
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On the other hand, the recent paper [3] studies the notion of order alge-
braizable logics based on previous works by Pigozzi. In this approach, instead
of considering a built-in notion of order (as that given by implication) one
adds a partial order relation as a primitive extra-logical element to algebraic
semantics. Then a logic L is order algebraizable if it is equivalent to the
inequational consequence given by a class of partially ordered algebras.

In this talk we will compare both approaches and present a classification
of logical systems based on their combination.
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Probabilities on Nuanced MV-Algebras

Lavinia Corina Ciungu∗

The n-nuanced MV-algebras were introsuced by G. Georgescu and A. Po-
pescu as an answer of the problem: starting from a given logical system and
using the idea of nuance, how can one construct an n-nuanced logical system
based on the given one?

This concept extends both MV-algebras and n-valued Łukasiewicz-Moisil
algebras. In the new structure the authors put together two approaches to
multiple-valued-ness: that of infinitely-valued Łukasiewicz logic and that of
Moisil’s n-nuanced logic.

First of all we present the basic definitions and properties of n-nuanced
MV-algebras. For the rest of this paper we denote J = {1, · · · , n− 1} with
n ∈ N, n ≥ 2.

Definition 1. A generalized De Morgan algebra is a structure (L,⊕,⊙, N, 0, 1)
of the type (2, 2, 1, 0, 0) such that the following conditions are satisfied:
(GM1) (L,⊕, 0), (L,⊙, 1) are commutative monoids;
(GM2) N(x⊕ y) = Nx⊙Ny and NNx = x for all x, y ∈ L.

Consider the structure L of the form (L,⊕,⊙, N, ϕ1, · · · , ϕn−1, 0, 1) where
(L,⊕,⊙, N, 0, 1), is a generalized De Morgan algebra and ϕ1, · · · , ϕn−1 are
unary operations on L. For this structure we consider the following axioms:
(nMV0) ϕix⊕ (Nϕix⊙ ϕiy) = ϕiy ⊕ (Nϕiy ⊙ ϕix) for all i ∈ J ;
(nMV1) ϕi(x⊕ y) = ϕix⊕ ϕiy,

ϕi(x⊙ y) = ϕix⊙ ϕiy,
ϕi(0) = 0,
ϕi(1) = 1 for all i ∈ J ;

(nMV2) ϕix⊕Nϕix = 1, ϕix⊙Nϕix = 0 for all i ∈ J ;
(nMV3) ϕi ◦ ϕj = ϕj for all i, j ∈ J ;
(nMV4) ϕi ◦N = N ◦ ϕn−i for all i ∈ J ;
(nMV5) If ϕix = ϕiy for all i ∈ J , then x = y (Moisil’s determination
principle).

∗Polytechnical University of Bucharest, Romania, lavinia_ciungu@mathem.pub.ro.
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Define M(L) = {x ∈ L | ϕix = x for all i ∈ J}, called the MV-center of
L because of the next Proposition.

Definition 2. An n-nuanced MV-algebra (NMV An for short) is a structure
(L,⊕,⊙, N, ϕ1, · · · , ϕn−1, 0, 1) such that (L,⊕,⊙, N, 0, 1) is a generalized
De Morgan algebra and ϕ1, · · · , ϕn satisfy the axioms (nMV0) − (nMV5)
and the axiom:

(nMV6) ϕ1x ≤ ϕ2x ≤ · · · ≤ ϕn−1x.

Let L be an NMV An, x ∈ L and n ∈ N. We introduce the following
notations:

0x = 0, nx = x⊕ (n− 1)x for any n ≥ 1,
x0 = 1, xn = x⊙ xn−1 for any n ≥ 1.

Definition 3. An NMV An L is called centered if there exist the elements
c0, · · · , cn−1 ∈ L such that, for all i, j ∈ J ,

ϕicj =

{
0, if i+ j < n
1, if i+ j ≥ n.

The elements c0, · · · , cn−1 are called centers of L.

Example 4. Let (A,⊕,⊙,− , 0, 1) be an MV-algebra and we define
T (A) = {(x1, · · · , xn−1) ∈ An−1 | x1 ≤ · · · ≤ xn−1}. We denote by 01 and 11
the usual constant vectors. Then An−1 is an MV-algebra with component-
wise operations induced from A and T (A) is closed under the operations
01, 11,⊕,⊙. Define N,ϕ1, · · · , ϕn−1 by:

N(x1, · · · , xn−1) = (x−n−1, · · · , x
−
1 )

ϕi(x1, · · · , xn−1) = (xi, · · · , xi), for i ∈ J.

Then (T (A),⊕,⊙, N, ϕ1, · · · , ϕn−1, 01, 11) is an NMV An.

Remark 5. It was proved that n-valued Łukasiewicz-Moisil algebras are con-
nected with Boolean algebras through an adjunction which allows the transfer
of many properties from the Boolean case. For any arbitrary NMV An L,
we consider the function ψL : L→ T (M(L)) defined by

ψL(x) = (ϕ1x, ϕ2x, · · · , ϕn−1x) for any x ∈ L.
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One can easily check that ψL is an injective NMV An-morphism. If A is an
MV-algebra, then the constant vectors are the only elements ofM(T (A)). For
any MV-algebra A, we consider the function ϕA :M(T (A))→ A defined by

ϕA(x, x, · · · , x) = x for all x ∈ A.

By the determination principle, it follows that ϕA is an MV-isomorphism.

Let L be an NMV An. In what follows we introduce the notion of a state
on L and we study some of its properties.

Definition 6. A state on L is a function s : L −→ [0, 1] satisfying:
(nmv − s1) s(0) = 0, s(1) = 1;
(nmv − s2) s(x⊕ y) = s(x) + s(y)− s(x⊙ y) for all x, y ∈ L;

(nmv − s3) s(x) =
1

n−1

n−1∑
i=1

s(ϕix) for all x ∈ L.

Remark 7. If s is a state on L, then s |M(L) is a state on M(L).

Proposition 8. If s is a state on L, then the following hold:
(1) s(Nx) = 1− s(x);
(2) If x ≤ y, then s(x) ≤ s(y).

Proposition 9. If L is a centered lattice-ordered NMV An and s is a state
on L, then

s(x ∨ y) + s(x ∧ y) = s(x) + s(y).

Lemma 10. Let L be an NMV An, s a state on L and x, a ∈ L. Then
n−1∑
i=1

s(ϕix⊙ a) =
n−1∑
i=1

s(x⊙ ϕia).

Theorem 11. Every state s :M(L) −→ [0, 1] can be uniquely extended to a
state s∗ : L −→ [0, 1].

Corollary 12. There is a one-to-one correspondence between the set of states
on L and the set of states on the MV-algebra M(L).

Corollary 13. Every n-nuanced MV-algebra L admits a state on it.

Corollary 14. Let s be a state on L. Then there exists a unique state S on
T (M(L)) such that S ◦ ψL = s.

We introduce a general notion of a conditional state on nuanced
MV-algebras.
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Definition 15. Let s be a state on L and a ∈ L such that s(a) > 0. The
conditional state s(· | a) : L −→ [0, 1] is defined by:

s(x | a) = 1
(n−1)s(a)

n−1∑
i=1

s(ϕix⊙ a) =
1

(n−1)s(a)

n−1∑
i=1

s(x⊙ ϕia).

The above definition is correct, taking into consideration Lemma 10.

Remark 16. Let s be a state on L and a ∈ L such that s(a) > 0. Then:
(1) s(0 | a) = 0,
(2) s(1 | a) = 1,
(3) s(x | 1) = s(x) for all x ∈ L,
(4) If a ∈M(L) such that s(a) > 0, then s(x | a) = s(x⊙a)

s(a)
for all x ∈ L.

Proposition 17. Let s be a state on L and a, b ∈ L such that s(a), s(b) > 0.
Then

s(a) · s(b | a) = s(b) · s(a | b).

Proposition 18. If s is a state on L, then

(n− 1)s(x | a) =
n−1∑
i=1

s(ϕix | a),

for every x, a ∈ L with s(a) > 0.

Proposition 19. If s is a state on L, then

(n− 1)s(a) · s(x | a) =
n−1∑
i=1

s(ϕia) · s(x | ϕia),

for every x, a ∈ L with s(ϕ1a) > 0.

Theorem 20. If r ∈ J such that s(ϕia) = 0 for i < r and s(ϕra) > 0 for
i ≥ r, then

(n− 1)s(x | a) =
n−1∑
i=r

s(ϕia) ·

n−1∑

j=1

s(ϕjx|ϕia)

n−1∑

j=r

s(ϕja)

for every x, a ∈ L with s(a) > 0.

Corollary 21. If s(ϕia) = 0 for i < n− 1 and s(ϕn−1a) > 0, then

(n− 1)s(x | a) =
n−1∑
j=1

s(ϕjx | ϕn−1a),

for every x ∈ L.

These results show that the computation of a conditional state on L
can be reduced to the computation of the state obtained by restriction to
MV-algebra M(L).
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On MTL-Algebras with an Internal
Possibilistic State

Pilar Dellunde∗,† Lluís Godo† Enrico Marchioni †

In some recent works, different notions of graded necessity (in the sense
of Possibility theory [3]) for Łukasiewicz and Gödel logic formulas have been
explored, see [4] and [2] respectively. These can be considered as possibilis-
tic counterparts of (probabilistic) states, originally defined over algebras of
Łukasiewicz logic [5, 6] and later on also on Gödel algebras [1].

Given a t-norm based logic L, by a possibilistic counterpart of a state
we understand in this paper an assignment to formulas N : Fm(L) → [0, 1]
satisfying at least the following three properties:

1. N(⊤) = 1, N(⊥) = 0.

2. N(ϕ ∧ ψ) = min(N(ϕ), N(ψ)).

3. N(ϕ) = N(ψ) whenever ⊢L ϕ ≡ ψ.

corresponding to those of a necessity measure respecting logical equivalence.
In [4, 2] modal logics expanding the base logic with a modal operator

N over a restricted language (not allowing nested applications of the modal
operator) have been introduced and Kripke style semantics have been defined.
Inspired by [5], preliminary steps are taken in [2] to define a full modal logic
over Gödel logic, called PNG. Its algebraic semantics consists of the class of
NG-algebras, which are expansions of Gödel algebras with a unary operator
capturing the main properties of necessity measures, that can be understood
as a internal possibilistic state.
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In this paper we plan to generalize this approach to the weaker framework
of MTL logic. The axioms and rules of the basic fuzzy modal logic over MTL
we will consider, named N-MTL, will be those of MTL plus the Necessitation
rule for N (from ψ derive Nψ) and the same modal axioms of PNG:

1. N(ϕ ∧ ψ)↔ (Nϕ ∧Nψ).

2. Nψ ↔ NNψ.

3. ¬N0.

The aim of this paper is to study the algebraic semantics of the N-MTL
logic given by the variety of N-MTL algebras, where an N-MTL algebra is
a structure (A, N) where A is a MTL-algebra and N : A → A is a monadic
operator satisfying the equations corresponding to the above properties. In
particular we will focus on faithful N-MTL algebras (those satisfying the
property Nx > 0 for x > 0) and prove some results on satisfiability, specially
for some subvarieties of interest.
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Loomis-Sikorski Theorem and Stone
Duality Theorems for MV-Algebras

with Internal State

Antonio Di Nola∗ Anatolij Dvurečenskij † Ada Lettieri ‡

In the last decade, the interest to probabilistic uncertainty in many val-
ued logic increased. A new approach to states on MV-algebras was recently
presented by T. Flaminio and F. Montagna in [6]; they added a unary op-
eration, τ, (called as an inner state or a state-operator) to the language of
MV-algebras, which preserves the usual properties of states. It presents a
unified approach to states and probabilistic many valued logic in a logical
and algebraic settings.

We recall that a state MV-algebra is a couple (A, τ), where τ is a mapping
from A into itself such that satisfying, for each x, y ∈ A:

(i) τ(0) = 0,

(ii) τ(x∗) = (τ(x))∗,

(iii) τ(x⊕ y) = τ(x)⊕ τ(y ⊙ (x⊙ y)∗),

(iv) τ(τ(x)⊕ τ(y)) = τ(x)⊕ τ(y);

the operator τ is said to be a state-operator.
In [1, 2, 3], the authors studied a subvariety of state MV-algebras, called

state-morphism MV-algebras as state-MV-algebras (A, τ) such that τ is an

∗Dept. of Math. and Informatics, University of Salerno, Italy, adinola@unisa.it.
†Mathematical Inst., Slovak Academy of Sciences, Slovakia, dvurecen@mat.savba.sk.
‡Department of Construction and Mathematical Methods in Architecture, University

Naples Federico II, Italy, lettieri@unina.it.
Acknowledgement: The paper has been supported by the Center of Excellence SAS

- Quantum Technologies, ERDF OP R&D Projects CE QUTE ITMS 26240120009 and
meta-QUTE ITMS 26240120022, the grant VEGA No. 2/0032/09 SAV, by the Slovak
Research and Development Agency under the contract APVV-0071-06, Bratislava, and by
Slovak-Italian project SK-IT 0016-08.

80



Logic, Algebra and Truth Degrees Prague, 7–11 September 2010

MV-homomorphism from A into itself such that τ ◦ τ = τ, called a
state-morphism-operator. In the talk, we show how subdirectly irreducible
elements can be described:

Theorem 1. Let (M,σ) be a subdirectly irreducible state-morphism
MV-algebra. Then (M,σ) is one of the following three possibilities.

(i) M is linear, σ = idM , and the MV-reduct M is a subdirectly irreducible
MV-algebra.

(ii) The state-morphism operator σ is not faithful, M has no nontrivial
Boolean elements, and the MV-reduct M of (M,σ) is a local MV-algebra.

(iii) The state-morphism operator σ is not faithful, M has a nontrivial
Boolean element. There are a linearly ordered MV-algebra A, a subdi-
rectly irreducible MV-algebra B, and an injective MV-homomorphism
h : A → B such that (M,σ) is isomorphic as a state-morphism
MV-algebra with the state-morphism MV-algebra (A × B, σh), where
σh(x, y) = (x, h(x)) for any (x, y) ∈ A× B.

We show that any state-operator on the variety V(S1, . . . , Sn) is a
state-morphism-operator, [3]. We describe an analogue of the Loomis-Sikorski
theorem, [4], for a state-morphism MV-algebra (A, τ), where A is a σ-complete
MV-algebra and τ is a σ-endomorphism: We show that any such
state-morphism MV-algebra is a σ-epimorphic image of (T , τT ), where T
is a tribe defined on a totally disconnected compact Hausdorff topological
space and τT is a σ-endomorphism generated by a continuous function.

Finally we show Stone Duality Theorems, [5], for (i) the category of
Boolean algebras with a fixed state-operator and the category of compact
Hausdorff topological spaces with a fixed idempotent continuous function,
and for (ii) the category of weakly divisible σ-complete state-morphism
MV-algebras and the category of Bauer simplices whose set of extreme points
is basically disconnected and with a fixed idempotent continuous function.
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On the Hyperreal State Space

Antonio Di Nola∗ Tommaso Flaminio†

The aim of this work is to study a class of non-archimedean valued mea-
sures on MV-algebras. We call them hyperreal states and their definition
naturally arise from (the uniform version of) Di Nola representation theo-
rem for MV-algebras (cf [5, 6]): for any MV-algebra A = (A,⊕,¬,⊤,⊥)
there exists a ultrafilter U on the cardinality of A such that A embeds into
(∗[0, 1]U)

Spec(A) (where as usual Spec(A) denotes the space of prime ideals of
A). Therefore, if A is any MV-algebra, there exists a non-archimedean ex-
tension ∗[0, 1]U of the real unit interval [0, 1] such that every element a of A
can be regarded as a function fa : Spec(A)→ ∗[0, 1]U. Since MV-algebras are
the equivalent algebraic semantics for Łukasiewicz logic, Di Nola’s theorem
states that formulas of Łukasiewicz calculus are visualized as black and white
pictures printed by a palette of infinitesimals grey levels ([9, §2]).

As it is well known [3], the proper subclass of semisimple MV-algebras
can be characterized, by Chang and Belluce theorem (cf. [2, 1]), as algebras
of real-valued functions: up to isomorphisms every semisimple MV-algebra
A is an algebra of [0, 1]-valued functions defined over the space of maximal
ideals M(A) of A. Therefore, following the above metaphor, if we inter-
pret formulas of Łukasiewicz calculus into a semisimple MV-algebra, then by
Chang and Belluce theorem there are no infinitesimals grey levels, and hence
the palette used to print (i.e. interpret) the propositions, only has real grey
levels (cf. [9, §2]).

States on MV-algebras have been introduced by Mundici in [9]: for every
MV-algebra A, state onA is a map s : A→ [0, 1] that is, normalized and addi-
tive1. Therefore states are real valued maps defined on (possibly) hyperreal-
valued functions, and hence they do no preserve, the non-archimedean struc-
ture of the MV-algebra they are defined over.

Therefore we introduce hyperreal states to support the intuition that, if an
MV-algebra A do have infinitesimal elements (and hence, is not semisimple),

∗Dept. of Math. and Informatics, Univeristy of Salerno, Italy, adinola@unisa.it.
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then a state on A should preserve the same grey-level palette also to measure
its elements. Those are defined as follows: let A be an MV-algebra, then a
hyperreal state on A is a map s : A→ ∗[0, 1]U satisfying:

(i) s(⊤) = 1 (normalization),

(ii) whenever x⊙ y = ⊥, s(x⊕ y) = s(x) + s(y) (additivity).

We denote by HS(A) the set of all hyperreal states on A. Consider the
following: for every A, let p be a prime filter in Spec(A). The quotient A/p
is linearly ordered (call f the canonical homomorphism of A into A/p), and
A/p embeds into ∗[0, 1]U via a map g (where U is referred to A). Then the
map sp = g ◦ f : A → ∗[0, 1]U is a hyperreal state of A, whence, HS(A) is
non empty.

