
1

Abstract Path Planning for Multiple Robots: An Empirical Study

Pavel Surynek

Charles University in Prague

Faculty of Mathematics and Physics

Department of Theoretical Computer Science and Mathematical Logic

Malostranské náměstí 25, Praha, 118 00, Czech Republic

pavel.surynek@mff.cuni.cz

Abstract. The problem of multi-robot path planning is addressed in this work. The task is to construct

a sequence of moves for each robot of the group of robots that are moving in certain environment.

Initially each robot is placed in some location in the environment and it needs to go to the given goal

position. Robots must avoid obstacles and must not collide with each other along the process of relo-

cation according to the constructed sequences of moves. An abstraction where the environment is

modeled as an undirected graph is adopted – vertices represent locations in the environment and

edges represent unblocked way between two neighboring locations. Robots are represented as ele-

ments placed in vertices of the graph while at least one vertex is unoccupied to allow robots to move.

The move is allowed into the unoccupied vertex or into the vertex being vacated by an allowed move

supposed that no other robot is entering the same target vertex.

Two polynomial time algorithms for solving the problem of multi-robot path planning sub-

optimally with respect to the makespan and their variants are presented in this work. Both algorithms

are targeted on the case with bi-connected graphs with relatively small number of unoccupied vertic-

es. The precise theoretical and experimental analysis of presented algorithms is provided. It has been

shown theoretically and experimentally that presented algorithms outperform the only existent algo-

rithm capable of solving the given class of the problem in terms of quality of generated solutions. In

terms of speed, presented algorithms proved to be as fast as the existent one at least.

Keywords: multi-robot, path planning, multi-agent, coordination, sliding puzzle, (n2-1)-puzzle, 15-

puzzle, domain dependent planning, makespan optimization, BIBOX, BIBOX-.

1. Introduction and Motivation

This manuscript is devoted to a problem of path planning for multiple robots [12, 13, 16].

Consider a group of mobile robots that are moving in some environment (for example in

the 2-dimensional plane with obstacles). Each robot of the group is given an initial and a

goal position in the environment. The question of interest is how to determine a sequence

of motions for each robot of the group, which relocates the robot from the given initial

position to the given goal one. Physical limitations must be respected by robots along the

whole process of relocation: robots must not collide with each other and they must avoid

obstacles in the environment during their movements.

The problem of multi-robot path planning is motivated by many practical tasks. Vari-

ous tasks of navigating a group of mobile robots can be formulated as multi-robot path

planning. However, the primary motivations for the problem are tasks of moving certain

entities within an environment with a limited free space. Thus, the formulation of the

problem is not restricted to the case where robots are actually represented by mobile ro-

bots. Such real-life examples include rearranging of shipping containers in warehouses (a

robot is represented by a shipping container - see Figure 1) or coordination of vehicles in

Pavel Surynek

2

dense traffic (robot = vehicle). Moreover, the reasoning about these rearrange-

ment/coordination tasks should not be li-

mited to physical entities only. A robot may

be represented by a virtual entity or by a

piece of commodity as well. Thus, many

tasks such as planning of data transfer be-

tween communication nodes with limited

storage capacity (robot = data packet), com-

modity transportation in the commodity

transportation network (robot = certain

amount of commodity), or even the motion

planning of large groups of virtual agents in

the computer-generated imagery can be ex-

pressed as the problem of multi-robot path

planning.

The primary aim of this manuscript is

to develop scalable algorithms for solving the problem of multi-robot path planning for

the case where robots are moving in the environment with relatively small free space.

This case of the problem represents the most difficult situation since the probability of

collisions between robots is very high. It can be intuitively perceived, that the problem is

much easier with lot of free space in the environment. In such a case, probability of colli-

sions between robots is low. Hence, it is possible to plan movements of individual robots

almost independently using algorithms for finding shortest paths [1] connecting their

initial and goal positions.

An abstraction of the problem has to be adopted to be able to make some reasoning

about the problem. The abstraction used in this manuscript consists in modeling the envi-

ronment where robots are moving as an undirected graph. Vertices of the graph represent

locations within the environment and edges represent possibility of going from one loca-

tion to the neighboring one through the edge. Robots are placed in vertices of the graph

and they are allowed to move into the neighboring vertex if it is unoccupied or current-

ly being vacated while no other robot is entering the same target vertex. Time is discrete

in this abstraction – individual time steps are isomorphic to the structure of natural num-

bers. Movements of robots are instantaneous; that is, a robot can move from a vertex to

the neighboring one between two succeeding time steps while no middle positions are

considered.

There is variety of ways how to create an abstract instance of a given specific real-life

multi-robot path planning instance. It is necessary to make decisions how to sample loca-

tions in the original environment in order to make the abstract instance accurate enough

to model the real-life situation as precisely as needed. Nevertheless, these issues are out

of scope of this work.

The main contribution of this manuscript is presentation of scalable algorithms for

solving the problem and their precise theoretical and experimental analysis. Algorithms

Figure 1. An illustration of shipping con-

tainer rearranging. This problem can be

formulated as path planning for multiple

robots where robots are represented by con-

tainers.

 Efficient Abstract Path Planning for Multiple Robots

3

presented in this work have been already published by the author in several conference

proceedings [16, 17, 18, 19]. However, space limitations of proceedings did not allow

providing complete theoretical and experimental analysis. Thus, the analysis provided in

this work represents the new material.

In the context of multi-robot path planning, works on problems of motion planning

over graphs must be mentioned [8, 9, 10, 31] since they are closely related. Namely,

works on so called problems of pebble motion on graphs (which the most widely known

representative is the 15-puzzle or (n
2
-1)-puzzle) [8, 10, 31] represents almost the same

problem as multi-robot path planning. The difference lays in the condition on the dyna-

micity in the problem - moves are allowed into currently unoccupied vertices only while

no other pebble is entering the same target vertex in the problem of pebble motion on a

graph. Many theoretical results are known for pebble motion on a graph. It is known that

the problem can be solved in polynomial time (particularly in for

modeling the environment) with solution consisting of polynomial number of moves

(again it is moves) [8, 31]. Moreover, it is known that the decision version of the

optimization variant of pebble motion on a graph is NP-complete [10] (this has been

actually shown for generalized variant of the 15-puzzle). Recently, it has been shown that

the decision version of the optimization variant of the problem of multi-robot path plan-

ning is NP-complete as well [20, 22].

Many results from works on pebble motion on graphs are utilized in the development

of solving algorithms for multi-robot path planning within this work. As it is not tractable

to produce optimal solutions of the problem in the perspective of the above negative

results, all the algorithms developed in this work thus produce sub-optimal solutions.

However, quality of solutions is still an objective especially with respect to real-life in-

stances.

One of the minor aims of this manuscript is to clarify terminology, since many works

use the term multi-robot path planning for pebble motion on a graph in fact. This evokes

an impression that these problems are different, but deeper analysis shows that authors

are dealing with pebble motion on a graph in all the cases. The different and more rea-

sonable definition of multi-robot path planning is introduced in this work. A more de-

tailed discussion on this aspect is given along with definitions of problems.

The organization of the manuscript is as follows: a formal definition of the problem of

pebble motion on a graph is recalled and a definition of the abstraction of multi-robot

path planning is given in Section 2. Some basic properties of problems and their corres-

pondence is discussed in this section too. Section 3 represents the core of the manuscript

– two new algorithms for solving the problem of multi-robot path planning are presented

here. The detailed analysis regarding the correctness and the complexity of presented

algorithms is also provided in this section. The next section – Section 4 - is devoted to

parallelism increasing techniques, which consequently increase quality of solutions. An

extensive experimental evaluation of presented algorithms is provided in Section 5. The

experimental evaluation is targeted on the competitive comparison with the existent algo-

Pavel Surynek

4

rithm for pebble motion on a graph which is applicable on multi-robot path planning as

well. Concluding remarks and related works are discussed in Section 6.

2. Pebble Motion on a Graph and Multi-robot Path Planning

Problems of pebble motion on a graph and multi-robot path planning are formally de-

fined in this section. A relation of both problems is discussed and their theoretical proper-

ties are described.

The primary problem studied in this manuscript is the problem of multi-robot path

planning. It is very similar to the problem of pebble motion on a graph. The problem of

pebble motion on a graph has been already studied in the literature and lots of theoretical

results are known for it. Here, the problem of pebble motion on graph and the related

results are used as a theoretical foundation for studying the problem of path planning for

multiple robots.

Consider an environment in which a group of mobile robots is moving. The robots are

all identical (that is, they are all of the same size and have the same moving abilities).

Each robot starts at a given initial position and it needs to reach a given goal position. The

problem being addressed here consists in finding a spatial-temporal path for each robot so

that it can reach its goal by following this path. The robots must not collide with each

other and they must avoid obstacles in the environment along the whole process of relo-

cation according to constructed paths.

A relatively strong abstraction is adopted in this work. The environment with ob-

stacles within that the robots are moving is modeled as an undirected graph. The vertices

of this graph represent positions in the environment and the edges model an unblocked

way from one position to another. The time is discrete in this abstraction; it is an infinite

linearly ordered set isomorphic to the set of natural numbers where each element is called

a time step (time steps are numbered starting with). At each time step, each robot is

located in a vertex. A motion of a robot is an instantaneous event. That is, if the robot is

placed in a vertex at a given time step then the result of the motion is the situation where

the robot is placed in the neighboring vertex at the following time step. The is allowed to

enter a neighboring vertex supposed it is unoccupied or being vacated by another robot

using an allowed move while no other robot is trying to enter the same target vertex.

The problem of pebble motion on a graph works with pebbles instead of robots

(which however does not introduce any formal difference itself). The most important

difference in both problems consists in a condition on the allowed moves. Allowed mo-

tions of pebbles are more restrictive than in the case of robots in multi-robot path plan-

ning.

2.1. Formal Definitions of Motion Problems

The following two definitions formalize a problem of pebble motion on a graph (also

called a pebble motion puzzle, sliding box puzzle; special variants are known as 15-puzzle

and -puzzle) [5, 19] and the related problem of multi-robot path planning [12,13

16]. Both problems and their solutions are illustrated in Figure 2.

 Efficient Abstract Path Planning for Multiple Robots

5

Definition 1 (problem of pebble motion on a graph). Let be an undirected

graph. Next, let where be a set of pebbles. The graph models

an environment in which pebbles are moving. An initial arrangement of pebbles is de-

fined by a uniquely invertible function
 (that is

 for every

 with). A goal arrangement of pebbles is defined by another uniquely

invertible function
 (that is

 for every with). A

problem of pebble motion on a graph is the task to find a number and a sequence

 where

 is a uniquely invertible function for every

 . Additionally, the following conditions must hold for the sequence :

(i)

 ; that is, all the pebble reaches their destination vertices.

(ii) Either

 or

 for every and

 ; that is, a pebble can either stay in a vertex or move into

the neighboring vertex between each two successive time steps.

(iii) If

 (that is, the pebble moves between time steps and

) then

 such that ; must hold for every

 and ; that is, a pebble can move into an unoccupied

neighboring vertex only. This condition together with unique invertibility of

functions forming implies that no two pebbles can enter the same target

vertex at the same time step.

The instance of the problem of pebble motion on a graph is formally a quadruple

 . Sometimes, the solution of the problem will be denoted as

 . □

The notation with a stripe above the symbol is used to distinguish a constant from a

variable (for example, is a variable while is a constant; sometimes a constant

parameterized by a variable or by an expression will be used – for example denotes a

constant parameterized by an index ; the parameterization by an expression will be

clear from the context).

When speaking about a move at time step , it is referred to the time step of com-

mencing the move (exactly, the move is performed between time steps and).

The term multi-robot path planning has been already used in literature. However, it

did not introduce any new concept since it has been used as synonym for pebble motion

on a graph in fact. In the work titled “Exploiting Subgraph Structure in Multi-Robot Path

Planning” [13] the dynamicity of the problem is described as follows:

“Further, we shall assume that the map is constructed so that collisions only oc-

cur when one robot is entering a vertex v at the same time as another robot is oc-

cupying, entering or leaving this vertex.”

Pavel Surynek

6

In other words, a robot can enter a vertex if and only if it is unoccupied at the time of

commencing the move and no other robot is entering the same target vertex, which is

exactly the definition of the dynamicity in the problem of pebble motion on a graph.

An alternative supposedly more reasonable definition of multi-robot path planning is

adopted in this work. A problem of multi-robot path planning is a relaxation of the prob-

lem of pebble motion on a graph. The condition that the target vertex of a pebble/robot

must be vacated in the previous time step is relaxed. Thus, the motion of a robot entering

the target vertex, that is simultaneously vacated by another robot and no other robot is

trying to enter the same target vertex, is allowed in multi-robot path planning. However,

there must be some leading robot initiating such chain of allowed moves by moving into

a currently unoccupied vertex which no other robot is entering at the same time step (that

is, robots can move “like a train” with the leading robot in front). The problem is forma-

lized in the following definition.

Figure 2. An illustration of problems of pebble motion on a graph and multi-robot path planning.

Both problems are illustrated on the same graph with the same initial and goal positions. The task is

to move pebbles/robots from their initial positions specified by

 to the goal positions speci-

fied by

 . A solution of the makespan 6 () is shown for the problem of pebble motion on

a graph and a solution of the makespan 4 () is shown for the problem of multi-robot path

planning. Notice the differences in parallelism between both solutions – multi-robot path planning

allows a higher number of moves to be performed in parallel thanks to weaker requirements on

solutions.

Definition 2 (problem of multi-robot path planning). Again, let be an undi-

rected graph. Now a set of robots where is given instead of the

set of pebbles. Similarly, the graph models an environment in which robots are moving.

The initial arrangement of robots is defined by a uniquely invertible function

(that is

 for every with). The goal arrangement of robots is

defined by another uniquely invertible function
 (that is

 for

every with). A problem of multi-robot path planning is the task to find a

Solution of the problem of pebble motion

on a graph with

Solution of the problem of path planning for

multiple robots with

 Efficient Abstract Path Planning for Multiple Robots

7

number and a sequence

 where

 is a uniquely invertible

function for every . The following conditions must hold for the sequence :

(i)

 ; that is, all the robots reaches their destination vertices.

(ii) Either

 or

 for every and

 ; that is, a robot can either stay in a vertex or move to the

neighboring vertex at each time step.

(iii) If

 (that is, the robot moves between time steps and

) and

 such that (that is, no other robot

 occupies the target vertex at time step), then the move of at the time

step is called to be allowed (that is, the robot moves into a currently un-

occupied neighboring vertex – a leading robot). If

 and

there is such that

 (that

is, the robot moves into a vertex that is being left by the robot) and the

move of at the time step is allowed, then the move of at the time step

 is also allowed. All the moves of robots at all the time steps must be al-

lowed. Analogically, this condition together with the requirement on unique

invertibility of functions forming implies that no two robots can enter the

same target vertex at the same time step.

The instance of the problem of multi-robot path planning is formally a quadruple

 . The solution of the problem will be sometimes denoted as

 . □

The numbers and are called makespan of the solution of pebble motion on a

graph and multi-robot path planning respectively. The makespan need to be distinguished

from the size of the solution, which is the total number of moves performed by peb-

bles/robots.

2.2. Known Properties of Motion Problems and Related Questions

Several basic properties of solutions of problems of pebble motion on graphs and multi-

robot path planning are summarized in this section.

Notice that a solution of the problem of pebble motion on a graph as well as a solution

of the problem of multi-robot path planning allows a pebble/robot to stay in a vertex for

more than a single time step. It is also possible that a pebble/robot visits the same vertex

several times within the solution. Hence, the sequence of moves for a single pebble/robot

does not necessarily form a simple path in the given graph.

 Notice further that both problems intrinsically allow parallel movements of peb-

bles/robots. That is, more than one pebble/robot can perform a move in a single time step.

However, multi-robot path planning allows higher motion parallelism due to its weaker

requirements on robot movements (the target vertex is required to be unoccupied only for

the leading robot in the current time step – see Figure 2). More than one unoccupied ver-

tex is necessary to obtain parallelism in the problem of pebble motion on a graph. On the

other hand, it is sufficient to have a single unoccupied vertex to obtain parallelism within

Pavel Surynek

8

the solution of multi-robot path planning problem (consider for example robots moving

around a cycle).

Proposition 1 (problem correspondence). Let

 be an instance of the

problem of pebble motion on a graph and let

 be its solution.

Then is a solution of an instance of the problem of path planning for

multiple robots

 . In other words, the instance of the multi-robot path

planning problem consists of the same graph, the set of robots is represented by the set of

pebbles, and the initial/goal positions of robots are the same as in the case of pebbles.

Then the solution of the instance of the pebble motion problem can be used as a solution

of the corresponding instance of the multi-robot path planning problem. 

Proof. The proof of the statement is straightforward using Definition 1 and Definition 2.

The condition on sequence of moves required by Definition 2 needs to be checked for

 . Conditions (i) and (ii) of Definition 2 are trivially satisfied. Condition (iii) is also

satisfied since it holds that if

 then

 such that

 is true for every and . In other words, all the moves within

 are allowed. 

There is a variety of modifications of the defined problems. A natural additional re-

quirement is to produce solutions with the shortest possible makespan (that is, the num-

bers or respectively are required to be as small as possible). Unfortunately, this re-

quirement makes the problem of pebble motion on a graph intractable. It is shown in [10]

that the optimization variant of a special case of the problem of pebble motion on a graph

is -hard [3]. The restriction forming the special case adopted in [10] works with a

graph that can be embedded in plane as a square grid with a single unoccupied vertex -

this case is known as puzzle (also known as -puzzle). Hence, the general

optimization variant of the problem of pebble motion on a graph -hard as well.

A restriction of both types of problems on bi-connected graphs [30] (for the precise

definitions see Section 3.1.1) represents an important subclass with respect to the exis-

tence of a solution. Hence, it is a reasonable question what is the complexity of these

classes of problems. Since the grid graph forming the mentioned puzzle is bi-

connected, the immediate answer is that the optimization variant of the problem of peb-

ble motion on a bi-connected graph with a single unoccupied vertex is again -hard.

However, it is not possible to simply make any similar statement about the complexity

of the optimization variant of multi-robot path planning based on the above facts. The

situation here is complicated by the inherent parallelism, which can reduce the makespan

of the solution significantly. Constructions used for the puzzle in [10] thus no

longer work. Nevertheless, it has been recently shown by the author that the optimization

variant of multi-robot path planning is NP-hard too [20, 22].

Observe further that difficult cases of the problem of pebble motion on a graph have a

single unoccupied vertex. This fact may raise the question how the situation is changed

 Efficient Abstract Path Planning for Multiple Robots

9

when there are more than one unoccupied vertices. More unoccupied vertices may sim-

plify the problem. Unfortunately, it is not the case. The pebble motion problem on a gen-

eral graph with the fixed number of unoccupied vertices is still -hard since multiple

copies of the puzzle from [10] can be used to add as many unoccupied vertices as

needed - the resulting graph may be disconnected. Without providing further details, the

the instance of multi-robot path planning used in a reduction to prove NP-hardness of the

problem had many unoccupied vertices and its graph was connected (or even bi-

connected). Thus, a mere allowance of many unoccupied vertices with no additional con-

ditions does not simplify the problem.

Without the requirement on the optimality of the makespan of solutions, the situation

is much easier; the problem of pebble motion on a graph is in the P class as it is shown in

[8, 31]. Due to Proposition 1, the problem of path planning for multiple robots is in the P

class as well. Thus, it seems that pebble motion on a graph and multi-robot path planning

problems have been already resolved. However, constructions proving the membership of

the problem of pebble motion on a graph into the P class used in [8, 31] generate solu-

tions that are too long for practical use [17, 18, 19]. As the makespan of the solution is of

great importance in practice, this fact makes these methods unsuitable when some real

life motion problem is abstracted as a problem of pebble motion on a graph. Thus, alter-

native solving methods has been developed and will be described in this work [16, 17, 18,

19].

3. Sub-optimal Solving Algorithms

This section is devoted to algorithms for solving problems of motion on a graph in poly-

nomial time that generate solution of the sub-optimal makespan. All the algorithms de-

veloped in the following text are designed for the problem of pebble motion on a graph.

Due to Proposition 1, algorithms for pebble motion on a graph apply also for multi-robot

path planning. However, the practice of solving multi-robot path planning problems using

algorithms for pebble motion on a graph does not reflect the possibility of higher paral-

lelism in multi-robot path planning. Particularly, parallelism in the form of the “train

like” movement of a queue of robots is never produced in this way. This drawback can be

augmented by a post-processing step that increases parallelism. Fortunately, this post-

processing step can be made fast enough to settle with such an approach (see Section 3.3

which is solely devoted to this issue).

