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Abstract. The problem of multi-robot path planning is addressed in this work. The task is to construct 

a sequence of moves for each robot of the group of robots that are moving in certain environment. 

Initially each robot is placed in some location in the environment and it needs to go to the given goal 

position. Robots must avoid obstacles and must not collide with each other along the process of relo-

cation according to the constructed sequences of moves. An abstraction where the environment is 

modeled as an undirected graph is adopted – vertices represent locations in the environment and 

edges represent unblocked way between two neighboring locations. Robots are represented as ele-

ments placed in vertices of the graph while at least one vertex is unoccupied to allow robots to move. 

The move is allowed into the unoccupied vertex or into the vertex being vacated by an allowed move 

supposed that no other robot is entering the same target vertex. 

Two polynomial time algorithms for solving the problem of multi-robot path planning sub-

optimally with respect to the makespan and their variants are presented in this work. Both algorithms 

are targeted on the case with bi-connected graphs with relatively small number of unoccupied vertic-

es. The precise theoretical and experimental analysis of presented algorithms is provided. It has been 

shown theoretically and experimentally that presented algorithms outperform the only existent algo-

rithm capable of solving the given class of the problem in terms of quality of generated solutions. In 

terms of speed, presented algorithms proved to be as fast as the existent one at least. 

Keywords: multi-robot, path planning, multi-agent, coordination, sliding puzzle, (n2-1)-puzzle, 15-

puzzle, domain dependent planning, makespan optimization, BIBOX, BIBOX-. 

1. Introduction and Motivation 

This manuscript is devoted to a problem of path planning for multiple robots [12, 13, 16]. 

Consider a group of mobile robots that are moving in some environment (for example in 

the 2-dimensional plane with obstacles). Each robot of the group is given an initial and a 

goal position in the environment. The question of interest is how to determine a sequence 

of motions for each robot of the group, which relocates the robot from the given initial 

position to the given goal one. Physical limitations must be respected by robots along the 

whole process of relocation: robots must not collide with each other and they must avoid 

obstacles in the environment during their movements. 

The problem of multi-robot path planning is motivated by many practical tasks. Vari-

ous tasks of navigating a group of mobile robots can be formulated as multi-robot path 

planning. However, the primary motivations for the problem are tasks of moving certain 

entities within an environment with a limited free space. Thus, the formulation of the 

problem is not restricted to the case where robots are actually represented by mobile ro-

bots. Such real-life examples include rearranging of shipping containers in warehouses (a 

robot is represented by a shipping container - see Figure 1) or coordination of vehicles in 
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dense traffic (robot = vehicle). Moreover, the reasoning about these rearrange-

ment/coordination tasks should not be li-

mited to physical entities only. A robot may 

be represented by a virtual entity or by a 

piece of commodity as well. Thus, many 

tasks such as planning of data transfer be-

tween communication nodes with limited 

storage capacity (robot = data packet), com-

modity transportation in the commodity 

transportation network (robot = certain 

amount of commodity), or even the motion 

planning of large groups of virtual agents in 

the computer-generated imagery can be ex-

pressed as the problem of multi-robot path 

planning. 

The primary aim of this manuscript is 

to develop scalable algorithms for solving the problem of multi-robot path planning for 

the case where robots are moving in the environment with relatively small free space. 

This case of the problem represents the most difficult situation since the probability of 

collisions between robots is very high. It can be intuitively perceived, that the problem is 

much easier with lot of free space in the environment. In such a case, probability of colli-

sions between robots is low. Hence, it is possible to plan movements of individual robots 

almost independently using algorithms for finding shortest paths [1] connecting their 

initial and goal positions. 

An abstraction of the problem has to be adopted to be able to make some reasoning 

about the problem. The abstraction used in this manuscript consists in modeling the envi-

ronment where robots are moving as an undirected graph. Vertices of the graph represent 

locations within the environment and edges represent possibility of going from one loca-

tion to the neighboring one through the edge. Robots are placed in vertices of the graph 

and they are allowed to move into the neighboring vertex if it is unoccupied or current-

ly being vacated while no other robot is entering the same target vertex. Time is discrete 

in this abstraction – individual time steps are isomorphic to the structure of natural num-

bers. Movements of robots are instantaneous; that is, a robot can move from a vertex to 

the neighboring one between two succeeding time steps while no middle positions are 

considered. 

There is variety of ways how to create an abstract instance of a given specific real-life 

multi-robot path planning instance. It is necessary to make decisions how to sample loca-

tions in the original environment in order to make the abstract instance accurate enough 

to model the real-life situation as precisely as needed. Nevertheless, these issues are out 

of scope of this work. 

The main contribution of this manuscript is presentation of scalable algorithms for 

solving the problem and their precise theoretical and experimental analysis. Algorithms 

Figure 1. An illustration of shipping con-

tainer rearranging. This problem can be 

formulated as path planning for multiple 

robots where robots are represented by con-

tainers. 
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presented in this work have been already published by the author in several conference 

proceedings [16, 17, 18, 19]. However, space limitations of proceedings did not allow 

providing complete theoretical and experimental analysis. Thus, the analysis provided in 

this work represents the new material. 

In the context of multi-robot path planning, works on problems of motion planning 

over graphs must be mentioned [8, 9, 10, 31] since they are closely related. Namely, 

works on so called problems of pebble motion on graphs (which the most widely known 

representative is the 15-puzzle or (n
2
-1)-puzzle) [8, 10, 31] represents almost the same 

problem as multi-robot path planning. The difference lays in the condition on the dyna-

micity in the problem - moves are allowed into currently unoccupied vertices only while 

no other pebble is entering the same target vertex in the problem of pebble motion on a 

graph. Many theoretical results are known for pebble motion on a graph. It is known that 

the problem can be solved in polynomial time (particularly in         for         

modeling the environment) with solution consisting of polynomial number of moves 

(again it is         moves) [8, 31]. Moreover, it is known that the decision version of the 

optimization variant of pebble motion on a graph is NP-complete [10] (this has been 

actually shown for generalized variant of the 15-puzzle). Recently, it has been shown that 

the decision version of the optimization variant of the problem of multi-robot path plan-

ning is NP-complete as well [20, 22]. 

Many results from works on pebble motion on graphs are utilized in the development 

of solving algorithms for multi-robot path planning within this work. As it is not tractable 

to produce optimal solutions of the problem in the perspective of the above negative 

results, all the algorithms developed in this work thus produce sub-optimal solutions. 

However, quality of solutions is still an objective especially with respect to real-life in-

stances. 

One of the minor aims of this manuscript is to clarify terminology, since many works 

use the term multi-robot path planning for pebble motion on a graph in fact. This evokes 

an impression that these problems are different, but deeper analysis shows that authors 

are dealing with pebble motion on a graph in all the cases. The different and more rea-

sonable definition of multi-robot path planning is introduced in this work. A more de-

tailed discussion on this aspect is given along with definitions of problems. 

The organization of the manuscript is as follows: a formal definition of the problem of 

pebble motion on a graph is recalled and a definition of the abstraction of multi-robot 

path planning is given in Section 2. Some basic properties of problems and their corres-

pondence is discussed in this section too. Section 3 represents the core of the manuscript 

– two new algorithms for solving the problem of multi-robot path planning are presented 

here. The detailed analysis regarding the correctness and the complexity of presented 

algorithms is also provided in this section. The next section – Section 4 - is devoted to 

parallelism increasing techniques, which consequently increase quality of solutions. An 

extensive experimental evaluation of presented algorithms is provided in Section 5. The 

experimental evaluation is targeted on the competitive comparison with the existent algo-
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rithm for pebble motion on a graph which is applicable on multi-robot path planning as 

well. Concluding remarks and related works are discussed in Section 6. 

2. Pebble Motion on a Graph and Multi-robot Path Planning 

Problems of pebble motion on a graph and multi-robot path planning are formally de-

fined in this section. A relation of both problems is discussed and their theoretical proper-

ties are described. 

The primary problem studied in this manuscript is the problem of multi-robot path 

planning. It is very similar to the problem of pebble motion on a graph. The problem of 

pebble motion on a graph has been already studied in the literature and lots of theoretical 

results are known for it. Here, the problem of pebble motion on graph and the related 

results are used as a theoretical foundation for studying the problem of path planning for 

multiple robots. 

Consider an environment in which a group of mobile robots is moving. The robots are 

all identical (that is, they are all of the same size and have the same moving abilities). 

Each robot starts at a given initial position and it needs to reach a given goal position. The 

problem being addressed here consists in finding a spatial-temporal path for each robot so 

that it can reach its goal by following this path. The robots must not collide with each 

other and they must avoid obstacles in the environment along the whole process of relo-

cation according to constructed paths. 

A relatively strong abstraction is adopted in this work. The environment with ob-

stacles within that the robots are moving is modeled as an undirected graph. The vertices 

of this graph represent positions in the environment and the edges model an unblocked 

way from one position to another. The time is discrete in this abstraction; it is an infinite 

linearly ordered set isomorphic to the set of natural numbers where each element is called 

a time step (time steps are numbered starting with  ). At each time step, each robot is 

located in a vertex. A motion of a robot is an instantaneous event. That is, if the robot is 

placed in a vertex at a given time step then the result of the motion is the situation where 

the robot is placed in the neighboring vertex at the following time step. The is allowed to 

enter a neighboring vertex supposed it is unoccupied or being vacated by another robot 

using an allowed move while no other robot is trying to enter the same target vertex. 

The problem of pebble motion on a graph works with pebbles instead of robots 

(which however does not introduce any formal difference itself). The most important 

difference in both problems consists in a condition on the allowed moves. Allowed mo-

tions of pebbles are more restrictive than in the case of robots in multi-robot path plan-

ning. 

2.1. Formal Definitions of Motion Problems 

The following two definitions formalize a problem of pebble motion on a graph (also 

called a pebble motion puzzle, sliding box puzzle; special variants are known as 15-puzzle 

and       -puzzle) [5, 19] and the related problem of multi-robot path planning [12,13 

16]. Both problems and their solutions are illustrated in Figure 2. 
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Definition 1 (problem of pebble motion on a graph). Let          be an undirected 

graph. Next, let                   where       be a set of pebbles. The graph models 

an environment in which pebbles are moving. An initial arrangement of pebbles is de-

fined by a uniquely invertible function   
      (that is   

       
     for every 

       with    ). A goal arrangement of pebbles is defined by another uniquely 

invertible function   
      (that is   

       
     for every       with    ). A 

problem of pebble motion on a graph is the task to find a number   and a sequence 

      
    

      
 
  where   

      is a uniquely invertible function for every 

         . Additionally, the following conditions must hold for the sequence   : 

(i)   
 

   
 ; that is, all the pebble reaches their destination vertices. 

(ii) Either   
       

       or    
       

          for every     and 

           ; that is, a pebble can either stay in a vertex or move into 

the neighboring vertex between each two successive time steps. 

(iii) If   
       

       (that is, the pebble   moves between time steps   and 

   ) then    
       

            such that    ; must hold for every 

     and            ; that is, a pebble can move into an unoccupied 

neighboring vertex only. This condition together with unique invertibility of 

functions forming    implies that no two pebbles can enter the same target 

vertex at the same time step. 

The instance of the problem of pebble motion on a graph is formally a quadruple 

         
    

  . Sometimes, the solution of the problem   will be denoted as       

   
    

      
 
 . □ 

 

The notation with a stripe above the symbol is used to distinguish a constant from a 

variable (for example,     is a variable while     is a constant; sometimes a constant 

parameterized by a variable or by an expression will be used – for example     denotes a 

constant parameterized by an index    ; the parameterization by an expression will be 

clear from the context). 

When speaking about a move at time step  , it is referred to the time step of com-

mencing the move (exactly, the move is performed between time steps   and    ). 

The term multi-robot path planning has been already used in literature. However, it 

did not introduce any new concept since it has been used as synonym for pebble motion 

on a graph in fact. In the work titled “Exploiting Subgraph Structure in Multi-Robot Path 

Planning” [13] the dynamicity of the problem is described as follows: 

 

“Further, we shall assume that the map is constructed so that collisions only oc-

cur when one robot is entering a vertex v at the same time as another robot is oc-

cupying, entering or leaving this vertex.” 
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In other words, a robot can enter a vertex if and only if it is unoccupied at the time of 

commencing the move and no other robot is entering the same target vertex, which is 

exactly the definition of the dynamicity in the problem of pebble motion on a graph. 

An alternative supposedly more reasonable definition of multi-robot path planning is 

adopted in this work. A problem of multi-robot path planning is a relaxation of the prob-

lem of pebble motion on a graph. The condition that the target vertex of a pebble/robot 

must be vacated in the previous time step is relaxed. Thus, the motion of a robot entering 

the target vertex, that is simultaneously vacated by another robot and no other robot is 

trying to enter the same target vertex, is allowed in multi-robot path planning. However, 

there must be some leading robot initiating such chain of allowed moves by moving into 

a currently unoccupied vertex which no other robot is entering at the same time step (that 

is, robots can move “like a train” with the leading robot in front). The problem is forma-

lized in the following definition. 

 

 
 

Figure 2. An illustration of problems of pebble motion on a graph and multi-robot path planning. 

Both problems are illustrated on the same graph with the same initial and goal positions. The task is 

to move pebbles/robots from their initial positions specified by   
    

  to the goal positions speci-

fied by   
    

 . A solution of the makespan 6 (   ) is shown for the problem of pebble motion on 

a graph and a solution of the makespan 4 (   ) is shown for the problem of multi-robot path 

planning. Notice the differences in parallelism between both solutions – multi-robot path planning 

allows a higher number of moves to be performed in parallel thanks to weaker requirements on 

solutions. 

 

Definition 2 (problem of multi-robot path planning). Again, let         be an undi-

rected graph. Now a set of robots                   where       is given instead of the 

set of pebbles. Similarly, the graph models an environment in which robots are moving. 

The initial arrangement of robots is defined by a uniquely invertible function   
      

(that is   
       

     for every       with    ). The goal arrangement of robots is 

defined by another uniquely invertible function   
      (that is   

       
     for 

every       with    ). A problem of multi-robot path planning is the task to find a 

  
    

  

    
 

Solution of the problem of pebble motion 

on a graph   with              

  
 

  

     
     
     

    

    

    

 

Solution of the problem of path planning for 

multiple robots    with              
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number   and a sequence       
    

      
 
  where   

      is a uniquely invertible 

function for every          . The following conditions must hold for the sequence   : 

(i)   
 

   
 ; that is, all the robots reaches their destination vertices. 

(ii) Either   
       

       or    
       

          for every     and 

           ; that is, a robot can either stay in a vertex or move to the 

neighboring vertex at each time step. 

(iii) If   
       

       (that is, the robot   moves between time steps   and 

   ) and    
       

            such that     (that is, no other robot 

  occupies the target vertex at time step  ), then the move of   at the time 

step   is called to be allowed (that is, the robot   moves into a currently un-

occupied neighboring vertex – a leading robot). If   
       

       and 

there is     such that       
       

         
       

       (that 

is, the robot   moves into a vertex that is being left by the robot  ) and the 

move of   at the time step   is allowed, then the move of   at the time step 

  is also allowed. All the moves of robots at all the time steps must be al-

lowed. Analogically, this condition together with the requirement on unique 

invertibility of functions forming    implies that no two robots can enter the 

same target vertex at the same time step. 

The instance of the problem of multi-robot path planning is formally a quadruple 

         
    

  . The solution of the problem   will be sometimes denoted as       

   
    

      
 
 . □ 

 
The numbers   and   are called makespan of the solution of pebble motion on a 

graph and multi-robot path planning respectively. The makespan need to be distinguished 

from the size of the solution, which is the total number of moves performed by peb-

bles/robots. 

2.2. Known Properties of Motion Problems and Related Questions 

Several basic properties of solutions of problems of pebble motion on graphs and multi-

robot path planning are summarized in this section. 

Notice that a solution of the problem of pebble motion on a graph as well as a solution 

of the problem of multi-robot path planning allows a pebble/robot to stay in a vertex for 

more than a single time step. It is also possible that a pebble/robot visits the same vertex 

several times within the solution. Hence, the sequence of moves for a single pebble/robot 

does not necessarily form a simple path in the given graph. 

 Notice further that both problems intrinsically allow parallel movements of peb-

bles/robots. That is, more than one pebble/robot can perform a move in a single time step. 

However, multi-robot path planning allows higher motion parallelism due to its weaker 

requirements on robot movements (the target vertex is required to be unoccupied only for 

the leading robot in the current time step – see Figure 2). More than one unoccupied ver-

tex is necessary to obtain parallelism in the problem of pebble motion on a graph. On the 

other hand, it is sufficient to have a single unoccupied vertex to obtain parallelism within 
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the solution of multi-robot path planning problem (consider for example robots moving 

around a cycle). 

 

Proposition 1 (problem correspondence). Let          
    

   be an instance of the 

problem of pebble motion on a graph and let          
    

      
 
  be its solution. 

Then             is a solution of an instance of the problem of path planning for 

multiple robots          
    

  . In other words, the instance of the multi-robot path 

planning problem consists of the same graph, the set of robots is represented by the set of 

pebbles, and the initial/goal positions of robots are the same as in the case of pebbles. 

Then the solution of the instance of the pebble motion problem can be used as a solution 

of the corresponding instance of the multi-robot path planning problem.  

 

Proof. The proof of the statement is straightforward using Definition 1 and Definition 2. 

The condition on sequence of moves required by Definition 2 needs to be checked for 

     . Conditions (i) and (ii) of Definition 2 are trivially satisfied. Condition (iii) is also 

satisfied since it holds that if   
       

       then   
       

            such that 

    is true for every      and            . In other words, all the moves within 

      are allowed.  

 

There is a variety of modifications of the defined problems. A natural additional re-

quirement is to produce solutions with the shortest possible makespan (that is, the num-

bers   or   respectively are required to be as small as possible). Unfortunately, this re-

quirement makes the problem of pebble motion on a graph intractable. It is shown in [10] 

that the optimization variant of a special case of the problem of pebble motion on a graph 

is   -hard [3]. The restriction forming the special case adopted in [10] works with a 

graph that can be embedded in plane as a square grid with a single unoccupied vertex - 

this case is known as     puzzle (also known as       -puzzle). Hence, the general 

optimization variant of the problem of pebble motion on a graph   -hard as well. 

A restriction of both types of problems on bi-connected graphs [30] (for the precise 

definitions see Section 3.1.1) represents an important subclass with respect to the exis-

tence of a solution. Hence, it is a reasonable question what is the complexity of these 

classes of problems. Since the grid graph forming the mentioned     puzzle is bi-

connected, the immediate answer is that the optimization variant of the problem of peb-

ble motion on a bi-connected graph with a single unoccupied vertex is again   -hard. 

However, it is not possible to simply make any similar statement about the complexity 

of the optimization variant of multi-robot path planning based on the above facts. The 

situation here is complicated by the inherent parallelism, which can reduce the makespan 

of the solution significantly. Constructions used for the     puzzle in [10] thus no 

longer work. Nevertheless, it has been recently shown by the author that the optimization 

variant of multi-robot path planning is NP-hard too [20, 22]. 

Observe further that difficult cases of the problem of pebble motion on a graph have a 

single unoccupied vertex. This fact may raise the question how the situation is changed 
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when there are more than one unoccupied vertices. More unoccupied vertices may sim-

plify the problem. Unfortunately, it is not the case. The pebble motion problem on a gen-

eral graph with the fixed number of unoccupied vertices is still   -hard since multiple 

copies of the     puzzle from [10] can be used to add as many unoccupied vertices as 

needed - the resulting graph may be disconnected. Without providing further details, the 

the instance of multi-robot path planning used in a reduction to prove NP-hardness of the 

problem had many unoccupied vertices and its graph was connected (or even bi-

connected). Thus, a mere allowance of many unoccupied vertices with no additional con-

ditions does not simplify the problem. 

Without the requirement on the optimality of the makespan of solutions, the situation 

is much easier; the problem of pebble motion on a graph is in the P class as it is shown in 

[8, 31]. Due to Proposition 1, the problem of path planning for multiple robots is in the P 

class as well. Thus, it seems that pebble motion on a graph and multi-robot path planning 

problems have been already resolved. However, constructions proving the membership of 

the problem of pebble motion on a graph into the P class used in [8, 31] generate solu-

tions that are too long for practical use [17, 18, 19]. As the makespan of the solution is of 

great importance in practice, this fact makes these methods unsuitable when some real 

life motion problem is abstracted as a problem of pebble motion on a graph. Thus, alter-

native solving methods has been developed and will be described in this work [16, 17, 18, 

19]. 