Let ∗[0, 1] be any non-archimedean extension of the real unit interval [0, 1].
Let us denote by sh is the shadow map from ∗[0, 1] to [0, 1] mapping every
x ∈ ∗[0, 1] into that unique real sh(x) such that the distance |x − sh(x)| is
infinitesimal. Then hyperreal states provide a generalization of states [9] in
the following sense:

Theorem 1. If A is a semisimple MV-algebra (and hence A is an
MV-algebra of [0, 1]-valued functions), every hyperreal state on A actually
is a state. Moreover if A is not semisimple and s is a hyperreal state on A,
then the composition sh ◦ s is a state on A.

In order to study the geometric properties of the hyperreal state space
HS(A) as a subspace of ∗[0, 1]AU , we noticed that there is no a standard way
to extend the usual interval topology of reals to every unit interval ∗[0, 1]
and keeping the space to be locally convex. The S-topology (cf. [8]) suf-
fices our purposes of making ∗[0, 1] a locally convex space, but unfortunately
it does not preserve the property of being Hausdorff. The hyperreal state
space HS(A) can hence be regarded as a compact subspace of the locally
convex space ∗[0, 1]AU . Then Krein-Milman theorem can be applied to show
that HS(A) coincides with the closure of its extremal points ext(HS(A)).
As it is well known (see [9, Theorem 2.5]) the extremal states of A are ho-
momorphisms of A into [0, 1]. As regards to hyperreal states we proved the
following:

Theorem 2. Let A be an MV-algebra, and let s ∈ HS(A). Then s is an
extremal hyperreal state iff sh ◦ s is extremal state.
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The above theorem, together with [9, Theorem 2.5] states that a hyperreal
state s on an MV-algebra A is extremal iff sh◦s is a homomorphism of A into
[0, 1]. Therefore the extremal hyperreal states on A and the space Spec(A) of
prime filters of A, are related as follows: for every prime filter p ∈ Spec(A),
the map

a ∈ A
f
7→ a/p ∈ A/p

g
7→ ∗α ∈ ∗[0, 1]U, (1)

where f and g are as above, is a homomorphism, and hence is an extremal
hyperreal state of A because sh ◦ f ◦ g is a homomorphism of A into [0, 1].
Conversely, for every homomorphism s : A → ∗[0, 1]U (and hence sh ◦ s ∈
extS(A)), ps = {x ∈ A : h(x) = 1} is a prime filter of A. In fact, since s is a
homomorphism, its kernel is an ideal of A, whence ps is a filter. Moreover,
if x ∧ y ∈ ps, then s(x ∧ y) = 0, and hence s(x) ∧ s(y) = 0. Since ∗[0, 1]U is
totally ordered, s(x) = 0, or s(y) = 0, i.e. x ∈ ps, or y ∈ ps, whence ps is
prime filter.

In the case of states, the space of extremal states ext(S(A)), and the
space M(A) of maximal filters of A are homeomorphic. This parallelism
seems not to be recoverable when we move to hyperreal states, and hence
when we consider the space Spec(A) (endowed with spectral topology) and
ext(HS(A)). Actually, Spec(A) is a T0 space, while on the other hand ∗[0, 1]
endowed with the S-topology is not T0 (cf. [4, Theorem 1.4]).

Finally we applied hyperreal states to define a class of generators for the
variety of SMV-algebras (cf. [7]). Recall that an SMV-algebra is a pair
(A, σ) where A is an MV-algebra, and σ : A → A satisfies: (1) σ(⊤) = ⊤;
(2) σ(¬x) = ¬σ(x); (3) σ(σ(x)⊕σ(y)); (4) σ(x⊕ y) = σ(x)⊕σ(y⊖ (x⊙ y));
where in (4), a⊙ b stands for ¬(¬a⊕ ¬b), and a⊖ b stands for ¬(¬a⊕ b).

The class of SMV-algebras forms a variety that can be generated by hyper-
real states. In fact consider the following construction: for every MV-algebra
B, and every hyperreal state s : B → ∗[0, 1]U, define:

• The MV-algebra A = ∗[0, 1]U ⊗ B, where ⊗ denotes the MV-tensorial
product (cf. [10]). We denote by α⊗ b (where α ∈ ∗[0, 1]U, and b ∈ B)
the generic element of A.

• The operator σs : A → A such that, for every α ⊗ b ∈ A, σs(α ⊗ a) =
s(a) · α⊗⊤.

Then (A, σs) is an SMV-algebra. It is not hard to see that and the variety
of SMV-algebras can be generated by this class of structures.
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Intermediate Fuzzy Quantifiers and
Their Properties

Antonín Dvořák ∗ Petra Murinová∗ Vilém Novák ∗

In this contribution, we will present new results on intermediate fuzzy
quantifiers. We also show some of their semantic properties, and mention
connections to fuzzy quantifiers determined by measures.

Intermediate fuzzy quantifiers were introduced by Novák in [4] as an in-
terpretations of intermediate quantifiers [5] in the frame of fuzzy logic. Ex-
amples of these quantifiers are most, large part of, a few, etc. It is natural to
study these quantifiers in the frame of multi-valued and fuzzy logics, because
truth degrees of sentences involving them intuitively run continuously from
falsity to truth, when cardinalities of sets of objects in their interpretations
change.

Intermediate fuzzy quantifiers are developed in the frame of fuzzy type
theory (FTT) [3]. It permits to define them as special formulas of FTT (not as
new logical symbols). Hence, all proofs involving intermediate quantifiers are
carried out in the basic formal system of FTT. To be able to define generalized
quantifiers, it is necessary to introduce special formulas representing measures
into FTT.

In [4], there were proved several tens of 105 syllogisms introduced in [5].
An example of such syllogism is:

Almost all Y are M.
All M are X.

Some X are Y.

Now, we succeeded to prove all of them. We present several interesting cases
of these syllogisms and discuss their proofs.
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Further, we will investigate some properties of interpretations of these
quantifiers. We are following definitions of semantic properties of fuzzy quan-
tifiers in [2]. It can be easily shown that interpretations of intermediate fuzzy
quantifiers are conservative and possess the property of extension. Finally,
we discuss how recently introduced fuzzy quantifiers determined by measures
(see [1], where case of quantifiers of one argument is studied, case of quanti-
fiers of two arguments is in preparation) can be used as models of interme-
diate quantifiers.
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An Advertisement for Kleisli Categories

Patrik Eklund∗ Robert Helgesson∗

Overview

Monads have been known for more than fifty years [13, 16], and have been
successfully used within algebra, logic and topology, by both mathematicians
as well as computer scientists.

Our kind of favourite ’root monad’ has been the term monad, and in this
advertisement we tend to like Kleisli [17] categories more than Eilenberg-
Moore [2] categories. Algebras [20, 21] are also nice, but here we need mostly
substitutions, i.e. morphisms of the Kleisli categories, for our logical consid-
erations. Roughly speaking, Eilenberg-Moore categories lean a bit more on
’topology and algebra’, and are computationally interesting from semantic
point of view, whereas Kleisli categories appear more as part of ’logic and
algebra’, and they are syntactic.

Over Set, the category of sets, composition of suitable monads with
the term monad gives generalized views on substitutions [7]. Fuzzy sets
of terms is a good example, and also provides a concept of non-classical
non-determinism.

Clearly, we can then move over to trying out term functors over other
categories, e.g. like Goguen’s Set(L), and it works well [3, 10], so that we
place uncertainty in a different way as compared to composing (over Set)
with the many-valued powerset monad [7]. From there we can then basically
try out any category, and that is now our present and future work.

All this we want to integrate into a general logics ([22, 14, 15]) machinery
involving these composed monads. Some results we have [9], and here we
need partially ordered monads, i.e. monads (F, η, µ), where (FX,�) is always
partially ordered with some order-preserving conditions for µ.

We have some distributive laws also for these partially ordered monads [9].
The history of partially ordered monads, as far as we know, comes from late

∗Dept. of Computing Sci., Umeå University, Sweden, {peklund, rah}@cs.umu.se.
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90’s, when partially ordered monads [12] were used for generalized notions
of convergence spaces [18, 11, 4, 5, 6].

We have also established how the Kleisli morphisms of partially ordered
monads form Kleene algebras [8], which opens up avenues towards investiga-
tion of entirely new types of programming language constructions [19].

Presently we show what happens when we do ’Kleisli over Kleisli’, i.e.
composing distributive laws. Beck [1] did something on that already in those
days, but again, everything was always focused on algebras and Eilenberg-
Moore categories, and not Kleisli categories. For ’Kleisli over Kleisli, and
so on, composition’ a kind-of associativity can be established, and this gives
yet another technique for creating new interesting monads from old, in turn
opening up more possibilities for substitution theories.

Syntax apart from semantics

The distinction between variable substitutions and variable assignments is
more clear for computer scientists than for mathematicians. However, also
in computer science they need to be kept apart.

Additionally, terms are usually defined informally e.g. as in the following:

Let Ω be a set of operators, and X a set of variables. All variables
are terms, constants are terms, and then inductively, if ω is an
n-ary operator, and t1, . . . , tn are terms, then ω(t1, . . . , tn) is a
term.

Books usually say ’we keep it single sorted, since many-sortedness is just an
exercise’. It is not that simple. In particular, when aiming at doing something
interesting and innovative in fuzzy logic, you need to be even more formal so
as not to hide important issues behind informal definitions and statements.

Arithmetics is a good example. Are we doing fuzzy arithmetics or arith-
metics with fuzzy? The application decides. Fuzzy arithmetics involves
uncertainty on operation level, i.e. we then consider the term monad over
Set(L). Arithmetics with fuzzy is more ad hoc, and means using the com-
posed monad L•TΣ over Set. With many-sortedness you need to move over
to SetS, S being the set of sorts (or types), with objects {X

s
}
s∈S, where X

s
,

s ∈ S, are objects in Set. And so on. Considerations enter the scene with
signature morphisms being included.
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In a categorical approach a most important question is where to draw
the line between what is managed by categorical tools and constructions,
and what resides in the metalanguage. There is an additional distinction
between GB and ZF but this is outside the scope here. Category usually
builds upon ZF. Take a signature (S,Ω). Is S a set in ZF or handled as an
object in Set. What about Ω? Clearly, Ω is neither, since it resides in SetS.

From there you go to algebras, and some say it’s just Eilenberg-Moore.
Where do you precisely move over from syntax to semantics? And when and
where you do, what happens with the operators? Do you need a signature
morphism somewhere there in that giant leap? When moving over, can your
underlying category change? Should it change. An Italian and a Greek reads
New York Times. What they read is the same. What they understand in their
models is different. Is there anybody out there claiming that their underlying
categories are identical? Does it make any sense to say that you are allowed
syntactically to do arithmetics with fuzzy and in your interpretation doing
fuzzy arithmetics.

Work referred to in our reference list contains the equipment and tools
to answer these questions, and, in our view, is ambitious enough to claim
production of new innovations in fuzzy logic thinking.

What we say in this advertisement is essentially ’unfold, don’t hide’, and
be careful about explaining why something is left hanging in the metalan-
guage. Pure constructions, and careful considerations of what resides in the
geography of categorical constructions, provides the required transparency of
constructions (alternative title of this abstract!) needed when you want to
place uncertainty on your map, in your application, for your end-user.

Generalized general logic

As mentioned, we wish to integrate these notions into the framework of
general logic whereby it is then possible to describe and reason about non-
classical logics in a firmly grounded manner. Central to this is the extension
of classical general logic in the style of ([22, 14]) to something akin to a
generalized general logic.

We observe the difference between the classical setting and generalized
setting by noting the implicit existence of the power set monad throughout
general logic. Making the underlying monads explicit opens up possibilities
for useful non-classical generalizations.
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Traditionally we find entailment, denoted ⊢, described as a relation over
PSen(Σ) × Sen(Σ) where P is the power set functor and Sen is the sentence
functor taking signatures to the set of logical sentences or statements over
that signature. In [9] we described the generalization of ⊢ to an L-valued
relation ⊢ : ΦSen(Σ)×ΦSen(Σ)→ L where Φ is a general functor that is also
part of a partially ordered monad Φ and L is a lattice. Consider now that
any lattice L naturally give rise to a partially monad L = (L,�, ηL, µL) with
LX = LX , i.e., the set of mappings from X to L and morphisms f : X → Y
in Set mapped according to

Lf(A)(y) =
∨

f(x)=y

A(x).

Here we adopt the convention that
∨
∅ = 0. Further, � on LX is defined

pointwise, ηX : X → LX is given by

ηX(x)(x
′) =

{
1 if x = x′

0 otherwise
(1)

and µX : L(LX)→ LX by

µX(M)(x) =
∨

A∈LX

A(x) ∧M(A). (2)

Thus, this fuzzy power set monad is a prime example of a useful choice for
Φ. Further, since ΦSen(Σ) × ΦSen(Σ) → L is isomorphic to ΦSen(Σ) →
LΦSen(Σ), we find that the generalized ⊢ relation can quite readily be seen
as a morphism in the Kleisli category of our underlying truth monad.

Within this generalized framework we define equational and first order
logic in a way readily available to non-classical extensions.

This logic approach provides an elegant approach to abstraction from
logical operators, yet maintaining expressive power with respect to entailment
and representation of non-classical sets of sentences and clauses. Substitution
as morphisms in the Kleisli category over underlying monads and monad
compositions is a key language construct as it includes both representation
of generalized terms as well as shareable knowledge in a generalized general
logics. Here we are then able to communicate knowledge between respective
selected logics, enabled by mappings between logics and their respective proof
calculi.
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On Dialogue Games for Multi-Valued
Logics

Christian G. Fermüller ∗ Christoph Roschger ∗

Non-classical logics are often only presented syntactically by Hilbert style
proof systems and semantically by corresponding algebraic structures. As an
alternative approach to formal logics, dialogue games provide an independent
characterization that turns out to be closely related to analytic Gentzen style
proof systems. Our starting point is Robin Giles’s game for Łukasiewicz lo-
gic Ł∞. We investigate to which extent the game can be generalized in a man-
ner that still yields a characterization of a truth functional many-valued logic.

Giles’s game [5, 6] is a combination of a dialogue game and a betting
scheme originally motivated for characterizing reasoning in physical theories.
Arguments about logically complex statements are reduced to arguments
about atomic ones governed by dialogue rules that are intended to capture
the meaning of logical connectives. In the final state of the dialogue game,
the players place bets on the results of dispersive experiments that decide
about ‘truth’ and ‘falsity’ of occurrences of corresponding atomic statements.

The dialogue part of Giles’s game is a two-player zero-sum game with
perfect information. The players are called you and me, with me initially
asserting a logically complex statement. The game can be considered an
evaluation game, since the players devise their strategies with respect to a pay
off function that is determined by given success probabilities of experiments
associated with atomic assertions.

At any point in the game each player asserts a multi-set of propositions,
called tenet. Accordingly a game state is denoted as [ψ1, . . . , ψn | φ1, . . . , φm]
where [ψ1, . . . , ψn] is your tenet and [φ1, . . . , φm] is mine, respectively. Initial
game states take the form [| φ]; i.e., I assert a single statement φ, while your
tenet is empty. In each move of the game one of the players picks one of
the statements asserted by her opponent and either challenges it or grants it

∗Vienna University of Technology, Austria, {chrisf, roschger}@logic.at.
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explicitly. In both cases the picked statement is deleted from the game and
therefore cannot be challenged again. The other player has to respond to the
challenge in accordance with the following rules, that can be traced back to
Lorenzen [8].

(R⊃) A player asserting φ ⊃ ψ agrees to assert ψ if his opponent will assert φ.

(R∨) A player asserting φ ∨ ψ undertakes to assert either φ or ψ at his own
choice.

(R∧) A player asserting φ ∧ ψ undertakes to assert either φ or ψ at his
opponent’s choice.

Negation is considered equivalent to the implication of a statement ⊥
that is always evaluated as ‘false’. Thus we obtain:

(R¬) A player asserting ¬φ agrees to pay 1e to his opponent if he (the
opponent) will assert φ.

As already indicated, Giles stipulated that at the final state of the game
the players have to pay a fixed amount of money, say 1e, for each atomic
statement in their tenet that is evaluated as ‘false’ according to an associated
experiment. These experiments may show dispersion, i.e., they may yield
different answers upon repetition. However a fixed risk value 〈p〉 specifies
the probability that the experiment associated with the atomic statement p
results in a negative answer. My risk, i.e., the expected amount of money
that I have to pay you, for asserting an atomic tenet [p1, . . . , pn] therefore
amounts to

∑n

i=1 〈pi〉. Consequently my total risk for an atomic game state
is calculated as the difference between the risks of out tenets.

Giles proved the following:

Theorem 1. For every formula φ, every risk value assignment 〈·〉, the fol-
lowing are equivalent:

• initially asserting φ, I have a strategy for the game to enforce a final
elementary state, where my risk according to 〈·〉 is not higher than xe,
while you have a strategy to enforce a final elementary state, where my
risk according to 〈·〉 is not lower than x.

• v(F ) = x, where v is the standard evaluation function for Łukasiwicz
logic Ł∞, extending the valuation given by v(p) = 1−〈p〉 for all propo-
sitional variables p.
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It follows immediately from Theorem 1 that a formula φ is valid in Ł∞

iff for every (properly restricted) risk value assignment I have a strategy to
avoid expected loss in games that start with my initial assertion of φ.

As has been demonstrated in [4] an alternative rule for conjunction, that
corresponds to the ‘strong conjunction’ interpreted by the Łukasiewicz t-norm
⊗, can be specified as follows.

(R&) A player asserting φ&ψ undertakes to assert either both, φ and ψ, or
else to pay 1e to his opponent.

A simple parameter one can change when systematically looking for vari-
ants of Giles’s game is the presence of the principle of limited liability. Al-
though implicitly included in Giles’s original rules, we may simplify the dia-
logue rules and re-introduce the principle of limited liability in a more sys-
tematic manner than done by Giles. Especially the respective choices the
players are allowed to make in the dialogue rules for ⊃ and & do not have
to be explicitly stated by the dialogue rule. Consider the following:

Attack principle of limited liability: Every player can, instead of at-
tacking a compound formula φ asserted by the opponent player, declare
that he will not attack φ at all.

Defense principle of limited liability: Every player can, instead of de-
fending a compound formula φ asserted by him according to the dia-
logue rules, alternatively assert ⊥.