 There already exist sub-optimal algorithms for solving the problem of pebble motion

on a graph in polynomial time described in [8, 31]. Thus, a question why to develop a

new algorithm of the same kind for this problem may arise in this context. The main

reason for developing new algorithms is that existent ones from [8, 31] produce solution

that are too long with respect to the makespan and hence unsuitable for practice. This

claim will be shown experimentally in Section 5 where the new and the existent algo-

rithm are compared.

3.1. BIBOX: A Novel Algorithm for Pebble Motion on a Bi-connected Graph

Pavel Surynek

10

The first algorithm that will be recalled here comes from [16]. It was originally called a

novel algorithm since it represents an alternative to algorithms from [8, 31]. This algo-

rithm solves in fact a yet more special variant of the problem of pebble motion on a

graph. The input problem should consist of a non-trivial bi-connected graph (that is, bi-

connected graph not isomorphic to a cycle) with exactly two unoccupied vertices. Sever-

al augmentations will be described in following sections that shift this algorithm to be

able to solve a general variant of the problem of pebble motion on a bi-connected graph.

3.1.1. Graph-theoretical Preliminaries

Some notions from the graph theory need to be established before the algorithm is intro-

duced. The following two definitions describe the notion of bi-connectivity.

Definition 3 (connected graph). An undirected graph is connected if

 for any two vertices such that there is an undirected path consist-

ing of edges from connecting and . □

Definition 4 (bi-connected graph, non-trivial). An undirected graph is bi-

connected if and the graph , where and

 , is connected for every . A bi-connected graph

not isomorphic to a cycle will be called non-trivial bi-connected graph. □

Observe that, if a graph is bi-connected, then every two distinct vertices are connected

by at least two vertex disjoint paths (equivalently, there is a cycle containing both vertic-

es; only internal vertices of paths are con-

sidered when speaking about vertex dis-

joint paths - vertex disjoint paths can in-

tersect in their start points and endpoints).

If a graph is not bi-connected then it is

either disconnected or there exists a vertex

which removal partitions the graph into at

least two connected components – this

vertex is called an articulation point. Sev-

eral examples of bi-connected graphs are

shown in Figure 3.

Bi-connected graphs have an important

property, which is exploited within the

algorithm. Each bi-connected graph can be

constructed from a cycle by an operation of

adding a handle to the graph [24, 29, 30].

Consider a graph ; the new

handle with respect to is a sequence

 where ,

Figure 3. Examples of bi-connected graphs.

Three bi-connected graphs , , and and

their handle decompositions are shown using

colors (handles and of the decomposition

of consist of a single edge).

 Efficient Abstract Path Planning for Multiple Robots

11

 (called connection vertices) and for (are new vertices).

The result of the addition of the handle to the graph is a new graph

where and either in the case of of

 in the case of . Let the sequence

of handles together with the initial cycle be called a handle decomposition of the given

graph. See Figure 3 for illustrative examples.

Lemma 1 (handle decomposition) [24, 29, 30]. Any bi-connected graph can

be obtained from a cycle by a sequence of operations of adding a handle. Moreover, the

corresponding handle decomposition of the graph can be effectively found in the worst

case time of and the worst case space of . 

The important property of the construction of a bi-connected graph according to its

handle decomposition is that the currently constructed graph is bi-connected at any stage

of the construction. This property is substantially exploited in the design of the BIBOX

solving algorithm [16] for the pebble motion problem on a bi-connected graph.

The algorithm is presented below using a pseudo-code as Algorithm 1 (the algorithm

is illustrated with pictures for easier understanding). The algorithm starts with the last

handle of the handle decomposition and proceeds to the original cycle. Pebbles, which

goal positions are within the last handle, are moved to their goal positions within this

handle. The instance of the problem now reduces to the instance of the same type indeed

on a smaller bi-connected graph. That is, the last handle is not considered any more since

its pebbles do not need to move any more. This process is repeated until the original cycle

of the decomposition remains.

 Let

 be an instance of the pebble motion problem. The

following notation is used in the formalization of the algorithm. The handle decomposi-

tion of the graph is formally a sequence , where is the initial

cycle and is a handle for . The order of handle additions in construction

of corresponds to their positions in the sequence (that is, is added to first; while

 is added as the last to the currently constructed graph). A handle

 for can be assigned a cycle if the

input graph is connected. The cycle consists of the sequence vertices on a path

connecting and in a graph before the addition of followed by vertices

 . Specially, it is defined that .

The following lemma is important for the design of the algorithm as well. Notice that

the lemma states that individual vertices in the input pair of vertices are indifferent with

respect to connecting by vertex disjoint paths.

Lemma 2 (two paths existence). Let be a bi-connected graph and let

 and , where are pair wise distinct, be two pairs of vertices. Then

either the first or the second of the following claims holds:

Pavel Surynek

12

(a) There exist two vertex disjoint paths and such that they connect with

and with in respectively.

(b) There exist two vertex disjoint paths and such that they connect with

and with in respectively. 

Proof. The idea of the proof is to proceed by inductively according to the size of the

handle decomposition of the graph . Let be a handle

decomposition of the graph . A function is defined as follows:

if and if for some (is one of the internal ver-

tices of the handle). Observe, that is a correctly defined function.

A given 4-tuple of vertices is assigned a 4-tuple of integers defined us-

ing the function : . The mathematical induction will

proceed according to the lexicographic ordering of the 4-tupules sorted in descending

order assigned using the function . Several cases must be distinguished.

Case (i): Let the 4-tuple of vertices is assigned a 4-tuple of numbers

 , that is, all the vertices are located within the initial cycle . Then

the following juxtapositions of vertices , , , and within with respect to the

positive orientation of the cycle can occur: , ,

 , , , and (vertices are listed

according to the positive orientation of the cycle; there is in total candidates for

juxtapositions of vertices; however, the remaining juxtapositions are isomorphic to the

listed ones using a rotation along the cycle). In all the cases either the claim (a) or the

claim (b) holds. See Figure 4 for detailed case analysis – for example in the juxtaposition

 , should be connected in positive orientation with and should be

connected in negative orientation with .

Case (ii): Let the 4-tuple of vertices is assigned a sorted 4-tuple

 where . Using the interchangeability of vertices

 , , , , it is possible to suppose that without loss of generality. Let

 , then there exists a path connecting and consisting

of the internal vertices of . Since the sorted 4-tuple is

lexicographically strictly less than , the induction hypothesis implies that the

lemma holds for the 4-tuple of vertices , , , and the graph without the internal

vertices of the handle ; let this smaller graph be denoted as . That is either (a) or (b)

holds in . Without loss of generality, suppose that (a) holds. Then there exist vertex

disjoint paths and connecting with and with in respectively. The

path is vertex disjoint with and it shares exactly one vertex with . Let be a

path formed by the concatenation of with (the vertex is used only once) and let

 . Then and are vertex disjoint paths substantiating the claim (a) for 4-tuple of

vertices , , , in . See Figure 4 for detailed illustration of the case.

 Efficient Abstract Path Planning for Multiple Robots

13

Figure 4. An illustration of the existence of two vertex disjoint paths connecting two pairs of ver-

tices in a bi-connected graph. The figure illustrates the case analysis from the proof of Lemma 2

which states that there exist two vertex disjoint paths and connecting a pair of vertices and

 with a pair of vertices and in a bi-connected graph . The proof proceeds as mathematical

induction according to the size of the handle decomposition of the graph .

Case (iii): The next case is that the 4-tuple of vertices is assigned a

sorted 4-tuple where . Again using the interchangeability of

vertices only some of all these cases are actually interesting. The first case is that

 and (that is, a pair of vertices to connect is within the handle)

and the second case is that and (that is, one vertex of a pair to

connect is within the handle and the other is outside the internal vertices of the handle). In

the first case, it is sufficient to construct a path connecting and consisting of the

Case (i) Case (ii)

Case (iii)

Case (iv)

Pavel Surynek

14

internal vertices of and a path connecting and in (is a connected graph).

The constructed paths and are vertex disjoint and hence they substantiate the claim

(a) of the lemma. In the second case, it is necessary to distinguish between two juxtaposi-

tions of and within with respect to the positive orientation of the handle:

 and . In the case of juxtaposition , a path connecting and

and a path connecting and are constructed (with the exception of and only

the internal vertices of are used). The second juxtaposition just interchanges and

 . The sorted 4-tuple is lexicographically strictly less

than , hence the lemma holds for the 4-tuple of vertices , , , in the

graph . Without loss of generality suppose that the case (a) holds; that is, there exists a

path that connects with in and a path that connects with in while

 and are vertex disjoint. Observe, that and are vertex disjoint as well. It is suffi-

cient to set a path to be a concatenation of and and a path to be a concatenation

of and . Then and are the paths substantiating the claim (a) of the lemma for the

4-tuple of vertices , , , in . Again, see Figure 4 for detailed illustration of the

case.

Case (iv): Let the 4-tuple of vertices is assigned a sorted 4-tuple

 where . Without loss of generality, suppose that . Then

the following interesting juxtapositions of vertices , , and within the handle

with respect to the positive orientation can occur: , , and

 (interchangeability of and is used to rule out the second half of juxtapo-

sitions). All the cases can be treated in the same way, thus it is sufficient to show only

one case – for example the case of . Let be a path connecting and

consisting of the internal vertices of the handle . Next, let be a path connecting

with that uses internal vertices of the handle and the vertex . Let be a path

connecting and in (such a path exists since is a connected graph). Observe,

that is vertex disjoint with as well as with . Thus, if is set to be a concatenation

of and , then and substantiate the claim (a) of the lemma for the 4-tuple of ver-

tices , , , and the graph . Again, see Figure 4 for illustration of the case.

Case (v): The last case occurs if a sorted 4-tuple where is assigned

to the 4-tuple of vertices . This case reduces to the case with all the vertices

of the input 4-tuple located within the original cycle of the handle decomposition. How-

ever, instead of the original cycle a cycle should be used. 

3.1.2. Pseudo-code of the BIBOX Algorithm

Several primitives are introduced to express the BIBOX algorithm in an easier way. Ex-

cept functions
 and

 there is a function that represents the current ar-

rangement of pebbles in the graph. Additionally, functions
 ,

 , and which are generalized inverses of
 ,

 , and respec-

tively; the symbol is used to represent an unoccupied vertex (that is,

 and if). Next, each undirected cycle

appearing in the handle decomposition of the input graph is assigned a fixed orientation.

 Efficient Abstract Path Planning for Multiple Robots

15

Let be an undirected cycle (a set of vertices of the cycle), then the orientation of is

expressed by functions and where for is the vertex fol-

lowing (with respect to positive orientation) in the cycle and is the ver-

tex preceding (with respect to positive orientation). The orientation of a cycle given by

 and is respected as well when vertices of the cycle are explicitly enume-

rated in the code. Auxiliary operations Lock and Unlock locks or unlocks a set of

vertices . Each vertex of the input graph is either locked or unlocked. The state of a

vertex is used to determine whether a pebble can move into a vertex. Typically, a pebble

is not allowed to enter a locked vertex (see the pseudo-code for details). Finally, there is

assumed a potentially infinite sequence of functions

 which finite prefix is

used to form a solution. Actually, these variables are not needed to be stored in memory,

the output solution can be directly printed to the output. For convenience, several va-

riables such as those representing handle decomposition are global, that is, they are

shared among all the functions and procedures in the pseudo-code.

It is assumed that for the number of pebbles it holds that , where

(that is, there are exactly two unoccupied vertices in the graph). Furthermore, it is re-

quired for the successful progression of the algorithm that the unoccupied vertices within

the goal arrangement are located in the first two vertices of the original cycle (according

to the positive orientation) of the handle decomposition. This requirement is treated by a

function Transform-Goal and a procedure Finish-Solution. The function Transform-Goal

determines two vertex disjoint paths from unoccupied vertices in the goal arrangement to

first two vertices in the original cycle of the handle decomposition. Since the unoccupied

vertices are indifferent, it does not matter what unoccupied vertex is associated with the

first or with the second vertex of the initial cycle. Thus, preconditions of Lemma 2 are

satisfied and hence the existence of mentioned two vertex disjoint paths is ensured.

The goal arrangement is changed by the function Transform-Goal so that finally un-

occupied vertices are located in the original cycle. This is done by shifting pebbles within

the goal arrangement along the two determined paths. After the modified instance is

solved, the function Finish-Solution moves unoccupied vertices back to their goal posi-

tions given by the original unmodified goal arrangement. This final placement of unoccu-

pied vertices is done by shifting pebbles along the two paths determined by the function

Transform-Goal in the opposite direction.

It is further supposed that the input graph is non-trivial for further simplifying the

pseudo-code; that is, it is not isomorphic to a cycle. The case when the graph is isomor-

phic to a cycle can be treated easily.

Several upper level primitives are exploited by the BIBOX algorithm. It is possible to

make any vertex unoccupied in a connected graph (especially in a bi-connected graph).

Making a given vertex unoccupied is implemented by a procedure Make-Unoccupied. Let

 be a vertex to be made unoccupied. A path connecting and some of the unoccupied

vertices avoiding the locked vertices is found. Then pebbles along the path are shifted

using swapping pebbles towards a currently unoccupied vertex.

Pavel Surynek

16

Algorithm 1. The BIBOX algorithm. The algorithm was originally proposed in [16]. It solves a

given pebble motion problem on a non-trivial bi-connected graph with exactly two unoccupied

vertices. The algorithm proceeds inductively according to the handle decomposition of the graph of

the input instance. The two unoccupied vertices are necessary for arranging pebbles within the

original cycle of the handle decomposition.

function BIBOX-Solve

 : pair

/* Top level function of the BIBOX algorithm; solves

a given problem of pebble motion on a graph.

Parameters: - a graph modeling the environment,

 - a set of pebbles,

 - a initial arrangement of pebbles,

 - a goal arrangement of pebbles. */

1: let be a handle decomposition of

2:
 Transform-Goal

3:

4:

5: for do

6: if then

7: Solve-Regular-Handle

8: Solve-Original-Cycle

9: Finish-Solution

10: return

procedure Solve-Regular-Handle

/* Places pebbles which destinations are within a

handle ; pebbles placed in the handle are finally

locked so they cannot move any more.

Parameters: – the index of a handle */

1: let

 /* Both unoccupied vertices must be located

outside the currently solved handle. */

2: let

 such that

3: Make-Unoccupied

4: Lock
5: Make-Unoccupied

6: Unlock

7: for do

8: Lock

 /* A pebble to be placed is outside the handle . */

9: if

) then

10: Move-Pebble

11: Lock

12: Make-Unoccupied

13: Unlock

14: Rotate-Cycle+

/* A pebble to be placed is inside the handle . */

15: else

16: Make-Unoccupied

Handle decomposition

Pebble

 is

outside ; move to .

Bi-connected
remainder

Pebble

 is inside

 ; move outside .

Bi-connected
remainder

 Efficient Abstract Path Planning for Multiple Robots

17

17: Unlock

18:

19: while

 do

20: Rotate-Cycle+

21:

22: Lock

23: let

24: Move-Pebble

25: Lock

26: Make-Unoccupied

27: Unlock

28: while do

29: Rotate-Cycle
30:

31: Unlock

32: Lock

33: Move-Pebble

34: Lock

35: Make-Unoccupied

36: Unlock

37: Rotate-Cycle+

38: Lock

procedure Solve-Original-Cycle

/* Places pebbles which destinations are within the

original cycle; it is assumed that unoccupied vertices

of the goal arrangement of pebbles are located within

the original cycle. */

1: let and such that

2: let

 /* According to the assumption on the goal arrangement

it holds that

 and

 . */

3: for do

4: Make-Unoccupied
)

5: Lock
)

6: Make-Unoccupied
)

7: Unlock
)

8: if

 then

9: Exchange-Pebbles

10: Make-Unoccupied
)

11: Lock
)

12: Make-Unoccupied
)

13: Unlock
)

Pebble

 outside

 ; rotated back;
move into connection .

Bi-connected
remainder

Pebble

 in ;

rotate once forward.

Bi-connected

remainder

Vertices
 and

 are
made unoccupied.

Pebble

 is inside

 ; move outside .

Bi-connected

remainder

Pavel Surynek

18

procedure Exchange-Pebbles

/* Exchanges a pair of pebbles within the initial

cycle of the handle decomposition.

Parameters: - a pair of pebbles to be exchanged,

 - a pair of neighboring vertices where

 is used as a storage space. */

1:

2: Make-Unoccupied

3: Swap-Pebbles-Unoccupied

4: while do

5: Rotate-Cycle+

6: Swap-Pebbles-Unoccupied

7: Lock

8: Make-Unoccupied
9: Unlock

/* Subsequent rotation must use

as the unoccupied vertex. */

10: Lock

11:

12: while do

13: Rotate-Cycle+

14:

15: Swap-Pebbles-Unoccupied

16: Unlock

17: Make-Unoccupied
18: Swap-Pebbles-Unoccupied

19: Swap-Pebbles-Unoccupied

20: Swap-Pebbles-Unoccupied

21: Unlock

22: Lock

23: while do

24: Rotate-Cycle

25:

26: Swap-Pebbles-Unoccupied

27: while do

28: Rotate-Cycle+

29: Swap-Pebbles-Unoccupied

30: Unlock

procedure Make-Unoccupied

/* Makes a vertex unoccupied while locked

vertices remain untouched.

Parameters: - a vertex to be made unoccupied. */

1: let such that and is not locked

2: let be a (shortest) path

3: connecting and in not containing locked vertices

4: for do

5: Swap-Pebbles-Unoccupied

Move into ; rotate

forward such that appears
in .

Exchange and (ap-

pears in).

Rotate back; move
from to .

Vertex is locked; is
unoccupied; pebbles are
shifted along cycle to

make unoccupied.

 Efficient Abstract Path Planning for Multiple Robots

19

procedure Move-Pebble

/* Moves a pebble into a vertex

avoiding locked vertices.

Parameters: - a pebble to move,

 - a target vertex.*/

/* complexity issues impose special selection of */

1: let

 be a path

2: connecting and in not containing

3: locked vertices such that an alternative vertex

4: disjoint path

5: not containing locked vertices exists

6: for do

7: Lock

8: Make-Unoccupied

9: Unlock

10: Swap-Pebbles-Unoccupied

procedure Rotate-Cycle+

/* Rotates pebbles in a cycle in the positive direction;

the vertex locking mechanism allows to select which one of

unoccupied vertices should be used. At least one unlocked

unoccupied vertex must be located in .

Parameters: - a cycle to rotate. */

1: let such that and is not locked

2: for do

3: Swap-Pebbles-Unoccupied)

4:

procedure Rotate-Cycle−

/* Rotates pebbles in the cycle in the negative direction;

again an unoccupied vertex to use can be selected by the

vertex locking mechanism. At least one unlocked

unoccupied vertex must be located in .

Parameters: - a cycle to rotate. */

1: let such that and is not locked

2: for do

3: Swap-Pebbles-Unoccupied)

4:

procedure Swap-Pebbles-Unoccupied

 /* Swaps pebbles in vertices and ;

 vertex is supposed to be unoccupied.

Parameters: – vertices in which pebbles

are swapped. */

1:

2:

3:

4:

5:

Pebble is moved to
through cycles , ,
and .

Vertex is unoccupied;

 is rotated in the

positive direction.

Vertex is unoccupied;
 is rotated in the
negative direction.

Pavel Surynek

20

An operation of swapping pebbles itself is implemented using a procedure Swap-

Pebbles-Unoccupied. The procedure moves a pebble into a neighboring unoccupied ver-

tex and the next member

 of the output solution sequence is constructed together with

the update of functions and according to the new arrangement of pebbles.

The next important process is moving a pebble into a given target vertex. This process

is implemented by a procedure Move-Pebble. Let a pebble is moved to a vertex . A

path is found such that is connects vertices (which is a vertex currently occupied

by) and and there exists an alternative vertex disjoint path connecting the same pair

of vertices. The existence of the alternative is ensured by Lemma 2. Indeed, the proof of

Lemma 2 provides the construction such a path. Parameters of Lemma 2 should be set as

follows: is , is a neighboring vertex to in the same bi-connected compo-

nent, is , and is a neighboring vertex to in the same bi-connected component (it

can be determined which of the neighboring vertices belong into the same bi-connected

component from the knowledge of the handle decomposition). Vertex disjoint paths

and resulting from Lemma 2 together with edges and form the re-

quired and . In case (a): and ; in case (b):
 and

 .

Figure 5. An illustration of moving a pebble in a bi-connected graph. The task is to move a pebble

 from an initial position to a vertex . Due to bi-connectivity of the graph there are two vertex

disjoint paths and connecting the initial position with . The path is traversed by the pebble

 while the alternative path is used to make unoccupied a vertex in front of the vertex occupied

by (the vertex with is locked). The symbol stands for an anonymous pebble.