3. Sub-optimal Solving Algorithms 

This section is devoted to algorithms for solving problems of motion on a graph in poly-

nomial time that generate solution of the sub-optimal makespan. All the algorithms de-

veloped in the following text are designed for the problem of pebble motion on a graph. 

Due to Proposition 1, algorithms for pebble motion on a graph apply also for multi-robot 

path planning. However, the practice of solving multi-robot path planning problems using 

algorithms for pebble motion on a graph does not reflect the possibility of higher paral-

lelism in multi-robot path planning. Particularly, parallelism in the form of the “train 

like” movement of a queue of robots is never produced in this way. This drawback can be 

augmented by a post-processing step that increases parallelism. Fortunately, this post-

processing step can be made fast enough to settle with such an approach (see Section 3.3 

which is solely devoted to this issue). 

 There already exist sub-optimal algorithms for solving the problem of pebble motion 

on a graph in polynomial time described in [8, 31]. Thus, a question why to develop a 

new algorithm of the same kind for this problem may arise in this context. The main 

reason for developing new algorithms is that existent ones from [8, 31] produce solution 

that are too long with respect to the makespan and hence unsuitable for practice. This 

claim will be shown experimentally in Section 5 where the new and the existent algo-

rithm are compared. 

3.1. BIBOX: A Novel Algorithm for Pebble Motion on a Bi-connected Graph 
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The first algorithm that will be recalled here comes from [16]. It was originally called a 

novel algorithm since it represents an alternative to algorithms from [8, 31]. This algo-

rithm solves in fact a yet more special variant of the problem of pebble motion on a 

graph. The input problem should consist of a non-trivial bi-connected graph (that is, bi-

connected graph not isomorphic to a cycle) with exactly two unoccupied vertices. Sever-

al augmentations will be described in following sections that shift this algorithm to be 

able to solve a general variant of the problem of pebble motion on a bi-connected graph. 

3.1.1. Graph-theoretical Preliminaries 

Some notions from the graph theory need to be established before the algorithm is intro-

duced. The following two definitions describe the notion of bi-connectivity. 

 

Definition 3 (connected graph).  An undirected graph         is connected if 

      for any two vertices       such that     there is an undirected path consist-

ing of edges from   connecting   and  . □ 
 

Definition 4 (bi-connected graph, non-trivial).  An undirected graph         is bi-

connected if       and the graph           , where          and    

                     , is connected for every    . A bi-connected graph 

not isomorphic to a cycle will be called non-trivial bi-connected graph. □ 

 

Observe that, if a graph is bi-connected, then every two distinct vertices are connected 

by at least two vertex disjoint paths (equivalently, there is a cycle containing both vertic-

es; only internal vertices of paths are con-

sidered when speaking about vertex dis-

joint paths -  vertex disjoint paths can in-

tersect in their start points and endpoints). 

If a graph is not bi-connected then it is 

either disconnected or there exists a vertex 

which removal partitions the graph into at 

least two connected components – this 

vertex is called an articulation point. Sev-

eral examples of bi-connected graphs are 

shown in Figure 3. 

Bi-connected graphs have an important 

property, which is exploited within the 

algorithm. Each bi-connected graph can be 

constructed from a cycle by an operation of 

adding a handle to the graph [24, 29, 30]. 

Consider a graph        ; the new 

handle with respect to   is a sequence 

                   where     , 

   

   

   

   

         

   

   

   

   

           

           

           

   

Figure 3. Examples of bi-connected graphs. 

Three bi-connected graphs   ,    , and    and 

their handle decompositions are shown using 

colors (handles    and    of the decomposition 

of    consist of a single edge). 
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      (called connection vertices) and      for           (   are new vertices). 

The result of the addition of the handle   to the graph   is a new graph            

where                   and either              in the case of     of 

                                           in the case of    . Let the sequence 

of handles together with the initial cycle be called a handle decomposition of the given 

graph. See Figure 3 for illustrative examples. 

 

Lemma 1 (handle decomposition) [24, 29, 30]. Any bi-connected         graph can 

be obtained from a cycle by a sequence of operations of adding a handle. Moreover, the 

corresponding handle decomposition of the graph   can be effectively found in the worst 

case time of            and the worst case space of           .   

 

The important property of the construction of a bi-connected graph according to its 

handle decomposition is that the currently constructed graph is bi-connected at any stage 

of the construction. This property is substantially exploited in the design of the BIBOX 

solving algorithm [16] for the pebble motion problem on a bi-connected graph. 

The algorithm is presented below using a pseudo-code as Algorithm 1 (the algorithm 

is illustrated with pictures for easier understanding). The algorithm starts with the last 

handle of the handle decomposition and proceeds to the original cycle. Pebbles, which 

goal positions are within the last handle, are moved to their goal positions within this 

handle. The instance of the problem now reduces to the instance of the same type indeed 

on a smaller bi-connected graph. That is, the last handle is not considered any more since 

its pebbles do not need to move any more. This process is repeated until the original cycle 

of the decomposition remains. 

 Let                
    

   be an instance of the pebble motion problem. The 

following notation is used in the formalization of the algorithm. The handle decomposi-

tion of the graph   is formally a sequence                  , where    is the initial 

cycle and    is a handle for          . The order of handle additions in construction 

of   corresponds to their positions in the sequence (that is,    is added to    first; while 

   is added as the last to the currently constructed graph). A handle 

         
    

       

      for              can be assigned a cycle       if the 

input graph   is connected. The cycle       consists of the sequence vertices on a path 

connecting    and    in a graph before the addition of    followed by vertices 

  
    

       

 . Specially, it is defined that         . 

The following lemma is important for the design of the algorithm as well. Notice that 

the lemma states that individual vertices in the input pair of vertices are indifferent with 

respect to connecting by vertex disjoint paths. 

 

Lemma 2 (two paths existence). Let         be a bi-connected graph and let       

  and        , where             are pair wise distinct, be two pairs of vertices. Then 

either the first or the second of the following claims holds: 



Pavel Surynek 
 
12 

(a) There exist two vertex disjoint paths    and   such that they connect    with    

and    with    in   respectively. 

(b) There exist two vertex disjoint paths    and   such that they connect    with    

and    with    in   respectively.  

 

Proof.  The idea of the proof is to proceed by inductively according to the size of the 

handle decomposition of the graph        . Let                   be a handle 

decomposition of the graph  . A function         is defined as follows:         

if      and         if      for some             (  is one of the internal ver-

tices of the handle   ). Observe, that    is a correctly defined function. 

A given 4-tuple of vertices               is assigned a 4-tuple of integers defined us-

ing the function   :                              . The mathematical induction will 

proceed according to the lexicographic ordering of the 4-tupules sorted in descending 

order assigned using the function   . Several cases must be distinguished. 

Case (i): Let the 4-tuple of vertices               is assigned a 4-tuple of numbers 

         , that is, all the vertices             are located within the initial cycle   . Then 

the following juxtapositions of vertices   ,   ,   , and    within    with respect to the 

positive orientation of the cycle can occur:              ,              , 

             ,              ,              , and               (vertices are listed 

according to the positive orientation of the cycle; there is in total       candidates for 

juxtapositions of   vertices; however, the remaining juxtapositions are isomorphic to the 

listed ones using a rotation along the cycle). In all the cases either the claim (a) or the 

claim (b) holds. See Figure 4 for detailed case analysis – for example in the juxtaposition 

             ,    should be connected in positive orientation with    and    should be 

connected in negative orientation with   . 

Case (ii): Let the 4-tuple of vertices               is assigned a sorted 4-tuple 

             where               . Using the interchangeability of vertices 

  ,   ,   ,   , it is possible to suppose that          without loss of generality. Let 

         
    

       
     , then there exists a path   connecting    and    consisting 

of the internal vertices of   . Since the sorted 4-tuple                               is 

lexicographically strictly less than             , the induction hypothesis implies that the 

lemma holds for the 4-tuple of vertices   ,   ,   ,    and the graph   without the internal 

vertices of the handle   ; let this smaller graph be denoted as   . That is either (a) or (b) 

holds in   . Without loss of generality, suppose that (a) holds. Then there exist vertex 

disjoint paths    and    connecting    with    and    with    in    respectively. The 

path   is vertex disjoint with    and it shares exactly one vertex    with  . Let   be a 

path formed by the concatenation of   with    (the vertex    is used only once) and let 

    . Then   and   are vertex disjoint paths substantiating the claim (a) for 4-tuple of 

vertices   ,   ,   ,    in  . See Figure 4 for detailed illustration of the case. 

 



 Efficient Abstract Path Planning for Multiple Robots 
 

13 

 
 

Figure 4. An illustration of the existence of two vertex disjoint paths connecting two pairs of ver-

tices in a bi-connected graph. The figure illustrates the case analysis from the proof of Lemma 2 

which states that there exist two vertex disjoint paths   and   connecting a pair of vertices    and 

   with a pair of vertices    and    in a bi-connected graph  . The proof proceeds as mathematical 

induction according to the size of the handle decomposition of the graph  . 

 

Case (iii): The next case is that the 4-tuple of vertices               is assigned a 

sorted 4-tuple             where          . Again using the interchangeability of 

vertices only some of all these cases are actually interesting. The first case is that 

         and          (that is, a pair of vertices to connect is within the handle   ) 

and the second case is that          and          (that is, one vertex of a pair to 

connect is within the handle and the other is outside the internal vertices of the handle). In 

the first case, it is sufficient to construct a path   connecting    and    consisting of the 
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internal vertices of     and a path   connecting    and    in    (   is a connected graph). 

The constructed paths   and   are vertex disjoint and hence they substantiate the claim 

(a) of the lemma. In the second case, it is necessary to distinguish between two juxtaposi-

tions of    and    within    with respect to the positive orientation of the handle: 

        and        . In the case of juxtaposition        , a path   connecting    and    

and a path   connecting    and    are constructed (with the exception of    and    only 

the internal vertices of    are used). The second juxtaposition just interchanges    and 

  . The sorted 4-tuple                               is lexicographically strictly less 

than            , hence the lemma holds for the 4-tuple of vertices   ,   ,   ,    in the 

graph   . Without loss of generality suppose that the case (a) holds; that is, there exists a 

path    that connects    with    in    and a path    that connects    with    in    while 

   and    are vertex disjoint. Observe, that   and   are vertex disjoint as well. It is suffi-

cient to set a path   to be a concatenation of   and    and a path   to be a concatenation 

of   and   . Then   and   are the paths substantiating the claim (a) of the lemma for the 

4-tuple of vertices   ,   ,   ,    in  . Again, see Figure 4 for detailed illustration of the 

case. 

Case (iv): Let the 4-tuple of vertices               is assigned a sorted 4-tuple 

           where     . Without loss of generality, suppose that          . Then 

the following interesting juxtapositions of vertices   ,   , and    within the handle    

with respect to the positive orientation can occur:           ,           , and 

           (interchangeability of    and    is used to rule out the second half of juxtapo-

sitions). All the cases can be treated in the same way, thus it is sufficient to show only 

one case – for example the case of           . Let   be a path connecting    and    

consisting of the internal vertices of the handle   . Next, let   be a path connecting    

with    that uses internal vertices of the handle    and the vertex   . Let    be a path 

connecting    and    in    (such a path exists since    is a connected graph). Observe, 

that   is vertex disjoint with   as well as with   . Thus, if   is set to be a concatenation 

of   and   , then   and   substantiate the claim (a) of the lemma for the 4-tuple of ver-

tices   ,   ,   ,    and the graph  . Again, see Figure 4 for illustration of the case. 

Case (v): The last case occurs if a sorted 4-tuple           where     is assigned 

to the 4-tuple of vertices              . This case reduces to the case with all the vertices 

of the input 4-tuple located within the original cycle of the handle decomposition. How-

ever, instead of the original cycle a cycle       should be used.  

3.1.2. Pseudo-code of the BIBOX Algorithm 

Several primitives are introduced to express the BIBOX algorithm in an easier way. Ex-

cept functions   
  and   

  there is a function        that represents the current ar-

rangement of pebbles in the graph. Additionally, functions   
         ,   

    

     , and            which are generalized inverses of   
 ,   

 , and    respec-

tively; the symbol   is used to represent an unoccupied vertex (that is,     

              and         if               ). Next, each undirected cycle 

appearing in the handle decomposition of the input graph is assigned a fixed orientation. 
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Let   be an undirected cycle (a set of vertices of the cycle), then the orientation of   is 

expressed by functions       and       where            for     is the vertex fol-

lowing   (with respect to positive orientation) in the cycle   and            is the ver-

tex preceding   (with respect to positive orientation). The orientation of a cycle given by 

      and       is respected as well when vertices of the cycle are explicitly enume-

rated in the code. Auxiliary operations Lock     and Unlock    locks or unlocks a set of 

vertices    . Each vertex of the input graph is either locked or unlocked. The state of a 

vertex is used to determine whether a pebble can move into a vertex. Typically, a pebble 

is not allowed to enter a locked vertex (see the pseudo-code for details). Finally, there is 

assumed a potentially infinite sequence of functions   
    

    
    which finite prefix is 

used to form a solution. Actually, these variables are not needed to be stored in memory, 

the output solution can be directly printed to the output. For convenience, several va-

riables such as those representing handle decomposition are global, that is, they are 

shared among all the functions and procedures in the pseudo-code. 

It is assumed that for the number of pebbles it holds that        , where       

(that is, there are exactly two unoccupied vertices in the graph  ). Furthermore, it is re-

quired for the successful progression of the algorithm that the unoccupied vertices within 

the goal arrangement are located in the first two vertices of the original cycle (according 

to the positive orientation) of the handle decomposition. This requirement is treated by a 

function Transform-Goal and a procedure Finish-Solution. The function Transform-Goal 

determines two vertex disjoint paths from unoccupied vertices in the goal arrangement to 

first two vertices in the original cycle of the handle decomposition. Since the unoccupied 

vertices are indifferent, it does not matter what unoccupied vertex is associated with the 

first or with the second vertex of the initial cycle. Thus, preconditions of Lemma 2 are 

satisfied and hence the existence of mentioned two vertex disjoint paths is ensured. 

The goal arrangement is changed by the function Transform-Goal so that finally un-

occupied vertices are located in the original cycle. This is done by shifting pebbles within 

the goal arrangement along the two determined paths. After the modified instance is 

solved, the function Finish-Solution moves unoccupied vertices back to their goal posi-

tions given by the original unmodified goal arrangement. This final placement of unoccu-

pied vertices is done by shifting pebbles along the two paths determined by the function 

Transform-Goal in the opposite direction. 

It is further supposed that the input graph   is non-trivial for further simplifying the 

pseudo-code; that is, it is not isomorphic to a cycle. The case when the graph is isomor-

phic to a cycle can be treated easily. 

Several upper level primitives are exploited by the BIBOX algorithm. It is possible to 

make any vertex unoccupied in a connected graph (especially in a bi-connected graph). 

Making a given vertex unoccupied is implemented by a procedure Make-Unoccupied. Let 

  be a vertex to be made unoccupied. A path   connecting   and some of the unoccupied 

vertices avoiding the locked vertices is found. Then pebbles along the path   are shifted 

using swapping pebbles towards a currently unoccupied vertex. 
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Algorithm 1. The BIBOX algorithm. The algorithm was originally proposed in [16]. It solves a 

given pebble motion problem on a non-trivial bi-connected graph with exactly two unoccupied 

vertices. The algorithm proceeds inductively according to the handle decomposition of the graph of 

the input instance. The two unoccupied vertices are necessary for arranging pebbles within the 

original cycle of the handle decomposition. 

 

function BIBOX-Solve             
    

   : pair 

/* Top level function of the BIBOX algorithm; solves 

a given problem of pebble motion on a graph. 

Parameters:   - a graph modeling the environment, 

  - a set of pebbles, 

  
  - a initial arrangement of pebbles, 

  
  - a goal arrangement of pebbles. */ 

1: let                   be a handle decomposition of    

2:    
        Transform-Goal       

   

3:      
  

4:     

5: for             do 

6:  if        then 

7:   Solve-Regular-Handle    

8: Solve-Original-Cycle 

9: Finish-Solution      

10: return       
    

      
 
   

 

procedure Solve-Regular-Handle    

/* Places pebbles which destinations are within a 

handle   ; pebbles placed in the handle    are finally 

locked so they cannot move any more. 

Parameters:    – the index of a handle */ 

1: let       
 
   

 
      

 
                     

 /* Both unoccupied vertices must be located 

outside the currently solved handle. */ 

2: let           
 
             such that     

3: Make-Unoccupied    

4: Lock       
5: Make-Unoccupied    

6: Unlock       

7: for               do 

8:  Lock             

  /* A pebble to be placed is outside the handle   . */ 

9:  if      
    

               ) then 

10:   Move-Pebble   
    

       

11:   Lock       

12:   Make-Unoccupied     

13:   Unlock     

14:   Rotate-Cycle+        

/* A pebble to be placed is inside the handle   . */ 

15:  else 

16:   Make-Unoccupied      

Handle decomposition 

             
 

   
 

   
 

   
 

 

      
 

      
 

  
 

        

Pebble     
    

   is 

outside   ; move   to   . 

   
 

      
 

      
 

  
 

   

   
 

 

   

   
 

 

  

   
 

 

      
 

Bi-connected  
remainder 

    

Pebble     
    

   is inside 

  ; move   outside      . 

   
 

      
 

      
 

  
 

   

   
 

 

   

   
 

 

  

   
 

 

      
 

Bi-connected  
remainder 

  

   
 

 

   



 Efficient Abstract Path Planning for Multiple Robots 
 

17 

17:   Unlock     

18:       

19:   while     
 
    

       do 

20:    Rotate-Cycle+        

21:          

22:   Lock             

23:   let                     
            

24:   Move-Pebble  
 
    

      

25:   Lock       

26:   Make-Unoccupied     

27:   Unlock     

28:   while     do 

29:    Rotate-Cycle        
30:          

31:   Unlock      

32:   Lock             

33:   Move-Pebble  
 
    

       

34:   Lock        

35:   Make-Unoccupied     

36:   Unlock     

37:   Rotate-Cycle+        

38: Lock             

 

procedure Solve-Original-Cycle 

/* Places pebbles which destinations are within the 

original cycle; it is assumed that unoccupied vertices 

of the goal arrangement of pebbles are located within 

the original cycle. */ 

1: let      and        such that         

2:  let    
    

      
      

 /* According to the assumption on the goal arrangement 

it holds that   
    

     and   
    

    . */ 

3:  for           do 

4:  Make-Unoccupied   
 ) 

5:  Lock    
  ) 

6:  Make-Unoccupied   
 ) 

7:  Unlock    
  ) 

8:  if   
    

        
   then 

9:   Exchange-Pebbles    
    

        
         

10: Make-Unoccupied   
 ) 

11: Lock    
  ) 

12: Make-Unoccupied   
 ) 

13: Unlock    
  ) 

 

 

 

 

 

 

 

Pebble     
    

   outside 

     ;       rotated back; 
move   into connection   . 
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procedure Exchange-Pebbles          

/* Exchanges a pair of pebbles within the initial 

cycle of the handle decomposition. 

Parameters:      - a pair of pebbles to be exchanged, 

    - a pair of neighboring vertices where 

  is used as a storage space. */ 

1:         

2: Make-Unoccupied    

3: Swap-Pebbles-Unoccupied      

4: while         do 

5:  Rotate-Cycle+     

6: Swap-Pebbles-Unoccupied      

7: Lock       

8: Make-Unoccupied              
9: Unlock       

/* Subsequent rotation must use   

as the unoccupied vertex. */ 

10: Lock         

11:     

12: while                   do 

13:  Rotate-Cycle+     

14:        

15: Swap-Pebbles-Unoccupied      

16: Unlock          

17: Make-Unoccupied              
18: Swap-Pebbles-Unoccupied                

19: Swap-Pebbles-Unoccupied                

20: Swap-Pebbles-Unoccupied      

21: Unlock      

22: Lock         

23: while     do 

24:  Rotate-Cycle     

25:        

26: Swap-Pebbles-Unoccupied      

27: while         do 

28:  Rotate-Cycle+     

29: Swap-Pebbles-Unoccupied      

30: Unlock     

 

procedure Make-Unoccupied    

/* Makes a vertex   unoccupied while locked 

vertices remain untouched. 