These two principles basically ensure that both players can limit their
expected loss from asserting one proposition to 1e. By dropping them, one
can instantly turn Giles’s game into a game adequate for Abelian logic A.

Note that Giles’s elaborated story about dialogues about why and how
to evaluate atomic formulas by betting on the results of associated disper-
sive experiments for which success probabilities are known, boils down to just
some assignment of concrete payoff values to final states in a game. In partic-
ular, the reference to probabilities completely disappears: only the expected
amount of money to be paid or received is relevant. From the game theoretic
point of view, we only need a real number as payoff value for each final state.

The central question in our contribution is to what extent Giles’s game
can be generalized while still retaining the same close connection to some
many-valued logic. This way truth tables for the connectives are defined by
means of the game. Possible parameters for extending or adapting Giles’s
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game are the evaluation scheme for atomic game states, the dialogue rules
themselves, and whether the so-called principle of limited liability remains in
force. Note that the variants of Giles’s game described in [1, 2], covering also
Gödel logic G and Product logic P, are not of concern here, as these do not
share the same correspondence between truth values and risk assignments.
There, only the (weaker) correspondence between validity and strategies to
avoid expected loss under all risk assignments.

As a first step we abstract away from risk assignments and simply speak
(inversely) of some payoff assigned to final, atomic states. We formulate
three conditions on these payoff functions.

Definition (Symmetry). A payoff function 〈·〉 is symmetric if for all (atomic)
tenets Γ the following holds: 〈Γ | ∆〉 = −〈Γ | ∆〉.

Definition (Context-independence). An payoff function 〈·〉 is context-in-
dependent if for any tenets Γ,∆,Γ′,∆′,Γ′′, and ∆′′ the following holds: If
〈Γ′ | ∆′〉 = 〈Γ′′ | ∆′′〉 then 〈Γ,Γ′ | ∆′,∆〉 = 〈Γ,Γ′′ | ∆′′,∆〉.

A context-independent symmetric payoff function can be characterized by
a binary associative, commutative function ◦ such that the payoff value of an
atomic game state can be computed from the payoff values of the respective
atomic propositions.

Finally, the following condition ensures that adding the same propositions
to different atomic game states preserves the order of the respective payoffs.

Definition (Monotonicity). An payoff function 〈·〉 is monotone if for any
tenets Γ,∆,Γ′,∆′,Γ′′, and ∆′′ the following holds:
If 〈Γ′ | ∆′〉 ≤ 〈Γ′′ | ∆′′〉 then 〈Γ,Γ′ | ∆′,∆〉 ≤ 〈Γ,Γ′′ | ∆′′,∆〉.

Definition (Discriminating). A payoff function 〈· | ·〉 is discriminating if
〈· | ·〉 is symmetric, context-independent, and monotone.

For the dialogue rules the most important requirement is that they are decom-
posing. This ensures that the game is of finite depth and, thus, determined.

Definition (Decomposition). A dialogue rule is decomposing if an attack on
the occurrence of a compound formula ⋄(φ1, . . . , φn) results in states where it
is replaced by occurrences of subformulas φi and truth constants.

Moreover it is necessary to require the rules are symmetric with respect
to the two players.

Definition (Duality). Two rules are called dual if one results from the other
by systematically switching the roles of the two players.

98



Logic, Algebra and Truth Degrees Prague, 7–11 September 2010

Theorem 2. Let a be a game with a discriminating payoff function 〈· | ·〉
and decomposing dialogue rules respecting duality. Then one can extract
from 〈· | ·〉 and the rules a set of truth functions Fa over R such that the
following two values are the same for every formula φ:

• the highest payoff guaranteed by my best strategy for a a-play starting
in the game state [| φ],

• the truth value of φ according to Fa under the interpretation that
assigns 〈| p〉 to p for all atomic formulas p.

Conversely, we offer a characterization of the family of many-valued logics
that can be described by such games. This sheds new light on the expressivity
of Giles’s style evaluation games.
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A Duality for Quasi Ordered Structures
Hector Freytes∗,† Antonio Ledda† Majid Alizadeh‡

Recently, several authors extended Priestley duality for distributive lat-
tices [9] to other classes of algebras, such as, e.g. distributive lattices with op-
erators [7], MV -algebras [8], MTL and IMTL algebras [1]. In [4] necessary
and sufficient conditions for a normally presented variety to be naturally du-
alizable, in the sense of [5], i.e. with respect to a discrete topology, have been
provided. Under this perspective, also bdq-lattices are naturally dualizable.
Nonetheless, quasi lattices, introduced in [3], constitute a generalization of
lattice ordered structures to preordered ones, i.e. structures in which the
ordering relation ≤ is reflexive and transitive, but it may fail to be anti-
symmetric. Consequently, a sensible question arises: is there any “natural”
candidate which stands to Priestley spaces as bounded distributive quasi
lattices stand to bounded distributive lattices?

In this work we present two alternative form of dualization for bdq-lattices:
by using the notion of preordered Priestley spaces and by covering spaces.

A distributive bounded q-lattice, introduced by Ivan Chajda in [3],
(bdq-lattice for short) is an algebra 〈A,∨,∧, 0, 1〉 of type 〈2, 2, 0, 0〉 satis-
fying the following conditions:

1. 〈A,∨〉 and 〈A,∧〉 are commutative semigroups;

2. x ∨ (x ∧ y) = x ∨ x; x ∧ (x ∨ y) = x ∧ x;

3. x ∨ (y ∨ y) = x ∨ y; x ∧ (y ∧ y) = x ∧ y;

4. x ∧ x = x ∨ x;

5. x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z);

6. x ∧ 0 = 0; x ∨ 1 = 1.

∗Instituto Argentino de Matemática, CONICET, Argentina, {hfreytes,

antonio.ledda78}@gmail.com.
†Università di Cagliari, Italy.
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In this work we first introduce the notion of preordered Priestley space
and we present its main properties. Preordered Priestley spaces are, in our
opinion, of a certain interest in that they share with Priestley spaces several
desirable features; moreover, they interpret, with respect to bdq-lattices, the
same rôle Priestley spaces play with respect to bounded distributive lattices.
Upon recalling that a subset Y of a preordered set 〈X,�〉 is said to be increas-
ing if and only if, for any x ∈ X and y ∈ Y , if y � x, then x ∈ Y , and also that
Y is said to be almost increasing if and only if Y/≡ = {[x]≡ ∈ X/≡ : x ∈ Y }
is increasing in X/≡, where, ∀x, y ∈ X, x ≡ y iff x � y and y � x, we
introduce the notion of preordered Priestley space:

A preordered Priestley space (pp-space) χ = 〈X, τ,�〉 is a preordered (i.e.
〈X,�〉 is a preordered set) topological space which is compact and satisfies
the weak separation axiom: if x 6� y then there is a clopen almost increasing
set U such that x ∈ U and y 6∈ U .

In the first part of this work we show that the category whose objects are
bdq-lattices, and whose arrows are bdq-lattice homomorphisms, is equivalent
to the category whose objects are pp-spaces, and whose arrows are pp-space
morphisms.
In the second part, we propose an alternative form of dualizing the category
of bdq-lattices. To this aim we will recur to the notion of covering space.

A covering map [6] p : A → I is a continuous map between topo-
logical spaces such that each x ∈ I has an open neighborhood U with
x ∈ U ⊆ I, for which p−1(U) is a disjoint union of open set (Uj)j, each
of which is mapped homeomorphically onto U by p. Thus a covering map is
a local homeomorphism. In this case the triple 〈A, p, I〉 is called a covering
space of I. The special open neighborhoods U of x given in the definition
are called evenly-covered neighborhoods. The evenly-covered neighborhoods
form an open cover of the space A. In this framework we introduce the
Priestley covering map given by covering maps over Priestley spaces with a
distiguished cross-section and a special property in the evenly-covered neigh-
borhoods. We show that the category whose object are Priestley covering
maps and whose arrows are the usual étale space-arrows that preserve a
distiguished evenly-covered neighborhoods is equivalent to the category of
bdq-lattices.
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Local Finiteness in t-Norm-Based
Structures

Siegfried Gottwald∗

An algebraic structure is locally finite iff each of its finite subset generates
a finite subalgebra only.

In this paper we look at this property of local finiteness for t-norm based
structures. By TL, TP, TG we denote the basic t-norms, i.e. the Łukasiewicz,
the product, and the Gödel t-norm, respectively. Furthermore IL, IP, IG shall
be their residuation operations, and NL, NP, NG the corresponding standard
negation functions defined via Nα(x) = Iα(x, 0) in all these cases (and yield-
ing NP = NG).

Generally, given a continuous t-norm T and its residuation operation
IT , we denote by NT the corresponding standard negation function given as
NT (x) = IT (x, 0).

Proposition 1. The t-norm-monoid ([0, 1], TG, 1) is locally finite, and so is
its extended version ([0, 1], TG, NG, 1).

Proof: Obvious.

Proposition 2. The t-norm-monoid ([0, 1], TP, 1) is not locally finite, and
so is its extended version ([0, 1], TP, NP, 1).

Proof: Any a ∈ (0, 1) generates an infinite submonoid of ([0, 1], TP, 1).

Proposition 3. The t-norm-monoid ([0, 1], TL, 1) is locally finite.

Proof: Instead of TL we can consider the conorm +L with x +L y =
min{x + y, 1}. Inside ([0, 1],+L, 0) each finite G ⊆ (0, 1] generates only
a finite number of elements: 1 together with all the finitely many sums
k1a1 + · · ·+ knan, k1, . . . , kn ∈ N, of +L-multiples of a1, . . . , an ∈ G.

∗Abteilung Logik und Wissenschaftstheorie am Institut für Philosophie, Leipzig Uni-
versity, Germany, gottwald@uni-leipzig.de.
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Proposition 4. The (extended) t-norm-monoid ([0, 1], TL, NL, 1) is not lo-
cally finite.

Proof:1 Any a ∈ (0, 1) \Q generates an infinite substructure.

The problem here really comes from the irrational numbers.

Proposition 5. The (extended) t-norm-monoid ([0, 1]∩Q, TL, NL, 1) is locally
finite.

Proof: Any finite set G ⊆ [0, 1] ∩ Q is a subset of a suitable finite truth
degree set of a finitely-valued Łukasiewicz system.

Therefore we introduce an additional notion.

Definition 1. A t-norm based algebraic structure A over the unit interval is
rationally locally finite iff each finite set G ⊆ [0, 1]∩Q generates only a finite
substructure of A.

Theorem 6. A t-norm-monoid ([0, 1], T, 1) with continuous t-norm T is (ra-
tionally) locally finite if and only if T does only have (rationally) locally finite
summands in its representation as ordinal sum of archimedean summands.

Corollary 7. A t-norm-monoid ([0, 1], T, 1) with continuous t-norm T is
locally finite if and only if T does not have a product-isomorphic summand
in its representation as ordinal sum of archimedean summands.

Corollary 8. An extended t-norm-monoid ([0, 1], T, NT , 1) with continuous
t-norm T and their standard negation NT is rationally locally finite if and
only if T does not have a product-isomorphic summand in its representation
as ordinal sum of archimedean summands.

Corollary 9. An extended t-norm-monoid ([0, 1], T, NT , 1) with a continuous
t-norm T and their standard negation NT is locally finite if and only if it is
the Gödel monoid, i.e. iff T = TG.

The final version will also discuss the inclusion of the lattice structure of
[0, 1] into these considerations.

1The idea of this proof I owe to Jürgen Stückrad (Leipzig).
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Free and Projective Bimodal Symmetric
Gödel Algebras

Revaz Grigolia∗ Tatiana Kiseliova† Vladimer Odisharia†

The variety MG2 of bimodal symmetric Gödel algebras, which repre-
sent the algebraic counterparts of bimodal symmetric Gödel logic MG2, is
investigated. Description of free algebras and characterization of projective
bimodal symmetric MG2-algebras is given.

1 Introduction

A “symmetric” formulation of intuitionistic propositional calculus, suggested
by various authors (G. Moisil, A. Kuznetsov, C. Rauszer), presupposes that
any connective &,∨,⇀,⊤,⊥ has its dual ∨,&,⇁,⊥,⊤, and the duality prin-
ciple of classical logic is restored. The notion of double-Browerian algebras
was introduced by J. McKinsey and A. Tarski in [7], based on the idea con-
sidered by T. Skolem in 1919. In [2] double-Browerian algebras were named
Skolem algebras.

Heyting-Brouwer logic (alias symmetric Intuitionistic logic Int2) was in-
troduced by C. Rauszer as a Hilbert calculus with algebraic semantics [8].
Notice, that the variety of Skolem (Heyting-Brouwerian) algebras are alge-
braic models for symmetric Intuitionistic logic Int2. Recall that Gödel logic
G is an extension of intuitionistic logic Int by the linearity axiom

(p ⇀ q) ∨ (q ⇀ p).

Denote by G2 the extension of symmetric Intuitionistic logic Int2 by Gödel
(the linearity) axiom and dual Gödel axiom.

∗Inst. of Cybernetics, Tbilisi State University, Georgia, revaz.grigolia@tsu.ge.
†Department of Computer Sciences, Tbilisi State University, Georgia,

{tatiana.kisiliovi, vladimer.odisharia}@tsu.ge.
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The well known procedure for embedding the intuitionistic propositional
calculus into Gödel-Löb modal system GL (alias, the provability logic) can
be also extended on symmetric intuitionistic logic Int2.

We recall that the proof-intuitionistic logic KM (=Kuznetsov-Muravit-
sky [6]) is the intuitionistic logic Int enriched by � as Prov modality satis-
fying the following conditions:

p ⇀ �p, �p ⇀ (q ∨ (q ⇀ p)), (�p ⇀ p)⇀ p.

We refer also to K. Segerberg, who has formulated in his paper [9], bi-
modal (temporal) logical system K2C4T and proved that the logical system
mentioned has the finite model property.

In this paper we investigate the proof-symmetric logic G2 enriched by two
modalities � (considered as Prov modality) and ♦; we denote this logic by
MG2. We call this logic a bimodal symmetric Gödel logic. Semantically the
logic MG2 is defined in the following way: MG2 is the set of all formulas
which are valid in all finite Kripke models (X,R), where the binary relation R
is transitive and irreflexive, while reflexive closure Rρ ofR is a totally ordered.

This paper is devoted to the description of finitely generated free algebras
in the variety of algebras corresponding to the bimodal symmetric Gödel
logic, which is equivalent to the description of non-equivalent formulas (with
fixed number of variables) in this logic, and to the characterization of finitely
generated projective algebras, which play an important role in the unification
problem for the bimodal symmetric Gödel logic.

2 Preliminaries

An algebra (T,∨,∧,⇀,⇁, 0, 1) is a Skolem algebra [2] (or Heyting-Browerian
algebra), if (T,∨,∧, 0, 1) is a bounded distributive lattice, ⇀ is an implica-
tion (relatively pseudo-complement), ⇁ is coimplication (relatively pseudo-
difference) on T .

An algebra (T,∨,∧,⇀,⇁, 0, 1) is said to be G2-algebra, if (i) (T,∨,∧,
⇀, 0, 1) is G-algebra, corresponding to Gödel logic; (ii) (T,∨,∧,⇁, 0, 1) is
dual G-algebra (alias Browerian algebra with linearity condition:
(p ⇁ q) ∧ (q ⇁ p) = 0). G2-algebras, which are algebraic models of the
logical system G2, represent a proper subclass of Skolem algebras.

MG2-algebra is an algebra (T,∨,∧,⇀,⇁,�,♦, 0, 1), if (T,∨,∧,⇀,
⇁, 0, 1) is G2-algebra and the operators �,♦ satisfy the following conditions:
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p ≤ �p, �p ≤ q ∨ (q ⇀ p), �p ⇀ p = p,

(�p ⇀ �q) ∨ (�q ⇀ �p) = 1;

♦p ≤ p, p ⇁ ♦p = ♦p, ♦(p ∨ q) = ♦p ∨ ♦q,

(q ⇁ p) ∧ (p ⇁ q) = 0.

Let us denote the variety (and also the category) of allMG2-algebras by MG2.
Now we are ready to define the logic MG2 in algebraic terminology: MG2

is the set of all formulas valid in all finite totally ordered MG2-algebras. This
definition of the logic MG2 is equivalent to the Kripke semantic definition
given in the introduction. Let us introduce some abbreviation: ¬p = p ⇀ 0,
pp = 1⇁ p.

Theorem 1. The logic MG2 has finite model property.

A subset F ⊂ T is said to be a Skolem filter [3], if F is a filter (i.e. 1 ∈ F ,
if x ∈ F and x ≤ y, then y ∈ F , if x, y ∈ F , then x ∧ y ∈ F ) and if x ∈ F ,
then ¬px ∈ F .

The results obtained in [3] can be adopted for MG2-algebras.

Proposition 2. Let T be an MG2-algebra. The lattice of all congruences of
the algebra T is isomorphic to the lattice of all Skolem filters of the algebra T .

A system (X,R), where X is a non-empty set and R transitive relation,
is said to be Kripke model. We shall say that a subset Y ⊂ X is an upper
cone (or cone) if x ∈ Y and xRy imply y ∈ Y . The concept of a lower cone
is defined dually. A subset Y ⊂ X is called a bicone if it is an upper cone
and a lower cone at the same time.

We say that (X, τ, R) is a perfect Kripke model (or descriptive frame, in
another terminology) if

1) (X, τ) is a topological space, which is a Stone space (i.e. Hausdorf,
zero-dimensional and compact space),

2) R−1(x) = {y : yRx} is closed, for each x ∈ X,
3) the smallest closed set containing a cone is itself a cone,
4) the smallest cone containing a closed set is closed.
Hereinafter instead of (X, τ, R) we will write (X,R). Let (X,R) and

(X ′, R′) be perfect Kripke models; a mapping f : X → X ′ is said to be
strongly isotone (or p-morphism) if

f(y)R′x⇔ (∃y′)(yRy′&f(y′) = x)

for any x ∈ X ′, y ∈ X.
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A perfect Kripke model (X,R) is called symmetric if R is order relation,
(X, R̃) is a perfect Kripke model as well, where xR̃y ⇔ yRx. The category of
symmetric perfect Kripke models (X,R), where R is an order relation on X,
is dually equivalent to the category of Skolem algebras (Heyting-Browerian
algebras) [2].