Subsequently, edges of are traversed in the following way. The first vertex of the

edge is locked so paths to be searched must avoid this vertex. An invariant holds, that is

located in the first vertex of the edge at the beginning of each traversal step and thus it

cannot move. Then the second vertex of the edge is made unoccupied (the alternative

path is used for this task); the first vertex of the edge is unlocked and the pebble is

Initial

arrangement

Goal

arrangement

 Efficient Abstract Path Planning for Multiple Robots

21

moved to the second vertex of the edge which is now unoccupied (see Figure 5 for de-

tailed illustration).

The last basic operation exploited by the algorithm is a rotation of pebbles along a

cycle. This operation is implemented by procedures Rotate-Cycle
+
 and Rotate-Cycle

−
.

The former rotates pebbles in the positive direction and the latter rotates pebbles in the

negative direction. It supposed the at least one vertex in the given input cycle is unoccu-

pied. The rotation is done using an unlocked unoccupied vertex located in the input cycle

(see Figure 6 for detailed illustration).

Figure 6. An illustration of rotation of pebbles along a cycle. An orientation of the cycle is deter-

mined by functions and . There is a single unoccupied vertex in the cycle. The posi-

tive and negative rotations are shown.

During movement of an unoccupied vertex and during movement of a pebble to

another vertex, arrangement of pebbles located in vertices that are not locked is generally

not preserved. This behavior helps to control finished parts of the goal arrangement. On

the other hand, moving pebbles must be done in a precise way so that required unlocked

paths always exist.

The process of placing pebbles according to the given goal arrangement will be de-

scribed now using the primitives discussed above. Pebbles, which goal positions are with-

in the currently solved handle, are placed in a stack like manner. This process is carried

out by a procedure Solve-Regular-Handle (iteration through the handle is at lines 7-37).

Let

 for be a current handle. Suppose that a

pebble which goal position is in
 for , that is a pebble

 , is

processed in the current iteration. Inductively suppose that pebbles

 ,

 ,…,

 are located in vertices
 ,

 ,…,

respectively. An analogical situation for the next pebble

 must be produced at

the end of the iteration.

The pebble

 is moved to the vertex and then the cycle is positively

rotated one which causes that the pebble

 moves to
 and pebbles

 ,

 ,…,

 plunge in the cycle so that they are located in
 ,

 ,…,

 . The described process represents one iteration of stacking pebbles into

the handle . However, the process is not that easy. At least, two major cases must be

Original state

P
o
s
it
iv

e
 o

ri
e

n
ta

ti
o

n

Positive rotation Negative rotation

+ −

Pavel Surynek

22

distinguished within this process. In both cases, the first step is that internal vertices of

the handle are locked (line 8 of Solve-Regular-Handle).

If the pebble

 is not located in the internal vertices of the handle (line 9-14

of Solve-Regular-Handle) it is just moved to . This is possible since an invariant holds

that both unoccupied vertices are located outside the internal vertices of the handle and

the graph without the internal vertices of the handle is connected. It holds at the begin-

ning, since both unoccupied vertices are explicitly moved outside the handle (lines 2-6

of Solve-Regular-Handle) and it is preserved through all the iterations. Observe that these

movements do not affect pebbles already stacked in the handle. The pebble

 is

fixed in by locking and then an unoccupied vertex is moved to which makes the

rotation of the cycle possible. The positive rotation of finishes the iteration.

If the pebble

 is already located in some of the internal vertices of the handle

 (lines 15-37 of Solve-Regular-Handle), the above process is reused but it must be

preceded by getting the pebble

 outside the handle. Notice, that it is not possible

for the pebble

 to intermix with already stacked pebbles

 ,

 ,…,

 . The vertex is made unoccupied and the cycle

 is positively rotated until the pebble

 gets outside the internal nodes of ;

that is,

 appears in . This series of rotations preserves the order of the already

stacked pebbles. To restore the situation however, the cycle must be rotated back the

same number of times. A vertex outside the already finished part of the graph (that is

outside and outside for) is selected; the pebble

 is move into

and it is fixed there by locking. The vertex is made unoccupied again since the preced-

ing process may move some pebble into it (this is possible since alone cannot rule out

the existence of a path from an unoccupied vertex to in the bi-connected graph; there

is always an alternative path). The cycle is rotated back so that inductively supposed

placement of

 ,

 ,…,

 is restored. The situation is now the

same as in the previous case with

 outside the handle.

After the last iteration within the handle it holds that the pebbles

 ,

 ,…,

 are located in vertices

 ,
 ,…,

 respectively.

Moreover it holds that unoccupied vertices are both outside the internal vertices of .

Thus, the solving process can continue with the next handle in the same way while the

already solved handles remain unaffected by the subsequent steps. Notice, that only one

unoccupied vertex is sufficient for stacking pebbles into handles. See Figure 7 for de-

tailed illustration.

The initial cycle of the handle decomposition must be treated in a different way.

Here, the second unoccupied vertex is utilized. An arrangement of pebbles within can

be regarded as a permutation. The task is to obtain the right permutation corresponding to

the goal arrangement. This can be achieved by exchanging several pairs of pebbles. More

precisely, if a pebble residing in a vertex of differs from a pebble that should reside in

this vertex in the goal arrangement, this pair of pebbles is exchanged. The process is

implemented by a procedure Solve-Original-Cycle and by auxiliary procedure Exchange-

Pebbles for exchanging a pair of pebbles.

 Efficient Abstract Path Planning for Multiple Robots

23

Figure 7. An illustration of stacking a pebble into a handle. The progress of stacking pebbles into

the handle is shown. Pebbles , , , and are to be stacked into (that is,

 ,

 ,

 , and

) while handles and are already solved

(that is,

 ,…,

 , and

 ,…,

). Observe

that the pebble is originally outside the handle while the pebble is inside the handle (that is,

must be rotated outside the handle – stages (iv) and (v)). The symbol stands for an anonymous

pebble.

Stage (i)

Stage (ii)

Stage (iii)
Stage (iv)

Stage (v) Stage (vi)

Pavel Surynek

24

The procedure Exchange-Pebbles expects that first two vertices of the initial cycle are

unoccupied in the current arrangement. However, the function generally does not pre-

serve this property. Hence, the vacancy of the first two vertices of the initial cycle must

be repeatedly restored (lines 4-7 and 10-13 of Solve-Original-Cycle). The process of

exchanging a pair of pebbles and itself exploits a pair of vertices and where these

two vertices are connected by an edge and .

The vertex is used as a storage place. The need of two unoccupied vertices is im-

posed by the fact that a pebble from to be stored in must be rotated into first. Dur-

ing this process, some vertex of the cycle must be unoccupied to make the rotation possi-

ble and the vertex must be unoccupied as well to make storing possible.

When exchanging the pair o pebbles and it is necessary to preserve ordering of the

other vertices. First, a pebble occupying the vertex is moved into the cycle in order

to make vacant (lines 1-3 of Exchange-Pebbles). Then the cycle is rotated until the

pebble appears in (since there was a pebble in at the beginning of the rotation, there

is always some pebble in after all the rotations) and the pebble is stored in (lines 4-

6 of Exchange-Pebbles). Next, the cycle is rotated positively so that appears in

 (the next vertex to with respect to the positive orientation) while the

number of rotations is recorded (lines 7-14 of Exchange-Pebbles). However, the second

unoccupied vertex must not interfere with counting of rotations. Thus it is located

 at the beginning (that is, outside the sequence of pebbles between and

which length is being counted in fact) and then moved to in the positive

direction (the movement of the second unoccupied in the negative direction is not possi-

ble here, since is now locked). At this moment, pebbles and are exchanged using

two unoccupied vertices so that ordering of in the cycle is the same as of before

the exchange (lines 15-20 of Exchange-Pebbles). Then, the cycle is rotated in the nega-

tive direction recorded number of times so that place within the cycle where was origi-

nally ordered appears in ; thus is ordered here (lines 21-26 of Exchange-Pebbles).

Finally, the pebble was located in before the exchange of pebbles and has been

commenced is put back into (lines 27-30 of Exchange-Pebbles). Since the process of

exchange of a pair of pebbles is quite subtle, the detailed case analysis is given within the

proof of soundness of the process (see Lemma 4).

3.1.3. Theoretical Analysis of the BIBOX Algorithm

This section is devoted to theoretical analysis of the BIBOX algorithm. Particularly, the

soundness of the algorithm and its complexity are analyzed.

Lemma 3 (soundness of Move-Pebble). If an original location of a pebble , a goal loca-

tion , and an unoccupied vertex are all located in the same unlocked bi-connected com-

ponent of the graph , then the procedure Move-Pebble correctly moves the pebble

from its original location to . 

 Efficient Abstract Path Planning for Multiple Robots

25

Proof. Recall how the procedure Move-Pebble works. First, a shortest path

 connecting and is found. This path is then traversed while the

pebble is moved along its edges. The whole path belongs to the same bi-connected

component as and . Otherwise, there would not be the alternative vertex disjoint

path connecting the same pair of vertices.

The proof of soundness will proceed as mathematical induction according to the num-

ber of edges of already traversed. In all the steps, the pebble and the unoccupied

vertex should be located in the bi-connected component containing . Initially, this con-

dition holds. Consider that a pebble is located in

 for and need to be

moved to

. The vertex

 is locked and

 is made unoccupied. To make

unoccupied an unlocked path connecting the original location of the unoccupied vertex

and

 must exist in . It is supposed that

,

, and the unoccupied vertex are all

in the same bi-connected component. Thus an alternative path connecting

 and the

unoccupied vertex in this bi-connected component avoiding

 must exist (such a path

can be constructed by concatenating parts of and). This path is used to transfer the

unoccupied vertex to

. Having

 unoccupied the vertex

 is unlocked and is

moved to

 along the edge

 . After this step, the required condition holds

again (a supporting illustration is shown in Figure 5). 

Lemma 4 (soundness of Exchange-Pebbles). The procedure Exchange-Pebbles of the

Algorithm 1 for exchanging a pair of pebbles and within a cycle is sound. That is,

if the arrangement of pebbles within the cycle is regarded as a permutation, then the

output arrangement produced by the procedure Exchange-Pebbles corresponds to a per-

mutation where pebbles and are transposed with respect to the permutation corres-

ponding to the input arrangement. 

Proof. To prove the statement of the lemma some analysis of the course of the procedure

must be done. Fortunately, almost all the steps of the procedure suppose preconditions

that are trivial to check. However, it is not that trivial to check whether forward and

backward rotations of the cycle interleaved with exchange of pebbles and and inter-

fering with unoccupied vertices really produces the desired transposition. More precisely,

it is necessary to check whether the orderings of pebbles between and and between

and (with respect to the positive orientation of the cycle) remain unchanged while and

 are transposed. This is done using detailed case analysis of what can happen. Let

 , then there are pebbles located in at the moment before the

cycle is rotated positively (situation at line 11 of Exchange-Pebbles - see stage (i) in Fig-

ure 8). The pebble is already stored in and the two unoccupied vertices are and

 . Let pebbles occupying vertices of the cycle in the interval between

and with respect to the positive orientation (excluding boundaries) are denoted

 , ,…, respectively; let pebbles occupying vertices of the cycle in the interval be-

tween and with respect to the positive orientation (again excluding

boundaries) are denoted as , ,…, . The series of positive rotation of fol-

Pavel Surynek

26

lows to move the pebble into (see stage (ii) in Figure 8). Now, all the

pebbles , ,…, , , ,…, , and are steps forward with respect to their

location before the series of rotations. Then the second unoccupied vertex (other than)

is moved in the positive direction towards (recall, that the movement in the

negative direction is not possible, since is locked at the moment - see stage (iii) in Fig-

ure 8).

Figure 8. The progression of the exchange of a pair of pebbles within an initial cycle of the handle

decomposition. Pebbles and in a cycle consisting of vertices are exchanged while the order-

ing of other pebbles within the cycle is preserved. The figure illustrates the progression of the pro-

cedure Exchange-Pebbles from line 7 to 25.

Next, pebbles are exchanged: that is, is moved to and is moved to

(see stage (iv) in Figure 8). At this step, pebbles , ,…, are steps forward with

Positive orientation The number of positive rotations

The second unoccupied moved to Pebbles and exchanged

The second unoccupied moved to The cycle rotated time negatively

Stage (i)

Stage (iii)

Stage (ii)

Stage (iv)

Stage (v) Stage (vi)

 Efficient Abstract Path Planning for Multiple Robots

27

respect to their location before the series of rotations; pebble , ,…, are

forwards with respect to their location before the series of rotations (the difference is

caused by the fact that unoccupied vertex went through pebbles , ,…, but not

through pebbles , ,…,). Finally, the pebble is steps forward with respect

to the location of before the series of rotations.

The series of rotation in the negative direction places pebbles , ,…, to their

original positions; pebbles , ,…, are placed step backward with respect to

their original position before rotations, and is one step backward with respect to the

original position of before the series of rotations (see stage (v) in Figure 8). This incon-

sistency however, is caused by a different location of the second unoccupied vertex which

now between and with respect to the positive orientation of the cycle (this was not

the case in the original arrangement before rotations). To see that the transposition of

and has been really obtained, the movement of the second unoccupied vertex into

 in the negative direction can be done. This moves pebbles , ,…,

to their original positions before rotations and the pebble to the original position of

(see stage (vi) in Figure 8). As this is a step used only for purposes of the proof, the algo-

rithm actually does not perform it. 

Proposition 2 (BIBOX - soundness and completeness). The BIBOX algorithm is sound

and complete. That is, the algorithm always terminates and produces a solution of a given

input instance of the problem of pebble motion on a graph

 . 

Proof. To verify soundness and completeness of the BIBOX algorithm it is necessary to

check preconditions of each operation performed in the course of its execution. This is a

trivial task in almost all the cases except the case of searching for a path satisfying certain

conditions. This issue concerns the search for vertex disjoint paths and within the

main function BIBOX-Solve at line 2. It also concerns search for a path connecting a giv-

en pair of vertices avoiding the locked ones. The non-existence of such a path could make

the following operation in the course of the execution undefined. The existence of vertex

disjoint paths and is already treated by Lemma 2. Thus, it remains to verify that a

required unlocked path always exists.

A path containing unlocked vertices is constructed within the procedure Make-

Unoccupied (lines 2-3) which is called by Solve-Regular-Handle (lines 3, 5, 12, 16, 26,

and 35), Solve-Original-Cycle (lines 4, 6, 10, and 12), Exchange-Pebbles (lines 2, 8, and

18). Next, a pair of vertex disjoint paths containing unlocked vertices is also constructed

within the procedure Move-Pebble (lines 1-5) which is called by Solve-Regular-Handle

(lines 10, 24, and 33). All these cases must be examined.

Vertices and which are used as parameters of the call of Make-Unoccupied at

lines 3 and 5 respectively of Solve-Regular-Handle are outside the currently solved han-

dle . Let the bi-connected subgraph without the internal vertices of the already solved

handles be denoted as and let without the internal vertices of be denoted as

(see Figure 7). Since is completely unlocked and an unoccupied vertex cannot be

Pavel Surynek

28

located in any internal vertex of the solved handles, an unlocked path connecting and

an unoccupied vertex must exist. The construction of the second path within the call at

line 5 of Solve-Regular-Handle must take into account that is locked. As the subgraph

 is bi-connected, there exists a path connecting any two vertices in a subgraph with

 removed since it must be connected.

At line 12 of Solve-Regular-Handle a connection vertex of the currently solved

handle is made unoccupied while internal vertices of and the second connection

vertex are locked. Again, an unoccupied vertex is supposed to be located in the not yet

solved part of the graph (calls at lines 3 and 5 of Solve-Regular-Handle ensures this),

which is bi-connected, and without it is still connected.

A call of Make-Unoccupied at line 16 of Solve-Regular-Handle has the connection

vertex of the currently solved handle as the parameter. The internal vertices of the

already solved handles and the internal vertices of are locked. An unoccupied vertex is

located in at this moment. Since is bi-connected, there exists an unlocked path

connecting and the unoccupied vertex.

At line 26 of Solve-Regular-Handle, the connection vertex of the handle is

made unoccupied. The situation is that a vertex , which is in and outside the cycle

associated with the current handle , is locked. Internal vertices of are locked as

well. Again, the unlocked part of the graph corresponds to a bi-connected subgraph

from which one vertex was removed. Thus, the unlocked part of the graph constitutes a

connected component. An unoccupied vertex is located in some of the unlocked vertices.

Hence, there exists an unlocked path connecting the unoccupied vertex and .

At line 35 of Solve-Regular-Handle the task is to make unoccupied a connection ver-

tex of the handle . The situation is again very similar; the internal vertices of the

already solved handles, the internal vertices of , and the second connection vertex

are locked. Thus, unlocked vertices constitute a connected subgraph (because it is ob-

tained by removing form a bi-connected subgraph). Since the unoccupied vertex is

unlocked, there exists an unlocked path connecting the unoccupied vertex and .

The soundness of the procedure Solve-Original-Cycle is partially implied by the

soundness of the procedure Exchange-Pebbles which is treated by Lemma 4. The basic

assumption of Solve-Original-Cycle is that both unoccupied vertices are located in the

original cycle of the handle decomposition; all the vertices of the graph except are

locked. At line 4 of Solve-Original-Cycle a vertex
 (the first vertex of the cycle with

respect to the positive orientation) is made unoccupied. An unlocked path in the cycle

from any of its vertices to
 exists. The situation at line 6 of Solve-Original-Cycle is

little bit different; now the vertex
 is locked and a vertex

 (the second vertex of

with respect to the positive orientation) is being made unoccupied. Thus, an unlocked

path connecting the second unoccupied vertex with
 is searched. Such path exists since

removing
 from the cycle does not disconnect it. The situation at lines 10 and 12 of

Solve-Original-Cycle is the same as that at lines 4 and 6 respectively.

The soundness of the procedure Move-Pebble is treated separately by Lemma 3.

However, preconditions of the Lemma 3 need to be checked – that is, whether all the calls

 Efficient Abstract Path Planning for Multiple Robots

29

of Move-Pebble moves a pebble within the same unlocked bi-connected component and

whether the unoccupied vertex is located in the same unlocked bi-connected component

as well.

The situation before the call of Move-Pebble at line 10 of Solve-Regular-Handle is

that already solved handles are locked and the internal vertices of the currently solved

handle are locked too. Both unoccupied vertices are located in the not yet solved part

of the graph and outside the internal part of (this condition is enforced by moving

unoccupied vertices at lines 2-6 of Solve-Regular-Handle). The task is to move a pebble

 , which is known to be outside as well as outside the internal vertices of the

already solved handles, to the connection vertex of the handle . The whole not yet

solved part of the graph (that is, the bi-connected subgraph) without handle consti-

tutes a bi-connected component which all the vertices are unlocked. The unoccupied

vertex and both the pebble

 and are located in this bi-connected component

and thus preconditions of Lemma 3 are satisfied.

The call of Move-Pebble at line 24 of Solve-Regular-Handle moves a pebble

to a vertex . The pebble

 is known to be located in a connection vertex of the

current handle . The vertex is located in the not yet solved part of the graph and

outside the cycle associated with the handle . Solved handles and internal vertices of

 are locked; one of the unoccupied vertices is the second connection vertex of .

Thus, the unlocked vertices constitutes a bi-connected component (the component is

exactly the subgraph) where the pebble

 , vertex , and the unoccupied vertex

are located. Again, preconditions of Lemma 3 are satisfied.

Finally, the task of the call of Move-Pebble at line 33 of Solve-Regular-Handle is to

move a pebble

 to a connection vertex of the current handle . It is known

that the pebble

 is located in as in the previous case. Internal vertices of all the

solved handles and of are locked at this moment. Hence, the pebble

 , the ver-

tex , and the unoccupied vertex are all located in the same bi-connected component

consisting of unlocked vertices (the subgraph is that component). A connection vertex

 is known to be unoccupied. Thus, preconditions of Lemma 3 are satisfied again.

At this point, it is possible to conclude that all the steps of the algorithm are correctly

defined. Since the number of successfully placed pebbles strictly increases as the algo-

rithm progresses, the algorithm always terminates and produces a solution to the input

instance. 

 The following propositions characterize the BIBOX algorithm with respect to its com-

putational resource requirements. All the aspects of the algorithms are polynomial.

Proposition 3 (BIBOX – worst case time complexity). The worst case time complexity

of the BIBOX algorithm is with respect to an input instance of the problem peb-

ble motion on a graph

 . 

Pavel Surynek

30

Proof. The construction of a handle decomposition (line 1 of BIBOX-Solve) takes

 steps (Lemma 1). The same estimation holds for transforming the goal

arrangement of pebbles (line 2 of BIBOX-Solve) and augmenting the final solution (line 9

of BIBOX-Solve) according to a pair of vertex disjoint paths and (recall that this is

done in order to keep unoccupied vertices outside the already finished part of the graph).