Parameters:    - a vertex to be made unoccupied. */ 

1: let     such that         and   is not locked 

2: let                    be a (shortest) path 

3:  connecting   and   in   not containing locked vertices 

4: for             do 

5:  Swap-Pebbles-Unoccupied          
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Exchange   and   (  ap-

pears in   ). 

   
 

      
 

      
 

  
 

  

   
 

   

   
 

 

  

   
 

 

   
 

                
                

 

  

   
 

 

  
 

   
 

 
  

 

   
 

 

Rotate    back; move   
from   to  . 

   
 

      
 

      
 

  
 

  

   
 

  
 

   
 

 
  

   
 

 

   
 

                
                

 

  

   
 

 
  

 

   
 

 
  

 

   
 

 

Vertex   is locked;   is 
unoccupied; pebbles are 
shifted along cycle       to 

make   unoccupied. 

   
 

      
 

      
 

  
   

   
 

 

   
 

  

   
 

 

  

   
 

 



 Efficient Abstract Path Planning for Multiple Robots 
 

19 

procedure Move-Pebble      

/* Moves a pebble   into a vertex   

avoiding locked vertices. 

Parameters:    - a pebble to move, 

  - a target vertex.*/ 

/* complexity issues impose special selection of    */ 

1: let            
 
   

 
      

 
    be a path 

2:  connecting       and   in   not containing 

3:  locked vertices such that an alternative vertex 

4:  disjoint path             
 
   

 
      

 
    

5:  not containing locked vertices exists 

6: for              do 

7:  Lock     
 
   

8:  Make-Unoccupied     
 

  

9:  Unlock    
 
    

10:  Swap-Pebbles-Unoccupied   
 
     

 
   

 

procedure Rotate-Cycle+    

/* Rotates pebbles in a cycle   in the positive direction; 

the vertex locking mechanism allows to select which one of 

unoccupied vertices should be used. At least one unlocked 

unoccupied vertex must be located in  . 

Parameters:    - a cycle to rotate. */ 

1: let     such that         and   is not locked 

2: for             do 

3:  Swap-Pebbles-Unoccupied             )  

4:               
 

procedure Rotate-Cycle−    

/* Rotates pebbles in the cycle   in the negative direction; 

again an unoccupied vertex to use can be selected by the 

vertex locking mechanism. At least one unlocked 

unoccupied vertex must be located in  . 

Parameters:    - a cycle to rotate. */ 

1: let     such that         and   is not locked 

2: for             do 

3:  Swap-Pebbles-Unoccupied             )  

4:               

 

procedure Swap-Pebbles-Unoccupied       

 /* Swaps pebbles in vertices   and  ; 

 vertex   is supposed to be unoccupied. 

Parameters:      – vertices in which pebbles 

are swapped. */ 

1:             

2:             

3:         

4:   
 

    

5:       
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An operation of swapping pebbles itself is implemented using a procedure Swap-

Pebbles-Unoccupied. The procedure moves a pebble into a neighboring unoccupied ver-

tex and the next member   
 
 of the output solution sequence is constructed together with 

the update of functions    and    according to the new arrangement of pebbles. 

The next important process is moving a pebble into a given target vertex. This process 

is implemented by a procedure Move-Pebble. Let a pebble   is moved to a vertex  . A 

path   is found such that is connects vertices       (which is a vertex currently occupied 

by  ) and   and there exists an alternative vertex disjoint path   connecting the same pair 

of vertices. The existence of the alternative is ensured by Lemma 2. Indeed, the proof of 

Lemma 2 provides the construction such a path. Parameters of Lemma 2 should be set as 

follows:    is      ,    is a neighboring vertex to    in the same bi-connected compo-

nent,    is  , and    is a neighboring vertex to    in the same bi-connected component (it 

can be determined which of the neighboring vertices belong into the same bi-connected 

component from the knowledge of the handle decomposition). Vertex disjoint paths    

and    resulting from Lemma 2 together with edges         and         form the re-

quired   and  . In case (a):      and              ; in case (b):         
  and 

         . 

 

 
 

Figure 5. An illustration of moving a pebble in a bi-connected graph. The task is to move a pebble 

  from an initial position to a vertex  . Due to bi-connectivity of the graph there are two vertex 

disjoint paths   and   connecting the initial position with  . The path   is traversed by the pebble 

  while the alternative path   is used to make unoccupied a vertex in front of the vertex occupied 

by   (the vertex with   is locked). The symbol   stands for an anonymous pebble. 

 

Subsequently, edges of   are traversed in the following way. The first vertex of the 

edge is locked so paths to be searched must avoid this vertex. An invariant holds, that   is 

located in the first vertex of the edge at the beginning of each traversal step and thus it 

cannot move. Then the second vertex of the edge is made unoccupied (the alternative 

path   is used for this task); the first vertex of the edge is unlocked and the pebble   is 
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moved to the second vertex of the edge which is now unoccupied (see Figure 5 for de-

tailed illustration). 

The last basic operation exploited by the algorithm is a rotation of pebbles along a 

cycle. This operation is implemented by procedures Rotate-Cycle
+
 and Rotate-Cycle

−
. 

The former rotates pebbles in the positive direction and the latter rotates pebbles in the 

negative direction. It supposed the at least one vertex in the given input cycle is unoccu-

pied. The rotation is done using an unlocked unoccupied vertex located in the input cycle 

(see Figure 6 for detailed illustration). 

 

 
 

Figure 6. An illustration of rotation of pebbles along a cycle. An orientation of the cycle is deter-

mined by functions       and      . There is a single unoccupied vertex in the cycle. The posi-

tive and negative rotations are shown. 

 

During movement of an unoccupied vertex and during movement of a pebble to 

another vertex, arrangement of pebbles located in vertices that are not locked is generally 

not preserved. This behavior helps to control finished parts of the goal arrangement. On 

the other hand, moving pebbles must be done in a precise way so that required unlocked 

paths always exist. 

The process of placing pebbles according to the given goal arrangement will be de-

scribed now using the primitives discussed above. Pebbles, which goal positions are with-

in the currently solved handle, are placed in a stack like manner. This process is carried 

out by a procedure Solve-Regular-Handle (iteration through the handle is at lines 7-37). 

Let          
    

       

      for             be a current handle. Suppose that a 

pebble which goal position is in   
  for             , that is a pebble   

    
  , is 

processed in the current iteration. Inductively suppose that pebbles 

  
     

  ,   
       

  ,…,   
      

   are located in vertices        
 ,        

 ,…,   
  

respectively. An analogical situation for the next pebble   
      

   must be produced at 

the end of the iteration. 

The pebble   
    

   is moved to the vertex    and then the cycle       is positively 

rotated one which causes that the pebble   
    

   moves to   
  and pebbles 

  
     

  ,   
       

  ,…,   
      

   plunge in the cycle so that they are located in      
 , 

       
 ,…,   

 . The described process represents one iteration of stacking pebbles into 

the handle   . However, the process is not that easy. At least, two major cases must be 
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distinguished within this process. In both cases, the first step is that internal vertices of 

the handle    are locked (line 8 of Solve-Regular-Handle). 

If the pebble   
    

   is not located in the internal vertices of the handle    (line 9-14 

of Solve-Regular-Handle) it is just moved to   . This is possible since an invariant holds 

that both unoccupied vertices are located outside the internal vertices of the handle and 

the graph without the internal vertices of the handle is connected. It holds at the begin-

ning, since both unoccupied vertices are explicitly moved outside the handle    (lines 2-6 

of Solve-Regular-Handle) and it is preserved through all the iterations. Observe that these 

movements do not affect pebbles already stacked in the handle. The pebble   
     

   is 

fixed in    by locking    and then an unoccupied vertex is moved to    which makes the 

rotation of the cycle       possible. The positive rotation of       finishes the iteration. 

If the pebble   
    

   is already located in some of the internal vertices of the handle 

   (lines 15-37 of Solve-Regular-Handle), the above process is reused but it must be 

preceded by getting the pebble   
     

   outside the handle. Notice, that it is not possible 

for the pebble   
    

   to intermix with already stacked pebbles 

  
     

  ,   
       

  ,…,   
      

  . The vertex    is made unoccupied and the cycle 

      is positively rotated until the pebble   
    

   gets outside the internal nodes of   ; 

that is,   
    

   appears in   . This series of rotations preserves the order of the already 

stacked pebbles. To restore the situation however, the cycle must be rotated back the 

same number of times. A vertex   outside the already finished part of the graph (that is 

outside       and outside    for    ) is selected; the pebble   
    

   is move into   

and it is fixed there by locking. The vertex    is made unoccupied again since the preced-

ing process may move some pebble into it (this is possible since   alone cannot rule out 

the existence of a path from an unoccupied vertex to    in the bi-connected graph; there 

is always an alternative path). The cycle is rotated back so that inductively supposed 

placement of   
     

  ,   
       

  ,…,   
      

   is restored. The situation is now the 

same as in the previous case with   
    

   outside the handle. 

After the last iteration within the handle    it holds that the pebbles 

  
     

  ,   
       

  ,…,   
    

   are located in vertices    

 ,      
 ,…,   

  respectively. 

Moreover it holds that unoccupied vertices are both outside the internal vertices of   . 

Thus, the solving process can continue with the next handle in the same way while the 

already solved handles remain unaffected by the subsequent steps. Notice, that only one 

unoccupied vertex is sufficient for stacking pebbles into handles. See Figure 7 for de-

tailed illustration. 

The initial cycle    of the handle decomposition must be treated in a different way. 

Here, the second unoccupied vertex is utilized. An arrangement of pebbles within    can 

be regarded as a permutation. The task is to obtain the right permutation corresponding to 

the goal arrangement. This can be achieved by exchanging several pairs of pebbles. More 

precisely, if a pebble residing in a vertex of    differs from a pebble that should reside in 

this vertex in the goal arrangement, this pair of pebbles is exchanged. The process is 

implemented by a procedure Solve-Original-Cycle and by auxiliary procedure Exchange-

Pebbles for exchanging a pair of pebbles. 
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Figure 7. An illustration of stacking a pebble into a handle. The progress of stacking pebbles into 

the handle    is shown. Pebbles   ,   ,   , and    are to be stacked into    (that is,   
        

 , 

  
        

 ,   
        

 , and   
        

 ) while handles      and      are already solved 

(that is,   
        

   ,…,   
        

   , and   
        

   ,…,   
        

   ). Observe 

that the pebble    is originally outside the handle while the pebble    is inside the handle (that is, 

must be rotated outside the handle – stages (iv) and (v)). The symbol   stands for an anonymous 

pebble. 
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The procedure Exchange-Pebbles expects that first two vertices of the initial cycle are 

unoccupied in the current arrangement. However, the function generally does not pre-

serve this property. Hence, the vacancy of the first two vertices of the initial cycle must 

be repeatedly restored (lines 4-7 and 10-13 of Solve-Original-Cycle). The process of 

exchanging a pair of pebbles   and   itself exploits a pair of vertices   and   where these 

two vertices are connected by an edge and          . 

The vertex   is used as a storage place. The need of two unoccupied vertices is im-

posed by the fact that a pebble from    to be stored in   must be rotated into   first. Dur-

ing this process, some vertex of the cycle must be unoccupied to make the rotation possi-

ble and the vertex   must be unoccupied as well to make storing possible. 

When exchanging the pair o pebbles   and   it is necessary to preserve ordering of the 

other vertices. First, a pebble occupying the vertex   is moved into the cycle    in order 

to make   vacant (lines 1-3 of Exchange-Pebbles). Then the cycle is rotated until the 

pebble   appears in   (since there was a pebble in   at the beginning of the rotation, there 

is always some pebble in   after all the rotations) and the pebble   is stored in   (lines 4-

6 of Exchange-Pebbles). Next, the cycle    is rotated positively so that   appears in 

            (the next vertex to   with respect to the positive orientation) while the 

number of rotations is recorded (lines 7-14 of Exchange-Pebbles). However, the second 

unoccupied vertex must not interfere with counting of rotations. Thus it is located 

            at the beginning (that is, outside the sequence of pebbles between   and   

which length is being counted in fact) and then moved to             in the positive 

direction (the movement of the second unoccupied in the negative direction is not possi-

ble here, since   is now locked). At this moment, pebbles   and   are exchanged using 

two unoccupied vertices so that ordering of   in the cycle    is the same as of   before 

the exchange (lines 15-20 of Exchange-Pebbles). Then, the cycle is rotated in the nega-

tive direction recorded number of times so that place within the cycle where   was origi-

nally ordered appears in  ; thus   is ordered here (lines 21-26 of Exchange-Pebbles). 

Finally, the pebble was located in   before the exchange of pebbles   and   has been 

commenced is put back into   (lines 27-30 of Exchange-Pebbles). Since the process of 

exchange of a pair of pebbles is quite subtle, the detailed case analysis is given within the 

proof of soundness of the process (see Lemma 4). 

3.1.3. Theoretical Analysis of the BIBOX Algorithm 

This section is devoted to theoretical analysis of the BIBOX algorithm. Particularly, the 

soundness of the algorithm and its complexity are analyzed. 

 

Lemma 3 (soundness of Move-Pebble). If an original location of a pebble  , a goal loca-

tion  , and an unoccupied vertex are all located in the same unlocked bi-connected com-

ponent of the graph  , then the procedure Move-Pebble correctly moves the pebble   

from its original location to  .  
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Proof. Recall how the procedure Move-Pebble works. First, a shortest path   

   
 
   

 
      

 
  connecting       and   is found. This path is then traversed while the 

pebble   is moved along its edges. The whole path   belongs to the same bi-connected 

component as       and  . Otherwise, there would not be the alternative vertex disjoint 

path   connecting the same pair of vertices. 

The proof of soundness will proceed as mathematical induction according to the num-

ber of edges of   already traversed. In all the steps, the pebble   and the unoccupied 

vertex should be located in the bi-connected component containing  . Initially, this con-

dition holds. Consider that a pebble   is located in   
 

 for              and need to be 

moved to     
 

. The vertex   
 

 is locked and     
 

 is made unoccupied. To make     
 

 

unoccupied an unlocked path connecting the original location of the unoccupied vertex 

and     
 

 must exist in  . It is supposed that   
 

,     
 

, and the unoccupied vertex are all 

in the same bi-connected component. Thus an alternative path connecting     
 

 and the 

unoccupied vertex in this bi-connected component avoiding   
 

 must exist (such a path 

can be constructed by concatenating parts of   and  ). This path is used to transfer the 

unoccupied vertex to     
 

. Having     
 

 unoccupied the vertex   
 

 is unlocked and   is 

moved to     
 

 along the edge    
 
      . After this step, the required condition holds 

again (a supporting illustration is shown in Figure 5).  

 

Lemma 4 (soundness of Exchange-Pebbles). The procedure Exchange-Pebbles of the 

Algorithm 1 for exchanging a pair of pebbles   and   within a cycle    is sound. That is, 

if the arrangement of pebbles within the cycle    is regarded as a permutation, then the 

output arrangement produced by the procedure Exchange-Pebbles corresponds to a per-

mutation where pebbles   and   are transposed with respect to the permutation corres-

ponding to the input arrangement.  

 

Proof. To prove the statement of the lemma some analysis of the course of the procedure 

must be done. Fortunately, almost all the steps of the procedure suppose preconditions 

that are trivial to check. However, it is not that trivial to check whether forward and 

backward rotations of the cycle interleaved with exchange of pebbles   and   and inter-

fering with unoccupied vertices really produces the desired transposition. More precisely, 

it is necessary to check whether the orderings of pebbles between   and   and between   

and   (with respect to the positive orientation of the cycle) remain unchanged while   and 

  are transposed. This is done using detailed case analysis of what can happen. Let 

      
    

      
  , then there are     pebbles located in    at the moment before the 

cycle is rotated positively (situation at line 11 of Exchange-Pebbles - see stage (i) in Fig-

ure 8). The pebble   is already stored in   and the two unoccupied vertices are   and 

           . Let pebbles occupying vertices of the cycle in the interval between       

and   with respect to the positive orientation (excluding boundaries) are denoted 

  ,   ,…,    respectively; let pebbles occupying vertices of the cycle in the interval be-

tween             and       with respect to the positive orientation (again excluding 

boundaries) are denoted as   ,   ,…,       . The series of   positive rotation of    fol-
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lows to move the pebble   into             (see stage (ii) in Figure 8). Now, all the 

pebbles   ,   ,…,   ,   ,   ,…,       , and   are   steps forward with respect to their 

location before the series of rotations. Then the second unoccupied vertex (other than  ) 

is moved in the positive direction towards             (recall, that the movement in the 

negative direction is not possible, since   is locked at the moment - see stage (iii) in Fig-

ure 8). 

 

 
 

Figure 8. The progression of the exchange of a pair of pebbles within an initial cycle of the handle 

decomposition. Pebbles   and   in a cycle consisting of    vertices are exchanged while the order-

ing of other pebbles within the cycle is preserved. The figure illustrates the progression of the pro-

cedure Exchange-Pebbles from line 7 to 25. 

 

Next, pebbles are exchanged: that is,   is moved to   and   is moved to             

(see stage (iv) in Figure 8). At this step, pebbles   ,   ,…,    are   steps forward with 
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respect to their location before the series of rotations; pebble   ,   ,…,        are     

forwards with respect to their location before the series of rotations (the difference is 

caused by the fact that unoccupied vertex went through pebbles   ,   ,…,        but not 

through pebbles   ,   ,…,   ). Finally, the pebble   is     steps forward with respect 

to the location of   before the series of rotations. 

The series of   rotation in the negative direction places pebbles   ,   ,…,    to their 

original positions; pebbles   ,   ,…,        are placed   step backward with respect to 

their original position before rotations, and   is one step backward with respect to the 

original position of   before the series of rotations (see stage (v) in Figure 8). This incon-

sistency however, is caused by a different location of the second unoccupied vertex which 

now between   and    with respect to the positive orientation of the cycle (this was not 

the case in the original arrangement before rotations). To see that the transposition of   

and   has been really obtained, the movement of the second unoccupied vertex into 

            in the negative direction can be done. This moves pebbles   ,   ,…,        

to their original positions before rotations and the pebble   to the original position of   

(see stage (vi) in Figure 8). As this is a step used only for purposes of the proof, the algo-

rithm actually does not perform it.  

 

Proposition 2 (BIBOX - soundness and completeness). The BIBOX algorithm is sound 

and complete. That is, the algorithm always terminates and produces a solution of a given 

input instance of the problem of pebble motion on a graph                
    

  .  

 

Proof. To verify soundness and completeness of the BIBOX algorithm it is necessary to 

check preconditions of each operation performed in the course of its execution. This is a 

trivial task in almost all the cases except the case of searching for a path satisfying certain 

conditions. This issue concerns the search for vertex disjoint paths   and    within the 

main function BIBOX-Solve at line 2. It also concerns search for a path connecting a giv-

en pair of vertices avoiding the locked ones. The non-existence of such a path could make 

the following operation in the course of the execution undefined. The existence of vertex 

disjoint paths   and   is already treated by Lemma 2. Thus, it remains to verify that a 

required unlocked path always exists. 

A path containing unlocked vertices is constructed within the procedure Make-

Unoccupied (lines 2-3) which is called by Solve-Regular-Handle (lines 3, 5, 12, 16, 26, 

and 35),  Solve-Original-Cycle (lines 4, 6, 10, and 12), Exchange-Pebbles (lines 2, 8, and 

18). Next, a pair of vertex disjoint paths containing unlocked vertices is also constructed 

within the procedure Move-Pebble (lines 1-5) which is called by Solve-Regular-Handle 

(lines 10, 24, and 33). All these cases must be examined. 