3 Free and Projective MG2-algebras

A Kripke model (X,R) is called strongly symmetric if (X,Rρ) is a sym-
metric Kripke model, (X,Rρ) is a disjoint union of chains, where Rρ is the
reflexive closure of R, and, in addition, for every clopen A of X and every
element x ∈ A there is an element y ∈ A− R−1(A) such that either xRy or
x ∈ A − R−1(A). Notice, that if strongly symmetric Kripke model is finite,
then R is irreflexive.

Proposition 3. The category MG2 of MG2-algebras and algebraic homo-
morphism is dually equivalent to the category SK of strongly symmetric
Kripke models and strongly isotone maps.

Proposition 4. Let T be an MG2-algebra and (X,R) corresponding to T
strongly symmetric Kripke model. Then the lattice of all congruences of the
algebra T is anti-isomorphic to the lattice (by the inclusion relation ⊆) of all
closed bicones of (X,R).

Let K be any variety of algebras. Then FK(m) denotes the m-generated
free algebra in the variety K. An algebra A is said to be a retract of the
algebra B, if there are homomorphisms ε : A→ B and h : B → A such that
hε = IdA, where IdA denotes the identity map over A. An algebra A ∈ K
is called projective, if for any B,C ∈ K, any epimorphism (that is an onto
homomorphism ) γ : B → C and any homomorphism β : A→ C, there exists
a homomorphism α : A→ B such that γα = β. Notice that in varieties, pro-
jective algebras are characterized as retracts of free algebras. A subalgebra A
of FK(m) is said to be projective subalgebra if there exists an endomorphism
h : FK(m)→ FK(m) such that h(FK(m)) = A and h(x) = x for every x ∈ A.

Now we describe the one-generated free MG2-algebra. Such a description
can be easily generalized to the m-generated case (m > 1). Let (Cm

n , R
m
n )

(0 ≤ m ≤ n > 0) be a strongly symmetric Kripke model, where Cm
n is an

n-element set {cm1 , ..., c
m
n } and Rm

n is an irreflexive and transitive relation such
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that cm1 R
m
n c

m
2 ... cmn−1R

m
n c

m
n . Let Xn =

∐n

m=0 C
m
n be a disjoint union of Cm

n ,
Rn =

⋃n

m=0R
m
n and (X,R) =

⋃∞
n=1(Xn, Rn). Let gmn (0 ≤ m ≤ n > 0) be an

m-element upper cone of Cm
n and gn = {g0n, ..., g

n
n}. Then G =

⋃∞
n=1 gn ⊂ X.

A part of X is depicted in the Fig. 1, where the generator is represented by
cycles or ovals.
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Let (T,∪,∩,⇀,⇁,�,♦, ∅, X) be an algebra generated by G by the fol-
lowing operations: the union ∪, the intersection ∩, A ⇀ B = −R−1− (−A∪
B), A ⇁ B = R(A∩−B), �(A) = −R−1− (A), ♦(A) = R(A) for any upper
cones of A and B.

Observe, that if A is an upper cone of a strongly symmetric Kripke model,
then the action of the operator � on A increases the upper cone, and the
action of ♦ on A decreases the upper cone (because of irreflexivity of R).

Lemma 5. The MG2-algebra

Tmn = S(Cm
n ) = (Con(Cm

n ),∪,∩,⇀,⇁,�,♦, ∅, Cm
n )

is generated by any element of Tmn , where Con(Cm
n ) is the set of all up-

per cones of (Cm
n , R

m
n ), ∪ is the union, ∩ is the intersection, A ⇀ B =

−(Rm
n )

−1 − (−A ∪ B), A ⇁ B = Rm
n (A ∩ −B), �A = −(Rm

n )
−1 − (A),

♦A = Rm
n (A).

Theorem 6. The algebra (T,∪,∩,⇀,⇁,�,♦, ∅, X) is a one-generated free
MG2-algebra with free generator G in the variety MG2.

Theorem 7. Let A be m-generated subalgebra of the m-generated free
MG2-algebra FMG2(m) and a1, ..., am the generators of A. Let Ai be the
subalgebra of A generated by ai for i = 1, ..., m. If ai = ♦nigi or ai = �nigi
for some ni ∈ ω, then the algebra A is projective, where g1, ..., gm are the free
generators of FMG2(m).

Notice, that any finite MG2-algebra is not projective, since it is not a
subalgebra of a free MG2-algebra.

Say that join irreducible element a of MG2-algebra A has a height n if
�n♦na = a. According to this definition Cm

n is a join irreducible element of
height n of the algebra T .
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Theorem 8. If A is an m-generated projective MG2-algebra, then for every
positive integer n there exists a join irreducible element a ∈ A of height n.

Problems. 1) Let A be an m-generated MG2-algebra. Is it true, that if for
every positive integer n there exists a join irreducible element a ∈ A of height
n, then A is projective?

2) Does there exist finitely axiomatized subvariety of MG2 which is not
generated by its finite members?

3) Is every subvariety of MG2 finitely axiomatizable?
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Some Theories over Łukasiewicz Logic

Petr Hájek ∗

Łukasiewicz infinite-valued predicate logic Ł∀ is one of most important
mathematical fuzzy logics; it will be quickly described. Then we survey some
results (by Restall and Hájek) on axiomatic arithmetics of natural numbers
over Ł∀, properties of a formal truth predicate, essential incompleteness,
essential undecidability and ω-inconsistency.

The main part will concern Cantor-Łukasiewicz set theory CŁ0 (with full
comprehension - each formula determines a set of all objects satisfying the
formula). Its consistency (over Łukasiewicz logic) was proved by White. It
has two equality predicates: extensional =e and Leibniz equality =. It is
proved that there are many pairs of sets x, y such that x =e y& x 6= y is
true. In particular, x may be the set ω of natural numbers, defined together
with ternary predicates for addition and multiplication. The main (Hájek’s)
result says that the Cantor-Łukasiewicz set theory is essentially undecid-
able. The proof is difficult since it is not supposed that the set ω is crisp
(non-fuzzy). Finally, we present Yatabe’s result showing in which sense CŁ0

is ω-inconsistent.
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On Logics with Truth Constants
for Delimiting Idempotents

Zuzana Haniková∗

The results below come from [5], a work in progress. We investigate the
propositional logic of BL-algebras given by continuous t-norms (standard al-
gebras) as described in [3], in a language expanded with truth constants for
the idempotent elements delimiting the Ł-, G-, and Π-components. Note
that the logics of continuous t-norms without constants were completely ax-
iomatized in [2]. For a given standard algebra, we try to present a suitable
axiomatization of its tautologies in the expanded language under a given se-
mantics. A particular case of this general setting was already discussed in [6],
where only one delimiting constant is considered. We mention the papers [4]
on logic of hedges, and [1] on general expansions with truth constants, as
related material.

It follows from Mostert-Shields representation theorem that with each
continuous t-norm ∗, one can distinguish intervals on which ∗ is isomorphic
to the Łukasiewicz t-norm or to the product t-norm and (maximal) intervals
of idempotent elements. Each interval of the three above types is delimited
by two idempotent elements, its endpoints.

For a given standard algebra [0, 1]∗ let EP(∗) be the (countable) set of
endpoints of its Ł-, G-, and Π-intervals. It follows from Mostert-Shields that
if two standard algebras [0, 1]∗1 and [0, 1]∗2 have order-isomorphic sets of end-
points and for x, y ∈ EP(∗1) we have [x, y] is an Ł-component, (G-component,
Π-component) in [0, 1]∗1 iff [x, y] is an Ł-component (G-component, Π-compo-
nent respectively) in [0, 1]∗2 , then [0, 1]∗1 and [0, 1]∗2 are isomorphic.

Definition 1. (i) Fix ∗ and let EP be its set of endpoints. Assume
a : N −→ EP is a given enumeration of EP, i. e., a maps (some initial
segment of) N bijectively onto EP. Denote N0 = Dom(a). So ai = a(i)

∗Inst. of Comp. Sci., Academy of Sciences of the Czech Republic, zuzana@cs.cas.cz.
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is the i-th endpoint in the enumeration of EP(∗). Assume for convenience
a0 = 0.

(ii) Furthermore, let + : N0 −→ N0 be the function assigning to each
i ∈ N0 an index j s. t. aj = min{x : x ∈ EP and ai < x}, +(i) = i if no such
j exists. We write i+ for +(i).

Given ∗, introduce a set of truth constants C∗ = {ci}
N0−1
i=0 , and stipulate

e(ci) = ai for any evaluation e in [0, 1]∗. For each i ∈ N0 we define c+i = c(i+).
The semantics for the propositional BL-language expanded with the set

C∗ is given by a continuous t-norm and the mapping a enumerating the
endpoints of ∗; different enumerations (in the same algebra) result in different
sets of tautologies in the expanded language.

For each ∗, we define the propositional logic BLEP (∗).

Definition 2. Let ∗ be a continuous t-norm. The axioms of the logic BLEP (∗)

are the axioms of BL plus the following formulas:

(EP i
1) ci& ci ≡ ci for each i ∈ N0

(EP i,j
2 ) ci → cj for each i, j ∈ N0 s.t. ai < aj

(EP i,j
3 ) (cj → ci)→ ci for each i, j ∈ N0 s.t. ai < aj

The deduction rule is modus ponens.

It is important to notice that this logic does not aim at a complete de-
scription of [0, 1]∗; it describes the ordering of the components, but not their
nature.

General algebraic semantics is defined naturally: for ∗ and EP(∗) fixed, a
BLEP (∗)-algebra is a structure for the language of BL-algebras expanded with
a set S∗ of constants that makes valid all the axioms of BLEP (∗), evaluating
e(ci) = si, i ∈ N0, si ∈ A for all evaluations e.

BLEP (∗)-algebras are defined by a set of propositional formulas and there-
fore form a variety in the given language. By a standard BLEP (∗)-algebra we
mean those standard algebras that are members of the variety generated by
the axioms of BLEP (∗).

Let ∗ be a continuous t-norm, EP the set of its endpoints, A a
BLEP (∗)-chain and si = e(ci) in A. Assume ai, aj , ak ∈ EP . Then it holds
(cf. also [1], Lemma 20) that

(i) if ai < aj in [0, 1]∗, then si ≤ sj in A;
(ii) if si, sj < 1 in A and ai < aj in [0, 1]∗, then si < sj in A.
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The following completeness theorem is a matter of course:

Theorem 3. (Completeness) Let ∗ be a continuous t-norm and EP(∗) the
set of its endpoints. Let φ be a formula in the language of BLEP (∗). Then
the following are equivalent:
(i) ⊢BLEP

φ
(ii) φ holds in any BLEP (∗)-algebra A
(iii) φ holds in any BLEP (∗)-chain A.

Moreover, under the above definition of standard algebras, the following
can be proved (cf. [5]):

Theorem 4. (Standard completeness) Let ∗ be a continuous t-norm and
EP (∗) be the set of its endpoints. Let φ be a formula in the language of
BLEP (∗). Then BLEP (∗) ⊢ φ iff φ holds in all standard BLEP (∗)-algebras.

For each particular continuous t-norm, the goal of our endeavour is to
find a complete axiomatics for the BLEP -algebra given by it. For a given ∗,
and for each i ∈ N0, we define a translation function, operating on formulas
of the language of BL. The result of the translation of a formula ϕ will be
denoted ϕ[ci,ci

+]. The translation function is defined by induction on the
formula structure as follows:

0
[ci,c

+

i ]
= ci

1
[ci,c

+

i ]
= c+i

p[ci,c
+

i ] = (p ∨ ci) ∧ c
+
i

(ϕ&ψ)[ci,c
+

i
] = ϕ[ci,c

+

i
]&ψ[ci,c

+

i
]

(ϕ→ ψ)[ci,c
+

i ] = (ϕ[ci,c
+

i ] → ψ[ci,c
+

i ]) ∧ c+i

Lemma 5. Let ∗ be a continuous t-norm, EP(∗) the set of its endpoints,
and A the BLEP -algebra given by ∗ on [0, 1]. Let i ∈ N0 be such that ∗
on [ci, c

+
i ] is isomorphic to the Łukasiewicz t-norm (the Gödel t-norm, the

product t-norm respectively). Then ϕ ≡ ψ is a tautology of [0, 1]Ł ( [0, 1]G,

[0, 1]Π respectively) iff ϕ[ci,c
+

i ] ≡ ψ[ci,c
+

i ] is a tautology of A.

In particular, if ϕ is a tautology of [0, 1]Ł ([0, 1]G, [0, 1]Π respectively), and
the interval [ai, a+i ] in ∗ is an Ł-component (G-component, Π-component re-
spectively), then ϕ[ci,c

+

i
] ≡ c+i is a tautology of theBLEP (∗)-algebra given by ∗.
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Let (Ł) denote the additional axiom ¬¬ϕ → ϕ of Łukasiewicz logic,
(G) denote the axiom ϕ → ϕ&ϕ of Gödel logic, and (Π) denote the axiom
(¬ϕ) ∨ ((ϕ→ (ϕ&ψ))→ ψ) of product logic. For i ∈ N , denote

Łi the formula Ł[ci,c
+

i ] ≡ c+i

Gi the formula G[ci,c
+

i ] ≡ c+i

Πi the formula Π[ci,c
+

i ] ≡ c+i

We refine the calculus BLEP with a specification of the isomorphism type
of each of the components of ∗.

Definition 6. Let ∗ be a continuous t-norm, EP (∗) the set of its endpoints.
The logic BLCOMP (∗) has as axioms the axioms of BLEP (∗) plus the following
formulas, for all i ∈ N0:

(COMP i
Ł
) Łi whenever [ai, a

+
i ] in [0, 1]∗ is a copy of [0, 1]Ł

(COMP i
G) Gi whenever [ai, a

+
i ] in [0, 1]∗ is a copy of [0, 1]G

(COMP i
Π) Πi whenever [ai, a

+
i ] in [0, 1]∗is a copy of [0, 1]Π

The deduction rule is modus ponens.

As in the case of the logic BLEP , one can state a general complete-
ness theorem w. r. t. (linearly ordered) BLCOMP -algebras. It remains open
whether the logic BLCOMP is complete with respect to the single standard
BLCOMP -algebra given by ∗. This is true for algebras with only finitely many
endpoints, but for some other algebras it seems more axioms are necessary.

We further analyze the computational complexity of the set of proposi-
tional 1-tautologies of each of the BLEP -algebras given by ∗.

If ∗ is a finite ordinal sum, we show that the set of propositional
1-tautologies of [0, 1]∗ in the language enriched with the constants C is in
coNP (in fact, it is coNP-complete).

Next we address infinite sums. Although there exist infinite sums whose
sets of tautologies (in the language of BLEP -algebras) are in coNP, it is
also true that some others are undecidable. There are (classes of) standard
algebras which are infinite sums with a less favourable ordering of components
and whose sets of 1-tautologies in the enriched language are non-arithmetical.
That is unsurprising, taking into regard that the tautologies of some of the
infinite ordinal sums in the enriched language allow for coding of infinite
sequences of 0’s and 1’s.
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Evaluating Many Valued Modus Ponens

Dana Hliněná∗ Peter Vojtáš † Vladislav Biba∗

1. Introduction

The aim of this paper is to have a sound and complete deduction in knowledge
systems where uncertainty, vagueness and preference is modeled by many
valued logic with arbitrary connectives (possibly obtained by an inductive
procedure, see e.g. [4]).

In many systems domain (background) knowledge is modeled using
IF-THEN rules (Prolog/Datalog rule based systems). From the very be-
ginning we face a problem. In two-valued logic

B −→ H ≡ ¬B ∨H

is a tautology. This need not be true in many valued logic. As far as our
main concern is to make modeling as much as possible realistic to real world
data, we do not make any restriction here. Instead we study both possibilities
separately and compare them.

(B, b), (B → H, r)

H, f→(b, r)
,

(B, b), (¬B ∨H, r)

H, g∨(b, r)
.

We give some formula for evaluation of f→ for evaluation of modus ponens
with implicative rules and of g∨ for evaluation of modus ponens with clausal
rules.

We build on works [6, 10], in [10] there is estimate of full resolution and
in [6] there is estimate of modus ponens for implicative rules.

∗Department of Mathematics, FEEC, Brno University of Technology, Czech Republic,
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We assume our language consists of set of propositional variables and
connectives: conjunction ∧, disjunction ∨ and the negation ¬ (our language
does not contain implications). Note that connectives in MV-logic with truth
values range [0, 1] are monotone extensions of the classical connectives. Com-
monly used conjunctors (disjunctors) in MV-logic are the triangular norms
(conorms). In this contribution the truth functions for conjunctions and dis-
junctions are t-seminorms C and t-semiconorms D which are given by next
definition.

Definition 1.

(i) A t-seminorm C is a conjunctor that satisfied the boundary condition

C(1, x) = C(x, 1) = x for all x ∈ [0, 1].

(ii) A t-semiconorm D is a disjunctor that satisfied the boundary condition

D(0, x) = D(x, 0) = x for all x ∈ [0, 1].

2 . The aggregation deficits and full resolution truth
function

In Pavelka’s language of evaluated expresions, we would like from (C∨A, x)
and (B ∨ ¬A, y) infer (C ∨ B, f∨(x, y)) where f∨(x, y) should be the
best promise we can give based on D the truth function of disjunction ∨ and
x and y.

In [10] there was introduced a new operator, let us call it aggregation
deficit RD, which is based on a disjunctor D. We recall its definition and
important theorems, their proofs can be found in [10].

Definition 2. The aggregation deficit is defined by

RD(x, y) = inf{z ∈ [0, 1];D(z, x) ≥ y}.

Theorem 3. If D(c, a) ≥ x then c ≥ RD(a, x).
If moreover D is right continuous then the opposite implication holds.

Example 4. For the basic t-conorms SM , SP and SL we obtain the following
aggregation deficits:
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RSM
(x, y) =

{
0 if x ≥ y,
y otherwise,

RSP
(x, y) =

{
0 if x ≥ y,
y−x

1−x
otherwise,

RSL
(x, y) =

{
0 if x ≥ y,
y − x otherwise.