 There are at most pebbles (since) to be placed within handles of a han-

dle decomposition . Let with be a handle. Plac-

ing a pebble within requires at most rotations of the cycle (procedures

procedures Rotate-Cycle
+
 and Rotate-Cycle

−
) in the positive direction in case when is

needed to be moved outside . At most rotations of in the negative direction

are then necessary to put pebbles in to their original positions. Finally, one rotation of

 in the positive direction is necessary to get the pebble to its right position within

 . Altogether at most rotations of are necessary. One rotation of the

cycle requires at most steps. Thus, all the rotations needed to place the

pebble consume at most steps.

It is also necessary to move the pebble (procedure Move-Pebble) within the place-

ment operation. There are up to 2 calls of Move-Pebble per pebble placement within the

handle . A careful analysis must be done here since the pebble must be moved along

a path of the length up to and lot of work is done within each edge traversal. To re-

duce time complexity of the operation, a pair of vertex disjoint paths and connecting

the original location of and the target vertex is computed at the beginning. This is done

by a direct application of Lemma 2 and it consumes) steps since the handle

decomposition must be gone through.

Notice that a vertex in front of the current location of needs to be made unoccupied.

Therefore, an alternative path avoiding the vertex with must be found and pebbles must

be shifted along this path. The knowledge of allows determining of such path (which is

not needed to be shortest one) in constant time since it consists of and parts of . Shift-

ing pebbles itself consumes exactly steps. Thus, a single traversal of an edge of by

the pebble requires at most steps.

Altogether,) steps are required by the operation of moving a peb-

ble in the worst case. That is, steps per pebble placement.

There is also up to calls of the operation for making some vertex unoccupied (pro-

cedure Make-Unoccupied). The remaining operations consume constant time. The opera-

tion for making some vertex unoccupied requires) steps; this is caused by the

search for a shortest path connecting original and goal location. Shifting pebbles itself

along the found path is less consuming; it requires at most steps. Thus, at most

5 +) steps are consumed by making vertices unoccupied in course of plac-

ing into . In total, at most steps

are necessary to place the pebble into . Since , the total number

of steps is at most which is .

Since there are at most pebbles, the whole process of placing pebbles into handles

takes steps.

 Efficient Abstract Path Planning for Multiple Robots

31

 It remains to analyze time required by placing pebbles within the original cycle of

the handle decomposition There are at most pebbles to be placed in . Each pebble

requires operations of making a vertex unoccupied (the first and the second vertex

are made unoccupied – lines 4 and 6 of Solve-Original-Cycle) and at most one operation

of exchanging pebbles. Since the initial and the goal position of the mentioned transfer of

the unoccupied vertex in both cases is located in , the operation requires only steps

in the worst case. The operation of exchanging pebbles requires at most rotations in

the positive direction (lines 5 and 13 of Exchange-Pebbles) and at most rotation in

the negative direction (line 24 of Exchange-Pebbles). Next, there are calls of the opera-

tion for making some vertex unoccupied (call of the procedure Make-Unoccupied at lines

2, 8, and 17). Observe that the unoccupied vertex and the target vertex of the transfer are

located in in all the cases. Thus, each of these operations requires at most steps.

Altogether, steps are required for making vertices unoccupied during exchanging a

pair of pebbles. The time consumption of the remaining operations performing during a

single exchange of pebbles is constant, thus it is not necessary to account them. To ex-

change a pair of pebbles at most
 steps are needed in total. Placing all the

pebbles into the original cycle requires at most
 steps. Since

 , the total number of steps required for the initial cycle is at most

 which is .

 The worst case time complexity of the BIBOX algorithm with respect to the input

instance

 is thus . 

Proposition 4 (BIBOX – makespan of the solution). The makespan of a solution in the

worst case produced by the BIBOX algorithm (that is, the number) for an input instance

of the problem of pebble motion on a graph

 is . 

Proof. The proof will proceed exactly in the same way as the proof of the worst case

time complexity since the step of the algorithm corresponds to move of a pebble from a

vertex to its unoccupied neighbor in almost all the cases – called a swap (directly corres-

ponds to a call of the procedure Swap-Pebbles).

 Consider the process of placing a pebble into a handle of a handle decomposition

 where . It requires rotations of the cycle

 (procedures Rotate-Cycle
+
 and Rotate-Cycle

−
) where each rotation produces

 swaps. That is, swaps are caused by rotations. Next, there are

up to edge traversals by the pebble caused by the operation of moving a pebble

(procedure Move-Pebble) where each edge traversal produces swaps. Altogether,

 are swaps are produced by moving pebbles. Finally, there are up to calls

of the operation for making a vertex unoccupied (procedure Make-Unoccupied) where

each call produces at most swaps. Since there are at most pebbles and

 at most + +5) swaps which is

are necessary to place pebbles in handles.

Pavel Surynek

32

 It is also necessary to consider the process of placing pebbles in the initial cycle .

There are at most rotations of and operation of making a vertex unoccupied

per pebble placement. A single rotation of produces swaps and one making a

vertex unoccupied requires at most swaps (recall, that unoccupied vertex as well as

its target are located in). Altogether, at most
 swaps are produced per

pebble placement into . Placing all the pebbles in produces at most

 swaps. Since , it is at most swaps which is

for placing pebbles into the initial cycle .

 The final transfer of unoccupied vertices to their original locations produces at most

 swaps which does not change the above asymptotic estimation. In total,

swaps are produced by the BIBOX algorithm when solving the instance

 . As the makespan is bounded by the number of swaps (that is, the

makespan of the solution with no parallelism allowed), it is possible to conclude that

makespan is . 

Proposition 5 (BIBOX – worst case space complexity). The worst case space complexi-

ty of the BIBOX algorithm is with respect to an input instance of the prob-

lem pebble motion on a graph

 . 

Proof. The size of the solution is up to times ; that is, the makespan in

the worst case multiplied by the space necessary for storing an individual element of the

solution
 with . Fortunately, the solution is produced in a stream like

manner and thus does not need be stored in the memory.

A space of is required for storing the current arrangement of pebbles

expressed by functions and ; a space of is required to compute

(Lemma 1, [24]) and to store the handle decomposition ; and finally a space of

 is required to compute shortest paths by subsequent calls of the Dijkstra’s algorithm

[1].

Remaining operations and local variables used by the BIBOX algorithm consume the

space proportional to the size of the input instance .Thus, the space of

which is proportional to the size of the input instance is required by the BIBOX algo-

rithm in total. 

3.1.4. Extensions and the Real-life Implementation

The natural question is how to apply the BIBOX algorithm if there are more than two

unoccupied vertices in input instance (that is,). The algorithm can be used

directly if the graph is filled by dummy pebbles. The instance with dummy pebbles is

solved by the algorithm as it is and finally movements of dummy pebbles are filtered out

from the solution in an additional post-processing step.

An adaptation of the solving algorithm for sparse instances of the pebble motion prob-

lem is out of scope of this work. Nevertheless, a straightforward adaptation is to replace

the non-deterministic selection of an unlocked unoccupied vertex (such as that at line 1

 Efficient Abstract Path Planning for Multiple Robots

33

of Make-Unoccupied) by the selection of the most promising one. For example, an un-

locked unoccupied vertex that is nearest to the vertex that is to be made unoccupied is

selected. Indeed, this behavior is adopted in the experimental implementation of the BI-

BOX algorithm (see experiments in Section 5). Some further optimizations should be

used in the real-life implementation to reduce the makespan of the produced solution.

Various preconditions are explicitly enforced in order to make the pseudo-code simpler

(for example, the precondition of having first two vertices of the initial cycle of the han-

dle decomposition unoccupied before a pair of vertices is exchanged within the cycle -

lines 4-6 of Solve-Original-Cycle). This approach should be avoided and lazier approach

should be adopted in the real-life implementation (in the case of exchanging pebbles,

locations of unoccupied vertices should be detected implicitly in subsequent steps by

more sophisticated branching of the code).

 The experimental implementation of procedures Solve-Regular-Handle and Solve-

Original-Cycle uses opportunistic selection of vertices to store pebbles (vertex - line 23

of Solve-Regular-Handle and vertices , - line 1 of Solve-Original-Cycle). The nearest

vertex to the target pebble is always selected. Moreover, selection of these vertices within

the procedure Solve-Original-Cycle should be done not only at the beginning but also in

every iteration of its main loop.

3.2. BIBOX-: An Algorithm for a Bi-connected Graph Exploiting Optimal Macros

The significant drawback of the BIBOX algorithm is that it requires at least two unoccu-

pied vertices. Observe that the second unoccupied vertex is necessary only in the last

stage where pebbles are placed into the initial cycle of the handle decomposition. Thus, if

there is only one unoccupied vertex in the input instance, the BIBOX algorithm would be

able to place almost all the pebbles of the input instance except that which goal positions

are within the initial cycle of the handle decomposition.

It would be possible to apply the existent algorithm described in [8] for solving pebble

motion problems to finish placement of pebbles in the initial cycle. It is referred to as the

MIT
1
 algorithm in this article. The MIT algorithm is able to solve instances of the prob-

lem of pebble motion on a non-trivial bi-connected graph with just one unoccupied vertex

(the instance with just one unoccupied vertex may be unsolvable; indeed, the MIT algo-

rithm can detect such a case). Thus, a combined algorithm can proceed as the BIBOX

algorithm for placing pebbles into all the internal vertices of handles of the handle de-

composition and it can proceed as the MIT algorithm over the remaining initial cycle and

the first handle (the first handle is necessary to be included to form a bi-connected graph

together with the initial cycle). Unfortunately, the process how the MIT algorithm places

pebbles generates excessively long sequences of moves (see experiments in Section 5).

Despite above facts the idea of using alternative solving process for the initial cycle of

the handle decomposition is still promising. Since the initial cycle and the first handle

1 The name for the algorithm has been chosen according to the name of the institution of the principal author of

the article [8] which is MIT – the Massachusetts Institute of Technology.

Pavel Surynek

34

constitute a structurally simple graph (these graphs are called -like graphs in the follow-

ing text), it is feasible to try to solve selected instances of pebble motion problem over

these graphs optimally with respect to the makespan. Notice, that as there is no paral-

lelism with single unoccupied vertex, the makespan equals to the number of moves in the

solution. The candidate instances for optimal solving are those from which solutions an

overall solution of any instance over the initial cycle and the first handle can be com-

posed. Moreover, optimal solutions to selected instances can be pre-computed and stored

in the database for future use. Since solutions from that the overall solution is composed

are optimal, it is reasonable to suppose that the makespan of the resulting solution will be

acceptable. Nevertheless, this is a conjecture that should be proven.

3.2.1. Algebraic Foundation of the Algorithm

Bi-connected graph, which handle decomposition consists of the initial cycle and single

handle, represent structurally simplest bi-connected graphs over that non-trivial rear-

rangement of pebbles is possible supposed there is single unoccupied vertex (structurally

simpler bi-connected graph is a cycle where only rotations of pebbles are possible). These

graphs will be referred to as -like graphs.

Definition 5 (-like graph). Let , , and

 be three sequences of vertices satisfying that . An

undirected graph for such three sets is constructed as follows:

 and

 }. An undirected

graph is called a -like graph if there exist three sets of vertices , , and

as above such that is isomorphic to . □

The notation of set union is used over

sequences in the definition of the set of

vertices . This is an abbreviation for the

union of ranges of individual sequences.

Notice that itself is a -like

graph and may be identical to

if sets , , and consist of vertices of .

Hence, no distinction is made between

and in the following text and

the notation is used exclusively.

An example of -like graph is shown in

Figure 9.

There are non-isomorphic -like graphs over a set of vertices (consider the

set linearly ordered and partitioned into sub-sets , , and , where these sub-sets form

continuous sub-sequences within the ordered ; is the first sub-sequence, is the mid-

dle sub-sequence, and is the last sub-sequence within ; there is possibilities

Figure 9. An example of -like graph. -like

graphs are bi-connected graphs consisting of a

cycle and one handle.

 Efficient Abstract Path Planning for Multiple Robots

35

to place separation points among , , and). However, the number of all the possible

instances of pebble motion problem with single unoccupied vertex on a fixed -like graph

 is since the difference between the initial and the goal arrangement of

pebbles can be regarded as a permutation of elements. Hence, it is not feasible to

pre-compute and to store optimal solutions to all the instances of the problem of pebble

motion on a fixed -like graph. The number of selected instances should be bounded

polynomially to make their pre-computation and storing feasible. At the same time, solu-

tions to all the possible instances of pebble motion problem with single unoccupied ver-

tex over the -like graph should be possible to be composed of the solutions to the se-

lected instances.

Without loss of generality, assume that the unoccupied vertex within the initial and

the goal arrangements of an instance of the problem over is (the unoccu-

pied vertex can be simply transferred to any vertex). Thus, the space of such instances

over is isomorphic to the group of all the permutations of which is called a

symmetric group on elements and it is denoted [2, 14]. A trans-

position is a permutation, which exchanges a pair of elements and keeps other elements

fixed. It is well known from the theory of groups that can be generated by

the set of transpositions on the same set of elements. A permutation is called odd if it can

be composed of the odd number of transpositions. A permutation is called even if it can

be composed of the even number of transpositions. A permutation is either odd of even

but not both. In fact, if a permutation is assigned a sign which is if the permutation is

even and if the permutation is odd by a function , then is a group homomor-

phism between and the group where multiplication

corresponds to a product of two permutations, neutral element corresponds to identic-

al permutation and unary minus – corresponds to an inverse permutation.

Another simple fact that can be derived from above statements is that the set of all the

even permutations on the same set of elements forms a proper sub-group of

 ; it is called an alternating group on and it is denoted as . A

rotation along a 3-cycle is a permutation which rotates given three elements and keeps

other fixed. In [8] it is shown how to compose any even permutation from rotations along

3-cycles on the same set of elements.

As the number of distinct transpositions on elements is and the number of

distinct rotations along 3-cycles on elements is , optimal solutions of correspond-

ing instances of pebble motion problem seem to be good candidates for storing. Moreo-

ver, if the corresponding instances are really solvable, then they satisfy the property that

solution to any (in the case of transpositions) or almost any (in the case of 3-cycle rota-

tions) pebble motion instance on the same graph can be composed of them. Composition

of solutions can be simply implemented as their concatenation.

Suppose a -like graph with ,

 , and and a set of pebbles for the

following three definitions.

Pavel Surynek

36

Definition 6 (even and odd case). Let
 an initial arrangement of the set of pebbles such

that
 (that is, is initially unoccupied) and let

 be a goal arrange-

ment of pebbles such that
 (that is, is finally unoccupied). If

forms an even permutation with respect to
 , then an instance of the problem of pebble

motion on a graph

 is called an even case. If
 forms an

odd permutation with respect to
 , then an instance of the problem of pebble motion on

a graph

 is called an odd case.. □

Definition 7 (transposition case). Let
 be an initial arrangement of the set of pebbles

such that
 (that is, is initially unoccupied) and let

 be a goal

arrangement of pebbles such that there exist such that for which it

holds that

 (pebbles and are to be exchanged while positions of other pebbles

are preserved; consequently is finally unoccupied). Then an instance of the problem of

pebble motion on a graph

 is called a transposition case

with respect to and . □

Definition 8 (3-cycle rotation case). Let
 be an initial arrangement of the set of pebbles

such that
 (is initially unoccupied). Let

 be a goal arrangement

of pebbles such that there exist such that , , and are pair wise dis-

tinct for which it holds that

 (pebbles , , and are to

be rotated while positions of other pebbles are preserved; consequently is finally unoc-

cupied again). Then an instance of the problem of pebble motion on a graph

 is called a 3-cycle rotation case with respect to , , and . □

Figure 10. An example of transposition and 3-cycle rotation cases of the problem of pebble motion

on a -like graph. The transposition case is shown for vertices
 and

 . The 3-cycle

rotation case is shown for vertices

 , and
 . Solutions of general instances

of the problem of pebble motion on a given -like graph that are solvable can be composed of

(optimal) solutions of transposition and 3-cycle rotation cases.

Transposition case

3-cycle rotation case

 Efficient Abstract Path Planning for Multiple Robots

37

See Figure 10 for illustrations of transposition case and 3-cycle rotation case. Notice,

that transposition and 3-cycle rotation cases would be worthless if they are not solvable.

Fortunately, several positive results regarding solvability of these cases are shown in [8].

Following propositions and corollaries recall some of them (without proofs).

Proposition 6 (solvability of an odd case). An odd case of the problem of pebble motion

on a -like graph

 with is solva-

ble if and only if contains a cycle of the odd length. 

Let the -like graph with be denoted as

 . It represents a special case where some instances over it are solvable and some

are unsolvable. The case of will be treated separately.

Since transposition is an odd permutation, the following corollary is a direct conse-

quence of the above proposition.

Corollary 1 (solvability of transposition case). A transposition case of the problem of

pebble motion on a -like graph

 with non-

isomorphic to is solvable if and only if contains a cycle of the odd

length. 

Proposition 7 (solvability of an even case). An even case of the problem of pebble mo-

tion on a -like graph

 with non-isomorphic to

 is always solvable. 

Analogically, since rotation along 3-cycle is an even permutation, the following corol-

lary is a direct consequence of the above proposition.

Corollary 2 (solvability of 3-cycle rotation case). A 3-cycle rotation case of the problem

of pebble motion on a -like graph

 with non-

isomorphic to is always solvable. 

Similar results hold not only for -like graphs, but also for the more general class of

non-trivial bi-connected graphs non-isomorphic to [8]. The important proper-

ties directly exploited by the algorithm are that if the input graph does not contain a cycle

of the odd length and the initial and the goal arrangement of pebbles form an odd permu-

tation then the instance is unsolvable. Similarly, if the input and the goal arrangements

form an even permutation (and the input graph is non-isomorphic to) then the

instance is always solvable (observe that, this is a corollary of the BIBOX algorithm and

Proposition 7).

Pavel Surynek

38

The following propositions [2, 8, 14] are important with respect to the length of the

overall solution composed of the optimal solutions to the transposition cases and 3-cycle

rotation cases.

Proposition 8 (solving the odd case). A solution to any odd case on a -like graph

 can be composed of at most solutions to transposition cases on the

same graph. 

Of course, it is not possible to compose a solution to an odd case of rotations along

3-cycles since the composition of any even two permutations results in an even permuta-

tion and rotation along a 3-cycle is an even permutation (recall the group homomor-

phism). On the other hand, a solution of an even case can be composed of at most

 solutions to transposition cases as well. The proof of the propositions is shown

within the pseudo-code of the BIBOX- algorithm.

Proposition 9 (solving the even case). A solution to any even case on a -like graph

 can be composed of at most solutions to 3-cycle rotation cases on

the same graph. 

 Again, the proof is shown within the pseudo-code of the BIBOX- algorithm. The

above facts justify that transposition and 3-cycle rotation case are suitable to be solved

optimally and corresponding solutions can be used for composing solutions of general

instances over -like graphs. It is out of scope of this manuscript to give any detailed

description of how to compute optimal solutions of instances over -like graphs. Applica-

tions of several variants of iterative deepening search for this task were studied in [17].

The case of -like graph represents a situation where there is no simple cha-

racterization of solvable instances. Since it is a small graph, it is feasible to pre-compute

and to store optimal solutions to all the solvable pebble motion instances over this -like

graph into the database. The solving process of the new algorithm over the initial cycle

and the first handle of the handle decomposition is based on the knowledge of how to

solve instances over -like graphs. In this context, it is necessary to guarantee that insol-

vability of an sub-instance over does not contradict solvability of the instance as

the whole if the initial cycle and the first handle unluckily become isomorphic to

 . The following lemma states that this contradictory case can be always avoided.

The proof the lemma tediously enumerates all the possible cases.

Lemma 5 (avoiding). If a non-trivial bi-connected graph is non-isomorphic to

 then it subsumes a -like sub-graph non-isomorphic to .

Moreover, if contains an odd cycle then it subsumes non-isomorphic to

 that additionally satisfies that (that is, sets and form an odd

cycle). Having a -like sub-graph satisfying above conditions, there exists a handle de-

composition of of such that . (

 Efficient Abstract Path Planning for Multiple Robots

39

denotes the sub-graph of constructed by addition of the handle to the initial cycle

). 

Proof. The proof will proceed as case analysis according to the number of handles of a

handle decomposition of and according to the number of internal vertices of a handle.

Since the graph is a non-trivial bi-connected graph, it holds for any handle decomposi-

tion of that it contains at least one handle.

If does not subsume any cycle of the odd length then a -like sub-graph

constructed from the initial cycle and the first handle of any handle decomposition satis-

fies requirement of the lemma. The graph cannot subsume an odd cycle and

hence it cannot be isomorphic to .