Vertices   and   which are used as parameters of the call of Make-Unoccupied at 

lines 3 and 5 respectively of Solve-Regular-Handle are outside the currently solved han-

dle   . Let the bi-connected subgraph without the internal vertices of the already solved 

handles be denoted as    and let    without the internal vertices of    be denoted as    

(see Figure 7). Since    is completely unlocked and an unoccupied vertex cannot be 
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located in any internal vertex of the solved handles, an unlocked path connecting   and 

an unoccupied vertex must exist. The construction of the second path within the call at 

line 5 of Solve-Regular-Handle must take into account that   is locked. As the subgraph 

   is bi-connected, there exists a path connecting any two vertices in a subgraph    with 

  removed since it must be connected. 

At line 12 of Solve-Regular-Handle a connection vertex    of the currently solved 

handle    is made unoccupied while internal vertices of    and the second connection 

vertex    are locked. Again, an unoccupied vertex is supposed to be located in the not yet 

solved part of the graph (calls at lines 3 and 5 of Solve-Regular-Handle ensures this), 

which is bi-connected, and without    it is still connected. 

A call of Make-Unoccupied at line 16 of Solve-Regular-Handle has the connection 

vertex    of the currently solved handle    as the parameter. The internal vertices of the 

already solved handles and the internal vertices of    are locked. An unoccupied vertex is 

located in    at this moment. Since    is bi-connected, there exists an unlocked path 

connecting    and the unoccupied vertex. 

At line 26 of Solve-Regular-Handle, the connection vertex    of the handle    is 

made unoccupied. The situation is that a vertex  , which is in    and outside the cycle 

associated with the current handle   , is locked. Internal vertices of    are locked as 

well. Again, the unlocked part of the graph corresponds to a bi-connected subgraph    

from which one vertex was removed. Thus, the unlocked part of the graph constitutes a 

connected component. An unoccupied vertex is located in some of the unlocked vertices. 

Hence, there exists an unlocked path connecting the unoccupied vertex and   . 

At line 35 of Solve-Regular-Handle the task is to make unoccupied a connection ver-

tex    of the handle   . The situation is again very similar; the internal vertices of the 

already solved handles, the internal vertices of   , and the second connection vertex    

are locked. Thus, unlocked vertices constitute a connected subgraph (because it is ob-

tained by removing    form a bi-connected subgraph   ). Since the unoccupied vertex is 

unlocked, there exists an unlocked path connecting the unoccupied vertex and   . 

The soundness of the procedure Solve-Original-Cycle is partially implied by the 

soundness of the procedure Exchange-Pebbles which is treated by Lemma 4. The basic 

assumption of Solve-Original-Cycle is that both unoccupied vertices are located in the 

original cycle    of the handle decomposition; all the vertices of the graph except    are 

locked. At line 4 of Solve-Original-Cycle a vertex   
  (the first vertex of the cycle with 

respect to the positive orientation) is made unoccupied. An unlocked path in the cycle 

from any of its vertices to   
  exists. The situation at line 6 of Solve-Original-Cycle is 

little bit different; now the vertex   
  is locked and a vertex   

  (the second vertex of    

with respect to the positive orientation) is being made unoccupied. Thus, an unlocked 

path connecting the second unoccupied vertex with   
  is searched. Such path exists since 

removing   
  from the cycle does not disconnect it. The situation at lines 10 and 12 of 

Solve-Original-Cycle is the same as that at lines 4 and 6 respectively. 

The soundness of the procedure Move-Pebble is treated separately by Lemma 3. 

However, preconditions of the Lemma 3 need to be checked – that is, whether all the calls 
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of Move-Pebble moves a pebble within the same unlocked bi-connected component and 

whether the unoccupied vertex is located in the same unlocked bi-connected component 

as well. 

The situation before the call of Move-Pebble at line 10 of Solve-Regular-Handle is 

that already solved handles are locked and the internal vertices of the currently solved 

handle    are locked too. Both unoccupied vertices are located in the not yet solved part 

of the graph and outside the internal part of    (this condition is enforced by moving 

unoccupied vertices at lines 2-6 of Solve-Regular-Handle). The task is to move a pebble 

  
    

  , which is known to be outside    as well as outside the internal vertices of the 

already solved handles, to the connection vertex    of the handle   . The whole not yet 

solved part of the graph (that is, the bi-connected subgraph   ) without handle    consti-

tutes a bi-connected component which all the vertices are unlocked. The unoccupied 

vertex and both the pebble   
    

   and    are located in this bi-connected component 

and thus preconditions of Lemma 3 are satisfied. 

The call of Move-Pebble at line 24 of Solve-Regular-Handle moves a pebble   
    

   

to a vertex  . The pebble   
    

   is known to be located in a connection vertex    of the 

current handle   . The vertex   is located in the not yet solved part of the graph and 

outside the cycle associated with the handle   . Solved handles and internal vertices of 

   are locked; one of the unoccupied vertices is the second connection vertex    of   . 

Thus, the unlocked vertices constitutes a bi-connected component (the component is 

exactly the subgraph   ) where the pebble   
    

  , vertex  , and the unoccupied vertex 

are located. Again, preconditions of Lemma 3 are satisfied. 

Finally, the task of the call of Move-Pebble at line 33 of Solve-Regular-Handle is to 

move a pebble   
    

   to a connection vertex    of the current handle   . It is known 

that the pebble   
    

   is located in   as in the previous case. Internal vertices of all the 

solved handles and of    are locked at this moment. Hence, the pebble   
    

  , the ver-

tex   , and the unoccupied vertex are all located in the same bi-connected component 

consisting of unlocked vertices (the subgraph    is that component). A connection vertex 

   is known to be unoccupied. Thus, preconditions of Lemma 3 are satisfied again. 

At this point, it is possible to conclude that all the steps of the algorithm are correctly 

defined. Since the number of successfully placed pebbles strictly increases as the algo-

rithm progresses, the algorithm always terminates and produces a solution to the input 

instance.  

 

 The following propositions characterize the BIBOX algorithm with respect to its com-

putational resource requirements. All the aspects of the algorithms are polynomial. 

 

Proposition 3 (BIBOX – worst case time complexity). The worst case time complexity 

of the BIBOX algorithm is         with respect to an input instance of the problem peb-

ble motion on a graph                
    

  .  
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Proof. The construction of a handle decomposition (line 1 of BIBOX-Solve) takes 

           steps (Lemma 1). The same estimation holds for transforming the goal 

arrangement of pebbles (line 2 of BIBOX-Solve) and augmenting the final solution (line 9 

of BIBOX-Solve) according to a pair of vertex disjoint paths   and   (recall that this is 

done in order to keep unoccupied vertices outside the already finished part of the graph). 

 There are at most     pebbles (since        ) to be placed within handles of a han-

dle decomposition                  . Let    with             be a handle. Plac-

ing a pebble   within    requires at most      rotations of the cycle       (procedures 

procedures Rotate-Cycle
+
 and Rotate-Cycle

−
) in the positive direction in case when   is 

needed to be moved outside   . At most      rotations of       in the negative direction 

are then necessary to put pebbles in    to their original positions. Finally, one rotation of 

      in the positive direction is necessary to get the pebble   to its right position within 

  . Altogether at most         rotations of       are necessary. One rotation of the 

cycle       requires at most         steps. Thus, all the rotations needed to place the 

pebble   consume at most                  steps. 

It is also necessary to move the pebble   (procedure Move-Pebble) within the place-

ment operation. There are up to 2 calls of Move-Pebble per pebble placement within the 

handle   . A careful analysis must be done here since the pebble   must be moved along 

a path of the length up to     and lot of work is done within each edge traversal. To re-

duce time complexity of the operation, a pair of vertex disjoint paths   and   connecting 

the original location of   and the target vertex is computed at the beginning.  This is done 

by a direct application of Lemma 2 and it consumes          ) steps since the handle 

decomposition must be gone through. 

Notice that a vertex in front of the current location of   needs to be made unoccupied. 

Therefore, an alternative path avoiding the vertex with   must be found and pebbles must 

be shifted along this path. The knowledge of   allows determining of such path (which is 

not needed to be shortest one) in constant time since it consists of   and parts of  . Shift-

ing pebbles itself consumes exactly     steps. Thus, a single traversal of an edge of   by 

the pebble   requires at most     steps. 

Altogether,               ) steps are required by the operation of moving a peb-

ble in the worst case. That is,                  steps per pebble placement. 

There is also up to   calls of the operation for making some vertex unoccupied (pro-

cedure Make-Unoccupied). The remaining operations consume constant time. The opera-

tion for making some vertex unoccupied requires          ) steps; this is caused by the 

search for a shortest path connecting original and goal location. Shifting pebbles itself 

along the found path is less consuming; it requires at most     steps. Thus, at most 

5   +          ) steps are consumed by making vertices unoccupied in course of plac-

ing   into   . In total, at most                                         steps 

are necessary to place the pebble   into   . Since                 , the total number 

of steps is at most                                    which is        . 

Since there are at most     pebbles, the whole process of placing pebbles into handles 

takes         steps. 
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 It remains to analyze time required by placing pebbles within the original cycle    of 

the handle decomposition There are at most     pebbles to be placed in   . Each pebble   

requires   operations of making a vertex unoccupied (the first and the second vertex    

are made unoccupied – lines 4 and 6 of Solve-Original-Cycle) and at most one operation 

of exchanging pebbles. Since the initial and the goal position of the mentioned transfer of 

the unoccupied vertex in both cases is located in   , the operation requires only      steps 

in the worst case. The operation of exchanging pebbles requires at most       rotations in 

the positive direction (lines 5 and 13 of Exchange-Pebbles) and at most      rotation in 

the negative direction (line 24 of Exchange-Pebbles). Next, there are   calls of the opera-

tion for making some vertex unoccupied (call of the procedure Make-Unoccupied at lines 

2, 8,  and 17). Observe that the unoccupied vertex and the target vertex of the transfer are 

located in    in all the cases. Thus, each of these operations requires at most      steps. 

Altogether,       steps are required for making vertices unoccupied during exchanging a 

pair of pebbles. The time consumption of the remaining operations performing during a 

single exchange of pebbles is constant, thus it is not necessary to account them. To ex-

change a pair of pebbles at most      
         steps are needed in total. Placing all the 

pebbles into the original cycle requires at most           
         steps. Since 

        , the total number of steps required for the initial cycle is at most           

      which is        . 

 The worst case time complexity of the BIBOX algorithm with respect to the input 

instance                
    

   is thus        .  

 

Proposition 4 (BIBOX – makespan of the solution). The makespan of a solution in the 

worst case produced by the BIBOX algorithm (that is, the number  ) for an input instance 

of the problem of pebble motion on a graph                
    

   is        .  

 

Proof.  The proof will proceed exactly in the same way as the proof of the worst case 

time complexity since the step of the algorithm corresponds to move of a pebble from a 

vertex to its unoccupied neighbor in almost all the cases – called a swap (directly corres-

ponds to a call of the procedure Swap-Pebbles). 

 Consider the process of placing a pebble   into a handle    of a handle decomposition 

                  where            . It requires         rotations of the cycle 

      (procedures Rotate-Cycle
+
 and Rotate-Cycle

−
) where each rotation produces 

      swaps. That is,                  swaps are caused by rotations. Next, there are 

up to       edge traversals by the pebble   caused by the operation of moving a pebble 

(procedure Move-Pebble) where each edge traversal produces     swaps. Altogether, 

           are swaps are produced by moving pebbles. Finally, there are up to   calls 

of the operation for making a vertex unoccupied (procedure Make-Unoccupied) where 

each call produces at most     swaps. Since there are at most     pebbles and      

            at most                +           +5   ) swaps which is         

are necessary to place pebbles in handles. 
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 It is also necessary to consider the process of placing pebbles in the initial cycle   . 

There are at most       rotations of    and   operation of making a vertex unoccupied 

per pebble placement. A single rotation of    produces      swaps and one making a 

vertex unoccupied requires at most      swaps (recall, that unoccupied vertex as well as 

its target are located in   ). Altogether, at most      
        swaps are produced per 

pebble placement into   . Placing all the pebbles in    produces at most           
  

       swaps. Since         , it is at most                 swaps which is         

for placing pebbles into the initial cycle   . 

 The final transfer of unoccupied vertices to their original locations produces at most 

     swaps which does not change the above asymptotic estimation. In total,         

swaps are produced by the BIBOX algorithm when solving the instance      

          
    

  . As the makespan   is bounded by the number of swaps (that is, the 

makespan of the solution with no parallelism allowed), it is possible to conclude that 

makespan is        .  

 

Proposition 5 (BIBOX – worst case space complexity). The worst case space complexi-

ty of the BIBOX algorithm is            with respect to an input instance of the prob-

lem pebble motion on a graph                
    

  .  

 

Proof.  The size of the solution    is up to         times       ; that is, the makespan in 

the worst case   multiplied by the space necessary for storing an individual element of the 

solution   
  with            . Fortunately, the solution    is produced in a stream like 

manner and thus does not need be stored in the memory. 

A space of            is required for storing the current arrangement of pebbles 

expressed by functions    and   ; a space of            is required to compute 

(Lemma 1, [24]) and to store the handle decomposition  ; and finally a space of       

     is required to compute shortest paths by subsequent calls of the Dijkstra’s algorithm 

[1]. 

Remaining operations and local variables used by the BIBOX algorithm consume the 

space proportional to the size of the input instance  .Thus, the space of            

which is proportional to the size of the input instance   is required by the BIBOX algo-

rithm in total.  

3.1.4. Extensions and the Real-life Implementation 

The natural question is how to apply the BIBOX algorithm if there are more than two 

unoccupied vertices in input instance (that is,        ). The algorithm can be used 

directly if the graph is filled by dummy pebbles. The instance with dummy pebbles is 

solved by the algorithm as it is and finally movements of dummy pebbles are filtered out 

from the solution in an additional post-processing step. 

An adaptation of the solving algorithm for sparse instances of the pebble motion prob-

lem is out of scope of this work. Nevertheless, a straightforward adaptation is to replace 

the non-deterministic selection of an unlocked unoccupied vertex (such as that at line 1 
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of Make-Unoccupied) by the selection of the most promising one. For example, an un-

locked unoccupied vertex that is nearest to the vertex that is to be made unoccupied is 

selected. Indeed, this behavior is adopted in the experimental implementation of the BI-

BOX algorithm (see experiments in Section 5). Some further optimizations should be 

used in the real-life implementation to reduce the makespan of the produced solution. 

Various preconditions are explicitly enforced in order to make the pseudo-code simpler 

(for example, the precondition of having first two vertices of the initial cycle of the han-

dle decomposition unoccupied before a pair of vertices is exchanged within the cycle - 

lines 4-6 of Solve-Original-Cycle). This approach should be avoided and lazier approach 

should be adopted in the real-life implementation (in the case of exchanging pebbles, 

locations of unoccupied vertices should be detected implicitly in subsequent steps by 

more sophisticated branching of the code). 

 The experimental implementation of procedures Solve-Regular-Handle and Solve-

Original-Cycle uses opportunistic selection of vertices to store pebbles (vertex   - line 23 

of Solve-Regular-Handle and vertices  ,   - line 1 of  Solve-Original-Cycle). The nearest 

vertex to the target pebble is always selected. Moreover, selection of these vertices within 

the procedure Solve-Original-Cycle should be done not only at the beginning but also in 

every iteration of its main loop. 

3.2. BIBOX-: An Algorithm for a Bi-connected Graph Exploiting Optimal Macros 

The significant drawback of the BIBOX algorithm is that it requires at least two unoccu-

pied vertices. Observe that the second unoccupied vertex is necessary only in the last 

stage where pebbles are placed into the initial cycle of the handle decomposition. Thus, if 

there is only one unoccupied vertex in the input instance, the BIBOX algorithm would be 

able to place almost all the pebbles of the input instance except that which goal positions 

are within the initial cycle of the handle decomposition. 

It would be possible to apply the existent algorithm described in [8] for solving pebble 

motion problems to finish placement of pebbles in the initial cycle. It is referred to as the 

MIT
1
 algorithm in this article. The MIT algorithm is able to solve instances of the prob-

lem of pebble motion on a non-trivial bi-connected graph with just one unoccupied vertex 

(the instance with just one unoccupied vertex may be unsolvable; indeed, the MIT algo-

rithm can detect such a case). Thus, a combined algorithm can proceed as the BIBOX 

algorithm for placing pebbles into all the internal vertices of handles of the handle de-

composition and it can proceed as the MIT algorithm over the remaining initial cycle and 

the first handle (the first handle is necessary to be included to form a bi-connected graph 

together with the initial cycle). Unfortunately, the process how the MIT algorithm places 

pebbles generates excessively long sequences of moves (see experiments in Section 5). 

Despite above facts the idea of using alternative solving process for the initial cycle of 

the handle decomposition is still promising. Since the initial cycle and the first handle 

 
1 The name for the algorithm has been chosen according to the name of the institution of the principal author of 

the article [8] which is MIT – the Massachusetts Institute of Technology. 
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constitute a structurally simple graph (these graphs are called -like graphs in the follow-

ing text), it is feasible to try to solve selected instances of pebble motion problem over 

these graphs optimally with respect to the makespan. Notice, that as there is no paral-

lelism with single unoccupied vertex, the makespan equals to the number of moves in the 

solution. The candidate instances for optimal solving are those from which solutions an 

overall solution of any instance over the initial cycle and the first handle can be com-

posed. Moreover, optimal solutions to selected instances can be pre-computed and stored 

in the database for future use. Since solutions from that the overall solution is composed 

are optimal, it is reasonable to suppose that the makespan of the resulting solution will be 

acceptable. Nevertheless, this is a conjecture that should be proven. 

3.2.1. Algebraic Foundation of the Algorithm 

Bi-connected graph, which handle decomposition consists of the initial cycle and single 

handle, represent structurally simplest bi-connected graphs over that non-trivial rear-

rangement of pebbles is possible supposed there is single unoccupied vertex (structurally 

simpler bi-connected graph is a cycle where only rotations of pebbles are possible). These 

graphs will be referred to as -like graphs. 

 

Definition 5 (-like graph). Let                  ,                  , and   

                be three sequences of vertices satisfying that            . An 

undirected graph                  for such three sets is constructed as follows: 

         and                                                                      

                                                                                }. An undirected 

graph         is called a -like graph if there exist three sets of vertices  ,  , and   

as above such that   is isomorphic to         . □ 
 

The notation of set union is used over 

sequences in the definition of the set of 

vertices   . This is an abbreviation for the 

union of ranges of individual sequences. 

Notice that          itself is a -like 

graph and          may be identical to   

if sets  ,  , and   consist of vertices of  . 

Hence, no distinction is made between   

and          in the following text and 

the notation          is used exclusively. 

An example of -like graph is shown in 

Figure 9. 

There are         non-isomorphic -like graphs over a set of vertices   (consider the 

set   linearly ordered and partitioned into sub-sets  ,  , and  , where these sub-sets form 

continuous sub-sequences within the ordered  ;   is the first sub-sequence,   is the mid-

dle sub-sequence, and   is the last sub-sequence within  ; there is         possibilities 

                 
                 
             

Figure 9. An example of -like graph. -like 

graphs are bi-connected graphs consisting of a 

cycle and one handle. 
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to place separation points among  ,  , and  ). However, the number of all the possible 

instances of pebble motion problem with single unoccupied vertex on a fixed -like graph 

          is       since the difference between the initial and the goal arrangement of 

pebbles can be regarded as a permutation of      elements. Hence, it is not feasible to 

pre-compute and to store optimal solutions to all the instances of the problem of pebble 

motion on a fixed -like graph. The number of selected instances should be bounded 

polynomially to make their pre-computation and storing feasible. At the same time, solu-

tions to all the possible instances of pebble motion problem with single unoccupied ver-

tex over the -like graph should be possible to be composed of the solutions to the se-

lected instances. 

Without loss of generality, assume that the unoccupied vertex within the initial and 

the goal arrangements of an instance of the problem over           is     (the unoccu-

pied vertex can be simply transferred to any vertex). Thus, the space of such instances 

over   is isomorphic to the group of all the permutations of        which is called a 

symmetric group on        elements and it is denoted             [2, 14]. A trans-

position is a permutation, which exchanges a pair of elements and keeps other elements 

fixed. It is well known from the theory of groups that             can be generated by 

the set of transpositions on the same set of elements. A permutation is called odd if it can 

be composed of the odd number of transpositions. A permutation is called even if it can 

be composed of the even number of transpositions. A permutation is either odd of even 

but not both. In fact, if a permutation is assigned a sign which is    if the permutation is 

even and    if the permutation is odd by a function    , then     is a group homomor-

phism between             and the group                  where multiplication   

corresponds to a product of two permutations, neutral element    corresponds to identic-

al permutation and unary minus – corresponds to an inverse permutation. 