Remark 5. Note, that RD(x, y) ≤ y for (x, y) ∈ [0, 1]2. If x ≥ y, then
RD(x, y) = 0. It means, that for any aggregation deficit RD it holds that
RD ≤ RSM

. More, if the partial mappings of disjunctor D are infimum-
morfism ( inf

a∈M
D(x, a) = D(x, inf

a∈M
a), where M is subset of interval

[0, 1]) then x ≥ y if and only if RD(x, y) = 0. It follows from bound-
ary condition and monotonicity of t-semiconorm D. Consider an aggregation
deficit RD, then the partial mapping RD(., 1) is negator on [0, 1]. The ag-
gregation deficit RS of t-conorm S coincides with residual coimplicator JS,
which was introduced by Bernard De Baets in [1] for different purpose.

For formulation of a result on sound and complete full resolution, we
investigated the resolution truth function f : [0, 1]2 → [0, 1], which is
defined by

fRD
(x, y) = inf

a∈[0,1]
{D(RD(a, x), RD(1 − a, y))}.

Example 6. For the aggregation deficits RSM
, RSP

and RSL
which are

corresponded with the basic t-conorms we obtain the following functions:

fRSM
(x, y) =

{
0 if x + y ≤ 1,
min(x, y) otherwise,

fRSP
(x, y) =

{
0 if x + y ≤ 1,
x+y−1

max(x,y)
otherwise,

fRSL
(x, y) =

{
0 if x + y ≤ 1,
x + y − 1 otherwise.
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Remark 7. Note that arbitrary resolution truth function fRD
(x, y) satisfies

if x + y ≤ 1 then fRD
(x, y) = 0.

Theorem 8. Assume the truth evaluation of propositions is a model of
(C ∨ A, x) and (B ∨ ¬A, y). Then

TV (C ∨ B) ≥ fRD
(x, y).

3. Modus ponens for clause based rules

For implicative rules, there is in [6] an estimation of modus ponens

(B, b), (B → H, r)

H, f→(b, r)
.

Let I be truth function of implication →, then truth function f→ is resid-
ual conjunctor of implicator I (note mnemonic body-head-rule notation of
variables)

f→(b, r) = CI(b, r) = inf{h : I(b, h) ≥ r}.

To be consistent with body-head-rule notation of [6], we will use it also
here for clausal rules. In Pavelka’s language of evaluated expresions, we
would like from (B, b) and (¬B∨H, r) infer (H, g∨(b, r)) where g∨(b, r)
should be the best promise we can give based on D the truth function of
disjunction ∨ and b and r.

Example 9. The following are the logical operators of material implica-
tion which are corresponding to basic t-norms Gödel TM , product TP , and
Łukasiewicz TL.

ITM
(b, h) = max(1 − b, h), ITP

(b, h) = 1 − b + b · h,

ITL
(b, h) = min(1 − b + h, 1).

First idea to mimic implicative rules, is to take residua to material im-
plications. The residual conjunctors of previous implicators are:

CITM
(b, r) =

{
0 if b + r ≤ 1,
r otherwise,

CITP
(b, r) =

{
0 if b + r ≤ 1,
b+r−1

b
otherwise,

CITL
(b, r) = max(0, b + r − 1).
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We can see, that all residua to material implication of classical connec-
tives are zero in triangle b + r ≤ 1. Indeed, this is true in general for all
conjunctors with left additive generator.

Theorem 10. Let f : [0, 1] → [0,∞] be a left-continuous additive gen-
erator of a conjunctor C. Let f(0) = ∞ and the function f be right-
continuous in the point 0 or f(0) < ∞ and there exists x ∈ [0, 1] such that
f(x)+f(1−x) 6= f(0) and function f be continuous in the point x. Then
IC(x, y) = 1 − C(x, 1 − y) is implicator and the conjunctor
CIC : [0, 1]2 → [0, 1] can be expressed by

CIC(x, y) = l(g(x) + h(y)),

where

l(x) = 1 − f (−1)(x), g(x) = −f(x), h(x) = f(1− x),

and
CIC(x, y) = 0 holds whenever x + y ≤ 1.

Another possibility, is to calculate the lower bound on truth value of H
using aggregation deficit.

Example 11. To have a sound clause based modus ponens, we make follow-
ing observation. If for all b, r ∈ [0, 1]

(B, b) and (¬B ∨ H, r) should imply (H, g∨(b, r))

then using Theorem 2.2

r ≤ D(1 − b, h) ⇐⇒ h ≥ RD(1 − b, r).

Hence the best estimation for h is

g∨(b, r) = inf
b′≥b

RD(1 − b′, r).

Remark 12. Usualy g∨(b, r) = RD(1 − b, r). Note also that g∨(b, r) = 0
if r + b ≤ 1.

Theorem 13. Let g∨S
be truth function based on RS and CIT be a truth

function based on IT , where T and S are dual triangular norm and conorm,
as in Example 3.1. If T is TM , TL or TP , then

CIT (b, r) = g∨S
(b, r)

for all b, r ∈ [0, 1].
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Minimal Varieties of Representable
Commutative Residuated Lattices

Rostislav Horčík ∗

Let RL be the variety of residuated lattices. The aim of this talk is to
answer several open questions on the cardinality of minimal nontrivial sub-
varieties of RL. Given a variety of algebras V, we denote its subvariety lattice
by Λ(V). In [3, Problem 8.6] the authors posed a question whether there are
uncountably many atoms in Λ(RL) that satisfy x · y = y · x or x2 = x3. This
question was answered in [1] by giving continuum many idempotent repre-
sentable atoms. Concerning the commutative atoms, [1] gives only a partial
answer by showing that there are at least countably many commutative rep-
resentable atoms leaving as an open question whether there are uncountable
many of them or not. The same question appears also in [2] together with
related problems on FL-algebras; see [2, Problems 17–19, pp. 437]. We solve
this problem by constructing continuum many 4-potent commutative repre-
sentable atoms in Λ(RL). The related problems on FL-algebras can be solved
by easy modifications.

Theorem 1.

1. There are 2ℵ0 representable commutative 4-potent atoms in Λ(RL).

2. There are 2ℵ0 representable 4-potent atoms in Λ(FLei).

3. There are 2ℵ0 representable 4-potent atoms in Λ(FLeo).

In the above theorem all the atoms are 4-potent and non-integral. Thus
there is a natural question how many integral (resp. 3-potent) representable
commutative atoms we have. First, we can show that there are only two
integral representable commutative atoms in the subvariety lattice Λ(RL).

∗Inst. of Comp. Sci., Academy of Sciences of the Czech Republic, horcik@cs.cas.cz.
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Let Ln = 〈Ln,∧,∨, ·,→, 0〉 denote the (n + 1)-valued MV-chain, where
Ln = {−n,−n+1, . . . ,−1, 0}, x · y = −n∨ (x+ y), and x→ y = 0∧ (y−x).
Further, let Z be the totally ordered additive group of integers viewed as a
residuated chain. It is well known that its negative cone Z− is residuated as
well.

Theorem 2. There are exactly two integral representable commutative atoms
in Λ(RL), namely varieties generated by L1 and Z−.

If we replace integrality with 3-potency, we can show that there are ex-
actly five representable commutative atoms. We start by defining strictly
simple finite algebras generating those atoms. We define an integral com-
mutative residuated chain U3 = 〈U3,∧,∨, ◦,⇒, 0〉 which behaves almost
like L3 = 〈L3,∧,∨, ·,→, 0〉. Let U3 = L3 ∪ {−2∗}. The order is given by
−3 < −2 < −2∗ < −1 < 0. The multiplication is defined x ◦ y = x · y for
x, y ∈ L3, −2∗ ◦ x = −3 = x ◦ −2∗ for x 6= 0, and −2∗ ◦ 0 = −2∗ = 0 ◦ −2∗.
The residuum ⇒ is fully determined by ◦ and the order. The operations ◦
and ⇒ are described in Figure 1.

◦ −3 −2 −2∗ −1 0
−3 −3 −3 −3 −3 −3
−2 −3 −3 −3 −3 −2
−2∗ −3 −3 −3 −3 −2∗

−1 −3 −3 −3 −2 −1
0 −3 −2 −2∗ −1 0

⇒ −3 −2 −2∗ −1 0
−3 0 0 0 0 0
−2 −1 0 0 0 0
−2∗ −1 −1 0 0 0
−1 −2∗ −1 −1 0 0
0 −3 −2 −2∗ −1 0

Figure 1: The multiplication and residuum in U3.

Having the integral commutative residuated chains L1,L2,L3,U3, we
need to produce non-integral chains from them. Let A = 〈A,∧,∨, ·,→, 1〉 be
an integral commutative residuated chain with a coatom a = max(A \ {1}).
We will extend the 1-free reduct of A by adding a new neutral element e in
order to obtain A′ = 〈A′,∧,∨, ◦,→′, e〉, where A′ = A ∪ {e}. The lattice
order ∧,∨ (denoted the same way as in A) is the extension of the original
order letting a ≤ e ≤ 1. Let x ∈ A ∪ {e} and y ∈ A \ {1}. The operations
are extended as follows:

e ◦ x = x = x ◦ e , e→′ x = x , y →′ e = 1 , 1→′ e = a .
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Then one can show that A′ is a commutative residuated chain which is not
integral since the top element 1 is strictly greater than the monoidal iden-
tity e.

Theorem 3. There are exactly five 3-potent representable commutative atoms
in Λ(RL). Namely, varieties generated by L1,L

′
1,L

′
2,L

′
3,U

′
3.

The construction of atoms from Theorem 1 can be modified in order to
produce a large class of 1-generated algebras. In fact, we can prove that each
finite integral commutative residuated chain embeds into one of them. Thus
we obtain a new generating class for the variety of integral representable
commutative residuated lattices.

Theorem 4. The variety of representable integral commutative residuated
lattices is generated as a quasi-variety by 1-generated finite members.
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Dempster-Shafer Degrees of Belief
in Łukasiewicz Logic

Tomáš Kroupa∗

Dempster-Shafer theory of evidence [7] is an alternative framework for
representing partial knowledge and reasoning under uncertainty in the situa-
tions when classical probabilistic models do not faithfully capture a problem
in question. The uncertainty is described by a pair consisting of a belief func-
tion (lower probability) and a plausibility function (upper probability). The
two functions can be also expressed by a so-called mass assignment, which
is a certain finitely additive probability on the power set of all elements of
the original Boolean algebra of events.

A main aim of this contribution is to study belief functions in the more
general setting than Boolean algebras of events. This effort is in the line
with a growing interest in the generalization of classical probability towards
“many-valued” events, such as those resulting from formulas in Łukasiewicz
infinite-valued logic—see [1] and [5]. The general case of lower and upper
probabilities is investigated in [2]. The approach pursued here is different
from that of [3], where a belief degree of a formula is the truth degree of the
corresponding modality. Namely, we will define belief functions as particular
real functionals on Lindenbaum algebra of Łukasiewicz logic. Generalizing
the integral representation theorem for states [4, 6], it can be proven that
every belief function is just a Choquet integral over the unit hypercube or,
equivalently, over the set of all possible worlds. Moreover, we will provide a
natural MV-algebraic generalization of the notion of mass assignment. The
generalized mass assignment will be defined as a state on the MV-algebra of
continuous functions over the space of all closed subsets of the unit hyper-
cube, which is endowed with the topology given by Hausdorff metric. The
introduced model enables interpreting belief degrees in Pavelka extension of
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Łukasiewicz logic: every “elementary”degree of belief associated with a given
formula is a truth degree of this formula with respect to some theory.
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Constructing Operational Logics on
Non-Associative Residuated Structures

David Kruml∗

In the von Neumann interpretation of quantum mechanics, the states are
unitary vectors of a Hilbert space while unitary transformations, together
with observations, form a part of the operator algebra on the space. Cer-
tain subspaces of the Hilbert space can be interpreted as observables of the
system and those, which commute with others, form a Boolean substructure
representing the classical information respected by the quantum system. In
terms of lattice theory, there is an orthomodular lattice L of observables and
its centre Z. The lattice analog of the operator algebra is then a quantale
Q acting on the orthomodular lattice. It makes L a left Q-module and right
Z-module. Moreover, the embedding Z ⊆ L is open (i.e. it has both ad-
joints and satisfies the Frobenius reciprocity condition) and thus admits a
well-defined inner product L×L→ Z. We can find more examples of such a
situation among residuated lattices, e.g. a quantum frame (an intuitionistic
generalization of orthomodular lattice). I wish to explain how one of the
three parts Q,L and Z can be constructed when we know the other two, es-
pecially Q from L and Z. The construction provides an associative structure
of “operational logic” acting on L which need not admit suitable multiplica-
tion; in the motivating example of orthomodular lattice the classical lattice
operations are not distributive while the Sasaki projection (considered as a
binary multiplication) is not associative.
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MV-Algebras with Constant Elements

Ramaz Liparteliani∗

In this work we deal with algebraic counterparts of Lukasiewicz logic en-
riched by finite number of truth constants. A propositional many-valued logi-
cal system which turned out to be equivalent to the expansion of Lukasiewicz
Logic L by adding into the language a truth-constant r for each real r (0, 1),
together with a number of additional axioms was proposed by Pavelka in [1].

Many authors have been studied many-valued logics enriched by truth
constants with respect to their relationship to other parts of mathematics,
as well as to various structures (see, for example, [2, 3, 4]).

We investigate the varieties of algebras, corresponding to of Lukasiewicz
logic enriched by finite number of truth constants. Specifically we show
that these varieties contain non-trivial minimal subvariety generated by finite
linearly ordered algebra which is functionally equivalent to Post algebra.

1. Definition

Recall that a universal algebra (A,⊕,⊗,∗ , 0, 1) is called an MV-algebra, if it
satisfies the following identities: for any x, y ∈ A
A1. x⊕ y = y ⊕ x
A2. x⊕ (y ⊕ z) = (x⊕ y)⊕ z
A3. x⊕ x∗ = 1
A4. x⊕ 1 = 1
A5. x⊕ 0 = x
A6. x⊗ y = (x∗ ⊕ y∗)∗

A7. x = (x∗)∗

A8. 0∗ = 1
A9. (x∗ ⊕ y)∗ ⊕ y = (x⊕ y∗)⊕ x
A10. x⊕ x⊕ x = x⊕ x

∗Tbilisi State University, Georgia, r.liparteliani@yahoo.com.
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In order to read and write the axioms in a compact form, we make defi-
nitions: i) 0x = 0, (i+ 1)x = ix⊕ x ii) x0 = 1, xi+1 = xi ⊗ x

The MV-algebra is called the MVm-algebra, if it additionally satisfies the
following identities:

A11. (m− 1)x⊕ x = (m− 1)x

A12. If m > 3, [(jx)⊗ (x∗ ⊕ [(j − 1)x]∗)]m−1 = 0, where 1 < j < m− 1 and
j does not divide m− 1

Now in the MV-algebra with fix n-2 additional constants. By the MVSn-al-
gebra we consider the algebra (A,⊕,⊗,∗ , 0 = C0, C1, . . . , Cn−2, 1 = Cn−1)
where the (A,⊕,⊗,∗ , 0, 1)-reduct is an MV-algebra and additionally the
nullary operators Ci(i = 1, ..., n− 1) satisfy the following properties:

C1. iC1 = Ci, i = (2, ..., n− 1) and C2. C1 = C∗
n−2

Thus we obtain the algebra with n fixed elements. For each i, j =
0, . . . , n− 1 we have Ci ⊕ Cj = iC1 ⊕ jC1 = (i + j)C1 = kC1 where
k = min(n − 1, i + j). Also one can prove that C∗

i = Cn−1−i. Hence these
fixed elements form the subalgebra of the MV-algebra.

The same way we define the MVmSn algebras for such m-s, that n − 1
divides m− 1: These are the MVm-algebras with constants C1, ..., Cn−2 and
additional axioms C1-C2 for them. From here on when we write MVmSn, we
consider that n− 1 divides m− 1.

Algebra S(n) = ({0, 1
n−1

, 2
n−1

, ..., n−2
n−1

, 1},⊕,⊗,∗ , 0, C1, ..., Cn−2, 1), where
Ci(x) =

i
n−1

is a MVSn-chain.
The variety of the MVSn-algebras and MVmSn-algebras denote by MVSn

and MVmSn respectively.

2. Characterization

Theorem. The only subdirectly irreducible algebras in the variety MVmSn

are the algebras S(k), where n− 1 divides k − 1 and k − 1 divides m− 1.

Corollary. Every MVmSn-algebra A is isomorphic to the subdirect prod-
uct of the algebras S(k) = ({0, 1

k−1
, 2
k−1

, ..., k−2
k−1

, 1},⊕,⊗,∗ , 0, C1, ..., Cn−2, 1)
where n− 1 divides k − 1 and k − 1 divides m− 1.

Now let us define the following recursive sequence: p(n, k) = nk,
p(i, k) = ik −

∑j−1∈div(i−1)
n≤j<i p(j, k) for every i > n.
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Theorem. Algebra FMVmSn
(k) =

∏j−1∈div(m−1)
j≥n S

p(j,k)
j is k-generated free

MVmSn-algebra over the variety MVmSn.

Consider the set recursive set ji, i = 1, 2, ...: constructed the following
way: j1 = n and for every i, (ji−1) divides (ji+1−1). Let J = {ji|i = 1, 2, ...}.

Theorem. The subalgebra FMVSn
(k) of the direct product

∏
ji∈J

FMVji
Sn
(k)

generated by sm = (g
(j1)
m , g

(j2)
m , ...) ∈

∏
ji∈J

FMVji
Sn
(k) (m = 1, ..., k) is a free

MVSn-algebra with the free generators s1, ..., sk, where g(ji)1 , ..., g
(ji)
k are the

free generators of the k-generated free algebra FMVji
Sn
(k).

Theorem. Algebra A is projective in the variety MVmSn if it is isomorphic
to the algebra Sn × A

′

where A
′

is some MVmSn-algebra.

In the algebra Sn we can construct the cyclic operator by means of the
MVmSn-algebra operations: f(x) = ((n− 1)x)∗ ∨ (x⊗ Cn−2).