If subsumes a cycle of the odd length then let

 be some

fixed handle decomposition of such that
 is of the odd length (such handle decompo-

sition can be constructed by finding an odd cycle first and then by continuing as standard

method for finding handle decomposition - see Lemma 1).

The lemma holds for since it states a trivial fact and it is possible to set

 to obtain the second part of the lemma.

 Assume that . If

 is non-isomorphic to then

 and fulfills the lemma again. Consider, that

 is isomorphic to

 . A modifying construction of

 will be shown. The result of the

construction will be a new handle decomposition that satisfies require-

ments of the lemma. Let

 where

 ,

 ,

and

 ; that is, the initial cycle
 together with the first handle are interpreted

as a -like graph. The following cases must be distinguished (symmetric cases are not

listed):

(1) Assume that
 interconnects

 and
 :

 must contain at least one internal vertex since otherwise there will be two

edges connecting
 and

 which is not allowed in a standard undirected graph.

Let

 (is a vertex different from vertices of). Then a -like

graph with

 ,

 , and is a sub-graph

of , it is not isomorphic to , and it holds that . The corres-

ponding handle decomposition will be as follows:

 ,

 , and

 .

It is not difficult to extend the above construction for cases when
 contains

more than one internal vertices. It causes growth of the sequence while and

 remain the same. Thus the non-isomorphism with and the oddness of

 are preserved.

(2) Assume that
 interconnects

 and
 :

Again,
 must contain at least one internal vertex since multiple edges connect-

ing the same pair of vertices are not allowed. Let
 has one internal vertex, that

is

 . Then a -like graph with

 ,

 , and is a sub-graph of which is not isomorphic to

Pavel Surynek

40

 and satisfies that . The corresponding handle decomposi-

tion will be constructed as follows:

 ,

 , and

 .

The construction can be easily extended for cases when there are more than

one internal vertices within
 . It results in growth of the sequence which pre-

serves non-isomorphism with as well as oddness of .

(3) Assume that
 interconnects

 and
 :

If

 , that is, it has no internal vertices, then a -like graph

 with

 ,

 , and

 is a sub-graph of ,

it is not isomorphic to , and it holds that . The handle de-

composition will be as follows:

 ,

 , and

 .

It is easy to extend the described treatment when
 interconnects

 and

and has non-zero number of internal vertices. It causes growth of the sequence

 while sequences and remain the same. Hence, the non-isomorphism with

 and the oddness of are preserved.

(4) Assume that
 interconnects

 and
 :

If

 (there is no internal vertex) then a -like graph with

 ,

 , and

 and a handle decomposition

 with

 ,

 , and

 satisfy requirements of the lemma.

If

 (there is one internal vertex) then a -like graph

 with

 ,

 , and
 is a sub-graph of ,

it is not isomorphic to , and it holds that . The correspond-

ing handle decomposition will be as follows:

 ,

 , and

 .

If

 (there are two internal vertices) then a -like graph

 with

 ,

 , and

 is a sub-

graph of , it is non-isomorphic to , and it holds that . The

corresponding handle decomposition will be as follows:

 ,

 , and

 .

If
 contains more than two internal vertices then non-isomorphism with

 as well as oddness of remain preserved (this construction

would not work for exactly one internal vertex of
 because the constructed

 would be isomorphic to).

 Efficient Abstract Path Planning for Multiple Robots

41

Figure 11. An illustration of avoiding . If a non-trivial bi-connected graph is non-

isomorphic to then it subsumes a -like sub-graph non-isomorphic to .

The illustration shows how to find the required if unluckily a sub-graph isomorphic to

 is encountered.

Case (1) – one internal vertex

Case (2) – one internal vertex

Case (3) – no internal vertices

Case (4) – one internal vertex

Case (5) – no internal vertices

Case (6) – no internal vertices

Pavel Surynek

42

(5) Assume that
 interconnects

 and
 :

If

 (

 has no internal vertex) then a -like graph with

 ,

 , and

 and a handle decomposition

 with

 ,

 , and

 satisfy requirements of the lemma.

Again, observe that it is easy to extend this treatment when
 interconnects

 and

 and has more than zero internal vertices. Internal vertices of

cause growth of the sequence while sequences and remain the same.

Hence, the non-isomorphism with and oddness of will be

preserved again.

(6) Assume that
 interconnects

 and
 :

If

 (

 has no internal vertex) then a -like graph with

 ,

 , and

 is a sub-graph of non-

isomorphic to , and it holds that . The corresponding han-

dle decomposition will be as follows:

 ,

 , and

 .

Observe again that if
 contains more than zero internal vertices then it

causes growth of the sequence which does not affect the non-isomorphism

with and the oddness of .

If it holds that then the above modifying construction is applied on first two

handles and the initial cycle of

 which of the result are , ,

and . Then it is sufficient to set

 .

The modifying construction can be carried out in the worst case time of

and the worst case space of . 

The case analysis from the proof Lemma 5 is shown in Figure 11. The lemma is cru-

cial in showing that the upcoming algorithm is sound.

3.2.2. Pseudo-code of the BIBOX- Algorithm

The new algorithm is called BIBOX- according to the concept of -like graph. Let

 be an input instance of the problem of pebble motion on a bi-

connected graph with single unoccupied vertex. If is non-isomorphic to and

it subsumes a cycle of the odd length then a handle decomposition

 of such that is of the odd length and is non-

isomorphic to is computed. Lemma 5 guarantees that this is possible. If is

isomorphic to then corresponds to . If does not contain an odd cycle

then some arbitrary handle decomposition is computed.

As in the case of BIBOX algorithm, it is necessary that the finally unoccupied vertex

is located in the initial cycle . Thus, a function Transform-Goal is applied to modify

the goal arrangement
 by shifting goal locations of pebbles along a path to relocate

the unoccupied vertex into . The modified instance is then solved by the process im-

 Efficient Abstract Path Planning for Multiple Robots

43

plemented by the BIBOX- algorithm. The solution is finished by calling a function

Finish-Solution which shifts pebbles back along the path .

 The BIBOX- algorithm proceeds according to the handle decomposition from the

last handle to the second handle and initial cycle . The process of placement of

pebbles within the individual handles of the handle decomposition is the same as in the

case of the BIBOX algorithm. The problem of reaching the goal arrangement of pebbles

within the first handle and the initial cycle is solved as an instance over -like

graph formed by and . It is supposed that optimal solutions to all the solvable trans-

position and 3-cycle rotation cases over -like graphs of the size up to the certain limit

are pre-computed and stored in the database. Next, it is supposed that optimal solutions to

all the instances over the -like graph are pre-computed into the database as

well. A solution to the instance over the -like graph is composed of the corresponding

optimal solutions stored in the database. If the required record is not stored in the data-

base (which can happen when the size of the -like graph is greater than the limit) an

alternative solving process must be used. For example, the solving process implemented

by the MIT algorithm can be used in such a case.

The pseudo-code of the BIBOX- algorithm is listed as Algorithm 2. It reuses primi-

tives, functions, and procedures introduced within the context of BIBOX algorithm - func-

tions and procedures from Algorithm 1 are called. For simplicity, it is supposed that all

the required optimal solutions are stored in the database (so there is no treatment when

the size of the -like graph exceeds the limit).

The database with optimal solutions of selected instances over -like graphs is

represented by three tables:
 ,

 , and
 . Optimal solutions to transposi-

tion cases over a particular -like graph are stored in the table
 – records are

addressed by a pair of vertices in which pebbles are transposed. Similarly, optimal solu-

tions to 3-cycle rotation cases are stored in the table
 – records are addressed by a

triple of vertices in which pebbles are rotated. Finally, the table
 contains optimal

solutions to all the solvable instances over the -like graph - records are ad-

dressed by permutations determined by the difference between the initial and the goal

arrangement of pebbles (a function difference is used for calculating this differencing

permutation).

Pavel Surynek

44

Algorithm 2. The BIBOX- algorithm. This is an improved version of the BIBOX algorithm. The

design of the algorithm originates from [17, 19]. It solves a given pebble motion problem on a non-

trivial bi-connected graph with exactly one unoccupied vertex. The improvement with respect to

the BIBOX algorithm consists in exploiting database containing optimal solutions to sub-problems

over the original cycle and the first handle. This consequently led to the relaxation of the require-

ment to have two unoccupied vertices of the original version. Functions and procedures from Algo-

rithm 1 are reused here.

function BIBOX--Solve

 : pair

/* Top level function of the BIBOX algorithm; solves

a given problem of pebble motion on a graph.

Parameters: - a graph modeling the environment,

 - a set of pebbles,

 - an initial arrangement of pebbles,

 - a goal arrangement of pebbles. */

1: if contains a cycle of the odd length then

2: let be a handle decomposition of

3: such that is of the odd length and is

4: a -like sub-graph non-isomorphic to if possible

/* if this is not possible then is isomorphic to */

5: else

6: let be a handle decomposition of

 /* is always non-isomorphic to */

7:
 Transform-Goal

8:

9:

10: for do

11: if then

12: Solve-Regular-Handle

13: let

14: Lock

15: Unlock

16: Make-Unoccupied

17: let , be two vertex disjoint paths connecting

18: and in

19:
20:
21: -BOX-Solve

22: Finish-Solution

23: return

Handle decomposition

A -like graph
matched over and .

 Efficient Abstract Path Planning for Multiple Robots

45

procedure -BOX-Solve

/* Solves a sub-problem over a given -like subgraph; a set of

goal vertices into which pebbles must be placed is specified.

Parameters: - a -like subgraph modeling the sub-problem

 - a set of goal vertices

 - an initial arrangement of pebbles

 - a goal arrangement of pebbles

(only
 is considered) */

1: let

2: let

3: if then

4:
 difference

5: if then fail /* the instance is unsolvable */

6: Apply-Macro

7: else

8:

9: if contains a cycle of the odd length then

10: for do

11: if
 then

12: Apply-Macro

/* does not contain any odd cycle */

13: else

14: if
 constitutes an odd permutation w.r.t. then

15: fail /* the instance is unsolvable */

/*
 constitutes an even permutation w.r.t. */

16: else

17: for do

18: if
 then

19: let

20: Apply-Macro

function Apply-Macro : assignment

/* Applies a given sub-solution on a global arrangement

and on an arrangement over -like subgraph.

Parameters: - a solution of a sub-problem

 - arrangement over -like subgraph */

1: let

2: for do

3: Swap-Pebbles-Unoccupied

4:

5: return

The main framework of the algorithm as it was described above is represented by the

function BIBOX--Solve which gets an instance of pebble motion on a non-trivial bi-

connected graph

 with just single unoccupied vertex as a

parameter and returns the length of the solution and the solution itself. The difference

from the original BIBOX algorithm is that the handle decomposition is computed with a

special care (lines 1-6) and the final solving process (lines 13-21) over the -like graph

Transposition case over

3-cycle rotation case over

Pavel Surynek

46

formed by and exploits solution database. The middle section of the whole solving

process (lines 10-12) when pebble are placed into handles of the handle decomposition is

the same as in the case of the BIBOX algorithm. In order to not to need to care about the

location of an unoccupied vertex within instances over -like graph, the first connection

vertex of the handle is made unoccupied (lines 14-16) – this vertex correspond to the

vertex from the definition of the -like graph in fact. Recall, that transposition, 3-cycle

rotation, and the case of suppose the unoccupied vertex right there.

An auxiliary function Apply-Macro is used apply a record from the database of op-

timal solutions (the optimal solution for a sub-instance is called a macro in this context)

on the current arrangement of pebbles in a given -like graph as well as on the global

current arrangement represented by and . The optimal solution has the form of

sequence of moves where the move is an ordered pair of vertices of - the first vertex

contains a pebble to be moved; the second vertex is unoccupied at the time step of execu-

tion of the move and represents the target. The execution of the macro over the current

arrangement is carried out by Swap-Pebbles-Unoccupied; the function also makes the

next step in construction of the output solution.

The very novel part in comparison with the BIBOX algorithm is the process of reach-

ing the goal arrangement over a -like graph. This is represented by a function -BOX-

Solve. The function gets as parameters the -like graph itself as initial and

goal arrangements of pebbles as
 and

 respectively, and a set of goal vertices as

which is a sub-set of vertices of in which pebbles should be placed. The function dis-

tinguished between several cases.

If is isomorphic to (lines 3-6) then the goal arrangement is reached at once

using a record from the database. It may happen that the required record is not found in

the database (line 5). In such a case, the algorithm terminates with the answer that the

given instance is unsolvable. A special function difference is used in this execution

branch. The function calculates a permutation from two arrangements of pebbles. The

interpretation of permutation calculated by the difference function is that it makes the

second arrangement from the first one.

If is non-isomorphic to and it contains an odd cycle (lines 7-12) then all

the goal arrangements are reachable. The goal arrangement is reached by composing

several transposition cases. This is done by traversing the set of pebbles that should be

placed. If the current location of a pebble given by is different from its goal location

given by
 , then pebbles at these two locations are swapped using a solution for trans-

position case from the database of solutions. Notice, that the last application of transposi-

tion case places two pebbles thus it is not necessary to traverse the last pebble.

If is non-isomorphic to and all the subsumed cycles are of the even length

(lines 14-20) then a treatment of unsolvable cases must be done. If the goal arrangement

 forms an odd permutation with respect to the initial arrangement then the given

instance is unsolvable (lines 14-15). The algorithm terminates with the negative answer in

such a case. If this is not the case (that is,
 forms an even permutation with respect to

) then the goal arrangement is reached using 3-cycle rotations (lines 17-20). This is

 Efficient Abstract Path Planning for Multiple Robots

47

done almost in the same way as in the case of transposition cases in fact. Again, pebbles

that should be relocated are traversed. The relocation of a pebble to its goal location

 from is done by the rotation along a 3-cycle formed by ,

 , and

 , where is a vertex different from ,
 , and different from all the goal ver-

tices of all the already placed pebbles. Except moving pebbles from
 to and from

 to the required relocation of from to
 is done. Notice, that it is

sufficient to traverse all the pebbles except last two. They must be inevitably placed to

their goal vertices after the last 3-cycle rotation since otherwise (that is, in the case they

are swapped with respect to their right placement) the goal arrangement
 forms an odd

permutation with respect to which has been ruled out at the beginning of this branch.

3.2.3. Theoretical Analysis of the BIBOX- Algorithm

This section is devoted to some theoretical analysis of the BIBOX- algorithm. Soundness

and completeness of the algorithm will be shown first. Then several results regarding

time and space complexity will be shown.

Proposition 10 (BIBOX- - soundness and completeness). The BIBOX- algorithm is

sound and complete. That is, the algorithm always terminates and provides a correct

answer to the input instance of the problem of pebble motion on a non-trivial bi-

connected graph

 with just single unoccupied vertex. That is,

it answers either that the instance is unsolvable or returns a solution in the case when

is solvable. 

Proof. The proof will go through the pseudo-code of the algorithm while preconditions of

all the steps will be verified. Since many steps are easy to check, only important points

will be discussed.

Fortunately, lot of work has been already done. The possibility of selecting required

handle decomposition (lines 1-6 of BIBOX--Solve) is ensured by Lemma 5. Moreover,

large part of the proof has been already done within the proof of soundness and com-

pleteness of the original BIBOX algorithm. This concerns stage of the execution when

BIBOX- proceeds as the original BIBOX to place pebbles into handles , , …,

(lines 10-12 of BIBOX--Solve).

Making unoccupied the first connection vertex of the first handle (lines BIBOX-

-Solve) is possible (lines 13-16 of BIBOX--Solve). At the end of the execution of plac-

ing pebbles into the handles , , …, by the BIBOX style process, an unoccupied

vertex must be located in . Hence, it is possible relocate the unoccupied vertex to

 by moving pebbles within only (an unlocked path from any vertex of

to exists; pebbles are to be shifted along this path).

Soundness and completeness of -BOX-Solve function is implied by the algebraic

theory introduced in section 3.2.1. There is nothing to show about the function Apply-

Macro since it merely executes sub-solution on the current arrangement of pebbles .

Pavel Surynek

48

If the above argumentation is summarized, it is possible to conclude that the algorithm

always terminates and if it produces a solution, it is a correct solution of the input in-

stance. However, the case of the answer that there is no solution is more subtle.

There are two reasons for the non-existence of the solution. The first one is the case of

an unsolvable instance over a -like graph isomorphic to . The whole instance

over is directly submitted to the function -BOX-Solve. It subsequently tries to

find an appropriate record in the database (line 4 of -BOX-Solve) which is unsuccessful

and the algorithm returns the answer that the instance is unsolvable.

The second reason for the non-existence of a solution is the case of an instance on a

graph without an odd cycle where the initial arrangement
 and the goal arrangement

form an odd permutation (it is not known at this point that this case is unsolvable actual-

ly; nevertheless the upcoming argumentation will provide reasons). Consider that the

unoccupied vertex has some fixed location in the input graph (for example, let it be the

first connection vertex of the first handle). Any movement of pebbles that pre-

serves the unoccupied vertex must look like a shift along a cycle starting and ending in

the unoccupied vertex [8]. Since there is no cycle of the odd length in the graph, this path

must be of the even length. Hence, the difference between the original arrangement and

the arrangement after this movement is an even permutation. Thus, if the input initial

arrangement
 and the goal arrangement

 differ as an odd permutation, then the cur-

rent arrangement after placing pebbles into handles , , …, and the goal

arrangement
 differ as an odd permutation as well (supposed that unoccupied vertex is

fixed). This difference must be caused by pebbles in and only since other pebbles

has been already placed at this moment. Hence, the initial arrangement
 and the goal

arrangement
 over the -like graph formed by and submitted to BIBOX--

Solve make an odd permutation. Since the -like graph over and has no odd

cycle, the algorithm correctly answers that there is no solution (line 14 of -BOX-Solve).

All the other cases are solvable and the algorithm provides a correct solution for them.

Finally, it is necessary to investigate the termination of the algorithm from the opposite

side. That is, if the algorithm terminates with the negative answer then there is no solu-

tion of the input instance.

Termination with a negative answer at line 5 of -BOX-Solve is possible only if the

-like graph submitted to -BOX-Solve is isomorphic to and the goal ar-

rangement is unreachable from the initial one. This happens only if the input graph is

isomorphic to and the goal arrangement is unreachable.

Similarly, termination at line 15 of -BOX-Solve is possible only if the -like graph

submitted to -BOX-Solve has no cycle of the odd length and initial and the goal ar-

rangements over form an odd permutation. The construction of the handle decomposi-

tion (lines 1-6 of BIBOX--Solve) ensures that there was no cycle

of the odd length in the input graph . The input instance cannot be solvable since other-

wise there should be an odd cycle, which is a contradiction.

Altogether, the algorithm provides a solution (which is correct) if and only if the input

instance of the pebble motion problem

 is solvable. 

 Efficient Abstract Path Planning for Multiple Robots

49

Following propositions summarize estimations of the time and space complexity, and

the makespan of the solution produced by the BIBOX- algorithm.

Proposition 11 (BIBOX- – worst case time complexity). The worst case time complex-

ity of the BIBOX- algorithm is with respect to an input instance of the problem

pebble motion on a graph

 . 

Proof. The time required to find a handle decomposition

 of

where the initial cycle
 has the odd length is in the worst case [24]. The

handle decomposition must be subsequently augmented to another handle decomposi-

tion where is not isomorphic to . This augmenta-

tion is done according to Lemma 5 and it takes time of

 in the

worst case which is - modification of the initial cycle and first two handles is

done which can be done by traversing through its vertices according to the original handle

decomposition .

Transformation of the goal arrangement for relocating the unoccupied vertex to the

first connection vertex of the first handle can be done in the worst case time of

 - a path connecting the original and the target position of the unoccupied

vertex must be found.

Placing pebbles into handles requires time of as it has been al-

ready shown for the BIBOX algorithm. Altogether, the mentioned processing consumes

time of in the worst case. Thus, it remains to investigate the solving process over

the -like graph formed by and .

In the worst case, it is necessary to compose optimal solutions to

transposition of 3-cycle rotation cases to construct the overall solution of an instance over

the -like graph. It is known that the makespan of any optimal solution of a pebble mo-

tion instance over a -like graph with single unoccupied vertex is

 [8]. Hence, each optimal solution to the special case is of the size

 . As solutions to special cases are directly executed to update the current arrange-

ment of pebbles, the overall required time is
 which is .

The worst case time complexity of the BIBOX- algorithm is thus +

which is . 

Proposition 12 (BIBOX- – makespan of the solution). The makespan of a solution in

the worst case produced by the BIBOX- algorithm (that is, the number) for an input

instance of the problem of pebble motion on a graph

 is

 . 

Proof. Since it is assumed that there is single unoccupied vertex the makespan is exactly

the same as the total number of moves within the solution. The contribution of the

process of placing pebbles into handles of the handle decomposition in the BIBOX-style

to the overall solution makespan is .