Another simple fact that can be derived from above statements is that the set of all the 

even permutations on the same set of elements forms a proper sub-group of           

  ; it is called an alternating group on        and it is denoted as            . A 

rotation along a 3-cycle is a permutation which rotates given three elements and keeps 

other fixed. In [8] it is shown how to compose any even permutation from rotations along 

3-cycles on the same set of elements. 

As the number of distinct transpositions on   elements is       and the number of 

distinct rotations along 3-cycles on   elements is      , optimal solutions of correspond-

ing instances of pebble motion problem seem to be good candidates for storing. Moreo-

ver, if the corresponding instances are really solvable, then they satisfy the property that 

solution to any (in the case of transpositions) or almost any (in the case of 3-cycle rota-

tions) pebble motion instance on the same graph can be composed of them. Composition 

of solutions can be simply implemented as their concatenation. 

Suppose a -like graph                  with                  ,   

               , and                   and a set of pebbles                     for the 

following three definitions. 
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Definition 6 (even and odd case). Let   
  an initial arrangement of the set of pebbles such 

that   
              (that is,     is initially unoccupied) and let   

  be a goal arrange-

ment of pebbles such that   
              (that is,     is finally unoccupied). If   

  

forms an even permutation with respect to   
 , then an instance of the problem of pebble 

motion on a graph                  
    

   is called an even case. If   
  forms an 

odd permutation with respect to   
 , then an instance of the problem of pebble motion on 

a graph                  
    

   is called an odd case.. □ 

 

Definition 7 (transposition case). Let   
  be an initial arrangement of the set of pebbles 

such that   
              (that is,     is initially unoccupied) and let   

  be a goal 

arrangement of pebbles such that there exist         such that       for which it 

holds that   
        

          
        

                          

  
       

     (pebbles    and    are to be exchanged while positions of other pebbles 

are preserved; consequently     is finally unoccupied). Then an instance of the problem of 

pebble motion on a graph                  
    

   is called a transposition case 

with respect to    and   . □ 

 

Definition 8 (3-cycle rotation case). Let   
  be an initial arrangement of the set of pebbles 

such that   
              (    is initially unoccupied). Let   

  be a goal arrangement 

of pebbles such that there exist            such that   ,   , and    are pair wise dis-

tinct for which it holds that   
        

          
        

          
        

        

                         
       

     (pebbles   ,   , and    are to 

be rotated while positions of other pebbles are preserved; consequently     is finally unoc-

cupied again). Then an instance of the problem of pebble motion on a graph      

            
    

   is called a 3-cycle rotation case with respect to   ,   , and   . □ 
 

 
 

Figure 10. An example of transposition and 3-cycle rotation cases of the problem of pebble motion 

on a -like graph. The transposition case is shown for vertices   
      and   

     . The 3-cycle 

rotation case is shown for vertices   
         

     , and   
     . Solutions of general instances 

of the problem of pebble motion on a given -like graph that are solvable can be composed of 

(optimal) solutions of transposition and 3-cycle rotation cases. 
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See Figure 10 for illustrations of transposition case and 3-cycle rotation case. Notice, 

that transposition and 3-cycle rotation cases would be worthless if they are not solvable. 

Fortunately, several positive results regarding solvability of these cases are shown in [8]. 

Following propositions and corollaries recall some of them (without proofs). 

 

Proposition 6 (solvability of an odd case). An odd case of the problem of pebble motion 

on a -like graph                 
    

   with                   is solva-

ble if and only if   contains a cycle of the odd length.  

 

Let the -like graph          with                   be denoted as 

        . It represents a special case where some instances over it are solvable and some 

are unsolvable. The case of          will be treated separately. 

Since transposition is an odd permutation, the following corollary is a direct conse-

quence of the above proposition. 

 

Corollary 1 (solvability of transposition case). A transposition case of the problem of 

pebble motion on a -like graph                 
    

   with          non-

isomorphic to          is solvable if and only if          contains a cycle of the odd 

length.  

 

Proposition 7 (solvability of an even case). An even case of the problem of pebble mo-

tion on a -like graph                 
    

   with          non-isomorphic to 

         is always solvable.  

 

Analogically, since rotation along 3-cycle is an even permutation, the following corol-

lary is a direct consequence of the above proposition. 

 

Corollary 2 (solvability of 3-cycle rotation case). A 3-cycle rotation case of the problem 

of pebble motion on a -like graph                 
    

   with          non-

isomorphic to           is always solvable.  

  

Similar results hold not only for -like graphs, but also for the more general class of 

non-trivial bi-connected graphs non-isomorphic to          [8]. The important proper-

ties directly exploited by the algorithm are that if the input graph does not contain a cycle 

of the odd length and the initial and the goal arrangement of pebbles form an odd permu-

tation then the instance is unsolvable. Similarly, if the input and the goal arrangements 

form an even permutation (and the input graph is non-isomorphic to         ) then the 

instance is always solvable (observe that, this is a corollary of the BIBOX algorithm and 

Proposition 7). 
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The following propositions [2, 8, 14] are important with respect to the length of the 

overall solution composed of the optimal solutions to the transposition cases and 3-cycle 

rotation cases. 

 

Proposition 8 (solving the odd case). A solution to any odd case on a -like graph 

          can be composed of at most        solutions to transposition cases on the 

same graph.  

 

Of course, it is not possible to compose a solution to an odd case of rotations along 

3-cycles since the composition of any even two permutations results in an even permuta-

tion and rotation along a 3-cycle is an even permutation (recall the group homomor-

phism). On the other hand, a solution of an even case can be composed of at most 

       solutions to transposition cases as well. The proof of the propositions is shown 

within the pseudo-code of the BIBOX- algorithm. 

 

Proposition 9 (solving the even case). A solution to any even case on a -like graph 

          can be composed of at most        solutions to 3-cycle rotation cases on 

the same graph.  

 

 Again, the proof is shown within the pseudo-code of the BIBOX- algorithm. The 

above facts justify that transposition and 3-cycle rotation case are suitable to be solved 

optimally and corresponding solutions can be used for composing solutions of general 

instances over -like graphs. It is out of scope of this manuscript to give any detailed 

description of how to compute optimal solutions of instances over -like graphs. Applica-

tions of several variants of iterative deepening search for this task were studied in [17]. 

The case of -like graph          represents a situation where there is no simple cha-

racterization of solvable instances. Since it is a small graph, it is feasible to pre-compute 

and to store optimal solutions to all the solvable pebble motion instances over this -like 

graph into the database. The solving process of the new algorithm over the initial cycle 

and the first handle of the handle decomposition is based on the knowledge of how to 

solve instances over -like graphs. In this context, it is necessary to guarantee that insol-

vability of an sub-instance over          does not contradict solvability of the instance as 

the whole if the initial cycle and the first handle unluckily become isomorphic to 

        . The following lemma states that this contradictory case can be always avoided. 

The proof the lemma tediously enumerates all the possible cases. 

 

Lemma 5 (avoiding         ). If a non-trivial bi-connected graph   is non-isomorphic to 

         then it subsumes a -like sub-graph          non-isomorphic to         . 

Moreover, if   contains an odd cycle then it subsumes          non-isomorphic to 

         that additionally satisfies that           (that is, sets   and   form an odd 

cycle). Having a -like sub-graph satisfying above conditions, there exists a handle de-

composition of                   of   such that               . (      
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denotes the sub-graph of   constructed by addition of the handle    to the initial cycle 

  ).  

 

Proof.  The proof will proceed as case analysis according to the number of handles of a 

handle decomposition of   and according to the number of internal vertices of a handle. 

Since the graph   is a non-trivial bi-connected graph, it holds for any handle decomposi-

tion of   that it contains at least one handle. 

If   does not subsume any cycle of the odd length then a -like sub-graph          

constructed from the initial cycle and the first handle of any handle decomposition satis-

fies requirement of the lemma. The graph          cannot subsume an odd cycle and 

hence it cannot be isomorphic to         . 

If   subsumes a cycle of the odd length then let       
    

    
       

   be some 

fixed handle decomposition of   such that   
  is of the odd length (such handle decompo-

sition can be constructed by finding an odd cycle first and then by continuing as standard 

method for finding handle decomposition - see Lemma 1). 

The lemma holds for      since it states a trivial fact and it is possible to set 

      to obtain the second part of the lemma. 

 Assume that     . If   
    

  is non-isomorphic to          then            
  

  
  and       fulfills the lemma again. Consider, that   

    
  is isomorphic to 

        . A modifying construction of       
    

    
   will be shown. The result of the 

construction will be a new handle decomposition              that satisfies require-

ments of the lemma. Let                
    

  where       
    

  ,       
    

    
  , 

and       
    

  ; that is, the initial cycle   
  together with the first handle are interpreted 

as a -like graph. The following cases must be distinguished (symmetric cases are not 

listed): 

(1) Assume that   
  interconnects   

  and   
 : 

  
  must contain at least one internal vertex since otherwise there will be two 

edges connecting   
  and   

  which is not allowed in a standard undirected graph. 

Let   
     

       
   (   is a vertex different from vertices of    ). Then a -like 

graph          with      
    

    
  ,      

    
  , and        is a sub-graph 

of  , it is not isomorphic to         , and it holds that          . The corres-

ponding handle decomposition              will be as follows:    

   
    

    
    

    
  ,       

       
  , and       

    
    

    
  . 

It is not difficult to extend the above construction for cases when   
  contains 

more than one internal vertices. It causes growth of the sequence   while   and 

  remain the same. Thus the non-isomorphism with          and the oddness of 

        are preserved. 

(2) Assume that   
  interconnects   

  and   
 : 

Again,   
  must contain at least one internal vertex since multiple edges connect-

ing the same pair of vertices are not allowed. Let   
  has one internal vertex, that 

is   
     

       
  . Then a -like graph          with      

    
    

  , 

     
    

  , and        is a sub-graph of   which is not isomorphic to 
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         and satisfies that          . The corresponding handle decomposi-

tion              will be constructed as follows:       
    

    
    

    
  , 

      
       

  , and       
    

    
    

  . 

The construction can be easily extended for cases when there are more than 

one internal vertices within   
 . It results in growth of the sequence   which pre-

serves non-isomorphism with          as well as oddness of        . 

(3) Assume that   
  interconnects   

  and   
 : 

If   
     

    
  , that is, it has no internal vertices, then a -like graph 

         with      
    

    
  ,      

    
  , and      

   is a sub-graph of  , 

it is not isomorphic to         , and it holds that          . The handle de-

composition              will be as follows:       
    

    
    

    
  , 

      
    

    
  , and       

    
    

  . 

It is easy to extend the described treatment when   
  interconnects   

  and   
  

and has non-zero number of internal vertices. It causes growth of the sequence 

  while sequences   and   remain the same. Hence, the non-isomorphism with 

         and the oddness of         are preserved. 

(4) Assume that   
  interconnects   

  and   
 : 

If   
     

    
   (there is no internal vertex) then a -like graph          with 

     
    

  ,      
    

    
  , and      

   and a handle decomposition 

             with       
    

    
    

    
  ,       

    
    

  , and    

   
    

    
   satisfy requirements of the lemma. 

If   
     

       
   (there is one internal vertex) then a -like graph 

         with      
    

  ,      
       

  , and      
   is a sub-graph of  , 

it is not isomorphic to         , and it holds that          . The correspond-

ing handle decomposition              will be as follows:    

   
       

    
    

  ,       
    

    
  , and       

    
    

    
  . 

If   
     

          
   (there are two internal vertices) then a -like graph 

          with      
    

  ,      
    

    
  , and      

         is a sub-

graph of  , it is non-isomorphic to         , and it holds that          . The 

corresponding handle decomposition              will be as follows: 

      
    

    
    

    
  ,       

    
          

  , and       
    

    
  . 

If   
  contains more than two internal vertices then non-isomorphism with 

         as well as oddness of         remain preserved (this construction 

would not work for exactly one internal vertex of   
  because the constructed 

         would be isomorphic to         ). 
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Figure 11. An illustration of avoiding         . If a non-trivial bi-connected graph is non-

isomorphic to          then it subsumes a -like sub-graph          non-isomorphic to         . 

The illustration shows how to find the required          if unluckily a sub-graph isomorphic to 

         is encountered. 

 

             
 

 

  
  

  
  

  
  

  
    

  

  
  

   

   
   

   

  
  

  
  

  
  

  
  

  
    

  

  
  

   

  

  

  

  
     

       
    

     
    

    
    

     
    

    
        

         
 

Case (1) – one internal vertex 

             
 

  
  

  
  

  
  

  
  

  
    

  

  
  

   

   
   

   

  
  

  
  

  
  

  
  

  
    

  

  
  

   

  
  

  

  
     

       
    

     
    

    
    

     
    

    
        

         
 

Case (2) – one internal vertex 

             
 

  
  

  
  

  
  

  
  

  
    

  

  
  

   
   

   

  
  

  
  

  
  

  
  

  
    

  

  
  

  

  

  

  
     

    
    

     
    

    
    

     
    

    
     

    

Case (3) – no internal vertices 

         
 

             
 

  
  

  
  

  
  

  
  

  
    

  

  
  

   
   

   

  
  

  
  

  
  

  
  

  
    

  

  
  

  

  
  

  
     

       
    

     
    

    
     

       
    

     
    

Case (4) – one internal vertex 

         
 

      

             
 

  
  

  
  

  
  

  
  

  
    

  

  
  

   
   

   

  
  

  
  

  
  

  
  

  
    

  

  
  

  

  

  

  
     

    
     

     
    

    
    

     
    

    
     

    

Case (5) – no internal vertices 

         
 

             
 

  
  

  
  

  
  

  
  

  
    

  

  
  

   
   

   

  
  

  
  

  
  

  
  

  
    

  

  
  

  

  

  

  
     

    
     

     
    

    
    

     
    

    
     

    
    

Case (6) – no internal vertices 
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(5) Assume that   
  interconnects   

  and   
 : 

If   
     

    
   (  

  has no internal vertex) then a -like graph          with 

     
    

    
  ,      

    
  , and      

   and a handle decomposition 

             with       
    

    
    

    
  ,       

    
    

  , and    

   
    

    
   satisfy requirements of the lemma. 

Again, observe that it is easy to extend this treatment when   
  interconnects 

  
  and   

  and has more than zero internal vertices. Internal vertices of   
  

cause growth of the sequence   while sequences   and   remain the same. 

Hence, the non-isomorphism with          and oddness of         will be 

preserved again. 

(6) Assume that   
  interconnects   

  and   
 : 

If   
     

    
   (  

  has no internal vertex) then a -like graph          with 

     
    

    
  ,      

    
  , and      

    
   is a sub-graph of   non-

isomorphic to         , and it holds that          . The corresponding han-

dle decomposition              will be as follows:       
    

    
    

    
  , 

      
    

    
    

  , and       
    

  . 

Observe again that if   
  contains more than zero internal vertices then it 

causes growth of the sequence   which does not affect the non-isomorphism 

with          and the oddness of        . 

 

If it holds that      then the above modifying construction is applied on first two 

handles and the initial cycle of       
    

    
       

   which of the result are   ,   , 

and   . Then it is sufficient to set               
    

       
  . 

The modifying construction can be carried out in the worst case time of            

and the worst case space of           .  

 

The case analysis from the proof Lemma 5 is shown in Figure 11. The lemma is cru-

cial in showing that the upcoming algorithm is sound. 

3.2.2. Pseudo-code of the BIBOX- Algorithm 

The new algorithm is called BIBOX- according to the concept of -like graph. Let 

               
    

   be an input instance of the problem of pebble motion on a bi-

connected graph with single unoccupied vertex. If   is non-isomorphic to          and 

it subsumes a cycle of the odd length then a handle decomposition 

                  of   such that    is of the odd length and       is non-

isomorphic to          is computed. Lemma 5 guarantees that this is possible. If   is 

isomorphic to          then       corresponds to  . If   does not contain an odd cycle 

then some arbitrary handle decomposition   is computed. 

As in the case of BIBOX algorithm, it is necessary that the finally unoccupied vertex 

is located in the initial cycle   . Thus, a function Transform-Goal is applied to modify 

the goal arrangement   
  by shifting goal locations of pebbles along a path   to relocate 

the unoccupied vertex into   . The modified instance is then solved by the process im-
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plemented by the BIBOX- algorithm. The solution is finished by calling a function 

Finish-Solution which shifts pebbles back along the path  . 

 The BIBOX-  algorithm proceeds according to the handle decomposition   from the 

last handle    to the second handle    and initial cycle   . The process of placement of 

pebbles within the individual handles of the handle decomposition is the same as in the 

case of the BIBOX algorithm. The problem of reaching the goal arrangement of pebbles 

within the first handle    and the initial cycle    is solved as an instance over -like 

graph formed by    and   . It is supposed that optimal solutions to all the solvable trans-

position and 3-cycle rotation cases over -like graphs of the size up to the certain limit 

are pre-computed and stored in the database. Next, it is supposed that optimal solutions to 

all the instances over the -like graph          are pre-computed into the database as 

well. A solution to the instance over the -like graph is composed of the corresponding 

optimal solutions stored in the database. If the required record is not stored in the data-

base (which can happen when the size of the -like graph is greater than the limit) an 

alternative solving process must be used. For example, the solving process implemented 

by the MIT algorithm can be used in such a case. 

The pseudo-code of the BIBOX- algorithm is listed as Algorithm 2. It reuses primi-

tives, functions, and procedures introduced within the context of BIBOX algorithm - func-

tions and procedures from Algorithm 1 are called. For simplicity, it is supposed that all 

the required optimal solutions are stored in the database (so there is no treatment when 

the size of the -like graph exceeds the limit). 

The database with optimal solutions of selected instances over -like graphs is 

represented by three tables:       
 ,       

 , and         
 . Optimal solutions to transposi-

tion cases over a particular -like graph   are stored in the table       
  – records are 

addressed by a pair of vertices in which pebbles are transposed. Similarly, optimal solu-

tions to 3-cycle rotation cases are stored in the table       
  – records are addressed by a 

triple of vertices in which pebbles are rotated. Finally, the table         
  contains optimal 

solutions to all the solvable instances over the -like graph          - records are ad-

dressed by permutations determined by the difference between the initial and the goal 

arrangement of pebbles (a function difference is used for calculating this differencing 

permutation). 
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Algorithm 2. The BIBOX- algorithm. This is an improved version of the BIBOX algorithm. The 

design of the algorithm originates from [17, 19]. It solves a given pebble motion problem on a non-

trivial bi-connected graph with exactly one unoccupied vertex. The improvement with respect to 

the BIBOX algorithm consists in exploiting database containing optimal solutions to sub-problems 

over the original cycle and the first handle. This consequently led to the relaxation of the require-

ment to have two unoccupied vertices of the original version. Functions and procedures from Algo-

rithm 1 are reused here. 

 

function BIBOX--Solve             
    

   : pair 

/* Top level function of the BIBOX algorithm; solves 

a given problem of pebble motion on a graph. 

Parameters:   - a graph modeling the environment, 

  - a set of pebbles, 

  
  - an initial arrangement of pebbles, 

  
  - a goal arrangement of pebbles. */ 

1: if   contains a cycle of the odd length then 

2:  let                   be a handle decomposition of   

3:   such that    is of the odd length and       is 

4:   a -like sub-graph non-isomorphic to          if possible 

/* if this is not possible then   is isomorphic to          */ 

5: else 

6:  let                   be a handle decomposition of   

  /*       is always non-isomorphic to          */ 

7:    
      Transform-Goal       

      

8:     

9:      
  

10: for             do 

11:  if        then 

12:   Solve-Regular-Handle    

13: let       
    

       

         

14: Lock     

15: Unlock        

16: Make-Unoccupied     

17: let  ,   be two vertex disjoint paths connecting 

18:     and    in    

19:              
20:              
21: -BOX-Solve                      

   

22: Finish-Solution    

23: return       
    

      
 
   

 

 

 

 

 

 

 

 

 

Handle decomposition 

             
 

   
 

   
 

   
 

 

      
 

      
 

  
 

        

A -like graph            
matched over    and   . 
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procedure -BOX-Solve               
    

   

/* Solves a sub-problem over a given -like subgraph; a set of 

goal vertices into which pebbles must be placed is specified. 