Theorem. An algebra Sn is functionally equivalent to the n-valued Post
algebra.
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Non-Safe Structures in Fuzzy Logics
and Game Semantics

Ondrej Majer ∗

The well known problem of non-safe structures in the semantics of first
order fuzzy logics is a straightforward consequence of the interpretation of
a quantified formulas: the value of ∀xϕ(x) is the infimum and the value of
∃xϕ(x) is the supremum of the set of values assigned to the formula ϕ(x) in
a particular structure M . The models, in which all the required infima and
suprema exist are called safe and all semantic statements, most importantly
completeness theorems, have to be restricted to safe models.

Game theoretical semantics for fuzzy logics proposed in [1] was shown to
deal with all models, not just the safe ones. The aim of this paper is to define
a notion of game theoretical truth and to prove a completeness theorem for
game-theoretical semantics without the restriction to safe models. We confine
ourselves to the case of Lukasiewicz logic, but it is possible to show, that the
result can be generalised to Godel and Product logic as well.

1 First-order Łukasiewicz logic

Our starting point is the Łukasiewicz fuzzy logic as presented e.g. in [2]. The
language of Łukasiewicz logic contains classical connectives plus the strong
disjunction ⊕ and strong conjunction ⊗. The standard set of truth values is
the unit interval, but theere are completeness results with respect to more
general structures - linearly ordered MV algebras (MV-chains).

For any MV-chain L, an L-structure for a predicate language Γ is
M = (M, (PM)P∈Γ, (fM)f∈Γ) where M 6= ∅ is the domain of the model,
for each predicate P of arity n, PM is an n-ary L-fuzzy relation on M (a
mapping Mn → L), and for each function f , fM is a mapping Mn → M .
Then we define for each formula ϕ (of the given language), the truth value

∗Inst. of Philosophy, Academy of Sciences of the Czech Republic, majer@site.cas.cz.
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‖ϕ‖LM,v of ϕ in the MV-chain L with respect to M and an M-evaluation v of
free variables of ϕ in M in the usual (Tarskian) way.

Definition 1. Let Γ be a predicate language, L an MV-algebra, M an
L-structure for Γ, v an M-evaluation. The value of a term is defined as:
||x||M,v = v(x) and ||f(t1, . . . , dn)||M,v = fM(||t1||M,v, . . . , ||tn||M,v). A truth
value of the formula ϕ in M for an evaluation v is defined1:

||P (t1, t2, . . . , tn)||LM,v = PM(||t1||M,v, ||t2||M,v, . . . , ||tn||M,v) ,
||ϕ⊕ ψ||LM,v = ||ϕ||LM,v ⊕ ||ψ||

L
M,v ,

||¬ϕ||LM,v = ¬||ϕ||LM,v ,
||0||M,v = 0 ,

||(∀x)ϕ||M,v = inf{||ϕ||LM,v′ | v
′ ≡x v} .

||(∃x)ϕ||M,v = sup{||ϕ||LM,v′ | v
′ ≡x v} .

If infimum (supremum) does not exist, we take its value as undefined.

As we can see, in general the truth assignment is a partial function. To
overcome this difficulty we define two classes of models:

Definition 2 (Safe structures). Let Γ be a predicate language, L an
MV-chain, M an L-structure for Γ. We say that M is:

• a safe L-structure, if ||ϕ||LM,v is defined for each ϕ and v.

• a witnessed L-structure, if ||ϕ||LM,v is defined for each ϕ and v if we
replace sup and inf in Definition 1 by max and min.

We use the symbol |=L for the semantical consequence over given MV-alge-
bra L (T |=L ϕ iff for each L-model e of T we have e(ϕ) = 1). It is well known,
that Łukasiewicz logic is complete with respect to the safe L-structures over
all MV-chains L. For the proof see again [2].

Theorem 3 (Completeness Theorem). Let Γ be a predicate language and ϕ
a formula. Then the following are equivalent:

• ⊢ ϕ.

• (M,L) |= ϕ for each MV-chain L and each safe L-structure M.

• (M,L) |= ϕ for each MV-chain L and each witnessed L-structure M.

1We shall use the same symbols for both connectives and corresponding operations of
the MV-algebra. By v ≡x v′ we mean that v(y) = v′(y) for each object variable y different
from x.
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2 Evaluation games

Evaluation game for fuzzy logics is a generalization of the classical evaluation
game in the sense of Hintikka-Sandu (e.g. [3]). It is a zero-sum game of two
players, traditionally called Eloise and Abelard, who disagree about truth of
a formula ϕ in a model M with respect to an M-evaluation v. To decide
the matter they play an evaluation game, the rules of which are given by the
structure of the formula in question. The formula ϕ is (game-theoretically)
true in (M, v) iff there exits a winning strategy for the initial verifier in the
corresponding evaluation game.

Evaluation games for fuzzy logics include one more parameter—the de-
gree of truth of the formula in question. (The argument is not just about
a formula being true, but ’how much’ it is true.) Eloise as the initial Veri-
fier wants to show that ||ϕ||LM,v ≥ r in a model M with an M-evaluation v,
Abelard as the initial Falsifier wants to deny that. Let L be an MV-chain,
M be an L-structure, ϕ a formula, v an M-valuation, and r ∈ L. The fuzzy
evaluation game GL

M(ϕ, v, r) has the following moves:

Propositional moves

(⊕) (ψ1 ⊕ ψ2, v, r): V chooses r′ ≤ r, F chooses whether to play (ψ1, v, r
′)

or (ψ2, v, r − r′).

(∨) (ψ1 ∨ ψ2, v, r): V chooses whether to play (ψ1, v, r) or (ψ2, v, r).

(⊗) (ψ1 ⊗ ψ2, v, r): V chooses r′ ≤ 1 − r, F chooses whether to play
(ψ1, v, r + r′) or (ψ2, v, r + (1− r − r′)).

(∧) (ψ1 ∧ ψ2, v, r): F chooses whether to play (ψ1, v, r) or (ψ2, v, r).

(¬) (¬ψ, v, r): F chooses r′, r ≥ r′ > 0, role switch, game continues as
(ψ, v, (1− r) + r′)

(at) (ψ, v, r), where ψ is an atomic formula: the end of the game, if
||ψ||M,v ≥ r (the current) V wins, otherwise F wins.

(0) (ϕ, v, 0): the end of the game, the current V wins.

Quantifier moves
The existential move for witnessed models consists of Verifier’s choice of an
element from the domain of the model witnessing the claim ||(∃x)ψ||v ≥ r,
equivalently sup(||ψ||v[x]) ≥ r
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(∃′) ((∃x)ψ, v, r): V chooses a ∈M , the game continues as (ψ, v[x : a], r).

If the supremum is proper, i.e., ||ψ||v[x:a′] < sup(||ψ||v[x]) for all a′ ∈ M ,
Verifier cannot in principle provide a witness, so we weaken the classical
rule: she has to provide a witness for any r′ strictly smaller than r. We let
Falsifier to decrease Verifier’s stake (it is Falsifier’s interest to decrease it as
little as possible) and then Verifier finds an element in the domain to meet
the weakened condition.

(∃) ((∃x)ψ, v, r): F chooses r′ < r and V chooses a ∈M , the game continues
as (ψ, v[x : a], r′).

Let us note, that this rule is applicable even in the case, when the supre-
mum does not exist. It is also ’fair’ to Falsifier as it keeps his winning
condition untouched. If it is the case, that sup(||ψ||v[x]) < r, Verifier can
always find r′ between the supremum and r to justify this claim (no matter
if the supremum exists or not or is witnessed or not).

The position ((∀x)ψ, v, r) corresponds to Verifier’s claim that
inf(||ψ||v[x]) ≥ r. F is to move and he has to provide a counterexample,
i.e., to find an a′ such that (||ψ||v[x:a′] < r). In this case the (non)existence
of the witnessing element does not influence Falsifier’s choice:

(∀) ((∀x)ψ, v, r): F chooses a ∈M , game continues as (ψ, v[x : a], r).

This finishes the specification of the fuzzy evaluation game.

Correspondence theorem
Fuzzy evaluation games are zero-sum games of a finite depth, so by Zermelo’s
theorem they are determined—either Eloise or Abelard has a winning strat-
egy for every (ϕ,M, v, r). Moreover, the game-theroretical value (existence
of winning strategies for Eloise for a certain r) coincides in the case of safe
structures with the standard Tarskian value.

Theorem 4. Let L be an MV-chain, M be a safe L-structure, ϕ a formula,
v an M-valuation, and r ∈ L. Then Eloise has a winning strategy for the
(M,L)-Game (ϕ, v, r) iff ||ϕ||LM,v ≥ r.
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3 Game-theoretical truth

From the game-theoretical point of view it makes good sense to speak about
powers of players in a particular game, We shall identify the power of Eloise
(Abelard) in a fuzzy evaluation games corresponding to a formula ϕ with the
set of values for which she (he) has a winning strategy.

Definition 5 (Powers of players). Let L be an MV-chain, M be an
L-structure, ϕ a formula, and v an M-valuation. We define:

E(M,L, v, ϕ) =df {r | Eloise has a winning strategy for the game
GL

M(ϕ, v, r)}.

A(M,L, v, ϕ) =df {r | for any r′ ∈ L if r′ > r, then Abelard has a winning
strategy for the game GL

M(ϕ, v, r′)}.

If L, M or v are clear from the context we will omit them.
The definition of A seems to be less straightforward than necessary; we

need it to obtain a duality of the operations over the powers of players defined
below. The powers of the players have following properties:

Lemma 6 (Properties of the powers). Let L be an MV-chain, M be an
L-structure, ϕ a formula, and v an M-valuation. Then:

(i) 0L ∈ E(ϕ) (ii) E(ϕ) is a lower set;
(iii) 1L ∈ A(ϕ); (iv) A(ϕ) is an upper set;
(v) A(ϕ) ∪ E(ϕ) = L; (vi) ||A(ϕ) ∩ E(ϕ)|| ≤ 1;

(vii) For a safe M: E(M,L, v, ϕ) ∩A(M,L, v, ϕ) = {||ϕ||LM,v}.

Let us note that (iii) does not mean Abelard has a winning strategy for
the value 1L; it follows from the fact, that there is no game G(ϕ, v, r′)} for
r′ > r = 1 . This lemma gives us also a characterisation of safe structures
(for a given L) in the terms of evaluation games: a structure M is safe iff
the powers of players have a nonepmty intersection for any formula ϕ and
valuation v.

It is quite natural to identify (full) truth of a formula ϕ with the situation
when Eloise has a winning strategy for the value 1L, in this case E = L, so
Eloise has winning strategy for any value from L.

Definition 7 (G-truth). Let L be an MV-chain, M be an arbitrary
L-structure and v an M-valuation. Then we say that
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• ϕ is true in (M,L) with respect to v in the game-theoretical semantics
(G-true) and write (M,L)v |=G ϕ iff E(M,L, v, ϕ) = L.

• ϕ is G-true in the L-structure M: (M,L) |=G ϕ iff E(M,L, v, ϕ) = L
for any v.

• ϕ is a G-tautology |=G ϕ iff ϕ is G-true in all L-structures M.

We can show, that in the case of safe structures the notion of G-truth
(G-tautology) corresponds to the standard (tarskian) one.

4 Completeness

With the definition of G-truth we can proceed to the main result of the
article.

Theorem 8 (Completeness for non-safe structures). Let Γ be a predicate
language and ϕ a formula. Then the following are equivalent:

1. ⊢ ϕ.

2. (M,L) |=G ϕ for each MV-chain L and each L-structure M.
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A Theory of Modal Natural Dualities
with Applications to

Many-Valued Modal Logics

Yoshihiro Maruyama∗

By proposing the notion of ISPM, we extend the theory of natural du-
alities (see [4]) so that it encompasses Jónsson-Tarski’s topological duality
(see [6]) and Kupke-Kurz-Venema’s coalgebraic duality (see [9]) for the class
of all modal algebras. As applications of our duality theory, we can obtain
new coalgebraic dualities for algebras of many-valued modal logics includ-
ing Łukasiewicz n-valued modal logic (see [1, 13]) and a version of Fitting’s
many-valued modal logic (see [5, 11]).

The theory of natural dualities by Davey et al. is a powerful general
theory of Stone-Priestley-type dualities based on the machinery of universal
algebra. It basically considers duality theory for ISP(M) where M is a finite
algebra. It is useful for obtaining new dualities and actually encompasses
many known dualities, including Stone duality for Boolean algebras (see [7]),
Priestley duality for distributive lattices (see [4]), and Cignoli duality for
MVn-algebras, i.e., algebras of Łukasiewicz n-valued logic (see [2, 3]), to
name but a few (for more instances, see [4]).

However, as far as the author knows, it has not encompassed
Jónsson-Tarski’s topological duality or Kupke-Kurz-Venema’s coalgebraic du-
ality for the class of all modal algebras. We consider that this is mainly
because the class of all modal algebras cannot be expressed as ISP(M) for
a finite algebra M , in contrast to the fact that any of the class of Boolean
algebras, the class of distributive lattices and the class of MVn-algebras can
be expressed as ISP(M) for a suitable finite algebra M .

In this talk, we propose the new notion of ISPM in order to extend the
theory of natural dualities so that it encompasses Jónsson-Tarski’s topologi-
cal duality and Kupke-Kurz-Venema’s coalgebraic duality for the class of all
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modal algebras. It is crucial that the class of all modal algebras coincides
with ISPM(2) for the two-element Boolean algebra 2 (i.e., the class of all
modal algebras can be generated from a single algebra in this way). More-
over, we have the following facts: for n = {0, 1/(n−1), 2/(n−1), . . . , 1} with
the usual operations of MV-algebras, ISPM(n) coincides with the class of all
algebras of Łukasiewicz n-valued modal logic; a similar thing holds also for
algebras of a version of Fitting’s many-valued modal logic. Thus, the notion
of ISPM seems to be natural and useful for our goal.

Our main results are topological and coalgebraic dualities for ISPM(L)
where L is a quasi-primal algebra with a bounded lattice reduct (for the
details of these, see [12]). Our results encompass both Jónsson-Tarski’s and
Kupke-Kurz-Venema’s dualities as the case L = 2. They also encompass
topological dualities in [11, 13] for algebras of many-valued modal logics. Our
dualities are obtained based on semi-primal duality theorem (see [4, 8]) in
the theory of natural dualities and may be considered as modalized versions
of semi-primal duality theorem. As applications of our results, we obtain
new coalgebraic dualities for algebras of Łukasiewicz n-valued modal logic
and for algebras of a version of Fitting’s many-valued modal logic. It also
follows from our dualities that the category of relevant coalgebras has a final
coalgebra and cofree coalgebras.

We emphasize that the notion of ISPM makes it possible to incorporate
both Jónsson-Tarski’s topological duality and Kupke-Kurz-Venema’s coalge-
braic duality into the theory of natural dualities.
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Modal MTL-Algebras

Wilmari Morton∗ Clint J. van Alten†

The variety of MTL-algebras is the equivalent algebraic semantics for
monoidal t-norm logic, or MTL, as defined in [3]. We investigate exten-
sions of MTL-algebras by an additional unary ‘modal’ operation. Extensions
of various non-classical logical systems by additional modal operators are
increasingly being studied. On substructural logics, existing examples of
modalities include the linear logic exponential ! and the Baaz Delta ∆. In [1]
and [6], operators on MTL related to ! are considered. MTL is also closely
related to fuzzy set theory, in which many natural modalities can be found.
In particular, the notion of a ‘hedge’ is widely used, which is essentially a
modality on the logic of fuzzy sets with meaning such as ‘very’ or ‘more-or-
less’. For example, the hedge ‘very’ A on a fuzzy set A with membership
function µA(x) is often taken to be the fuzzy set with membership func-
tion µvery A(x) = (µA(x))

2. Another interesting modality on fuzzy sets (or
any logic which has as primary model an algebra on [0, 1]) is the operation
∼x = 1− x. This operation usually differs from the negation ¬x = x→ 0.

We recall that a (commutative, bounded, integral) residuated lattice is a
lattice-ordered algebra with bounds 0, 1 and binary operations ◦,→ such that
◦ is associative, commutative, has identity 1 and the residuation property
holds: x ◦ z ≤ y iff z ≤ x→ y. An MTL-algebra is a residuated lattice that
satisfies the prelinearity axiom: (x → y) ∨ (y → x) = 1. An MTL-chain is
just a linearly ordered MTL-algebra.

By a modal MTL-algebra (modal MTL-chain) we mean an MTL-algebra
(MTL-chain) with an additional unary operation, called a modality and usu-
ally denoted by f . Initially, the only assumption we make on the modality is
that it be order-preserving, or order-reversing as in the case of ∼. We then
consider additional identities that arise naturally. On an MTL-chain, the
order-preserving assumption on a modality f is equivalent to either of the
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identities: f(x∧y) = f(x)∧f(y) or f(x∨y) = f(x)∨f(y). To borrow terms
from the theory of modal algebras, f is both ‘box-like’ and ‘diamond-like’.
In the context of MTL-chains, it makes sense to instead call an operator f
‘box-like’ if it satisfies the identity f(x) ◦ f(y) ≤ f(x ◦ y), and ‘diamond-like’
if it satisfies f(x⊕ y) ≤ f(x)⊕ f(y), where x ⊕ y = ¬((¬x) ◦ (¬y)). In the
case of involutive MTL-chains the following correspondences hold: f(x) is
box-like iff ¬f(¬x) is diamond-like, and f(x) is diamond-like iff ¬f(¬x) is
box-like.

Our research is motivated by considerations on modal algebras. An im-
portant problem in modal algebras is that of canonicity; that is, the problem
of preservation of identities under completion. A classical result here is that
the class of Sahlqvist identities, a syntactically defined class, is preserved
by the canonical completion. We investigate the problem of preservation of
identities under completions of modal MTL-chains. We prove, for example,
a Sahlqvist-like result by giving a syntactic description of a class of identities
preserved by the MacNeille completion. This class is closely related to the
Sahlqvist identities for modal algebras but makes use of the notions of box-
like and diamond-like in the MTL-chain context. Our algebraic approach is
motivated by the algebraic approach for modal algebras in [5] and [4], and
extends the methods used in [8].