Pavel Surynek

50

 A solution of the instance over -like graph formed by and is composed of

 optimal solutions to transposition and 3-cycle rotation cases. Each of the

special cases requires makespan of
 . Thus, the makespan required to

solve an instance over the -like graph is
 which is .

Finally, the transformation that relocates the unoccupied vertex to the position given

by the original goal arrangement requires moves.

Altogether, the BIBOX- algorithm produces a solution to the given instance of peb-

ble motion on graph

 of the makespan of . 

Proposition 13 (BIBOX- – worst case space complexity). The worst case space com-

plexity of the BIBOX- algorithm is with respect to an input instance of the

problem pebble motion on a graph

 when space of the solu-

tion database is not accounted. 

Proof. Since the BIBOX algorithm is used within BIBOX-, a space of is

required at least (Proposition 5). As the solution database is not accounted, the algorithm

does not require any additional space. 

Proposition 14 (solution database size). The space required by the part of the database

where optimal solutions to are stored is (the size of
). The space

required by the part of the database where solutions to transposition and 3-cycle rotation

cases over a -like graph are stored is (the size of
)

and (the size of
) respectively. 

Proof. Since there is just single unoccupied vertex within all the instances which solu-

tions are stored, the size of stored solutions corresponds exactly to the number of moves

of which the solution consists. Hence, the size of any optimal solution to a special case

over the -like graph is [8].

 It is necessary to store at most optimal solutions for the

case of . Size of each optimal solution for this case is at most . In total,

the space of the size of , which is , is necessary to store solu-

tion to all the solvable instances over .

 There is (transposition cases over the -like graph ; asymp-

totically this is of transposition cases. Thus, the space of is required to

store optimal solutions to transposition cases into the database.

 Analogically, there is (3-cycle rotation cases over

the -like graph which is . Hence, the space of is required to store

optimal solutions to 3-cycle rotation cases into the database. 

3.3. Related Algorithms for Solving Pebble Motion Problems

Both presented algorithms BIBOX and BIBOX- are designed for the relatively extreme

class of problems of pebble motion on a graph and multi-robot path planning. They both

suppose a small number of unoccupied vertices in the input graph.

 Efficient Abstract Path Planning for Multiple Robots

51

On the other hand, if there is lot of unoccupied vertices in the graph of the input in-

stance, then it might be disadvantageous to use these algorithms. For example with con-

stant number of pebbles, it is more efficient to find a path to the goal vertex for each

pebble independently by some path finding algorithm and to resolve eventual collisions

than to use BIBOX algorithms. However, no threshold for the ratio of the number of peb-

bles to the number of unoccupied vertices above which one or the other approach is more

advantageous is known. The mentioned approach where paths are searched for individual

pebbles or robots independently has been actually studied in [25, 26, 27, 28]. Authors

define a tractable class of the multi-robot path planning problem where non-colliding

paths for individual robots exist. An instance has a chance to fall into this tractable class

if there is lot of unoccupied vertices in the input graph since otherwise there is almost no

possibility to have non-colliding paths for each robot.

4. Improving the Makespan of Solutions

This section is devoted to techniques for improving the makespan of solutions generated

by proposed algorithms. Two techniques are described: a relaxation of special cases

which optimal solutions are used to compose the overall sub-optimal solution and a tech-

nique for increasing parallelism based on the critical path method [11].

4.1. Using Weak Special Cases

It is possible to improve the course of execution of the BIBOX- algorithm when the -

like graph formed by the initial cycle and the first handle of the handle decomposition is

solved. The algorithm uses optimal solutions to transposition and 3-cycle cases at this

moment. Observe that except transposing a pair of pebbles or rotating a triple of pebbles

all the other pebbles within these special cases must preserve their positions. This is rela-

tively tight constraint. In fact, it is sufficient not to relocate only those pebbles, which has

been already placed to their goal vertices (these are generally not all the vertices of the -

like graph except the last transposition or 3-cycle rotation). Other pebbles can be arranged

arbitrarily, which significantly relaxes constraints on the stored optimal solutions. The

stored optimal solutions thus may have smaller makespan and may be easier to compute

consequently.

 The above idea conjecture led to the concept of so called weak special cases. These

special cases are represented by weak transposition case and weak 3-cycle rotation case.

These concepts were introduced first in [18]. Both concepts will be briefly recalled in this

section. A more detailed analysis of the benefit of using weak special cases instead of

standard ones within the BIBOX- algorithm will be made in the experimental section

(see Section 5).

 The definition of weak special cases of the problem of pebble motion on a graph re-

quires a slightly generalized notion of the goal arrangement. Instead of just one goal

arrangement a set of goal arrangements will be considered. Problem of both pebble mo-

tion on a graph as well as of multi-robot path planning can be generalized naturally with

Pavel Surynek

52

respect to the set of goal arrangements. The set of goal arrangements of pebbles will be

denoted as
 and the set of goal arrangements of robots will be denoted as

 .

A solution to an instance of the generalized problem of pebble motion on a graph

 is solution of any standard instance

where

 . Similarly for the generalized problem of multi-robot path planning: a

solution to an instance of the generalized problem of multi-robot path planning

 is solution of any standard instance

 where

 .

The weak version of a special case which solution is to be stored with the set of peb-

bles will be defined with respect to a subset of pebbles that must their positions

(that is, pebbles from can move along the execution of the solution, however they

must return to their original position eventually). Following definitions suppose a -like

graph with , , and

 and a set of pebbles .

Definition 9 (weak transposition case). Let
 be an initial arrangement of the set of

pebbles such that
 (that is, is initially unoccupied). Let be

a set of vertices and let be a pair of pebbles such that and

 . Let
 be a set of goal arrangements of pebbles such that

 if

 (peb-

bles and are to be exchanged; positions of pebbles from are preserved; other

pebbles can be relocated arbitrarily if is avoided). Then an instance of the generalized

problem of pebble motion on a graph

 is called a weak

transposition case with respect to , , and . □

Definition 10 (weak 3-cycle rotation case). Let
 be an initial arrangement of the set of

pebbles such that
 (is initially unoccupied). Let be a set of

vertices and let be a triple of wise distinct pebbles such that

 . Let
 be a set of goal arrangement of pebbles such that

 if

 (pebbles , , and are to be rotated; positions of pebbles from

are preserved; other pebbles can be relocated arbitrarily if is avoided). Then an in-

stance of the generalized problem of pebble motion on a graph

 is called a weak 3-cycle rotation case with respect to ,

 , , and . □

Weak special cases have the additional parameter that can be assigned

(transposition case) or (3-cycle rotation case) different values. Hence, it is not

possible to store optimal solutions to all the possible weak special cases over -like

graphs up to the certain size as in the case of the standard special cases.

Nevertheless, it is possible to select a small number of subsets of pebbles (linear of

quadratic number) and to store optimal solutions for them. When a transposition or a

 Efficient Abstract Path Planning for Multiple Robots

53

3-cycle rotation needs to be performed while pebbles from a set need to preserve their

positions, a corresponding special case with the smallest makespan satisfying that

 is used (is one of the parameters determining the used special case).

Observe, that the makespan of the weak special case is less than or equal to the ma-

kespan of the corresponding standard special case. Moreover, if there are multiple candi-

date weak special cases to be used, the most promising one is used. Hence, it is reasona-

ble to expect that the use of weak special cases will be beneficial.

Let be a -like graph and let be a sequence

representing the ordering of vertices in which they are traversed by the BIBOX- algo-

rithm in the last phase of the execution. Practically, it is suitable to store optimal solutions

to all the weak special cases with the parameter ranging over all the subsets of pebbles

 for (the union notation is used to create a set from

range of a sequence).

This approach is conservative with respect to memory consumption: there is linear

increase in the space required by the database in comparison with the database containing

solutions of standard special cases. The space required for storing optimal solutions of all

the selected weak transposition cases over is . Analogically, the

space required to store optimal solutions of the selected weak 3-cycle rotation cases is

 .

Notice, however that practically the required space may be smaller since optimal solu-

tions of weak special cases itself are smaller than solutions of standard special case

(weaker condition of the solution is required – see experimental Section 5).

4.2. Increasing Parallelism

This section is devoted to a method for increasing parallelism of solutions. In fact, this

method represents a major technique how to utilize parallelism allowed by the definition

of the problem of multi-robot path planning. Both presented algorithms - BIBOX as well

as BIBOX- - does not utilize the possibility of parallel movements. They solve the prob-

lem of pebble motion on a graph in fact. The method presented below in intended as a

post-processing technique that should be applied on a solution produced by BIBOX algo-

rithms.

Definition 11 (sequential solution). A solution

 of multi-robot

path planning problem

 is called sequential (

is the length of the solution) if for each there exists

such that

 and

 for each (at time

step a robot is moved; all the other robots do not move at the time step). □

A move of a robot from a vertex to a vertex will be denoted using the notation

 . The sequential solution of multi-robot path planning problem can be equiva-

lently represented as a sequence of moves of the form . That is, a solution is a

sequence
 (are variables with the

Pavel Surynek

54

domain ; are constants). Notice, that for each which

is ensured by the definition of sequential solution. In other words, a solution is sequential

if there is just one move at each step. This, however, may prolong makespan significant-

ly, which is not desirable.

Suppose a sequential solution
 of

an instance of multi-robot path planning

 .

This form of the solution of the problem is more convenient for reasoning about the poss-

ible parallelism. The following definitions refer to the sequence of moves
 .

Definition 12 (interfering moves). A move ; is interfer-

ing with a move ; if . □

 Typically, interfering moves cannot be executed in parallel. However, the situation is

not so straightforward. Following definitions are trying to capture which pairs of interfer-

ing moves can be undoubtedly executed in parallel and which not.

Definition 13 (potentially concurrent moves). A move ; is

potentially concurrent with a move ; with if ,

 , and there is no other move in
 such that

 interfering with or . The notation is that

 . □

The definition captures the fact that although the moves are interfering they can be

executed at the same time step according to the definition of a solution of an instance of

multi-robot path planning problem. The relation of potential concurrence is anti-reflexive

due to the requirement on different robots involved () and anti-symmetric due to

the ordering of moves within the sequential solution ().

Definition 14 (trivially dependent moves). A move ; is tri-

vially dependent on a move ; with if these moves are

interfering, or , and there is no other move in

 such that interfering with or . The notation is

that . □

The definition captures the fact that trivially dependent moves cannot be executed at

the same time step. Notice, that the condition or is the nega-

tion of the condition and from the definition of the potential

concurrence. Observe that, when (interfering moves), the condi-

tion can be equivalently expressed as a disjunction of several cases as

follows: or or or

 or (original and target vertices of each move

 Efficient Abstract Path Planning for Multiple Robots

55

are different; thus, each of the conjunctions defines the situation unambiguously with

respect to involved vertices). Observe, that none of the cases is actually possible if

 and with no middle move allowed. The relation of trivial dependence

of moves is reflexive and anti-symmetric due to the ordering of moves within the sequen-

tial solution ().

The notions of potential concurrence and trivial dependence are to be used as building

blocks of a process that constructs parallel solution of the instance of the problem of

multi-robot path planning.

Proposition 15 (execution order). Let each move of a sequential solution
 is as-

signed a time step of its execution by a function
 . Let

satisfies that if then and if

 then . Then a standard (pa-

rallel) solution constructed from
 using the function forms a (correct) solu-

tion of (sequence of arrangements of robots in reflects changes induced by

moves at time steps determined by the function). 

Proof. The proof will proceed by induction according to the length of the sequential solu-

tion
 . If the sequence

 consists of a single element, the proposition holds.

Suppose that
 is of non-trivial length.

From induction hypothesis, the proposition holds for the sequence of moves

 . In other words, there is a function

 such that it determines a correct parallel solution of an

instance which is almost the same as except the goal arrangement which differs by

the last move .

If there is some move with such that is trivially

dependent on it, then should satisfy that . Properties of

trivial dependency ensure that execution of after does not violate

correctness of the solution.

If there is some move with such that is poten-

tially concurrent with it, then should satisfy that . The

relation of potential concurrence ensures that execution of at the same time

step or after the time step with does not violate correctness of the solution.

 Let for . The function will be

defined for the last element of
 specially to satisfy above inequalities with respect

to all the trivially dependent and potentially concurrent moves with respect to

 . Let
 be the

time step assigned to the last trivially dependent move. Similarly, let

 be the time

step assigned to the last potentially concurrent move. Let

 . The function defined as above satisfies the proposition. 

Pavel Surynek

56

 The parallelized solution will be constructed according to Proposition 15. To obtain

small makespan and high parallelism of the solution, low execution times for execution

should be assigned to the individual moves. Thus, it is recommended to assign the time

step for the execution of the newly added move in the proposition as follows:

 .

The process is formalized in pseudo-code as Algorithm 3. The method described

above is also known as critical path method in different contexts [11].

The algorithm consists of three functions: Increase-Parallelism, Earliest-Execution-

Time , and Earliest-Execution-Time .

The main framework of the algorithm is represented by the function Increase-

Parallelism. The function successively includes moves into the constructed parallel solu-

tion while trivial dependency and potential concurrence with respect to already included

moves is calculated. The function is build over the array step which is indexed by time

steps. The cell step contains a set of moves that are to be executed at the time step .

Functions Earliest-Execution-Time and Earliest-Execution-Time calculates earli-

est execution time for the newly included move with respect to already included trivially

dependent moves and potentially concurrent moves.

Proposition 16 (increasing parallelism). The algorithm for increasing parallelism has the

worst case time complexity of
 for the input sequential solution

 . The worst case space complexity of the algo-

rithm is
 . 

Proof. Each call of Earliest-Execution-Time and Earliest-Execution-Time requires

time of
 . Both function are called

 times, thus the overall worst case

time complexity is
 .

A space of the size
 is required to store the input sequential solution

 . A space of the same size is necessary for storing the array step. 

Observe that the pseudo-code of the algorithm exploits an opportunistic search for the

dependent move with highest execution time that has been already scheduled. Moves

with already assigned time steps are traversed from the last one according to the time of

the execution. When a dependent move is encountered, the search terminates. Since the

probability of encountering a dependent move is supposedly much higher in the real-life

instance than having a completely independent move, this strategy is a good one.

 Efficient Abstract Path Planning for Multiple Robots

57

Algorithm 3. The parallelism-increasing algorithm. The algorithm produces a parallelized solution

of an instance of multi-robot path planning problem from the given sequential solution. The idea of

the algorithm is inspired by the critical path method [11].

function Increase-Parallelism

 : pair

/* A function for producing standard solution of

multi-robot path planning problem instance from the

sequential one.

Parameters:
 - a sequential solution of ,

 - a initial arrangement of robots. */

1: let

2: step
3:

4: for do

5:
 Earliest-Execution-Time

6:
 Earliest-Execution-Time

7:

8: step step
9:
10:

11:

12: for do

13: for each step do

14:

15:

16: return

function Earliest-Execution-Time : integer

/* Calculates earliest execution time for a given move

with respect to the relation of trivial dependency.

Parameters: - a move for that a time step is calculated,

 – currently last time step. */

1: for do

2: for each step do

3: if then

4: return

5: return

function Earliest-Execution-Time : integer

/* Calculates earliest execution time for a given move

with respect to the relation of potential concurrence.

Parameters: - a move for that a time step is calculated,

 – currently last time step. */

1: for do

2: for each step do

3: if then

4: return

5: return

Pavel Surynek

58

5. Experimental Evaluation

This section is devoted to an experimental evaluation of algorithms BIBOX and BIBOX-

that were designed in this work. The following experimental analysis is intended as justi-

fication of the development of new algorithms as well as practical confirmation of theo-

retical properties shown in the experimental analysis. As algorithms BIBOX and BIBOX-

were primarily developed as an alternative to the MIT [8] algorithm, the experimental

evaluation will be aimed on the competitive comparison of BIBOX and BIBOX- with

MIT.

 All the tested algorithms were implemented in C++. The implementation of algo-

rithms BIBOX and BIBOX- follows the pseudo-code of Algorithm 1 and Algorithm 2

respectively. Several optimizations mentioned in Section 3.1.4 were adopted in the im-

plementation of BIBOX and BIBOX- algorithms as well.

 The database of optimal solutions used by the BIBOX- algorithm has been generat-

ed on-line (on demand) by a variant of IDA* algorithm enhanced with learning [17].

Details of this algorithm are out of scope of this study. Pseudo-code and experimental

analysis can be found in [17]. However, it is a time consuming task to find an optimal

solution of a multi-robot path planning instance even on a small -like graph. Therefore,

the timeout of seconds is used after that the solving process switches to the MIT style

solving of the instance over the -like graph (it is based on 4-transitivity and it produces a

sub-optimal solution). Instances where the solving process managed to compute a re-

quired optimal solution in the given time out are presented only when it could distort

results (only scalability tests show the on-line computation of optimal solutions). Notice,

that the database should with optimal solutions to special cases should be pre-computed

off-line in the real-life application of the BIBOX- algorithm.

 The MIT has been re-implemented according to [8]. A similar optimization technique

as in the case of the BIBOX algorithm has been used. When an unoccupied vertex was

necessary, the nearest unoccupied vertex was found and transferred to the place where

needed. More details about the re-implementation of the MIT algorithm can be found in

[19].

 In order to allow reproducibility of the presented results all the source code is pro-

vided at the web page: http://ktiml.mff.cuni.cz/~surynek/research/jair2010. Additional

experimental results and raw experimental data are provided at the same location.

 Experimental evaluation has been performed on two computers. The first computer

has been used to generate experimental results regarding runtime - runtime configuration

1
; the second computer has been used to generate all the remaining results - default con-

figuration
2
.

1 Runtime configuration: 2x AMD Opteron 1600 MHz, 1GB RAM, Mandriva Linux 10.1, 32-bit edition, gcc

version 3.4.3, compilation with –O3 optimization level.

2 Default configuration: 4x AMD Opteron 1800 MHz, 5GB RAM, Mandriva Linux 2009.1, 64-bit edition, gcc

version 4.3.2, compilation with –O3 optimization level.

http://ktiml.mff.cuni.cz/~surynek/research/jair2010

 Efficient Abstract Path Planning for Multiple Robots

59

5.1. Makespan Comparison

The first series of experiments is devoted to comparison of the makespan of solutions

generated by tested algorithms.

All the tested algorithms were used to generate a sequential solution of a given in-

stance, which has been parallelized subsequently by the parallelism-increasing algorithm

(see Algorithm 3). Thus, the result is a parallel solution complying with the definition of

the solution of multi-robot path planning problem. A set of testing instances of multi-

robot path planning problem consists of instances on randomly generated bi-connected

graphs and of instances on grids.

A randomly generated bi-connected graph has

been generated according to its handle decomposi-

tion. First, a cycle of random length from uniform

distribution where some minimum and maximum

lengths were given has been generated. Then a se-

quence of handles of random lengths from uniform

distribution (again the minimum and the maximum

length of handles was given) has been added. Each

handle has been connected to randomly selected con-

nection vertices in the currently constructed graph.

The addition of handles has terminated when the

required size of the graph has been reached. An in-

stance on a randomly generated graph itself further

consists of random initial arrangement and goal

arrangement of robots over the graph where at least

the given number of vertices remains unoccupied. The handle decomposition used by

solving algorithms was exactly that one used for generating the graph.

The situation with instances over the grid is similar. The square grid graph of a giv-

en size has been generated together with random initial and goal arrangement of robots

over this graph. Again, a given number of vertices remain unoccupied. The handle de-

composition for the grid graph used by solving algorithms consists of an initial cycle with

 vertices (placed on the left upper corner of the grid); handles were added to fill in the

grid successively according to its rows and columns. The first row and the first column

were added at the beginning (handles with internal vertices). Then rows of the grid

were constructed by adding handles from the left to the right and from the top to the bot-

tom (handles with internal vertex). See Figure 12 for the ordering of addition of vertices

in the construction of the grid.

 as a grid

Figure 12. An illustration of handle

decomposition of a grid graph. The

ordering of the addition of individ-

ual handles is depicted by numbers

in vertices. Three types of han-

dles/cycles are used.

Handle
length

4

2

1

Pavel Surynek

60

Figure 13. Makespan comparison of solutions of instances over random bi-connected graphs.

Three algorithms are compared: the standard BIBOX, a variant of the BIBOX algorithm where the

last phase when robots are placed into the -like graph formed by the initial cycle and the first

handle – called BIBOX/MIT, and the MIT algorithm. Solutions were parallelized using parallelism-

increasing algorithm (Algorithm 3). Four setups of generation of random bi-connected graphs has

been used – random lengths of initial cycle and handles of the handle decomposition have uniform

distribution of the range: , , , and . The dependence of the makespan on the

number of unoccupied vertices in the graph is shown.