Parameters:           - a -like subgraph modeling the sub-problem 

       - a set of goal vertices 

      
  - an initial arrangement of pebbles 

      
  - a goal arrangement of pebbles 

(only   
     is considered) */ 

1: let                  

2: let                        
         

3: if                   then 

4:             
  difference   

    
    

5:  if       then fail /* the instance is unsolvable */ 

6:  Apply-Macro        

7: else 

8:       
  

9:  if    contains a cycle of the odd length then 

10:   for                do 

11:    if          
      then 

12:         Apply-Macro       
           

            

/*   does not contain any odd cycle */ 

13:  else 

14:   if   
  constitutes an odd permutation w.r.t.    then 

15:    fail /* the instance is unsolvable */ 

/*   
  constitutes an even permutation w.r.t.    */ 

16:   else 

17:    for                do 

18:     if          
      then 

19:        let             
        

          
       

20:            Apply-Macro       
           

              

 

function Apply-Macro      : assignment 

/* Applies a given sub-solution on a global arrangement    

and on an arrangement over -like subgraph. 

Parameters:     - a solution of a sub-problem 

   - arrangement over -like subgraph */ 

1: let                               

2: for           do 

3:  Swap-Pebbles-Unoccupied         

4:                

5:  return    

 

 

The main framework of the algorithm as it was described above is represented by the 

function BIBOX--Solve which gets an instance of pebble motion on a non-trivial bi-

connected graph                
    

    with just single unoccupied vertex as a 

parameter and returns the length of the solution and the solution itself. The difference 

from the original BIBOX algorithm is that the handle decomposition is computed with a 

special care (lines 1-6) and the final solving process (lines 13-21) over the -like graph 

                   

   
 

   
 

   
 

Transposition case over  

         

       
 

   
 

   
 

   
 

   
     

 

3-cycle rotation case over  

         

       
    

 

   
 

   
 

   
     

 

   



Pavel Surynek 
 
46 

formed by    and    exploits solution database. The middle section of the whole solving 

process (lines 10-12) when pebble are placed into handles of the handle decomposition is 

the same as in the case of the BIBOX algorithm. In order to not to need to care about the 

location of an unoccupied vertex within instances over -like graph, the first connection 

vertex of the handle    is made unoccupied (lines 14-16) – this vertex correspond to the 

vertex     from the definition of the -like graph in fact. Recall, that transposition, 3-cycle 

rotation, and the case of          suppose the unoccupied vertex right there. 

An auxiliary function Apply-Macro is used apply a record   from the database of op-

timal solutions (the optimal solution for a sub-instance is called a macro in this context) 

on the current arrangement of pebbles    in a given -like graph as well as on the global 

current arrangement represented by    and   . The optimal solution has the form of 

sequence of moves where the move is an ordered pair of vertices of   - the first vertex 

contains a pebble to be moved; the second vertex is unoccupied at the time step of execu-

tion of the move and represents the target. The execution of the macro over the current 

arrangement is carried out by Swap-Pebbles-Unoccupied; the function also makes the 

next step in construction of the output solution. 

The very novel part in comparison with the BIBOX algorithm is the process of reach-

ing the goal arrangement over a -like graph. This is represented by a function -BOX-

Solve. The function gets as parameters the -like graph itself as           initial and 

goal arrangements of pebbles as   
  and   

  respectively, and a set of goal vertices as    

which is a sub-set of vertices of   in which pebbles should be placed. The function dis-

tinguished between several cases. 

If   is isomorphic to          (lines 3-6) then the goal arrangement is reached at once 

using a record from the database. It may happen that the required record is not found in 

the database (line 5). In such a case, the algorithm terminates with the answer that the 

given instance is unsolvable. A special function difference is used in this execution 

branch. The function calculates a permutation from two arrangements of pebbles. The 

interpretation of permutation calculated by the difference function is that it makes the 

second arrangement from the first one. 

If   is non-isomorphic to          and it contains an odd cycle (lines 7-12) then all 

the goal arrangements are reachable. The goal arrangement is reached by composing 

several transposition cases. This is done by traversing the set of pebbles that should be 

placed. If the current location of a pebble given by    is different from its goal location 

given by   
 , then pebbles at these two locations are swapped using a solution for trans-

position case from the database of solutions. Notice, that the last application of transposi-

tion case places two pebbles thus it is not necessary to traverse the last pebble. 

If   is non-isomorphic to          and all the subsumed cycles are of the even length 

(lines 14-20) then a treatment of unsolvable cases must be done. If the goal arrangement 

  
  forms an odd permutation with respect to the initial arrangement    then the given 

instance is unsolvable (lines 14-15). The algorithm terminates with the negative answer in 

such a case. If this is not the case (that is,   
  forms an even permutation with respect to 

  ) then the goal arrangement is reached using 3-cycle rotations (lines 17-20). This is 
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done almost in the same way as in the case of transposition cases in fact. Again, pebbles 

that should be relocated are traversed. The relocation of a pebble    to its goal location 

  
      from        is done by the rotation along a 3-cycle formed by       ,   

     , and 

 , where   is a vertex different from       ,   
     , and different from all the goal ver-

tices of all the already placed pebbles. Except moving pebbles from   
      to   and from 

  to        the required relocation of    from        to   
      is done. Notice, that it is 

sufficient to traverse all the pebbles except last two. They must be inevitably placed to 

their goal vertices after the last 3-cycle rotation since otherwise (that is, in the case they 

are swapped with respect to their right placement) the goal arrangement   
  forms an odd 

permutation with respect to    which has been ruled out at the beginning of this branch. 

3.2.3. Theoretical Analysis of the BIBOX- Algorithm 

This section is devoted to some theoretical analysis of the BIBOX- algorithm. Soundness 

and completeness of the algorithm will be shown first. Then several results regarding 

time and space complexity will be shown. 

 

Proposition 10 (BIBOX- - soundness and completeness). The BIBOX- algorithm is 

sound and complete. That is, the algorithm always terminates and provides a correct 

answer to the input instance of the problem of pebble motion on a non-trivial bi-

connected graph                
    

   with just single unoccupied vertex. That is, 

it answers either that the instance   is unsolvable or returns a solution in the case when   

is solvable.  

 

Proof. The proof will go through the pseudo-code of the algorithm while preconditions of 

all the steps will be verified. Since many steps are easy to check, only important points 

will be discussed. 

Fortunately, lot of work has been already done. The possibility of selecting required 

handle decomposition (lines 1-6 of BIBOX--Solve) is ensured by Lemma 5. Moreover, 

large part of the proof has been already done within the proof of soundness and com-

pleteness of the original BIBOX algorithm. This concerns stage of the execution when 

BIBOX- proceeds as the original BIBOX to place pebbles into handles   ,     , …,    

(lines 10-12 of BIBOX--Solve). 

Making unoccupied the first connection vertex    of the first handle    (lines BIBOX-

-Solve) is possible (lines 13-16 of BIBOX--Solve). At the end of the execution of plac-

ing pebbles into the handles   ,     , …,    by the BIBOX style process, an unoccupied 

vertex must be located in      . Hence, it is possible relocate the unoccupied vertex to 

   by moving pebbles within       only (an unlocked path from any vertex of       

to    exists; pebbles are to be shifted along this path). 

Soundness and completeness of -BOX-Solve function is implied by the algebraic 

theory introduced in section 3.2.1. There is nothing to show about the function Apply-

Macro since it merely executes sub-solution on the current arrangement of pebbles   . 
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If the above argumentation is summarized, it is possible to conclude that the algorithm 

always terminates and if it produces a solution, it is a correct solution of the input in-

stance. However, the case of the answer that there is no solution is more subtle. 

There are two reasons for the non-existence of the solution. The first one is the case of 

an unsolvable instance over a -like graph   isomorphic to         . The whole instance 

over          is directly submitted to the function -BOX-Solve. It subsequently tries to 

find an appropriate record in the database (line 4 of -BOX-Solve) which is unsuccessful 

and the algorithm returns the answer that the instance is unsolvable. 

The second reason for the non-existence of a solution is the case of an instance on a 

graph without an odd cycle where the initial arrangement   
  and the goal arrangement   

  

form an odd permutation (it is not known at this point that this case is unsolvable actual-

ly; nevertheless the upcoming argumentation will provide reasons). Consider that the 

unoccupied vertex has some fixed location in the input graph   (for example, let it be the 

first connection vertex    of the first handle   ). Any movement of pebbles that pre-

serves the unoccupied vertex must look like a shift along a cycle starting and ending in 

the unoccupied vertex [8]. Since there is no cycle of the odd length in the graph, this path 

must be of the even length. Hence, the difference between the original arrangement and 

the arrangement after this movement is an even permutation. Thus, if the input initial 

arrangement   
  and the goal arrangement   

  differ as an odd permutation, then the cur-

rent arrangement    after placing pebbles into handles   ,     , …,    and the goal 

arrangement   
  differ as an odd permutation as well (supposed that unoccupied vertex is 

fixed). This difference must be caused by pebbles in    and    only since other pebbles 

has been already placed at this moment. Hence, the initial arrangement   
  and the goal 

arrangement   
  over the -like graph   formed by    and    submitted to BIBOX--

Solve make an odd permutation. Since the -like graph   over    and    has no odd 

cycle, the algorithm correctly answers that there is no solution (line 14 of -BOX-Solve). 

All the other cases are solvable and the algorithm provides a correct solution for them. 

Finally, it is necessary to investigate the termination of the algorithm from the opposite 

side. That is, if the algorithm terminates with the negative answer then there is no solu-

tion of the input instance. 

Termination with a negative answer at line 5 of -BOX-Solve is possible only if the 

-like graph   submitted to -BOX-Solve is isomorphic to          and the goal ar-

rangement is unreachable from the initial one. This happens only if the input graph   is 

isomorphic to          and the goal arrangement is unreachable. 

Similarly, termination at line 15 of -BOX-Solve is possible only if the -like graph   

submitted to -BOX-Solve has no cycle of the odd length and initial and the goal ar-

rangements over   form an odd permutation. The construction of the handle decomposi-

tion                   (lines 1-6 of BIBOX--Solve) ensures that there was no cycle 

of the odd length in the input graph  . The input instance cannot be solvable since other-

wise there should be an odd cycle, which is a contradiction. 

Altogether, the algorithm provides a solution (which is correct) if and only if the input 

instance of the pebble motion problem                
    

   is solvable.  
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Following propositions summarize estimations of the time and space complexity, and 

the makespan of the solution produced by the BIBOX- algorithm. 

 

Proposition 11 (BIBOX- – worst case time complexity). The worst case time complex-

ity of the BIBOX- algorithm is         with respect to an input instance of the problem 

pebble motion on a graph                
    

  .  

 

Proof. The time required to find a handle decomposition       
    

    
      

   of   

where the initial cycle   
  has the odd length is            in the worst case [24]. The 

handle decomposition    must be subsequently augmented to another handle decomposi-

tion                   where       is not isomorphic to         . This augmenta-

tion is done according to Lemma 5 and it takes time of       
      

      
    in the 

worst case which is         - modification of the initial cycle and first two handles is 

done which can be done by traversing through its vertices according to the original handle 

decomposition   . 

Transformation of the goal arrangement for relocating the unoccupied vertex to the 

first connection vertex of the first handle    can be done in the worst case time of 

           - a path connecting the original and the target position of the unoccupied 

vertex must be found. 

Placing pebbles into handles            requires time of         as it has been al-

ready shown for the BIBOX algorithm. Altogether, the mentioned processing consumes 

time of         in the worst case. Thus, it remains to investigate the solving process over 

the -like graph formed by    and   . 

In the worst case, it is necessary to compose              optimal solutions to 

transposition of 3-cycle rotation cases to construct the overall solution of an instance over 

the -like graph. It is known that the makespan of any optimal solution of a pebble mo-

tion instance over a -like graph                  with single unoccupied vertex is 

         [8]. Hence, each optimal solution to the special case is of the size         

     
  . As solutions to special cases are directly executed to update the current arrange-

ment of pebbles, the overall required time is              
   which is        . 

The worst case time complexity of the BIBOX- algorithm is thus         +         

which is        .  

 

Proposition 12 (BIBOX- – makespan of the solution). The makespan of a solution in 

the worst case produced by the BIBOX- algorithm (that is, the number  ) for an input 

instance of the problem of pebble motion on a graph                
    

   is 

       .  

 

Proof.  Since it is assumed that there is single unoccupied vertex the makespan is exactly 

the same as the total number of moves within the solution. The contribution of the 

process of placing pebbles into handles of the handle decomposition in the BIBOX-style 

to the overall solution makespan is        . 
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 A solution of the instance over -like graph formed by    and    is composed of 

             optimal solutions to transposition and 3-cycle rotation cases. Each of the 

special cases requires makespan of              
  . Thus, the makespan required to 

solve an instance over the -like graph is              
   which is        . 

Finally, the transformation that relocates the unoccupied vertex to the position given 

by the original goal arrangement requires        moves. 

Altogether, the BIBOX- algorithm produces a solution to the given instance of peb-

ble motion on graph                
    

   of the makespan of        .  

 

Proposition 13 (BIBOX- – worst case space complexity). The worst case space com-

plexity of the BIBOX-  algorithm is            with respect to an input instance of the 

problem pebble motion on a graph                
    

   when space of the solu-

tion database is not accounted.  

 

Proof. Since the BIBOX algorithm is used within BIBOX-, a space of            is 

required at least (Proposition 5). As the solution database is not accounted, the algorithm 

does not require any additional space.  

 

Proposition 14 (solution database size). The space required by the part of the database 

where optimal solutions to          are stored is      (the size of         
 ). The space 

required by the part of the database where solutions to transposition and 3-cycle rotation 

cases over a -like graph                  are stored is          (the size of       
 ) 

and          (the size of       
 ) respectively.  

Proof.  Since there is just single unoccupied vertex within all the instances which solu-

tions are stored, the size of stored solutions corresponds exactly to the number of moves 

of which the solution consists. Hence, the size of any optimal solution to a special case 

over the -like graph                  is          [8]. 

 It is necessary to store at most                  optimal solutions for the 

case of         . Size of each optimal solution for this case is at most       . In total, 

the space of the size of               , which is     , is necessary to store solu-

tion to all the solvable instances over         . 

 There is (                  transposition cases over the -like graph  ; asymp-

totically this is          of transposition cases. Thus, the space of          is required to 

store optimal solutions to transposition cases into the database. 

 Analogically, there is (                          3-cycle rotation cases over 

the -like graph   which is         . Hence, the space of          is required to store 

optimal solutions to 3-cycle rotation cases into the database.  

3.3. Related Algorithms for Solving Pebble Motion Problems 

Both presented algorithms BIBOX and BIBOX- are designed for the relatively extreme 

class of problems of pebble motion on a graph and multi-robot path planning. They both 

suppose a small number of unoccupied vertices in the input graph. 
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On the other hand, if there is lot of unoccupied vertices in the graph of the input in-

stance, then it might be disadvantageous to use these algorithms. For example with con-

stant number of pebbles, it is more efficient to find a path to the goal vertex for each 

pebble independently by some path finding algorithm and to resolve eventual collisions 

than to use BIBOX algorithms. However, no threshold for the ratio of the number of peb-

bles to the number of unoccupied vertices above which one or the other approach is more 

advantageous is known. The mentioned approach where paths are searched for individual 

pebbles or robots independently has been actually studied in [25, 26, 27, 28]. Authors 

define a tractable class of the multi-robot path planning problem where non-colliding 

paths for individual robots exist. An instance has a chance to fall into this tractable class 

if there is lot of unoccupied vertices in the input graph since otherwise there is almost no 

possibility to have non-colliding paths for each robot. 

4. Improving the Makespan of Solutions 

This section is devoted to techniques for improving the makespan of solutions generated 

by proposed algorithms. Two techniques are described: a relaxation of special cases 

which optimal solutions are used to compose the overall sub-optimal solution and a tech-

nique for increasing parallelism based on the critical path method [11]. 

4.1. Using Weak Special Cases 

It is possible to improve the course of execution of the BIBOX- algorithm when the -

like graph formed by the initial cycle and the first handle of the handle decomposition is 

solved. The algorithm uses optimal solutions to transposition and 3-cycle cases at this 

moment. Observe that except transposing a pair of pebbles or rotating a triple of pebbles 

all the other pebbles within these special cases must preserve their positions. This is rela-

tively tight constraint. In fact, it is sufficient not to relocate only those pebbles, which has 

been already placed to their goal vertices (these are generally not all the vertices of the -

like graph except the last transposition or 3-cycle rotation). Other pebbles can be arranged 

arbitrarily, which significantly relaxes constraints on the stored optimal solutions. The 

stored optimal solutions thus may have smaller makespan and may be easier to compute 

consequently. 

 The above idea conjecture led to the concept of so called weak special cases. These 

special cases are represented by weak transposition case and weak 3-cycle rotation case. 

These concepts were introduced first in [18]. Both concepts will be briefly recalled in this 

section. A more detailed analysis of the benefit of using weak special cases instead of 

standard ones within the BIBOX- algorithm will be made in the experimental section 

(see Section 5). 

 The definition of weak special cases of the problem of pebble motion on a graph re-

quires a slightly generalized notion of the goal arrangement. Instead of just one goal 

arrangement a set of goal arrangements will be considered. Problem of both pebble mo-

tion on a graph as well as of multi-robot path planning can be generalized naturally with 
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respect to the set of goal arrangements. The set of goal arrangements of pebbles will be 

denoted as   
  and the set of goal arrangements of robots will be denoted as   

 . 

A solution to an instance of the generalized problem of pebble motion on a graph 

               
    

   is solution of any standard instance              
    

   

where   
    

 . Similarly for the generalized problem of multi-robot path planning: a 

solution to an instance of the generalized problem of multi-robot path planning      

          
    

   is solution of any standard instance              
    

   where 

  
    

 . 

The weak version of a special case which solution is to be stored with the set of peb-

bles   will be defined with respect to a subset of pebbles      that must their positions 

(that is, pebbles from    can move along the execution of the solution, however they 

must return to their original position eventually). Following definitions suppose a -like 

graph                  with                  ,                  , and   

                and a set of pebbles                    . 

 

Definition 9 (weak transposition case). Let   
  be an initial arrangement of the set of 

pebbles such that   
              (that is,     is initially unoccupied). Let      be 

a set of vertices and let         be a pair of pebbles such that       and         

    . Let   
  be a set of goal arrangements of pebbles such that   

    
  if   

      

  
          

        
                 

       
                

          (peb-

bles    and    are to be exchanged; positions of pebbles from    are preserved; other 

pebbles can be relocated arbitrarily if     is avoided). Then an instance of the generalized 

problem of pebble motion on a graph                  
    

   is called a weak 

transposition case with respect to   ,   , and   . □ 

 

Definition 10 (weak 3-cycle rotation case). Let   
  be an initial arrangement of the set of 

pebbles such that   
              (    is initially unoccupied). Let      be a set of 

vertices and let            be a triple of wise distinct pebbles such that            

    .  Let   
  be a set of goal arrangement of pebbles such that   

    
  if   

      

  
          

        
          

        
                 

       
           

     
          (pebbles   ,   , and    are to be rotated; positions of pebbles from    

are preserved; other pebbles can be relocated arbitrarily if     is avoided). Then an in-

stance of the generalized problem of pebble motion on a graph 

                 
    

   is called a weak 3-cycle rotation case with respect to   , 

  ,   , and   . □ 
 

Weak special cases have the additional parameter    that can be assigned        

(transposition case) or        (3-cycle rotation case) different values. Hence, it is not 

possible to store optimal solutions to all the possible weak special cases over -like 

graphs up to the certain size as in the case of the standard special cases. 

Nevertheless, it is possible to select a small number of subsets of pebbles (linear of 

quadratic number) and to store optimal solutions for them. When a transposition or a 
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3-cycle rotation needs to be performed while pebbles from a set    need to preserve their 

positions, a corresponding special case with the smallest makespan satisfying that 

      is used (   is one of the parameters determining the used special case). 