We investigate ‘filtrations’ on modal MTL-chains as methods for prov-
ing finite model properties. In modal algebras the study of filtrations makes
strong use of the theory of Kripke frames, however a purely algebraic de-
scription of filtrations on modal algebras is also possible [2]. We extend
this algebraic approach to MTL-chains although it is mainly possible in the
n-potent case. In the non-n-potent case, a finite embedding construction as
used in [8] may be used to prove the finite model property. In both cases, the
stronger ‘finite embeddability property’ is obtained, which implies decidabil-
ity of the universal theory of finitely axiomatized classes. We give a syntactic
description of classes of identities that are preserved by these constructions.
That is, we describe some classes for which the finite embeddability property
holds.

We also consider some structural properties of modal MTL-algebras. We
describe the filters (equivalently, ideals) of such algebras and give a finite basis
of ideal terms. Such structural properties are important for the classification
of varieties of modal MTL-algebras and questions related to the generation
of such varieties by the MTL-chains in the variety.
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Priestley Duality and Nelson Lattices

Sergey P. Odintsov ∗

In this talk, we consider the Priestley duality for algebraic models of para-
consistent Nelson’s logic with strong negation, more exactly, for its version
N4⊥ suggested in [6] and containing the additional constant ⊥ used to define
the intuitionistic negation ¬ϕ := ϕ → ⊥. It was shown in [6] that the class
of N4⊥-extensions has more regular structure then the class of extensions of
the logic N4 having only strong negation in its language. Further, algebraic
models of N4 are unbounded in general case, where as the models of N4⊥

are bounded lattices with additional operations, which makes them more
convenient for constructing the Priestley duality.

For N3-lattices, i.e., for models of explosive Nelson’s logic N3 [4], the
elegant representation theory of Priestley type was developed independently
by R. Cignoli [1] and A. Sendlewski [10] (they used the term Nelson alge-
bras). Both Cignoli and Sendlewski essentially used the original algebraic
representation of N3-lattices obtained by A. Monteiro [3] and based on the
so called interpolation property.

The algebraic semantics for paraconsistent Nelson’s logic N4 in terms of
N4-lattices was only recently developed [5]. These results were transferred
to the logic N4⊥ and N4⊥-lattices in [6] (see also [7]). This allows to pose a
question on Priestley duality for algebraic models of paraconsistent Nelson’s
logic. It looks interesting especially due to the fact that unlike N3-lattices,
the class of N4⊥-lattices is not contained in the well studied class of Kleene
algebras. Another difficulty is connected with the fact that the weak implica-
tion→ of N3-lattices can be represented via the relative pseudocomplement
operation ⊃ as follows: a→ b = a ⊃ (∼ a ∨ b). So, defining the structure of
N3-lattice on clopen increasing sets of the dual space we can use the formula
for ⊃ known from the duality theory for Heyting algebras. This way is im-
possible for N4⊥-lattices, where the equality a→ b = a ⊃ (∼ a∨b) fails. The
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closest analog, which was found, looks as a → b =∼ ¬a ⊃ (¬a ∨ b), where
¬a = a→ ⊥. It involves the weak implication and is not useful. Due to this
reason we have to find a rather complicated formula for the weak implication.
However, the resulting duality theory for N4⊥-lattices agrees very well with
the duality theory developed by R. Cignioli [1] and A. Sendlewski [10].

We continue with the algebraic semantics for the logic N4⊥.

Definition 1. An algebra A = 〈A,∨,∧,→,∼,⊥, 1〉 is said to be an
N4⊥-lattice if the following hold.

1. The →-free reduct 〈A,∨,∧,∼,⊥, 1〉 is a De Morgan algebra, i.e.,
〈A,∨,∧,⊥, 1〉 is a bounded distributive lattice and the following identi-
ties hold: ∼ (p ∨ q) = ∼ p∧ ∼ q and ∼∼ p = p.

2. The relation �, where a � b denotes (a→ b)→ (a→ b) = a→ b, is a
preordering on A.

3. The relation ≈, where a ≈ b if and only if a � b and b � a, is a
congruence relation with respect to ∨,∧,→ and the quotient-algebra
A⊲⊳ := 〈A,∨,∧,→,⊥, 1〉/ ≈ is a Heyting algebra.

4. For any a, b ∈ A, ∼ (a→ b) ≈ a∧ ∼ b.

5. For any a, b ∈ A, a ≤ b if and only if a � b and ∼ b �∼ a, where ≤ is
a lattice ordering on A.

An N3-lattice A is an N4⊥-lattice modelling N3, i.e., ∼ a ∧ a ≈ ⊥ for
all a ∈ A.

Unlike Heyting algebras the notions of lattice filter and implicative filter
are not equivalent on Nelson lattices. Following H. Rasiowa [9] we define two
classes of implicative filters on N4⊥-lattices. A non-empty subset F of an
N4⊥-lattice A is said to be a special filter of the first kind (sffk) on A if 1.
a ∧ b ∈ F for any a, b ∈ F , 2. a � b implies b ∈ F for any a ∈ F and b ∈ A.
And F is a special filter of the second kind (sfsk) on A if 1. a∧ b ∈ F for any
a, b ∈ F , 2. ∼ b �∼ a implies b ∈ F for any a ∈ F and b ∈ A.

It turns out that every prime lattice filter on an N4⊥-lattice is either sffk,
or sfsk.

Definition 2. Let X = (X,X1,≤, τ, g) be a tuple, where X is a set, X1 ⊆ X,
≤ a partial order on X, g : X → X, and τ is a topology on X. Put

X2 := g(X1), X+ := {x ∈ X | x ≤ g(x)}, X− := {x ∈ X | g(x) ≤ x}.
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The structure X is said to be an N4-space if the following conditions are
satisfied:

1. (X,≤, τ, g) is a De Morgan space, i.e., (X,≤, τ) is a Priestley space
[2] and g is an order reversing homeomorphism such that g2 = idX ;

2. X1 is closed in τ , X = X1 ∪X2, and X1 ∩X2 = X+ ∩X−;

3. (X1,≤↾X1, τ ↾X1) is a Heyting space;

4. for any x ∈ X1 and y ∈ X2, if x ≤ y, then x ∈ X+, y ∈ X−, and there
exists z ∈ X such that x, g(y) ≤ z ≤ g(x), y;

5. for any x ∈ X2 and y ∈ X1, if x ≤ y, then x ∈ X+, y ∈ X−, and
x ≤ g(y).

Elements of the subspace X1 (X2) correspond to sffk (sfsk) on
N4⊥-lattices. Now we define mappings dual to N4⊥-lattice homomorphisms.

Definition 3. Let X = (X,X1,≤, τ, g) and Y = (Y, Y 1,≤′, τ ′, g′) be
N4-spaces. The mapping f : X → Y is an N4-function if the following con-
ditions hold: 1) f : (X ≤, τ, g)→ (Y,≤′, τ ′, g′) is a De Morgan function, i.e.,
an order preserving continuous mapping such that fg = g′f ; 2) f(X1) ⊆ Y 1;
3) f ↾X1 is a Heyting function, i.e., for any U open in τ ′,

f−1((U ∩ Y 1]) ∩X1 = (f−1(U ∩ Y 1)] ∩X1.

Now we denote by N4 the category of N4⊥-lattices and their homomor-
phisms and by N ∗

4 the category of N4-spaces and N4-functions. The main
result is the following:

Theorem 4. The categories N4 and N ∗
4 are dually equivalent.

In conclusion we note that N4-spaces corresponding to N3-lattices are
exactly those satisfying the equality X1 = X+, and, consequently, X2 = X−.
In this case condition 4 of Definition 2 turns into Monteiro’s interpolation
property and condition 5 becomes trivial. So, the equality X1 = X+ turns
N4-space into Nelson space in the sense of [1].

The full version of the announced results will be presented in [8].
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Web-Geometric Approach to
Continuous Triangular Subnorms

Milan Petrík ∗ Peter Sarkoci †

Web geometry [1] is a branch of differential geometry providing several
geometric concepts and tools which are known to characterize algebraic prop-
erties of loops in a surprisingly transparent geometric way. These are known
as closure conditions; in particular, the associativity of loops is characterized
by the Reidemeister closure condition [7]. This result is of a great interest
since the algebraic property of associativity (unlike, e.g., the monotonicity,
commutativity, or existence of a neutral element) usually seems to resist all
intuitive geometric interpretations.

In previous results of the authors it has been shown that the concept of
the Reidemeister closure condition can be used not only for loops but also for
triangular norms [4] and for totally ordered monoids [5]. This allows a visual
characterization of their associativity in a way similar to the case of the loops.
Both these structures are important in the monoidal triangular norm based
logic (MTL) [2], a prototypical logic of truth degrees. The semantical part
of MTL is represented by MTL-algebras which are known to be subdirect
products of MTL-chains [2]; the conjunction-interperting binary operation
of an MTL-chain turns its underlying set into a totally ordered monoid.
MTL is, however, complete even with respect to left-continuous triangular
norms [3] which establishes their importance.

However, a convenient characterization of associativity of general trian-
gular norms and totally ordered monoids is still an open problem. This
contribution intends to focus on a specific subset of general left-continuous
triangular norms: those which are constructed by ordinal sums of continuous
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triangular subnorms. The fact that every triangular subnorm can be easily
extended to a triangular norm [6] will allow us to modify and apply web
geometry in a similar way as in the previous results.
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Varieties of Interlaced Bilattices

Umberto Rivieccio∗ Félix Bou† Ramon Jansana‡

We present some algebraic results on several varieties of algebras having
a bilattice reduct; we point out an interesting correspondence between these
varieties and well-known varieties of lattices.

Bilattices are algebraic structures introduced by Ginsberg [7] as a uni-
form framework for inference in Artificial Intelligence, but since then they
have found applications in many fields. In the 1990s, Arieli and Avron [1]
developed the first bilattice-based logical system in the traditional sense, de-
fined from logical matrices that they called logical bilattices. In a previous
work [3] we studied, from the perspective of Abstract Algebraic Logic, the
implicationless fragment of Arieli and Avron’s logic, which they called the
basic logic of logical bilattices (we call it LB). We characterized the reduced
models and reduced generalized models of LB; in particular, we showed that
the class of algebraic reducts of the reduced generalized models of this logic
is the variety of distributive bilattices. In a later work [4], we completed this
study by considering Arieli and Avron’s logic in the full language, obtained
by adding two (interdefinable) implication connectives. We proved that this
logic (which we call LB⊃) is algebraizable and defined its equivalent algebraic
semantics through an equational presentation. We called the algebras in this
variety implicative bilattices.

Our aim here is to present some algebraic results concerning the new
classes of algebras that emerged during our investigation of Arieli and Avron’s
logic, relating them to analogous results on some classes of bilattices already
known in the literature.

Let us recall the main definitions appearing in our framework. A pre-
bilattice is an algebra B = 〈B,∧,∨,⊗,⊕〉 such that both 〈B,≤t,∧,∨〉 and
〈B,≤k,⊗,⊕〉 are lattices. A bilattice is an algebra B = 〈B,∧,∨,⊗,⊕,¬〉
such that 〈B,∧,∨,⊗,⊕〉 is a pre-bilattice and the negation ¬ is a unary
operation satisfying that for every a, b ∈ B,
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(neg1) if a ≤t b, then ¬b ≤t ¬a

(neg2) if a ≤k b, then ¬a ≤k ¬b

(neg3) a = ¬¬a.

Pre-bilattices and bilattices are both varieties. Particularly interesting
subvarieties of the class of pre-bilattices are the variety of interlaced pre-
bilattices and the variety of distributive pre-bilattices. A pre-bilattice (bilat-
tice) is interlaced when all the operations {∧,∨,⊗,⊕} are monotone w.r.t.
both orders; it is called distributive if all twelve possible distributive laws
concerning {∧,∨,⊗,⊕} hold. Distributive (pre-)bilattices are a proper sub-
variety of interlaced (pre-)bilattices.

We also consider some algebras in expansions of the standard bilattice
language, for example bilattices with conflation [5], obtained by adding a
kind of dual of the bilattice negation (an involutive unary operator that is
monotone w.r.t. ≤t and antimonotone w.r.t. ≤k), and implicative bilattices.

An implicative bilattice is an algebra B = 〈B,∧,∨,⊗,⊕,⊃,¬〉 such that
the reduct 〈B,∧,∨,⊗,⊕,¬〉 is a bilattice and the following equations are
satisfied:

(IB1) (x ⊃ x) ⊃ y ≈ y

(IB2) x ⊃ (y ⊃ z) ≈ (x ∧ y) ⊃ z ≈ (x⊗ y) ⊃ z

(IB3) ((x ⊃ y) ⊃ x) ⊃ x ≈ x ⊃ x

(IB4) (x ∨ y) ⊃ z ≈ (x ⊃ z) ∧ (y ⊃ z) ≈ (x⊕ y) ⊃ z

(IB5) x ∧ ((x ⊃ y) ⊃ (x⊗ y)) ≈ x

(IB6) ¬(x ⊃ y) ⊃ z ≈ (x ∧ ¬y) ⊃ z.

The class of implicative bilattices is a discriminator variety generated by a
single finite algebra; let us also note that the bilattice reduct of any implica-
tive bilattice is distributive.

One of the key results for our approach to the study of bilattices is a rep-
resentation theorem stating that any interlaced pre-bilattice is isomorphic to
a certain product (similar to a direct product) of two lattices. An analogous
theorem holds for bilattices: in this case we have that any interlaced bilattice
is isomorphic to a product of two copies of the same lattice.
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interlaced pre-bilattices product of the category of lattices
with itself

distributive pre-bilattices product of the category of distributive
lattices with itself

interlaced bilattices lattices
distributive bilattices distributive lattices
commutative interlaced bilattices lattices with involution
with conflation
commutative distributive bilattices De Morgan lattices
with conflation
Kleene bilattices with conflation Kleene lattices
classical bilattices with conflation Boolean lattices
implicative bilattices classical implicative lattices

Table 1: Some categorical equivalences

These results were proved by Avron [2] for bounded interlaced (pre-)
bilattices, then generalized in [3] to the unbounded case. In [8] they are for-
mulated in categorical terms, as follows: the category of bounded interlaced
pre-bilattices is equivalent to the product of the category of bounded lattices
(whose objects are pairs of bounded lattices) with itself, and the category of
bounded interlaced bilattices is equivalent to the category of bounded lat-
tices. We show that these results can be straightforwardly extended not only
to the unbounded case, but also to several other classes of algebras having
an interlaced bilattice reduct.

For each class of interlaced (pre-)bilattices listed in Table 1 we provide an
equational presentation, prove a representation theorem analogue to the one
known for interlaced bilattices, and characterize the subdirectly irreducible
members in terms of those of its lattice counterpart. We use these results to
show that every category on the left column of Table 1 is equivalent to the
category on the right.

Focusing on the last row of the table, we sketch a way to prove sim-
ilar correspondence results by weakening the axioms that define implica-
tive bilattices, thus obtaining categories of bilattices corresponding to rela-
tively pseudo-complemented lattices and all its subvarieties (Heyting alge-
bras, Gödel algebras and so on).
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Bisymmetric Gödel Algebras
with Special Modal Operators

Mircea Sularia∗

A Heyting algebra [1] is an algebra H = (H,∨,∧,→, 0, 1) of type (2,2,2,0,0)
such that (H,∨,∧, 0, 1) is a bounded lattice and the following condition holds,
for all x, y, z ∈ H :

(H) z ≤ x→ y if and only if z ∧ x ≤ y.

A Gödel algebra [4, 5] (an L-algebra [1, 6] or a Linear Heyting algebra [8]) is
a Heyting algebra G = (G,∨,∧,→, 0, 1) satisfying the Dummett prelinearity
condition, for all x, y ∈ G:

(D) (x→ y) ∨ (y → x) = 1.

A symmetric Gödel algebra [7, 9] is a system G∗ = (G,∨,∧,→,∗ , 0, 1) such
that its reduct G = (G,∨,∧,→, 0, 1) is a Gödel algebra and ∗ : G → G is a
De Morgan negation of the lattice reduct (G,∨,∧, 0, 1) i.e. for all x, y ∈ G:

(M1) (x∗)∗ = x,
(M2) (x ∨ y)∗ = x∗ ∧ y∗,
(M3) (x ∧ y)∗ = x∗ ∨ y∗.

The condition (M1) is called the law of double negation and the conditions
(M2) and (M3) are called the De Morgan laws.

The new structure of bisymmetric Gödel algebra (S2G-algebra) is intro-
duced by a special symmetric Gödel algebra equipped with an involutive
automorphism. An S2G-algebra is an algebra A = (A,∨,∧,→,∗ , σ, 0, 1),
where A is a nonempty set together with three binary operations ∨,∧,→,
two operators ∗, σ and two constants 0, 1 such that the following conditions
hold, for all x ∈ A:

∗Department of Mathematics II, Faculty of Applied Sciences, Polytechnic University of
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(1) The reduct G∗(A) = (A,∨,∧,→,∗ , 0, 1) is a symmetric Gödel algebra.
(2) (x→ 0)∗ = (x→ 0)→ 0.
(3) The operator σ : A → A is an involutive automorphism of G∗(A)

(symmetry in the sense of Moisil [12]).

The condition (2) is introduced in [2, 3] as an axiom for the structure
of Heyting Wajsberg algebra and it seems to be of interest for mathemati-
cal fuzzy logic [4, 5] because of the fact that any symmetric Gödel algebra
satisfying the identity (2) is isomorphic to a subdirect product of symmetric
Gödel chains. In order to obtain an algebraic semantics for a suitable for-
mal logic of two criteria decision making the structure of modal bisymmetric
Gödel algebra (µS2G-algebra) is introduced by a bisymmetric Gödel algebra
together with a pair of special modal operators. A µS2G-algebra is a triple
(A, λ, ρ), where A = (A,∨,∧,→,∗ , σ, 0, 1) is an S2G-algebra and λ, ρ are
operators such that the following conditions hold:

(4) The function λ : A → A is an interior operator of the lattice reduct
L(A) = (A,∨,∧, 0, 1) and for all x, y ∈ A, λ(λ(x)→ λ(y)) = λ(x)→ λ(y).