In some experiments, the number of unoccupied vertices was the parameter that has

been changing to observe dependency of the makespan on it while the graph of the in-

stance remained fixed.

1

10

100

1000

10000

100000
0 10 20 30 40 50 60 70 80 90

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

ζ=
M

ak
e

sp
an

Number of unoccupied vertices

Makespan | Random Bi-connected 0..2

BIBOX

BIBOX/MIT

MIT

1

10

100

1000

10000

100000

0 10 20 30 40 50 60 70 80 90
10

0
11

0
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

0
21

0
22

0
23

0
24

0

ζ=
M

ak
e

sp
an

Number of unoccupied vertices

Makespan | Random Bi-connected 0..4

BIBOX

BIBOX/MIT

MIT

1

10

100

1000

10000

100000

0 10 20 30 40 50 60 70 80 90
10

0
11

0
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

0
21

0
22

0
23

0
24

0
25

0
26

0

ζ=
M

ak
e

sp
an

Number of unoccupied vertices

Makespan | Random Bi-connected 0..16

BIBOX

BIBOX/MIT

MIT

1

10

100

1000

10000

100000

1000000

0 10 20 30 40 50 60 70 80 90
10

0
11

0
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

0
21

0
22

0
23

0
24

0
25

0
26

0
27

0
28

0
29

0
30

0
31

0
32

0
33

0
34

0

ζ=
M

ak
e

sp
an

Number of unoccupied vertices

Makespan | Random Bi-connected 0..32

BIBOX

BIBOX/MIT

MIT

|V| = 259 |V| = 248

|V| = 269 |V| = 344

 Efficient Abstract Path Planning for Multiple Robots

61

Figure 14. Makespan comparison of solutions of instances over square grids. Three algorithms are

compared: the standard BIBOX, BIBOX/MIT, and MIT on three grids: , , and .

Solutions were parallelized using parallelism-increasing algorithm (Algorithm 3). The dependence

of the makespan on the number of unoccupied vertices in the graph is shown.

Results shown in Figure 13 and Figure 14 are targeted on comparison of the makes-

pan of solutions generated by tested algorithms. These results have been generated on the

default configuration. Three algorithms were tested in this setup: the standard BIBOX, a

variant of the BIBOX algorithm where the last phase when robots are placed into the -

like graph formed by the initial cycle and the first handle – called BIBOX/MIT, and the

MIT algorithm.

Results in Figure 13 show makespans of solutions of instances over randomly gener-

ated bi-connected graphs. Graphs of size up to vertices were used (the graph had

been grown by addition of handles until the size of vertices had been reached). Four

graphs which differs in average length of initial cycle and handles of the handle decom-

position were used. Lengths of the initial cycle and handles have uniform distribution of

the range: , , , and respectively (that is, four identical graphs are

used). The length of the handle is equal to the number of its internal vertices. The depen-

dence of the makespan on the number of unoccupied vertices in the graph is shown.

1

10

100

1000

10000

0 5 10 15 20 25 30 35 40 45 50 55 60

ζ=
M

ak
e

sp
an

Number of unoccupied vertices

Makespan | Grid 8x8

BIBOX

BIBOX/MIT

MIT
1

10

100

1000

10000

100000

0 10 20 30 40 50 60 70 80 90
10

0
11

0
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

0
21

0
22

0
23

0
24

0
25

0

ζ=
M

ak
e

sp
an

Number of unoccupied vertices

Makespan | Grid 16x16

BIBOX

BIBOX/MIT

MIT

1

10

100

1000

10000

100000

1000000

0
20 40 60 80 10

0
12

0
14

0
16

0
18

0
20

0
22

0
24

0
26

0
28

0
30

0
32

0
34

0
36

0
38

0
40

0
42

0
44

0
46

0
48

0
50

0
52

0
54

0
56

0
58

0
60

0
62

0
64

0
66

0
68

0
70

0
72

0
74

0
76

0
78

0
80

0
82

0
84

0
86

0
88

0
90

0
92

0
94

0
96

0
98

0
10

00
10

20

ζ=
M

ak
e

sp
an

Number of unoccupied vertices

Makespan | Grid 32x32

BIBOX

BIBOX/MIT

MIT

|V| = 1024

|V| = 64 |V| = 256

Pavel Surynek

62

Figure 14 is devoted to structurally regular graphs – grid graphs of the size ,

 , and are used. Again, dependence of the makespan on the number of

unoccupied vertices in the graph is shown.

Random initial and goal arrangements are obtained as a random permutation of robots

in the vertices of the graph. The random permutation is generated from identical one by

applying quadratic number of transpositions. This process generates random arrange-

ments of the appropriate quality for the use in test.

It can be observed from the above tests that the BIBOX algorithm generates solutions

of the makespan approximately times to times smaller than that of solutions gen-

erated by the MIT algorithm. In the setup with random bi-connected graphs, the differ-

ence between BIBOX and MIT is becoming smaller as the size of handles increases. In the

setup with the grid graph, the BIBOX algorithm generates solutions that have approx-

imately times smaller makespan than that of the MIT algorithm. The steep decline of

the makespan can be observed with the portion of occupied vertices from approximately

 towards lower portion. This is some kind of a phase transition when robots are be-

coming arranged sparsely enough over the graph so that there are almost no interactions

between them (that is, they do not need to avoid with each other). This phase transition

seems to depend on the average size of handles – for the smaller size of handles the ratio

of the number of robots to the number of vertices characterizing the phase transition tends

to be higher.

The BIBOX/MIT algorithm exhibits performance depending on the size of the initial

-like graph of the handle decomposition. The larger is this -like graph the worse is the

performance of the BIBOX/MIT algorithm with respect to the makespan of generated

solutions. This behavior can be observed from the results shown in Figure 13 and Figure

14 using the fact that the longer handles induce larger initial -like graph. Grid graphs

represent the extreme case – almost all the handles are of the size . Both algorithms –

BIBOX as well as BIBOX/MIT – generate solutions of the very similar makespan (solu-

tions produced by the BIBOX/MIT are slightly better – on very small cycles, solving

process based on 4-transitivity used by MIT is more advantageous than exchanging robots

applied by BIBOX when robot are placed into the initial cycle of the handle decomposi-

tion).

Regarding the makespan, the BIBOX style solving process represents the better al-

ternative for solving the problem of multi-robot path planning with at least two unoccu-

pied vertices than the MIT algorithm. For the case with one unoccupied vertex, the BI-

BOX- and its variants can be used. As it will be shown in the following paragraphs,

BIBOX- exhibits the similar performance regarding the makespan as the standard BI-

BOX algorithm.

An interesting question is whether the use of optimal solutions of weak special cases

instead of standard one does really help. The experimental evaluation which results are

shown in Figure 15 is devoted to this question. Again, this test has been performed on the

default configuration. A comparison of the BIBOX algorithm with the variants of the

BIBOX- algorithm is shown consequently.

 Efficient Abstract Path Planning for Multiple Robots

63

Figure 15. An evaluation of the benefit of the use of weak special cases instead of standard ones.

Four variants of the BIBOX- algorithm are compared: BIBOX-/T (the standard transposition case

is used preferably), BIBOX-/3(the standard 3-cycle rotation case is used preferably), BIBOX-

/T|weak (the weak transposition case is used preferably), and BIBOX-/3|weak (the weak 3-cycle

rotation case is used preferably). Solutions were parallelized using parallelism-increasing algorithm

(Algorithm 3). The difference of the makespan of solution produced by these algorithms from

those produced by the BIBOX algorithm is shown (values below zero indicate that the tested algo-

rithm was better than BIBOX). Four random bi-connected graphs with the increasing number of

unoccupied vertices are used; they have handles of lengths with uniform distribution of ranges:

 , , , and respecitvely. To make the difference visible, results for individual algo-

rithms are sorted in descending order (thus, there is no interpretation of the horizontal axis).

Four variants of the BIBOX- algorithm are compared: BIBOX-/T (the standard

transposition case is used preferably), BIBOX-/3(the standard 3-cycle rotation case is

used preferably), BIBOX-/T|weak (the weak transposition case is used preferably), and

BIBOX-/3|weak (the weak 3-cycle rotation case is used preferably). Notice, that the

variant presented in the pseudo-code as Algorithm 2 prefers standard transposition cases.

If the transposition case no not possible to apply, the corresponding 3-cycle rotation case

is used instead (which is always possible). Other variants implement the preference in the

analogical way.

-100,00

-50,00

0,00

50,00

100,00

150,00

0 10 20 30 40 50 60 70 80 90
10

0
11

0
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

0
21

0
22

0
23

0
24

0
25

0

Δ
ζ

=
M

ak
es

p
an

 -
M

ak
es

p
an

(B
IB

O
X

)

Makespan| Random Bi-connected 0..2

BIBOX-θ/T

BIBOX-θ/3

BIBOX-θ/3|weak

BIBOX-θ/T|weak

-150,00

-100,00

-50,00

0,00

50,00

100,00

150,00

200,00

250,00

0 10 20 30 40 50 60 70 80 90
10

0
11

0
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

0
21

0
22

0
23

0
24

0
25

0

Δ
ζ

=
M

ak
es

p
an

 -
M

ak
es

p
an

(B
IB

O
X

)

Makespan | Random Bi-connected 0..3

BIBOX-θ/T

BIBOX-θ/3

BIBOX-θ/3|weak

BIBOX-θ/T|weak

-150

-100

-50

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90
10

0
11

0
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

0
21

0
22

0
23

0
24

0
25

0

Δ
ζ

=
M

ak
es

p
an

 -
M

ak
es

p
an

(B
IB

O
X

)

Makespan | Random Bi-connected 0..4

BIBOX-θ/T

BIBOX-θ/3

BIBOX-θ/3|weak

BIBOX-θ/T|weak

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

0
10 20 30 40 50 60 70 80 90 10

0
11

0
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

0
21

0
22

0
23

0
24

0
25

0

Δ
ζ

=
M

ak
es

p
an

 -
M

ak
es

p
an

(B
IB

O
X

)

Makespan | Random Bi-connected 0..5

BIBOX-θ/T

BIBOX-θ/3

BIBOX-θ/3|weak

BIBOX-θ/T|weak

|V| = 257 |V| = 257

|V| = 257 |V| = 259

Pavel Surynek

64

The comparison in Figure 15 shows difference of the makespan of solution generated

by mentioned three variants of BIBOX- from the makespan of the corresponding solu-

tion generated by the standard BIBOX (negative values of the difference indicate that

BIBOX generated solution with the greater makespan). Four random bi-connected graphs

were used for the experiment; the number of vertices was up to (again, the graph had

been grown by addition of handles until the size of vertices had been reached). The

length of the initial cycle and handles has been selected randomly with the uniform distri-

bution of ranges: , , , and , respectively. The relatively small ranges are

used in order to be able to calculate all the optimal solutions of the special cases in the

timeout of . The size of the -like graph, on that special cases appear, directly corres-

ponds to the length of the initial cycle and handles of the handle decomposition. Makes-

pans have been collected for instances with to unoccupied vertices for each

graph . To make differences among performances of tested algorithms clearly

visible, the difference in makespans has been sorted in the descending order. The differ-

ence in makespan tends to be greater for instances with few unoccupied vertices. Hence,

it is expectable that these makespans are sorted to the left or to the right margin.

Results shown in Figure 15 can be undoubtedly interpreted in the way that solutions

with the smallest makespan are produced by BIBOX-/T|weak tightly followed by BI-

BOX-/3|weak. This is an expectable result and it is possible to conclude that the use of

optimal solutions of weak special cases is beneficial. Moreover, a solution to a weak

special is easier to generate since it is less constrained than the solution of the corres-

ponding standard case. Another, interesting result that can be observed from Figure 15

concerns the makespan of solutions generated by the BIBOX algorithm in comparison to

tested variants of BIBOX-. Since values of makespan differences are insignificantly

deviate from equal distribution around , it is possible to conclude that variants of BI-

BOX- does not improve the makespan significantly in comparison with BIBOX on in-

stances of the multi-robot path planning problem with at least two unoccupied vertices.

Thus, the use of BIBOX- is substantiated only for instances with just single unoccupied

vertex (where the BIBOX algorithm is not applicable).

5.2. Parallelism Evaluation

The next series of experiments is devoted to an evaluation of parallelism of solutions

generated by tested algorithm. The exact meaning of the term parallelism is the value

obtained as the ratio of the total number of moves divided by the makespan. The result is

the average number of moves performed at each time step. High parallelism is typically

required as correlates with the small makespan. All the following experiments have been

performed on the default configuration.

 Again, three algorithms were tested: the standard BIBOX, BIBOX/MIT, and the MIT

algorithm. Four random bi-connected graphs with various average length of handles has

been used – random lengths of initial cycle and handles of the handle decomposition have

uniform distribution of the range: , , , and . The dependence of the

parallelism on the number of unoccupied vertices has been evaluated. Random initial and

 Efficient Abstract Path Planning for Multiple Robots

65

goal arrangements of robots in vertices have been used – for every number of unoccupied

vertices a new random initial and goal arrangements have been generated. Results regard-

ing this test are shown in Figure 16.

Figure 16. Average parallelism of solutions generated by tested algorithms for instances over

random bi-connected graphs. Three algorithms are compared: the standard BIBOX, BIBOX/MIT,

and the standard MIT algorithm. Solutions were parallelized using parallelism-increasing algorithm

(Algorithm 3). Four random bi-connected graphs has been used – random lengths of initial cycle

and handles of the handle decomposition have uniform distribution of the range: , , ,

and . The dependence of the average parallelism on the number of unoccupied vertices in the

graph is shown. The average parallelism is the number of moves, which the solution consists of,

divided by the makespan.

A similar experiment has been done with the square grid graphs. Three grids were

used in this setup: , , and . The dependence of parallelism on the

number of unoccupied vertices has been measured. A new random initial and goal ar-

rangement of robots has been used for every number of unoccupied vertices. Results

regarding this experiment are shown in Figure 17.

 In all the cases, the parallelism-increasing algorithm (Algorithm 3) has been used to

post-process sequential solutions generated by tested algorithms.

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90
10

0
11

0
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

0
21

0
22

0
23

0
24

0
25

0

M
o

ve
s

/
M

ak
e

sp
an

Number of unoccupied vertices

Parallelism | Random Bi-connected 0..4

BIBOX

BIBOX/MIT

MIT

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80 90
10

0
11

0
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

0
21

0
22

0
23

0
24

0

M
o

ve
s

/
M

ak
e

sp
an

Number of unoccupied vertices

Parallelism | Random Bi-connected 0..8

BIBOX

BIBOX/MIT

MIT

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90
10

0
11

0
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

0
21

0
22

0
23

0
24

0
25

0
26

0

M
o

ve
s

/
M

ak
e

sp
an

Number of unoccupied vertices

Parallelism | Random Bi-connected 0..16

BIBOX

BIBOX/MIT

MIT

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90
10

0
11

0
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

0
21

0
22

0
23

0
24

0
25

0
26

0
27

0
28

0
29

0
30

0
31

0
32

0
33

0
34

0

M
o

ve
s

/
M

ak
e

sp
an

Number of unoccupied vertices

Parallelism | Random Bi-connected 0..32

BIBOX

BIBOX/MIT

MIT

|V| = 344 |V| = 269

|V| = 248 |V| = 259

Pavel Surynek

66

Figure 17. Average parallelism comparison of solutions of instances over square grids. Three

algorithms are compared: the standard BIBOX, BIBOX/MIT, and MIT on three grids: ,

 , and . Again, solutions were parallelized using parallelism-increasing algorithm

(Algorithm 3). The dependence of the average parallelism on the number of unoccupied vertices in

the graph is shown.

It can be observed the BIBOX algorithm and its variant BIBOX/MIT exhibit relatively

natural behavior regarding parallelism. On bi-connected graphs, the parallelism of solu-

tions slightly increases as the number of unoccupied vertices increases in the almost fully

occupied graph. This behavior is yet more expressed on the grid graphs. The increase of

the parallelism is steeper in this case. When the number of unoccupied vertices is higher

than some threshold a different behavior can be observed. The fewer robots are in the

graph the lower is the parallelism, which is quite natural. It can be also observed that

parallelism correlates with the average length of handles of the handle decomposition –

this is caused by the fact that all the robots in the handle are moving at once. Another

characteristic, which the parallelism correlates with, is the diameter [29] of the graph.

This correlation can be observed on tests with grid graphs in Figure 17. The reason for

this correlation is the fact that all the robots along a path connecting two vertices in the

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40 45 50 55 60

M
o

ve
s

/
M

ak
e

sp
an

Number of unoccupied vertices

Parallelism | Grid 8x8

BIBOX

BIBOX/MIT

MIT

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80 90
10

0
11

0
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

0
21

0
22

0
23

0
24

0
25

0

M
o

ve
s

/
M

ak
e

sp
an

Number of unoccupied vertices

Parallelism | Grid 16x16

BIBOX

BIBOX/MIT

MIT

0

5

10

15

20

25

0 20 40 60 80
10

0
12

0
14

0
16

0
18

0
20

0
22

0
24

0
26

0
28

0
30

0
32

0
34

0
36

0
38

0
40

0
42

0
44

0
46

0
48

0
50

0
52

0
54

0
56

0
58

0
60

0
62

0
64

0
66

0
68

0
70

0
72

0
74

0
76

0
78

0
80

0
82

0
84

0
86

0
88

0
90

0
92

0
94

0
96

0
98

0
10

00
10

20

M
o

ve
s

/
M

ak
e

sp
an

Number of unoccupied vertices

Parallelism | Grid 32x32
BIBOX

BIBOX/MIT

MIT

|V| = 1024

|V| = 64 |V| = 256

 Efficient Abstract Path Planning for Multiple Robots

67

graph moves at once when an unoccupied vertex is relocated. The average length of such

paths correlates with the diameter of the graph.

Regarding the MIT algorithm, it can be observed that the parallelism of its solutions

decreases almost linearly with the increasing number of unoccupied vertices. Without

providing further details, the explanation of this behavior is that the size of parts of the

graph affected by movements of robots is relatively small in still the same in majority of

the phases of the algorithm [8] (the algorithm is more localized in the graph). Thus, as

occurrence of robots is getting linearly sparser the parallelism decreases almost linearly.

Recall, that the BIBOX algorithm behaves differently. The majority of movements take

place in the whole unfinished part of the graph, which is relatively getting smaller as the

BIBOX algorithm proceeds – this concerns relocation of the unoccupied vertex and indi-

vidual robots across the unfinished part of the graph (the algorithm works with the graph

more globally).

Figure 18. Step parallelism development of a solution on a random bi-connected graph generated

by the BIBOX algorithm. The random bi-connected graph has been generated with the length of the

initial cycle and handles having uniform distribution of the range . There were exactly two

unoccupied vertices in the graph. The solution produced by the standard BIBOX algorithm has been

parallelized using parallelism-increasing algorithm (Algorithm 3). The development of the step

parallelism (number of moves per time step) in time is shown.

Generally, it can be concluded from Figure 16 and Figure 17 that solutions generated

by the BIBOX and BIBOX/MIT algorithms allow higher parallelism than that of MIT.

Consequently, it can be observed together from Figure 13, Figure 14, Figure 16 and Fig-

ure 17 that the total number of moves, which solutions generated by BIBOX and BI-

BOX/MIT consist of, are still order of magnitude smaller than that of MIT. Thus the per-

formance of the BIBOX algorithms is not caused by the higher parallelism but also by the

smaller size of the generated sequential solutions.

The development of the number of movements per time step called step parallelism is

shown in Figure 18. This experiment has been done with the BIBOX algorithm, which has

been used to generate solution of a random instance on a random bi-connected graph

0

5

10

15

20

25

30

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

N
u

m
b

er
 o

f
m

o
ve

s

Time step

Step paralellism development | Random Bi-connected 0..4

|V| = 259

Pavel Surynek

68

where lengths of the initial cycle and handles of the handle decomposition have been

randomly selected with the uniform distribution with the range . There were exactly

two unoccupied vertices in the input graph.

 Peaks in Figure 18 correspond to parallel movements along long path. Observe, that

the density and height of these peaks is slightly getting smaller as the algorithm proceeds.

As it has been stated, this is caused by the fact that the part of the graph affected by this

type of movements is getting smaller. Other values correspond to various rotations along

cycles in the graph that are intensively done by the BIBOX algorithm. The absolute num-

ber parallel of movements corresponding to these rotations does not change as the algo-

rithm proceeds (the average size of a cycle of the unfinished part of the graph is still the

same since the graph was generated uniformly).

5.3. Scalability Evaluation

The last series of experiments is devoted to scalability evaluation, that is how tested algo-

rithms behave while the size of instance to solve increases. All these experiments have

been performed on the runtime configuration.