Observe, that the makespan of the weak special case is less than or equal to the ma-

kespan of the corresponding standard special case. Moreover, if there are multiple candi-

date weak special cases to be used, the most promising one is used. Hence, it is reasona-

ble to expect that the use of weak special cases will be beneficial. 

Let           be a -like graph and let                   be a sequence 

representing the ordering of vertices    in which they are traversed by the BIBOX- algo-

rithm in the last phase of the execution. Practically, it is suitable to store optimal solutions 

to all the weak special cases with the parameter    ranging over all the subsets of pebbles 

              for                (the union notation is used to create a set from 

range of a sequence). 

This approach is conservative with respect to memory consumption: there is linear 

increase in the space required by the database in comparison with the database containing 

solutions of standard special cases. The space required for storing optimal solutions of all 

the selected weak transposition cases over           is         . Analogically, the 

space required to store optimal solutions of the selected weak 3-cycle rotation cases is 

        . 

Notice, however that practically the required space may be smaller since optimal solu-

tions of weak special cases itself are smaller than solutions of standard special case 

(weaker condition of the solution is required – see experimental Section 5). 

4.2. Increasing Parallelism 

This section is devoted to a method for increasing parallelism of solutions. In fact, this 

method represents a major technique how to utilize parallelism allowed by the definition 

of the problem of multi-robot path planning. Both presented algorithms - BIBOX as well 

as BIBOX- - does not utilize the possibility of parallel movements. They solve the prob-

lem of pebble motion on a graph in fact. The method presented below in intended as a 

post-processing technique that should be applied on a solution produced by BIBOX algo-

rithms. 

 

Definition 11 (sequential solution).  A solution          
    

      
 
  of multi-robot 

path planning problem                                
    

   is called sequential (  

is the length of the solution) if for each              there exists              

such that   
         

         and   
         

         for each               (at time 

step   a robot    is moved; all the other robots do not move at the time step). □ 

 

A move of a robot   from a vertex   to a vertex   will be denoted using the notation 

     . The sequential solution of multi-robot path planning problem can be equiva-

lently represented as a sequence of moves of the form      . That is, a solution is a 

sequence   
                                    (   are variables with the 
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domain                ;     are constants). Notice, that       for each           which 

is ensured by the definition of sequential solution. In other words, a solution is sequential 

if there is just one move at each step. This, however, may prolong makespan significant-

ly, which is not desirable. 

 

Suppose a sequential solution   
                                    of 

an instance of multi-robot path planning                                
    

  . 

This form of the solution of the problem is more convenient for reasoning about the poss-

ible parallelism. The following definitions refer to the sequence of moves   
    . 

 

Definition 12 (interfering moves). A move         ;               is interfer-

ing with a move         ;               if                    . □ 

 

 Typically, interfering moves cannot be executed in parallel. However, the situation is 

not so straightforward. Following definitions are trying to capture which pairs of interfer-

ing moves can be undoubtedly executed in parallel and which not. 

 

Definition 13 (potentially concurrent moves). A move         ;             is 

potentially concurrent with a move         ;             with     if      ,  

           , and there is no other move          in   
     such that     

  interfering with          or         . The notation is that          

        . □ 

 

The definition captures the fact that although the moves are interfering they can be 

executed at the same time step according to the definition of a solution of an instance of 

multi-robot path planning problem. The relation of potential concurrence is anti-reflexive 

due to the requirement on different robots involved (     ) and anti-symmetric due to 

the ordering of moves within the sequential solution (   ). 

 

Definition 14 (trivially dependent moves). A move         ;              is tri-

vially dependent on a move         ;             with     if these moves are 

interfering,       or            , and there is no other move          in 

  
     such that       interfering with          or         . The notation is 

that                  . □ 

 

The definition captures the fact that trivially dependent moves cannot be executed at 

the same time step. Notice, that the condition       or             is the nega-

tion of the condition       and             from the definition of the potential 

concurrence. Observe that, when                     (interfering moves), the condi-

tion             can be equivalently expressed as a disjunction of several cases as 

follows:               or               or               or 

              or               (original and target vertices of each move 
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are different; thus, each of the conjunctions defines the situation unambiguously with 

respect to involved vertices). Observe, that none of the cases is actually possible if 

      and with no middle move          allowed. The relation of trivial dependence 

of moves is reflexive and anti-symmetric due to the ordering of moves within the sequen-

tial solution (   ). 

The notions of potential concurrence and trivial dependence are to be used as building 

blocks of a process that constructs parallel solution of the instance of the problem of 

multi-robot path planning. 

 

Proposition 15 (execution order). Let each move of a sequential solution   
     is as-

signed a time step of its execution by a function      
                . Let   

satisfies that if                   then                         and if 

                  then                        . Then a standard (pa-

rallel) solution       constructed from   
     using the function   forms a (correct) solu-

tion of   (sequence of arrangements of robots in       reflects changes induced by 

moves at time steps determined by the function  ).  

 

Proof. The proof will proceed by induction according to the length of the sequential solu-

tion   
    . If the sequence   

     consists of a single element, the proposition holds. 

Suppose that   
                                    is of non-trivial length. 

From induction hypothesis, the proposition holds for the sequence of moves   
      

                                    . In other words, there is a function 

      
                  such that it determines a correct parallel solution of an 

instance    which is almost the same as   except the goal arrangement which differs by 

the last move               . 

If there is some move          with         such that          is trivially 

dependent on it, then   should satisfy that                        . Properties of 

trivial dependency ensure that execution of          after          does not violate 

correctness of the solution. 

If there is some move          with         such that          is poten-

tially concurrent with it, then should satisfy that                        . The 

relation of potential concurrence ensures that execution of          at the same time 

step or after the time step with          does not violate correctness of the solution. 

 Let                          for            . The function will be 

defined for the last element of   
     specially to satisfy above inequalities with respect 

to all the trivially dependent and potentially concurrent moves with respect to       

  . Let   
                                                      be the 

time step assigned to the last trivially dependent move. Similarly, let 

  
                                                      be the time 

step assigned to the last potentially concurrent move. Let                    
  

    
  . The function   defined as above satisfies the proposition.  
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 The parallelized solution will be constructed according to Proposition 15. To obtain 

small makespan and high parallelism of the solution, low execution times for execution 

should be assigned to the individual moves. Thus, it is recommended to assign the time 

step for the execution of the newly added move in the proposition as follows:         

           
      

  . 

The process is formalized in pseudo-code as Algorithm 3. The method described 

above is also known as critical path method in different contexts [11]. 

The algorithm consists of three functions: Increase-Parallelism, Earliest-Execution-

Time  , and Earliest-Execution-Time  . 

The main framework of the algorithm is represented by the function Increase-

Parallelism. The function successively includes moves into the constructed parallel solu-

tion while trivial dependency and potential concurrence with respect to already included 

moves is calculated. The function is build over the array step which is indexed by time 

steps. The cell step    contains a set of moves that are to be executed at the time step  . 

Functions Earliest-Execution-Time   and Earliest-Execution-Time   calculates earli-

est execution time for the newly included move with respect to already included trivially 

dependent moves and potentially concurrent moves. 

 

Proposition 16 (increasing parallelism). The algorithm for increasing parallelism has the 

worst case time complexity of      
        for the input sequential solution   

     

                              . The worst case space complexity of the algo-

rithm is      
      .  

 

Proof. Each call of Earliest-Execution-Time   and Earliest-Execution-Time   requires 

time of      
      . Both function are called    

      times, thus the overall worst case 

time complexity is      
       . 

A space of the size      
       is required to store the input sequential solution 

  
    . A space of the same size is necessary for storing the array step.  

 

Observe that the pseudo-code of the algorithm exploits an opportunistic search for the 

dependent move with highest execution time that has been already scheduled. Moves 

with already assigned time steps are traversed from the last one according to the time of 

the execution. When a dependent move is encountered, the search terminates. Since the 

probability of encountering a dependent move is supposedly much higher in the real-life 

instance than having a completely independent move, this strategy is a good one. 
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Algorithm 3. The parallelism-increasing algorithm. The algorithm produces a parallelized solution 

of an instance of multi-robot path planning problem from the given sequential solution. The idea of 

the algorithm is inspired by the critical path method [11]. 

 

function Increase-Parallelism   
       

   : pair 

/* A function for producing standard solution of 

multi-robot path planning problem instance from the 

sequential one. 

Parameters:   
     - a sequential solution of  , 

      
  - a initial arrangement of robots. */ 

1: let   
                                    

2: step               
3:     

4: for             do 

5:    
   Earliest-Execution-Time             

6:    
   Earliest-Execution-Time             

7:           
      

   
8:  step      step               
9:              
10:      

  

11:     

12: for           do 

13:  for each          step    do 

14:           

15:     
      

16: return       
    

      
    

 
function Earliest-Execution-Time               : integer 

/* Calculates earliest execution time for a given move 

with respect to the relation of trivial dependency. 

Parameters:          - a move for that a time step is calculated, 

  – currently last time step. */ 

1: for             do 

2:  for each          step    do 

3:   if                then 

4:     return   

5: return   

 

function Earliest-Execution-Time               : integer 

/* Calculates earliest execution time for a given move 

with respect to the relation of potential concurrence. 

Parameters:          - a move for that a time step is calculated, 

  – currently last time step. */ 

1: for             do 

2:  for each          step    do 

3:   if                then 

4:     return   

5: return   
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5. Experimental Evaluation 

This section is devoted to an experimental evaluation of algorithms BIBOX and BIBOX-  

that were designed in this work. The following experimental analysis is intended as justi-

fication of the development of new algorithms as well as practical confirmation of theo-

retical properties shown in the experimental analysis. As algorithms BIBOX and BIBOX- 

were primarily developed as an alternative to the MIT [8] algorithm, the experimental 

evaluation will be aimed on the competitive comparison of BIBOX and BIBOX-  with 

MIT. 

 All the tested algorithms were implemented in C++. The implementation of algo-

rithms BIBOX and BIBOX-  follows the pseudo-code of Algorithm 1 and Algorithm 2 

respectively. Several optimizations mentioned in Section 3.1.4 were adopted in the im-

plementation of BIBOX and BIBOX-  algorithms as well. 

 The database of optimal solutions used by the BIBOX-  algorithm has been generat-

ed on-line (on demand) by a variant of IDA* algorithm enhanced with learning [17]. 

Details of this algorithm are out of scope of this study. Pseudo-code and experimental 

analysis can be found in [17]. However, it is a time consuming task to find an optimal 

solution of a multi-robot path planning instance even on a small -like graph. Therefore, 

the timeout of     seconds is used after that the solving process switches to the MIT style 

solving of the instance over the -like graph (it is based on 4-transitivity and it produces a 

sub-optimal solution). Instances where the solving process managed to compute a re-

quired optimal solution in the given time out are presented only when it could distort 

results (only scalability tests show the on-line computation of optimal solutions). Notice, 

that the database should with optimal solutions to special cases should be pre-computed 

off-line in the real-life application of the BIBOX-  algorithm. 

 The MIT has been re-implemented according to [8]. A similar optimization technique 

as in the case of the BIBOX algorithm has been used. When an unoccupied vertex was 

necessary, the nearest unoccupied vertex was found and transferred to the place where 

needed. More details about the re-implementation of the MIT algorithm can be found in 

[19]. 

 In order to allow reproducibility of the presented results all the source code is pro-

vided at the web page: http://ktiml.mff.cuni.cz/~surynek/research/jair2010. Additional 

experimental results and raw experimental data are provided at the same location. 

 Experimental evaluation has been performed on two computers. The first computer 

has been used to generate experimental results regarding runtime - runtime configuration
 

1
; the second computer has been used to generate all the remaining results - default con-

figuration
2
. 

 
1 Runtime configuration: 2x AMD Opteron 1600 MHz, 1GB RAM, Mandriva Linux 10.1, 32-bit edition, gcc 

version 3.4.3, compilation with –O3 optimization level. 

 
2 Default configuration: 4x AMD Opteron 1800 MHz, 5GB RAM, Mandriva Linux 2009.1, 64-bit edition, gcc 

version 4.3.2, compilation with –O3 optimization level. 

http://ktiml.mff.cuni.cz/~surynek/research/jair2010
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5.1. Makespan Comparison 

The first series of experiments is devoted to comparison of the makespan of solutions 

generated by tested algorithms. 

All the tested algorithms were used to generate a sequential solution of a given in-

stance, which has been parallelized subsequently by the parallelism-increasing algorithm 

(see Algorithm 3). Thus, the result is a parallel solution complying with the definition of 

the solution of multi-robot path planning problem. A set of testing instances of multi-

robot path planning problem consists of instances on randomly generated bi-connected 

graphs and of instances on grids. 

A randomly generated bi-connected graph has 

been generated according to its handle decomposi-

tion. First, a cycle of random length from uniform 

distribution where some minimum and maximum 

lengths were given has been generated. Then a se-

quence of handles of random lengths from uniform 

distribution (again the minimum and the maximum 

length of handles was given) has been added. Each 

handle has been connected to randomly selected con-

nection vertices in the currently constructed graph. 

The addition of handles has terminated when the 

required size of the graph has been reached. An in-

stance on a randomly generated graph itself further 

consists of random initial arrangement and goal 

arrangement of robots over the graph where at least 

the given number of vertices remains unoccupied. The handle decomposition used by 

solving algorithms was exactly that one used for generating the graph. 

The situation with instances over the grid is similar. The square grid graph of a giv-

en size has been generated together with random initial and goal arrangement of robots 

over this graph. Again, a given number of vertices remain unoccupied. The handle de-

composition for the grid graph used by solving algorithms consists of an initial cycle with 

  vertices (placed on the left upper corner of the grid); handles were added to fill in the 

grid successively according to its rows and columns. The first row and the first column 

were added at the beginning (handles with   internal vertices). Then rows of the grid 

were constructed by adding handles from the left to the right and from the top to the bot-

tom (handles with   internal vertex). See Figure 12 for the ordering of addition of vertices 

in the construction of the grid. 

 

        as a grid     

Figure 12. An illustration of handle 

decomposition of a grid graph. The 

ordering of the addition of individ-

ual handles is depicted by numbers 

in vertices. Three types of han-

dles/cycles are used. 
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Figure 13. Makespan comparison of solutions of instances over random bi-connected graphs. 

Three algorithms are compared: the standard BIBOX, a variant of the BIBOX algorithm where the 

last phase when robots are placed into the -like graph formed by the initial cycle and the first 

handle – called BIBOX/MIT, and the MIT algorithm. Solutions were parallelized using parallelism-

increasing algorithm (Algorithm 3). Four setups of generation of random bi-connected graphs has 

been used – random lengths of initial cycle and handles of the handle decomposition have uniform 

distribution of the range:     ,     ,      , and      . The dependence of the makespan on the 

number of unoccupied vertices in the graph is shown. 

 

In some experiments, the number of unoccupied vertices was the parameter that has 

been changing to observe dependency of the makespan on it while the graph of the in-

stance remained fixed. 
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Figure 14. Makespan comparison of solutions of instances over square grids. Three algorithms are 

compared: the standard BIBOX, BIBOX/MIT, and MIT on three grids:    ,      , and      . 

Solutions were parallelized using parallelism-increasing algorithm (Algorithm 3). The dependence 

of the makespan on the number of unoccupied vertices in the graph is shown. 

 

Results shown in Figure 13 and Figure 14 are targeted on comparison of the makes-

pan of solutions generated by tested algorithms. These results have been generated on the 

default configuration. Three algorithms were tested in this setup: the standard BIBOX, a 

variant of the BIBOX algorithm where the last phase when robots are placed into the -

like graph formed by the initial cycle and the first handle – called BIBOX/MIT, and the 

MIT algorithm. 

Results in Figure 13 show makespans of solutions of instances over randomly gener-

ated bi-connected graphs. Graphs of size up to     vertices were used (the graph had 

been grown by addition of handles until the size of     vertices had been reached). Four 

graphs which differs in average length of initial cycle and handles of the handle decom-

position were used. Lengths of the initial cycle and handles have uniform distribution of 

the range:     ,     ,      , and       respectively (that is, four identical graphs are 

used). The length of the handle is equal to the number of its internal vertices. The depen-

dence of the makespan on the number of unoccupied vertices in the graph is shown. 
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Figure 14 is devoted to structurally regular graphs – grid graphs of the size    , 

     , and       are used. Again, dependence of the makespan on the number of 

unoccupied vertices in the graph is shown. 

Random initial and goal arrangements are obtained as a random permutation of robots 

in the vertices of the graph. The random permutation is generated from identical one by 

applying quadratic number of transpositions. This process generates random arrange-

ments of the appropriate quality for the use in test. 

It can be observed from the above tests that the BIBOX algorithm generates solutions 

of the makespan approximately    times to     times smaller than that of solutions gen-

erated by the MIT algorithm. In the setup with random bi-connected graphs, the differ-

ence between BIBOX and MIT is becoming smaller as the size of handles increases. In the 

setup with the grid graph, the BIBOX algorithm generates solutions that have approx-

imately    times smaller makespan than that of the MIT algorithm. The steep decline of 

the makespan can be observed with the portion of occupied vertices from approximately 

   towards lower portion. This is some kind of a phase transition when robots are be-

coming arranged sparsely enough over the graph so that there are almost no interactions 

between them (that is, they do not need to avoid with each other). This phase transition 

seems to depend on the average size of handles – for the smaller size of handles the ratio 

of the number of robots to the number of vertices characterizing the phase transition tends 

to be higher. 

The BIBOX/MIT algorithm exhibits performance depending on the size of the initial 

-like graph of the handle decomposition. The larger is this -like graph the worse is the 

performance of the BIBOX/MIT algorithm with respect to the makespan of generated 

solutions. This behavior can be observed from the results shown in Figure 13 and Figure 

14 using the fact that the longer handles induce larger initial -like graph. Grid graphs 

represent the extreme case – almost all the handles are of the size  . Both algorithms – 

BIBOX as well as BIBOX/MIT – generate solutions of the very similar makespan (solu-

tions produced by the BIBOX/MIT are slightly better – on very small cycles, solving 

process based on 4-transitivity used by MIT is more advantageous than exchanging robots 

applied by BIBOX when robot are placed into the initial cycle of the handle decomposi-

tion). 

Regarding the makespan, the BIBOX style solving process represents the better al-

ternative for solving the problem of multi-robot path planning with at least two unoccu-

pied vertices than the MIT algorithm. For the case with one unoccupied vertex, the BI-

BOX- and its variants can be used. As it will be shown in the following paragraphs, 

BIBOX- exhibits the similar performance regarding the makespan as the standard BI-

BOX algorithm. 

An interesting question is whether the use of optimal solutions of weak special cases 

instead of standard one does really help. The experimental evaluation which results are 

shown in Figure 15 is devoted to this question. Again, this test has been performed on the 

default configuration. A comparison of the BIBOX algorithm with the variants of the 

BIBOX- algorithm is shown consequently. 
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Figure 15. An evaluation of the benefit of the use of weak special cases instead of standard ones. 

Four variants of the BIBOX- algorithm are compared: BIBOX-/T (the standard transposition case 

is used preferably), BIBOX-/3(the standard 3-cycle rotation case is used preferably), BIBOX-

/T|weak (the weak transposition case is used preferably), and BIBOX-/3|weak (the weak 3-cycle 

rotation case is used preferably). Solutions were parallelized using parallelism-increasing algorithm 

(Algorithm 3).  The difference of the makespan of solution produced by these algorithms from 

those produced by the BIBOX algorithm is shown (values below zero indicate that the tested algo-

rithm was better than BIBOX). Four random bi-connected graphs with the increasing number of 

unoccupied vertices are used; they have handles of lengths with uniform distribution of ranges: 

    ,     ,     , and      respecitvely. To make the difference visible, results for individual algo-

rithms are sorted in descending order (thus, there is no interpretation of the horizontal axis). 

 

Four variants of the BIBOX- algorithm are compared: BIBOX-/T (the standard 

transposition case is used preferably), BIBOX-/3(the standard 3-cycle rotation case is 

used preferably), BIBOX-/T|weak (the weak transposition case is used preferably), and 

BIBOX-/3|weak (the weak 3-cycle rotation case is used preferably). Notice, that the 

variant presented in the pseudo-code as Algorithm 2 prefers standard transposition cases. 