(5) The function ρ : A → A is a closure operator of L(A) and for all
x, y ∈ A, ρ(ρ(x)− ρ(y)) = ρ(x)− ρ(y), where u− v = (v∗ → u∗)∗ if u, v ∈ A.

(6) The system
(
A,∨,∧,

.
→,

.

−,d , 0, 1
)

is an involutive Brouwerian

D-algebra [10, 11], where for all x, y ∈ A,

x
.
→ y = λ(x)→ λ(y), x

.

− y = ρ(x)− ρ(y) and xd = σ(x∗).

Basic properties of µS2G-algebras are presented. The structure of
µS2G-algebra is proved to be the algebraic semantics of some special sys-
tem of modal symmetric Gödel sentential logic for two criteria decison mak-
ing. The structure of multisymmetric Gödel algebra including S2G-algebra
is introduced as a starting point to develop a formal logic for multicriteria
decision making in connection with mathematical fuzzy logic.
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Paraconsistent Fuzzy Logic—A Review

Esko Turunen∗

We take a review of our papers [12] and [13] where points in common with
paraconsistent logic, Pavelka style fuzzy logic and GUHA data mining logic
are studied. By [9], the contemporary logical orthodoxy has it that, from
contradictory premises, anything can be inferred. To be more precise, let
|= be a relation of logical consequence, defined either semantically or proof-
theoretically. Call |= explosive if it validates {A,¬A} |= B for every A and
B (ex contradictione quodlibet). The contemporary orthodoxy, i.e., classical
logic, is explosive, but also some non-classical logics such as intuitionist logic
and most other standard logics are explosive. The major motivation behind
paraconsistent logic is to challenge this orthodoxy. A logical consequence
relation, |=, is said to be paraconsistent if it is not explosive. Thus, if |=
is paraconsistent, then even if we are in certain circumstances where the
available information is inconsistent, the inference relation does not explode
into triviality. Thus, paraconsistent logic accommodates inconsistency in a
sensible manner that treats inconsistent information as informative.

In Belnap’s paraconsistent logic [1], four possible values associated with
atomic formulas α are interpreted as told only True, told only False,
both told True and told False and neither told True nor told

False (or just true, false, contradictory and unknown): if there is evi-
dence for α and no evidence against α, then α obtains the value true and if
there is no evidence for α and evidence against α, then α obtains the value
false. A value contradictory corresponds to a situation where there is
simultaneously evidence for α and against α and, finally, α is labeled by
value unknown if there is no evidence for α nor evidence against α. More for-
mally, the values are associated with ordered couples T = 〈1, 0〉, F = 〈0, 1〉,
K = 〈1, 1〉 and U = 〈0, 0〉, respectively.

∗Tampere University of Technology, Finland, esko.turunen@tut.fi.
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In [10] Tsoukiás introduced a first order extension of Belnap’s logic named
DDT. In [8] and [6], a continuous valued extension of DDT logic was stud-
ied. The authors came to the conclusion that the graded values are to be
computed via

t(α) = min{a, 1− b}, (1.1)
k(α) = max{a+ b− 1, 0}, (1.2)
u(α) = max{1− a− b, 0}, (1.3)

f(α) = min{1− a, b}. (1.4)

where an ordered couple 〈a, b〉, called evidence couple, is given. The intuitive
meaning of a and b is the degree of evidence for a statement α and against
α, respectively. Moreover, the set of 2× 2 evidence matrices of a form

[
f(α) k(α)
u(α) t(α)

]

is denoted byM. The values f(α), k(α), u(α) and t(α) are values on the real
unit interval [0, 1] such that f(α) + k(α) + u(α) + t(α) = 1. Their intuitive
meaning is f(α) = falsehood, k(α) = contradictory, u(α) = unknown and
t(α) = truth of the statement α.

In [8] it is shown how such a fuzzy version of Belnap’s logic can be ap-
plied in preference modeling. However, in [8] the authors listed some open
problems, e.g. (i) a missing complete truth calculus for logics conceived as
fuzzy extensions of four valued paraconsistent logics (ii) a more thorough
investigation of valued sets and valued relations (when the valuation domain
isM).

In [13] we demonstarted that, instead of a Boolean structure that was pro-
posed in [8], the valuation domainM should be equipped with a more general
algebraic structure called injective MV-algebra. The standard Łukasiewicz
structure is an example of an injective MV-algebra. This associates fuzzy
extensions of four valued paraconsistent logics with Pavelka style fuzzy sen-
tential logic [7]. As a consequence a complete truth calculus is obtained. In-
deed, our basic observation is that the algebraic operations in (1.1)–(1.4) are
expressible only by the Łukasiewicz t-norm and the corresponding residuum,
i.e. in the standard Łukasiewicz structure. This fact was implicitely shown
in the analysis done in [8] and [6]. Thus, if we would start with some other
t-norm conjunction and an involutive negation then the reasonable conditions
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a continuous valued extension of paraconsistent logic should obey would cease
to hold.

Pavelka’s ideas were generalized in [11] by introducing a Pavelka style
fuzzy sentential logic with truth values in an injective MV-algebra, thus
generalizing [0, 1]-valued logic. Indeed, in [11] it is proved that Pavelka style
fuzzy sentential logic is a complete logic in a sense that if the truth value set
L forms an injective MV-algebra L, then the set of a-tautologies and the set
of a-provable formulae coincide for all a ∈ L.

We therefore considered in [13] the problem that, given a set of evi-
dence values in an injective MV-algebra, is it possible to transfer an injective
MV-structure to the set M, too. The answer turned out to be affirmative,
consequently, the corresponding paraconsistent sentential logic is Pavelka
style fuzzy logic with new semantics. Thus, a rich semantics and syntax is
now available. For example, Łukasiewicz tautologies as well as Intuitionistic
tautologies can be expressed in the framework of this logic. This follows by
the fact that we have two sorts of logical connectives conjunction, disjunc-
tion, implication and negation interpreted either by the monoidal operations⊙
,
⊕
,−→,∗ or by the lattice operations ∧,∨,⇒,⋆, respectively (however,

neither ⋆ nor ∗ is a lattice complementation). Besides, there are many other
logical connectives available.

GUHA - General Unary Hypotheses Automaton - introduced in [2] (see
also [3]) is a method of automatic generation of hypotheses based on em-
pirical data, thus a method of data mining. The GUHA method, based on
well-defined first order monadic logic containing generalized quantifiers on
finite models, is a kind of automated exploratory data analysis: it generates
systematically hypotheses supported by the data. A GUHA procedure, i.e.
a computer software, generates statements on association between complex
Boolean attributes denoted by φ, ψ. These attributes are constructed from
the predicates corresponding to columns of the data matrix.

Since mathematical fuzzy logic and the GUHA method are both exten-
sion of classical Boolean logic and are related to vagueness and partial truth,
it is not a surprising news that there are several approaches to connect math-
ematical fuzzy logic to the GUHA method. We mention Holeňa’s paper [4]
and Novák et al. who show in [5] that, by evaluating real-valued data by
linguistic expressions and then using the GUHA method, one obtains data
mining outcomes that are easily understandable as they are close to human
way of thinking. Such a target we, too, had when we wrote [12], there we
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demostrated that the GUHA method has a natural interpretation in para-
consistent mathematical fuzzy logic.

More precisely, assume we have a data file composed of k columns and
m rows. A four-fold contingency table 〈a, b, c, d〉 related to the attributes φ,
ψ is composed from numbers of objects in the data satisfying four different
binary combinations of these attributes:

ψ ¬ψ
φ a b
¬φ c d

where
• a is the number of objects satisfying both φ and ψ,
• b is the number of objects satisfying φ but not ψ,
• c is the number of objects not satisfying φ but satisfying ψ,
• d is the number of objects not satisfying φ nor ψ,
• m = a+ b+ c+ d.

Various relations between φ and ψ can be measured in the data by differ-
ent four-fold table quantifiers, which here are understood as functions with
values in the real unit interval [0, 1]. Among the most well-known is the
following: a statement Φ connecting two attributes φ and ψ by basic double
implicational quantifier is defined to be true in a given data if

a ≥ n and
a

a+ b+ c
≥ p,

where n ∈ N and p ∈ [0, 1] are parameters given by user. We proved

Theorem 1 Given a data, all statements Φ such that the truth value of Φ is
at least k times greater than the falsehood of Φ in the sense of paraconsistent
logic, can be found by using basic double implicational quantifier in a GUHA
procedure.
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Toward a Forcing Model
Construction of H

Shunsuke Yatabe∗

The study of a logical theory of circularity is important not only in logic
but also in computer science. For, one of the key concepts, recursion, has
a circular nature since we should calculate the value of 4 + 2 in order to
calculate the value of 4 + 3. However, it is well-known that the full form of
circularity implies a contradiction, e.g. Russell paradox: the comprehension
principle, it guarantees the existence of term {x : ϕ(x)} for any formula ϕ(x),
implies a contradiction (an infinite loop R ∈ R → R 6∈ R → R ∈ R · · · ) in
classical logic. Therefore we have to restrict the form of recursion to have a
consistent theory if we keep classical logic.

It is well-known that the comprehension principle does not imply a con-
tradiction in many non-classical logics by paying a cost of weakening logical
rules. These theories allow a very strong form of circularity, namely a gen-
eral form of the recursive definition: for any formula ϕ(x, · · · , y), we can
define a term θ such that x ∈ θ ↔ ϕ(x, · · · , θ) for any x in a set theory
with the comprehension principle within Grisin Logic (classical logic minus
the contraction rule) [2]. This allows us to define a set ω of natural numbers
and to make any recursive function numerically representable. Therefore we
can develop arithmetic to some extent. Such form of circularity is not only
interesting as itself, but also worth studying, for it is an ideal generalization
of a recursion in classical recursion theory.

Generally speaking, it is very difficult to construct a model of a theory
which allows a strong form of circularity is really difficult (remember, it takes
time to construct a domain model of λ-calculus). H is a typical case: H is
a set theory with the comprehension principle within Łukasiewicz infinite-
valued predicate logic ∀. H is known as one of the strongest theory in which
the comprehension principle does not imply a contradiction, therefore H
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shows the limit of the consistency of the general form of recursive definition.
In 1957 Skolem [8] conjectured that the comprehension principle does not
imply a contradiction within ∀. Skolem, Chang [4] and Fenstad [5] proved
it when the principle restricted to formulae with quantifier in a few special
forms. However they could not prove the whole consistency of H because they
failed to construct a model of full H. Only known model of H is an infinite
set of sentences whose truth value are 1 constructed by a proof theoretic
way [9].

The aim of this paper is to try to introduce a method of constructing a
natural model of the set theory H. Since ∀ is Π0

2-complete, treating ∀ via
models is a more antural way by one’s nature. Therefore, treating H via mod-
els should be a more natural way too. We review a new construction method,
forcing in ZFC: we discuss how it can be applied to construct a model of
Hqf , and a possibility to extend the result to construct a model of full H.

1. Preliminaries

In this paper, we work in H which is a set theory with the comprehension
principle in ∀. We note that ∀ is Łukasiewicz predicate logic Ł∀ with standard
semantics [6].

Definition 1 (H). Let H be the set theory within ∀

• which has a binary predicate ∈, and terms of the form {x : ϕ(x)},

• whose only axiom scheme is the comprehension principle: for any ϕ
not containing u freely,

(∀u)[u ∈ {x : ϕ(x, · · · )} ≡ ϕ(u, · · · )]

Definition 2 (the quantifier-free fragment of H). Hqf is the set theory
within ∀, which consists of a restricted form of the comprehension principle,
(∃x)(∀y)y ∈ x ≡ ϕ(y, ~z) for any set parameters ~z, for all open (quantifier-
free) formulae ϕ.

Since nothing can be defined in pure Hqf , we add a syntactical identity
relation ≡ over terms to Hqf as Skolem did for sake of simplicity.

In 1957 Skolem [8] conjectured that the comprehension principle does
not imply a contradiction within ∀. In fact, it is easy to construct a model
of Hqf by using Tychonoff-Schauder’s fixed point theorem [3] because any
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truth function of Hqf is continuous. Similarly, Chang proved the consis-
tency of H(Σ2), the fragment of H with the comprehension principle for all
parameter-free formulae by using the compactness argument [4]. Actually,
these methods cannot be extended to construct a model of H:

• the truth value of ∃xϕ(x) is the supremum of that of ϕ(a) for any term
a, therefore truth function might not be continuous in H: the fixed
point construction cannot be applied for such case,

• it is difficult to evaluate formulae with parameters in compactness ar-
gument since any model is with finite domain.

In 1979 White proved the consistency of H in a proof theoretic way [9].
However, it does not provide the intuitive model of the set theory. The only
known model of H is a maximally consistent set of formulae constructed as
an infinite path of a proof search tree of a natural deduction: that is neither
intuitive nor natural (in a natural model, for example, the truth value of ∅ ∈ ω
and ω ∈ ∅ are different) in the sense of Fenstad. White wrote that “the chief
open problem [...] is to find a natural interpretation for it, an interpretation
which justifies the formal system in the way in which the cumulative type
structure justifies the axioms of ZF” [9].

2. A forcing model construction of Hqf

A forcing is a partial order (which is a sort of a Kripke frame [1]). In the
context of set theory, working in some model of ZFC (which is called ground
model), forcing is used to provide some new target objects (e.g. generic real
numbers [7], a model of H, etc.) which are usually not contained in the
ground model. Each condition of forcing has a partial information of the
target object: it approximates a some part (e.g. a finite part) of the target
object in the ground model.

2.2 Forcing P

First, we define basic notations. Let Form be the set of Godel codes of
formulae, and Term be the set of Goedel codes of terms (which are of the
form {x : ϕ(x)}).

Definition 3 (forcing notion P). Let P be a set of p such that p is a finite
subset of Term×Term× [0, 1] (p consists of 〈〈s, t〉, r〉).
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In other words, p is an approximation of a natural Tarskian model of Hqf

by finite domain: “s ∈ t is of the truth value r in the target model”. We
write sǫpt = r if 〈〈s, t〉, r〉 ∈ p as an abbreviation. The syntactical equality
is defined as usual (s ≡ t is truth value 1 if s is syntactically equivalent to t:
otherwise it is 0).

2.2 Consistency of conditions

Some conditions of P might contain potentially inconsistent information though
it seems not to contain a contradiction demonstratively.

Example 4. p is contradictory if, for some term t and some formula
ϕ0(s) ∧ ϕ1(s),

(i) call-by-name: s0 = {x : ϕ0(x) ∧ ϕ1(x)} and tǫps0 = 0.7,

(ii) call-by-value: s1 = {x : ϕ0(x)} and tǫps1 = 0,

ϕ0(t) ∧ ϕ1(t) is of the value 0.7 from (i), but the truth value of ϕ0(t) ∧ ϕ1(t)
should be 0 from (ii).

We have at least two ways to evaluate truth values of any formulae. There-
fore this violates the consistency of the model if two values are inconsistent.
To exclude such inconsistency, first we introduce two sorts of truth value
calculation, cbv value and cbn value, and next we define the inconsistency
(and potential inconsistency) in terms of these values.

Definition 5. • cbn-value is defined by name, or by top-down evalu-
ation, i.e. cbn(p, ⌈ϕ(s)⌉) = r iff t = {x : ϕ(x)} and sǫpt = r,

• cbv-value is calculated by bottom-up evaluation from atomic case,
i.e. cbv(p, ⌈ϕ→ ψ⌉) = min{1− cbv(p, ⌈ϕ⌉) + cbv(p, ⌈ψ⌉), 1}, etc.

Definition 6. • p decides ϕ (p||ϕ ) iff p defines both cbn, cbv values
of ϕ.

• p is directly inconsistent iff, for some ϕ, p||ϕ and cbv(p, ϕ) 6= cbn(p, ϕ)
holds.

Definition 7. p is potentially inconsistent iff for any q ⊇ p there exists
q′ ⊇ q such that q′ is directly inconsistent.
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2.3 Forcing Pcons

Definition 8. • Pcons ⊆ P such that Pcons consists of not-potentially
inconsistent conditions,

• ≤ is a partial order on Pcons such that

– p ≤ q iff p ⊇ q,

– 1Pcons is a ≤-largest element (1Pcons = ∅).

Pcons is not an empty but an infinite set by Brower’s fixed point theorem.
Let G be a generic filter of Pcons, and mG ∈ M[G] be a function

Form→ [0, 1] defined by

mG(⌈ϕ⌉) = cbv(p, ⌈ϕ⌉) for some p ∈ G

Then 〈A,mG〉 is a natural model of Hqf .

3 Toward a forcing construction of a model of full-H

The forcing construction is not of service if it is only applied to construct
a model of Hqf . However it is worth being considered because it has a
possibility which can be extended to construct a model of full H. The key
idea is an approximation of non-continuous truth functions (by taking a sup,
∃xϕ(x)) by continuous functions (say, εnxϕ(x)).

Here, as an example, a plausible extension is introduced: the following
forcing might provide a model of a fragment of Σ1-formulae with parameters
of H.

Definition 9. • let Kn be a set of p such that p is a finite subset of
Term× Term× [0, 1],

• cbv, cbn-values for open formulae are defined as definition 5 except

– cbv(p, ∃xϕ(x)) = max{cbv(p, ϕ(s)) : p||ϕ(s)},

• p ∈ Kn is potentially n-inconsistent if

– cbn(p, ∃xϕ(x)) < cbv(p, ∃xϕ(x)),

– or cbn(p, ∃xϕ(x))− cbv(p, ∃xϕ(x)) > 1
2n

.
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• let Kcons
n be a set of p such that p is a not n-potentially inconsistent

conditions of K where

Kcons
n approximates the truth value of ∃xϕ(x) whose range of error is less

than 1
2n

.
On first glance, it is enough to do forcing by using the product forcing

Πn∈ωK
cons
n or the finite support iterated forcing 〈Kcons

n : n ∈ ω〉. However,
it is difficult to show that these forcings are neither empty nor non-trivial
because it is difficult to define an adequate ordering. In the talk, we discuss
technical problems of this construction, and prospects of forcing construction
of model of full H.
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