 Scalability tests were aimed on the makespan of generated solution and the overall

runtime necessary to produce a parallel solution. The overall time is the time necessary to

produce a sequential solution plus the time needed to increase its parallelism. The follow-

ing algorithms were compared: BIBOX, BIBOX/MIT, BIBOX-/T|weak, BIBOX-

/3|weak, and MIT. Algorithms BIBOX-/T and BIBOX-/3 were ruled out since they are

outperformed by BIBOX-/T|weak and BIBOX-/3|weak respectively as it has been

shown in Section 5.1 regarding the makespan. Moreover, BIBOX-/T|weak and BIBOX-

/3|weak are slightly faster if all the records in the database of optimal solutions are pre-

computed off-line (the shorter resulting solution is produced than in the case of BIBOX-

/T and BIBOX-/3). They are significantly faster if the optimal solutions to special cases

need to be computed on-line (on demand) [17, 18] (the optimal solution to weak special

case is easier to find than the optimal solution to the standard special case).

 Tests targeted on scalability used the different setup of instances of multi-robot path

planning problem. Now, approximately instances on bi-connected graphs with the

size varying from to vertices were generated. Random lengths of the initial cycle

and handles of the handle decomposition were selected randomly from uniform distribu-

tion with ranges: ,…, . Such selection guarantees that graphs with short handles

as well as graphs with long handles are represented. There were exactly two unoccupied

vertices in all the tested instances (in order to make application of the BIBOX algorithm

possible).

 Scalability evaluation regarding the makespan is shown in Figure 19. The dependence

of the makespan on the number of vertices of the graph of the instance is shown. Figure

20 shows the dependence of the overall solving runtime on the number of vertices. The

same set of instances as in the test from Figure 19 has been used. Thus, Figure 19 and

Figure 20 show the makespan and the runtime of the same individual instances. In both

 Efficient Abstract Path Planning for Multiple Robots

69

figures algorithms are compared pair-wise from the worst performing to the best one (the

pair of algorithms nearest according to the given characteristic is compared).

Figure 19. A comparison of the scalability of tested algorithms with respect to the makespan. Five

algorithms are compared: BIBOX, BIBOX/MIT, BIBOX-/T|weak, BIBOX-/3|weak, and MIT.

Approximately instances over various random bi-connected graphs of the size from to

vertices were used. The range of the uniform distribution for random generation of lengths of han-

dles was as follows: , …, . Algorithms are sorted from left/top to right/bottom according

to their performance. Each sub-chart shows the relative comparison of two algorithms which per-

formance regarding the makespan is nearest. The dependence of the makespan on the size of the

graph is shown.

 Results regarding makespan undoubtedly show that the MIT algorithm performs as

worst while the standard BIBOX algorithm produces the best solutions. BIBOX/MIT,

BIBOX-/T|weak and BIBOX-/3|weak are somewhere in the middle. The makespan of

solutions generated by BIBOX-/T|weak and BIBOX-/3|weak sometimes jumps up and

catches the makespan of the corresponding solution generated by BIBOX/MIT. This hap-

pens if BIBOX-/T|weak or BIBOX-/3|weak do not manage to compute optimal solution

to the special case in the given timeout of seconds. In such a case BIBOX-/T|weak

1

10

100

1000

10000

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

ζ
=

M
ak

e
sp

an

|V|

Scalability comparison | Makespan

BIBOX/MIT

MIT

0

500

1000

1500

2000

2500

3000

3500

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
ζ

=
M

ak
e

sp
an

|V|

Scalability comparison | Makespan

BIBOX-θ/3|weak

BIBOX/MIT

0

500

1000

1500

2000

2500

3000

3500

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

ζ
=

M
ak

e
sp

an

|V|

Scalability comparison | Makespan

BIBOX-θ/T|weak

BIBOX-θ/3|weak

0

500

1000

1500

2000

2500

3000

3500

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

ζ
=

M
ak

e
sp

an

|V|

Scalability comparison | Makespan

BIBOX-θ/T|weak

BIBOX

Random bi-connected
Handles 0...2, …, 0...16

Random bi-connected
Handles 0...2, …, 0...16

Random bi-connected

Handles 0...2, …, 0...16

Random bi-connected

Handles 0...2, …, 0...16

Pavel Surynek

70

and BIBOX-/3|weak produces exactly the same solution as BIBOX/MIT since they have

to switch to MIT mode of generating (sub-optimal) solutions to special cases.

Figure 20. A comparison of the scalability of tested algorithms with respect to the runtime. Again,

five algorithms are compared: BIBOX, BIBOX/MIT, BIBOX-/T|weak, BIBOX-/3|weak, and MIT.

The setup of instances is the same as for the experiment from Figure 19. Algorithms are sorted from

left/top to right/bottom according to their performance. Each sub-chart shows the relative compari-

son of two algorithms which performance regarding the runtime is nearest. The runtime (the total

time necessary to produce sequential solution plus the time for making it parallel) is shown is the

dependence on the size of the graph.

The quite surprising result is that even though BIBOX-/T|weak and BIBOX-/3|weak

compose the resulting solution over the -like graph consisting of the initial cycle and the

first handle of the handle decomposition of optimal solutions to special cases, it still has

the worse makespan than the corresponding solution generated using robot exchanges by

the BIBOX algorithm.

Results regarding overall runtime of tested algorithms generally show that BIBOX-

/T|weak and BIBOX-/3|weak are as slow as the given timeout for computing optimal

solutions to the special cases (however, the higher is the timeout the more special cases

the algorithm manages to compute). The more interesting situation is with MIT, BI-

0

2

4

6

8

10

12

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

R
u

n
ti

m
e

(s
ec

o
n

d
s)

|V|

Scalability comparison | Solving runtime

BIBOX-θ/T|weak

BIBOX-θ/3|weak

0

2

4

6

8

10

12

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
R

u
n

ti
m

e
(s

ec
o

n
d

s)
|V|

Scalability comparison | Solving runtime

BIBOX-θ/3|weak

MIT

0

0,5

1

1,5

2

2,5

3

3,5

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

R
u

n
ti

m
e

(s
ec

o
n

d
)

|V|

Scalability comparison | Solving runtime

MIT

BIBOX/MIT

0

0,5

1

1,5

2

2,5

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

R
u

n
ti

m
e

(s
ec

o
n

d
s)

|V|

Scalability comparison | Solving runtime

BIBOX

MIT

Random bi-connected
Handles 0...2, …, 0...16

Random bi-connected

Handles 0...2, …, 0...16

Random bi-connected
Handles 0...2, …, 0...16

Random bi-connected
Handles 0...2, …, 0...16

 Efficient Abstract Path Planning for Multiple Robots

71

BOX/MIT, and BIBOX since they have very close runtimes. The BIBOX algorithm is

again the best. Observe, that the runtime does not exactly correspond to the length of the

generated solutions. In other words, computations used by the BIBOX are more time

consuming than that of MIT (for example BIBOX intensively computes shortest paths).

 The appearance of the charts in Figure 20 corresponds with theoretical results regard-

ing the worst case time complexity (namely, it seems that the average time complexity

meets the worst case). On the other hand, it seems that this is not the case of charts in

Figure 19 which exhibit that the average makespan is lower than the worst case estima-

tion. However, this is just a conjecture that requires further investigation (an interesting

topic for future work).

6. Related Works and Conclusion

Two algorithms for solving the abstract problem of multi-robot path planning on bi-

connected graphs were described in this manuscript – BIBOX and BIBOX-. Several

modified variants of the BIBOX- algorithm are described as well. The precise theoretical

and experimental analysis of these algorithms is provided. The theoretical analysis is

targeted proofs of correctness and on asymptotic estimations of upper bound on the ma-

kespan of generated solution and on time and space consumption. The experimental anal-

ysis is targeted on comparison with the so called MIT algorithm [8] which has been so far

the only algorithm capable of solving multi-robot path planning problems with small

unoccupied space in the environment.

Although the MIT algorithm has promising theoretical properties – solution generated

by this algorithm theoretical makespan of with respect to the graph ;

its worst case time complexity is as well – it has been significantly outper-

formed by BIBOX in terms of the makespan by order of one or two magnitudes. Regard-

ing the runtime BIBOX algorithm is slightly faster than MIT which is relatively fast (in-

stances with graphs of hundreds of vertices full of robots are solved within seconds on

today’s standard hardware). Thus, although asymptotic estimations for makespan are the

same for both BIBOX and MIT, the multiplication factor in the estimation in case of BI-

BOX is smaller.

The minor drawback of the BIBOX algorithm is that it is not able to solve instances

of multi-robot path planning with just single unoccupied vertex. This issue has been ad-

dressed in this work by proposing modified algorithm called BIBOX- and its variants

called BIBOX/MIT, BIBOX-/T, BIBOX-/3, BIBOX-/T|weak, and BIBOX-/3|weak.

They use different approach for solving the situation on trivial bi-connected graphs con-

sisting of one cycle and one handle connected to it – called -like graphs. Except the first

algorithm, all the other algorithms use database with optimal solutions to special in-

stances over these -like graphs – called special cases - of which solutions to all the in-

stances over -like graphs can be composed.

Regarding the makespan, all these alternative algorithms outperform MIT. If the da-

tabase of optimal solutions is available in advance, then BIBOX- algorithms almost

match the performance of MIT in terms of runtime. If the required optimal solutions to

Pavel Surynek

72

special cases are not available, they need to be computed on-line which is difficult. Con-

sequently, it can cause a significant slowdown of the algorithm. The issue of computing

optimal solutions to special cases is addressed in details in [17, 18]. Generally, the de-

tailed description of pros and cons of all the algorithms is given. Thus, the user can prefer

some of them according to her/his requirements.

The important post-processing part for all the presented algorithms, which is used to

increase parallelism of generated solutions, is also presented. The technique is based on

the method of critical path [11] and on the newly defined notion of independency be-

tween moves of robots. This is the essential step since all the algorithms including MIT

generates sequential solutions with no parallel moves.

Notice, that performance of both presented algorithms depends on the handle de-

composition of the input graph. An interesting question is how to optimize handle de-

composition in order to improve makespan or runtime. Is it better to use the small number

of large handles or the large number of small handles? This question is out of the scope of

this work and it is left for future work.

The direct extension of the presented algorithm can be made by extending them from

bi-connected graphs to general graphs. However, some new issues need to be solved

when doing this. First, there will be many unsolvable instances – it may happen that a

robot needs to go the neighboring bi-connected component than it is currently located. If

the bridge (isthmus) connecting these components is longer than the number of unoccu-

pied vertices, the relocation of the robot is not possible.

Solving process for instances of the problem of multi-robot path planning on general

graphs can be based on the already developed process for bi-connected graphs. The gen-

eral graph can be decomposed into the tree of bi-connected components [29, 30]. The

algorithm for bi-connected case can be used over the individual bi-connected compo-

nents. However, robots must be relocated to the goal bi-connected components first. As it

was mentioned this is not always possible. Without mentioning further details, the

process should proceed by solving leaf bi-connected components first and continuing to

the root bi-connected component. This issue is again out of scope of this work and it is

left for future studies.

The important related work is represented by articles [25, 26, 27, 28]. Authors study

so called multi-agent path planning which is similar to the notion of multi-robot path

planning with some further relaxations (for example a swap of agents along an edge

seems to be allowed). The number of moves is the optimized parameter. Authors define

the tractable class of this optimization problem where graphs are restricted on grids and

there is a relative abundance of unoccupied vertices. The major difference from the pre-

sented work is that authors are developing solving algorithms for instances with lot of

free space in the environment. The authors showed that their approach scale up well. The

theoretical relation of multi-agent path planning and multi-robot path planning is an inter-

esting question for future work.

Another interesting related work is represented by [12, 13]. Despite the title, the au-

thor is solving the optimal variant of a problem of pebble motion on a graph. The solving

 Efficient Abstract Path Planning for Multiple Robots

73

method is based on search (which has inherently exponential time complexity). To in-

crease the speed the author proposed to decompose the input graph into sub-structures

that are easy to solve. However, it seems that the proposed approach does not scale up

for large number of robots/pebbles (only up to robots are used; environments contain

lot of free space again).

Recently, a new search method improved by the reduction of the branching factor has

been published [15]. It generates optimal solutions to restricted version of the problem of

pebble motion on a certain kind of grid graphs (in comparison with grid graphs intro-

duced in this work, the diagonal edges are added [15]). Again, the method is targeted on

special environments only and it supposes lot of free space in the environment (only up

to units are moving in the environment where there is unoccupied positions).

The performance of this technique on graphs with small free space and its scalability are

thus questionable. Generally, it can be concluded that it is not directly comparable with

the presented work.

Another related approach is to use further abstractions of the already abstract problem

formulation. This approach is adopted in [6, 7]. Authors study so called direction maps of

the environment where the required path is searched at multiple levels of the abstraction

of the direction map.

Regarding future work, it is far more interesting to resolve the question whether op-

timal solutions of multi-robot path planning can be approximated by (pseudo-) poly-

nomial time algorithm than to make augmentations of standard search methods with ex-

ponential time complexity and to declare them “optimal solving methods”. All the related

works targeted on generating optimal solutions of problems related to multi-robot path

planning are restricted on very specific (typically smallish) instances only (either there is

extremely small number of robots or the environment is structurally simple, or both). On

the other hand, if the approximation algorithm with (pseudo-) polynomial time complexi-

ty is available, it is possible to estimate how far the current solution is from the optimal

one even for large instances.

Tractable cases of the multi-robot path planning problem also worth studying in fu-

ture. This topic has been already addressed in [25, 26, 27, 28] from some point of view. It

seems to be worthwhile to deal with tractable cases, since this is the only approach from

related works, which proved to be scalable.

Another interesting topic for future work is to study how solutions generated by pre-

sented algorithm can be improved towards optimal makespan. Some initial work has been

already done in [21]. It is based identifying and eliminating redundancies from solutions.

The performed experiments showed that this is a promising technique.

Acknowledgments

This work is supported by The Czech Science Foundation (Grantová agentura České

republiky - GAČR) under the contract number 201/09/P318 and by The Ministry of Edu-

cation, Youth and Sports, Czech Republic (Ministerstvo školství, mládeže a tělovýchovy

ČR – MŠMT ČR) under the contract number MSM 0021620838.

Pavel Surynek

74

References

1. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms

(Second edition), MIT Press and McGraw-Hill, 2001, ISBN 0-262-03293-7.

2. J. D. Dixon and B. Mortimer. Permutation Groups. Graduate Texts in Mathematics, Volume

163, Springer, 1996, ISBN 978-0-387-94599-6.

3. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman & Co., 1979, ISBN: 978-0716710455.

4. J. E. Hopcroft, R. Motwani, J. D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison Wesley, 2000, ISBN: 978-0201441246.

5. E. Hordern. Sliding Piece Puzzles. Oxford University Press, 1986, ISBN: 978-0198532040.

6. M. R. Jansen and N. R. Sturtevant. Direction maps for cooperative pathfinding. Proceedings

of (AIIDE 2008), pp.. AAAI Press, 2008.

7. M. R. Jansen and N. R. Sturtevant. A new approach to cooperative pathfinding. Proceedings

of AAMAS 2008, pp. 1401 - 1404, 2008.

8. D. Kornhauser, G. L. Miller, and P. G. Spirakis. Coordinating Pebble Motion on Graphs,

the Diameter of Permutation Groups, and Applications. Proceedings of the 25th Annual Sym-

posium on Foundations of Computer Science (FOCS 1984), pp. 241-250, IEEE Press, 1984.

9. C. H. Papadimitriou, P. Raghavan, M. Sudan, and H. Tamaki. Motion Planning on a

Graph. Proceedings of the 35th Annual Symposium on Foundations of Computer Science

(FOCS 1994), pp. 511-520, IEEE Press, 1994.

10. D. Ratner and M. K. Warmuth. Finding a Shortest Solution for the N×N Extension of the

15-PUZZLE Is Intractable. Proceedings of the 5th National Conference on Artificial Intelli-

gence (AAAI 1986), pp. 168-172, Morgan Kaufmann Publishers, 1986.

11. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach (second edition). Pren-

tice Hall, 2003, ISBN: 978-0137903955.

12. M. R. K. Ryan. Graph Decomposition for Efficient Multi-Robot Path Planning. Proceedings

of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 2003-

2008, IJCAI Conference, 2007.

13. M. R. K. Ryan. Exploiting Subgraph Structure in Multi-Robot Path Planning. Journal of Ar-

tificial Intelligence Research (JAIR), Volume 31, pp. 497-542, AAAI Press, 2008.

14. P. E. Schupp and R. C. Lyndon. Combinatorial group theory. Springer, 2001, ISBN 978-3-

540-41158-1.

15. T. Standley. Finding Optimal Solutions to Cooperative Pathfinding Problems. Proceedings of

the 24th AAAI Conference on Artificial Intelligence (AAAI 2010), pp. 173-178, AAAI Press,

2010.

16. P. Surynek. A Novel Approach to Path Planning for Multiple Robots in Bi-connected Graphs.

Proceedings of the 2009 IEEE International Conference on Robotics and Automation (ICRA

2009), pp. 3613-3619, IEEE Press, 2009.

17. P. Surynek. Towards Shorter Solutions for Problems of Path Planning for Multiple Robots in

θ-like Environments. Proceedings of the 22nd International FLAIRS Conference (FLAIRS

2009), pp. 207-212, AAAI Press, 2009.

18. P. Surynek. Making Solutions of Multi-robot Path Planning Problems Shorter Using Weak

Transpositions and Critical Path Parallelism. Proceedings of the 2009 International Sympo-

sium on Combinatorial Search (SoCS 2009), University of Southern California, 2009,

http://www.search-conference.org/index.php/Main/SOCS09 [July 2009].

19. P. Surynek. An Application of Pebble Motion on Graphs to Abstract Multi-robot Path Plan-

ning. Proceedings of the 21st International Conference on Tools with Artificial Intelligence

(ICTAI 2009), pp. 151-158, IEEE Press, 2009.

http://www.search-conference.org/index.php/Main/SOCS09

 Efficient Abstract Path Planning for Multiple Robots

75

20. P. Surynek. An Optimization Variant of Multi-Robot Path Planning is Intractable. Proceed-

ings of the 24th AAAI Conference on Artificial Intelligence (AAAI 2010), pp. 1261-1263,

AAAI Press, 2010.

21. P. Surynek and P. Koupý. Improving Solutions of Problems of Motion on Graphs by Redun-

dancy Elimination. Proceedings of the ECAI 2010 Workshop on Spatio-Temporal Dynamics

(ECAI STeDy 2010), pp. 37-42, University of Bremen, 2010.

22. P. Surynek. Abstract Path Planning for Multiple Robots: A Theoretical Study. Technical Re-

port, http://ktiml.mff.cuni.cz/~surynek/index.html.php?select=publications, Charles Universi-

ty in Prague, Czech Republic.

23. P. Surynek. Abstract Path Planning for Multiple Robots: An Empirical Study. Technical Re-

port, http://ktiml.mff.cuni.cz/~surynek/index.html.php?select=publications, Charles Universi-

ty in Prague, Czech Republic.

24. R. E. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal on Compu-

ting, Volume 1 (2), pp. 146-160, Society for Industrial and Applied Mathematics, 1972.

25. K. C. Wang and A. Botea. Tractable Multi-Agent Path Planning on Grid Maps. Proceedings

of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 1870-

1875, IJCAI Conference, 2009.

26. K. C. Wang. Bridging the Gap between Centralised and Decentralised Multi-Agent Pathfind-

ing. Proceedings of the 14th Annual AAAI/SIGART Doctoral Consortium (AAAI-DC 2009),

pp. 23-24, AAAI Press, 2009.

27. K. C. Wang and A. Botea. Fast and Memory-Efficient Multi-Agent Pathfinding. Proceedings

of the Eighteenth International Conference on Automated Planning and Scheduling (ICAPS

2008), Australia, pp. 380-387, AAAI Press, 2008, ISBN 978-1-57735-386-7.

28. K. C. Wang and A. Botea. Scalable Multi-Agent Pathfinding on Grid Maps with Tractability

and Completeness Guarantees. Proceedings of the European Conference on Artificial Intelli-

gence (ECAI 2010), IOS Press, 2010.

29. D. B. West. Introduction to Graph Theory. Prentice Hall, 2000, ISBN: 978-0130144003.

30. J. Westbrook, R. E. Tarjan. Maintaining bridge-connected and biconnected components on-

line. Algorithmica, Volume 7, Number 5&6, pp. 433–464, Springer, 1992.

31. R. M. Wilson. Graph Puzzles, Homotopy, and the Alternating Group. Journal of Combina-

torial Theory, Ser. B 16, pp. 86-96, Elsevier, 1974.

http://ktiml.mff.cuni.cz/~surynek/index.html.php?select=publications
http://ktiml.mff.cuni.cz/~surynek/index.html.php?select=publications