If the transposition case no not possible to apply, the corresponding 3-cycle rotation case 

is used instead (which is always possible). Other variants implement the preference in the 

analogical way. 
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The comparison in Figure 15 shows difference of the makespan of solution generated 

by mentioned three variants of BIBOX- from the makespan of the corresponding solu-

tion generated by the standard BIBOX (negative values of the difference indicate that 

BIBOX generated solution with the greater makespan). Four random bi-connected graphs 

were used for the experiment; the number of vertices was up to     (again, the graph had 

been grown by addition of handles until the size of     vertices had been reached). The 

length of the initial cycle and handles has been selected randomly with the uniform distri-

bution of ranges:     ,     ,     , and     , respectively. The relatively small ranges are 

used in order to be able to calculate all the optimal solutions of the special cases in the 

timeout of    . The size of the -like graph, on that special cases appear, directly corres-

ponds to the length of the initial cycle and handles of the handle decomposition. Makes-

pans have been collected for instances with   to       unoccupied vertices for each 

graph        . To make differences among performances of tested algorithms clearly 

visible, the difference in makespans has been sorted in the descending order. The differ-

ence in makespan tends to be greater for instances with few unoccupied vertices. Hence, 

it is expectable that these makespans are sorted to the left or to the right margin. 

Results shown in Figure 15 can be undoubtedly interpreted in the way that solutions 

with the smallest makespan are produced by BIBOX-/T|weak tightly followed by BI-

BOX-/3|weak. This is an expectable result and it is possible to conclude that the use of 

optimal solutions of weak special cases is beneficial. Moreover, a solution to a weak 

special is easier to generate since it is less constrained than the solution of the corres-

ponding standard case. Another, interesting result that can be observed from Figure 15 

concerns the makespan of solutions generated by the BIBOX algorithm in comparison to 

tested variants of BIBOX-. Since values of makespan differences are insignificantly 

deviate from equal distribution around  , it is possible to conclude that variants of BI-

BOX- does not improve the makespan significantly in comparison with BIBOX on in-

stances of the multi-robot path planning problem with at least two unoccupied vertices. 

Thus, the use of BIBOX- is substantiated only for instances with just single unoccupied 

vertex (where the BIBOX algorithm is not applicable). 

5.2. Parallelism Evaluation 

The next series of experiments is devoted to an evaluation of parallelism of solutions 

generated by tested algorithm. The exact meaning of the term parallelism is the value 

obtained as the ratio of the total number of moves divided by the makespan. The result is 

the average number of moves performed at each time step. High parallelism is typically 

required as correlates with the small makespan. All the following experiments have been 

performed on the default configuration. 

 Again, three algorithms were tested: the standard BIBOX, BIBOX/MIT, and the MIT 

algorithm. Four random bi-connected graphs with various average length of handles has 

been used – random lengths of initial cycle and handles of the handle decomposition have 

uniform distribution of the range:     ,     ,      , and      . The dependence of the 

parallelism on the number of unoccupied vertices has been evaluated. Random initial and 
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goal arrangements of robots in vertices have been used – for every number of unoccupied 

vertices a new random initial and goal arrangements have been generated. Results regard-

ing this test are shown in Figure 16. 

  

 

 
 

Figure 16. Average parallelism of solutions generated by tested algorithms for instances over 

random bi-connected graphs. Three algorithms are compared: the standard BIBOX, BIBOX/MIT, 

and the standard MIT algorithm. Solutions were parallelized using parallelism-increasing algorithm 

(Algorithm 3). Four random bi-connected graphs has been used – random lengths of initial cycle 

and handles of the handle decomposition have uniform distribution of the range:     ,     ,      , 

and      . The dependence of the average parallelism on the number of unoccupied vertices in the 

graph is shown. The average parallelism is the number of moves, which the solution consists of, 

divided by the makespan. 

 

A similar experiment has been done with the square grid graphs. Three grids were 

used in this setup:    ,      , and      . The dependence of parallelism on the 

number of unoccupied vertices has been measured. A new random initial and goal ar-

rangement of robots has been used for every number of unoccupied vertices. Results 

regarding this experiment are shown in Figure 17. 

 In all the cases, the parallelism-increasing algorithm (Algorithm 3) has been used to 

post-process sequential solutions generated by tested algorithms.  
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Figure 17. Average parallelism comparison of solutions of instances over square grids. Three 

algorithms are compared: the standard BIBOX, BIBOX/MIT, and MIT on three grids:    , 

     , and      . Again, solutions were parallelized using parallelism-increasing algorithm 

(Algorithm 3). The dependence of the average parallelism on the number of unoccupied vertices in 

the graph is shown. 

 

It can be observed the BIBOX algorithm and its variant BIBOX/MIT exhibit relatively 

natural behavior regarding parallelism. On bi-connected graphs, the parallelism of solu-

tions slightly increases as the number of unoccupied vertices increases in the almost fully 

occupied graph. This behavior is yet more expressed on the grid graphs. The increase of 

the parallelism is steeper in this case. When the number of unoccupied vertices is higher 

than some threshold a different behavior can be observed. The fewer robots are in the 

graph the lower is the parallelism, which is quite natural. It can be also observed that 

parallelism correlates with the average length of handles of the handle decomposition – 

this is caused by the fact that all the robots in the handle are moving at once. Another 

characteristic, which the parallelism correlates with, is the diameter [29] of the graph. 

This correlation can be observed on tests with grid graphs in Figure 17. The reason for 

this correlation is the fact that all the robots along a path connecting two vertices in the 
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graph moves at once when an unoccupied vertex is relocated. The average length of such 

paths correlates with the diameter of the graph. 

Regarding the MIT algorithm, it can be observed that the parallelism of its solutions 

decreases almost linearly with the increasing number of unoccupied vertices. Without 

providing further details, the explanation of this behavior is that the size of parts of the 

graph affected by movements of robots is relatively small in still the same in majority of 

the phases of the algorithm [8] (the algorithm is more localized in the graph). Thus, as 

occurrence of robots is getting linearly sparser the parallelism decreases almost linearly. 

Recall, that the BIBOX algorithm behaves differently. The majority of movements take 

place in the whole unfinished part of the graph, which is relatively getting smaller as the 

BIBOX algorithm proceeds – this concerns relocation of the unoccupied vertex and indi-

vidual robots across the unfinished part of the graph (the algorithm works with the graph 

more globally). 

 

 
 

Figure 18. Step parallelism development of a solution on a random bi-connected graph generated 

by the BIBOX algorithm. The random bi-connected graph has been generated with the length of the 

initial cycle and handles having uniform distribution of the range     . There were exactly two 

unoccupied vertices in the graph. The solution produced by the standard BIBOX algorithm has been 

parallelized using parallelism-increasing algorithm (Algorithm 3). The development of the step 

parallelism (number of moves per time step) in time is shown. 

 

Generally, it can be concluded from Figure 16 and Figure 17 that solutions generated 

by the BIBOX and BIBOX/MIT algorithms allow higher parallelism than that of MIT. 

Consequently, it can be observed together from Figure 13, Figure 14, Figure 16 and Fig-

ure 17 that the total number of moves, which solutions generated by BIBOX and BI-

BOX/MIT consist of, are still order of magnitude smaller than that of MIT. Thus the per-

formance of the BIBOX algorithms is not caused by the higher parallelism but also by the 

smaller size of the generated sequential solutions. 

The development of the number of movements per time step called step parallelism is 

shown in Figure 18. This experiment has been done with the BIBOX algorithm, which has 

been used to generate solution of a random instance on a random bi-connected graph 
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where lengths of the initial cycle and handles of the handle decomposition have been 

randomly selected with the uniform distribution with the range     . There were exactly 

two unoccupied vertices in the input graph. 

 Peaks in Figure 18 correspond to parallel movements along long path. Observe, that 

the density and height of these peaks is slightly getting smaller as the algorithm proceeds. 

As it has been stated, this is caused by the fact that the part of the graph affected by this 

type of movements is getting smaller. Other values correspond to various rotations along 

cycles in the graph that are intensively done by the BIBOX algorithm. The absolute num-

ber parallel of movements corresponding to these rotations does not change as the algo-

rithm proceeds (the average size of a cycle of the unfinished part of the graph is still the 

same since the graph was generated uniformly). 

5.3. Scalability Evaluation 

The last series of experiments is devoted to scalability evaluation, that is how tested algo-

rithms behave while the size of instance to solve increases. All these experiments have 

been performed on the runtime configuration. 

 Scalability tests were aimed on the makespan of generated solution and the overall 

runtime necessary to produce a parallel solution. The overall time is the time necessary to 

produce a sequential solution plus the time needed to increase its parallelism. The follow-

ing algorithms were compared: BIBOX, BIBOX/MIT, BIBOX-/T|weak, BIBOX-

/3|weak, and MIT. Algorithms BIBOX-/T and BIBOX-/3 were ruled out since they are 

outperformed by BIBOX-/T|weak and BIBOX-/3|weak respectively as it has been 

shown in Section 5.1 regarding the makespan. Moreover, BIBOX-/T|weak and BIBOX-

/3|weak are slightly faster if all the records in the database of optimal solutions are pre-

computed off-line (the shorter resulting solution is produced than in the case of BIBOX-

/T and BIBOX-/3). They are significantly faster if the optimal solutions to special cases 

need to be computed on-line (on demand) [17, 18] (the optimal solution to weak special 

case is easier to find than the optimal solution to the standard special case). 

 Tests targeted on scalability used the different setup of instances of multi-robot path 

planning problem. Now, approximately     instances on bi-connected graphs with the 

size varying from    to     vertices were generated. Random lengths of the initial cycle 

and handles of the handle decomposition were selected randomly from uniform distribu-

tion with ranges:     ,…,      . Such selection guarantees that graphs with short handles 

as well as graphs with long handles are represented. There were exactly two unoccupied 

vertices in all the tested instances (in order to make application of the BIBOX algorithm 

possible). 

 Scalability evaluation regarding the makespan is shown in Figure 19. The dependence 

of the makespan on the number of vertices of the graph of the instance is shown. Figure 

20 shows the dependence of the overall solving runtime on the number of vertices. The 

same set of instances as in the test from Figure 19 has been used. Thus, Figure 19 and 

Figure 20 show the makespan and the runtime of the same individual instances. In both 
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figures algorithms are compared pair-wise from the worst performing to the best one (the 

pair of algorithms nearest according to the given characteristic is compared). 

 

 

 
 
Figure 19. A comparison of the scalability of tested algorithms with respect to the makespan. Five 

algorithms are compared: BIBOX, BIBOX/MIT, BIBOX-/T|weak, BIBOX-/3|weak, and MIT. 

Approximately     instances over various random bi-connected graphs of the size from    to     

vertices were used. The range of the uniform distribution for random generation of lengths of han-

dles was as follows:     , …,      . Algorithms are sorted from left/top to right/bottom according 

to their performance. Each sub-chart shows the relative comparison of two algorithms which per-

formance regarding the makespan is nearest. The dependence of the makespan on the size of the 

graph is shown. 

 

 Results regarding makespan undoubtedly show that the MIT algorithm performs as 

worst while the standard BIBOX algorithm produces the best solutions. BIBOX/MIT, 

BIBOX-/T|weak and BIBOX-/3|weak are somewhere in the middle. The makespan of 

solutions generated by BIBOX-/T|weak and BIBOX-/3|weak sometimes jumps up and 

catches the makespan of the corresponding solution generated by BIBOX/MIT. This hap-

pens if BIBOX-/T|weak or BIBOX-/3|weak do not manage to compute optimal solution 

to the special case in the given timeout of     seconds. In such a case BIBOX-/T|weak 
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and BIBOX-/3|weak produces exactly the same solution as BIBOX/MIT since they have 

to switch to MIT mode of generating (sub-optimal) solutions to special cases. 

   

 

 
 

Figure 20. A comparison of the scalability of tested algorithms with respect to the runtime. Again, 

five algorithms are compared: BIBOX, BIBOX/MIT, BIBOX-/T|weak, BIBOX-/3|weak, and MIT. 

The setup of instances is the same as for the experiment from Figure 19. Algorithms are sorted from 

left/top to right/bottom according to their performance. Each sub-chart shows the relative compari-

son of two algorithms which performance regarding the runtime is nearest. The runtime (the total 

time necessary to produce sequential solution plus the time for making it parallel) is shown is the 

dependence on the size of the graph. 

 

The quite surprising result is that even though BIBOX-/T|weak and BIBOX-/3|weak 

compose the resulting solution over the -like graph consisting of the initial cycle and the 

first handle of the handle decomposition of optimal solutions to special cases, it still has 

the worse makespan than the corresponding solution generated using robot exchanges by 

the BIBOX algorithm. 

Results regarding overall runtime of tested algorithms generally show that BIBOX-

/T|weak and BIBOX-/3|weak are as slow as the given timeout for computing optimal 

solutions to the special cases (however, the higher is the timeout the more special cases 

the algorithm manages to compute). The more interesting situation is with MIT, BI-
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BOX/MIT, and BIBOX since they have very close runtimes. The BIBOX algorithm is 

again the best. Observe, that the runtime does not exactly correspond to the length of the 

generated solutions. In other words, computations used by the BIBOX are more time 

consuming than that of MIT (for example BIBOX intensively computes shortest paths). 

 The appearance of the charts in Figure 20 corresponds with theoretical results regard-

ing the worst case time complexity (namely, it seems that the average time complexity 

meets the worst case). On the other hand, it seems that this is not the case of charts in 

Figure 19 which exhibit that the average makespan is lower than the worst case estima-

tion. However, this is just a conjecture that requires further investigation (an interesting 

topic for future work). 

6. Related Works and Conclusion 

Two algorithms for solving the abstract problem of multi-robot path planning on bi-

connected graphs were described in this manuscript – BIBOX and BIBOX-. Several 

modified variants of the BIBOX- algorithm are described as well. The precise theoretical 

and experimental analysis of these algorithms is provided. The theoretical analysis is 

targeted proofs of correctness and on asymptotic estimations of upper bound on the ma-

kespan of generated solution and on time and space consumption. The experimental anal-

ysis is targeted on comparison with the so called MIT algorithm [8] which has been so far 

the only algorithm capable of solving multi-robot path planning problems with small 

unoccupied space in the environment. 

Although the MIT algorithm has promising theoretical properties – solution generated 

by this algorithm theoretical makespan of         with respect to the graph        ; 

its worst case time complexity is         as well – it has been significantly outper-

formed by BIBOX in terms of the makespan by order of one or two magnitudes. Regard-

ing the runtime BIBOX algorithm is slightly faster than MIT which is relatively fast (in-

stances with graphs of hundreds of vertices full of robots are solved within seconds on 

today’s standard hardware). Thus, although asymptotic estimations for makespan are the 

same for both BIBOX and MIT, the multiplication factor in the estimation in case of BI-

BOX is smaller. 

The minor drawback of the BIBOX algorithm is that it is not able to solve instances 

of multi-robot path planning with just single unoccupied vertex. This issue has been ad-

dressed in this work by proposing modified algorithm called BIBOX- and its variants 

called BIBOX/MIT, BIBOX-/T, BIBOX-/3, BIBOX-/T|weak, and BIBOX-/3|weak. 

They use different approach for solving the situation on trivial bi-connected graphs con-

sisting of one cycle and one handle connected to it – called -like graphs. Except the first 

algorithm, all the other algorithms use database with optimal solutions to special in-

stances over these -like graphs – called special cases - of which solutions to all the in-

stances over -like graphs can be composed. 

Regarding the makespan, all these alternative algorithms outperform MIT. If the da-

tabase of optimal solutions is available in advance, then BIBOX- algorithms almost 

match the performance of MIT in terms of runtime. If the required optimal solutions to 
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special cases are not available, they need to be computed on-line which is difficult. Con-

sequently, it can cause a significant slowdown of the algorithm. The issue of computing 

optimal solutions to special cases is addressed in details in [17, 18]. Generally, the de-

tailed description of pros and cons of all the algorithms is given. Thus, the user can prefer 

some of them according to her/his requirements. 

The important post-processing part for all the presented algorithms, which is used to 

increase parallelism of generated solutions, is also presented. The technique is based on 

the method of critical path [11] and on the newly defined notion of independency be-

tween moves of robots. This is the essential step since all the algorithms including MIT 

generates sequential solutions with no parallel moves. 

Notice, that performance of both presented algorithms depends on the handle de-

composition of the input graph. An interesting question is how to optimize handle de-

composition in order to improve makespan or runtime. Is it better to use the small number 

of large handles or the large number of small handles? This question is out of the scope of 

this work and it is left for future work. 

The direct extension of the presented algorithm can be made by extending them from 

bi-connected graphs to general graphs. However, some new issues need to be solved 

when doing this. First, there will be many unsolvable instances – it may happen that a 

robot needs to go the neighboring bi-connected component than it is currently located. If 

the bridge (isthmus) connecting these components is longer than the number of unoccu-

pied vertices, the relocation of the robot is not possible. 

Solving process for instances of the problem of multi-robot path planning on general 

graphs can be based on the already developed process for bi-connected graphs. The gen-

eral graph can be decomposed into the tree of bi-connected components [29, 30]. The 

algorithm for bi-connected case can be used over the individual bi-connected compo-

nents. However, robots must be relocated to the goal bi-connected components first. As it 

was mentioned this is not always possible. Without mentioning further details, the 

process should proceed by solving leaf bi-connected components first and continuing to 

the root bi-connected component. This issue is again out of scope of this work and it is 

left for future studies. 

The important related work is represented by articles [25, 26, 27, 28]. Authors study 

so called multi-agent path planning which is similar to the notion of multi-robot path 

planning with some further relaxations (for example a swap of agents along an edge 

seems to be allowed). The number of moves is the optimized parameter. Authors define 

the tractable class of this optimization problem where graphs are restricted on grids and 

there is a relative abundance of unoccupied vertices. The major difference from the pre-

sented work is that authors are developing solving algorithms for instances with lot of 

free space in the environment. The authors showed that their approach scale up well. The 

theoretical relation of multi-agent path planning and multi-robot path planning is an inter-

esting question for future work. 

Another interesting related work is represented by [12, 13]. Despite the title, the au-

thor is solving the optimal variant of a problem of pebble motion on a graph. The solving 
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method is based on search (which has inherently exponential time complexity). To in-

crease the speed the author proposed to decompose the input graph into sub-structures 

that are easy to solve. However, it seems that the proposed approach does not scale up 

for large number of robots/pebbles (only up to    robots are used; environments contain 

lot of free space again). 

Recently, a new search method improved by the reduction of the branching factor has 

been published [15]. It generates optimal solutions to restricted version of the problem of 

pebble motion on a certain kind of grid graphs (in comparison with grid graphs intro-

duced in this work, the diagonal edges are added [15]). Again, the method is targeted on 

special environments only and it supposes lot of free space in the environment (only up 

to    units are moving in the environment where there is      unoccupied positions). 

The performance of this technique on graphs with small free space and its scalability are 

thus questionable. Generally, it can be concluded that it is not directly comparable with 

the presented work. 

Another related approach is to use further abstractions of the already abstract problem 

formulation. This approach is adopted in [6, 7]. Authors study so called direction maps of 

the environment where the required path is searched at multiple levels of the abstraction 

of the direction map. 

Regarding future work, it is far more interesting to resolve the question whether op-

timal solutions of multi-robot path planning can be approximated by (pseudo-) poly-

nomial time algorithm than to make augmentations of standard search methods with ex-

ponential time complexity and to declare them “optimal solving methods”. All the related 

works targeted on generating optimal solutions of problems related to multi-robot path 

planning are restricted on very specific (typically smallish) instances only (either there is 

extremely small number of robots or the environment is structurally simple, or both). On 

the other hand, if the approximation algorithm with (pseudo-) polynomial time complexi-

ty is available, it is possible to estimate how far the current solution is from the optimal 

one even for large instances. 

Tractable cases of the multi-robot path planning problem also worth studying in fu-

ture. This topic has been already addressed in [25, 26, 27, 28] from some point of view. It 

seems to be worthwhile to deal with tractable cases, since this is the only approach from 

related works, which proved to be scalable. 

Another interesting topic for future work is to study how solutions generated by pre-

sented algorithm can be improved towards optimal makespan. Some initial work has been 

already done in [21]. It is based identifying and eliminating redundancies from solutions. 

The performed experiments showed that this is a promising technique. 
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