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Abstract

In 1975 Wegner conjectured that the nerve of every finite good
cover in R

d is d-collapsible. We disprove this conjecture.
A good cover is a collection of open sets in R

d such that the inter-
section of every subcollection is either empty or homeomorphic to an
open d-ball. A simplicial complex is d-collapsible if it can be reduced
to an empty complex by repeatedly removing a face of dimension at
most d − 1 which is contained in a unique maximal face.

1 Introduction

In 1975 Wegner [Weg75] introduced d-collapsible simplicial complexes. His
definition comes from studying intersection patterns of convex sets. He
proved that simplicial complexes coming from finite collections of convex
sets (as their nerves) are d-collapsible. He also conjectured that his result
has a topological extension when collections of convex sets are replaced by
good covers. The purpose of this article is to disprove this conjecture.

We assume that the reader is familiar with simplicial complexes, otherwise
we refer to introductory chapters of books like [Hat01, Mat03, Mun84].

Good covers. A d-cell is an open subset of R
d homeomorphic to a ball.

A good cover in R
d is a collection G of d-cells in R

d such that for every
subcollection G′ ⊆ G the intersection of the sets in G′ is either a d-cell or
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empty.1 We remark that a collection of open convex sets in R
d always form

a good cover.

d-representable complexes. A nerve of a collection F of sets in R
d is a

simplicial complex whose vertices are the sets in F and whose faces are col-
lections of vertices with a nonempty intersection. A finite simplicial complex
is convexly d-representable if it is isomorphic to a collection of convex sets
in R

d; it is topologically d-representable if it is isomorphic to a good cover
in R

d. Standard notion appearing in the literature is d-representable instead
of convexly d-representable. However, we add ‘convexly’ in order to clearly
distinguish convex sets and good covers.

d-collapsible complexes. Let K be a simplicial complex. Assume that σ

is a face of K of dimension at most d−1 such that there is only one maximal
face of K containing σ. Then we say that σ is d-collapsible and that the
complex

K
′ := K \ {η ∈ K : σ ⊆ η}

arises from K by an elementary d-collapse. A simplicial complex K is d-
collapsible if it can be reduced to an empty complex by a sequence of ele-
mentary d-collapses.

Wegner [Weg75] proved that every convexly d-representable simplicial
complex is d-collapsible. He also conjectured that his result has the following
topological extension.

Conjecture 1.1 (Wegner, 1975). Every topologically d-representable simpli-
cial complex is d-collapsible.

We disprove this conjecture for every d ≥ 2. We start with construct-
ing a simplicial complex  L which is topologically 2-representable but not
2-collapsible. In higher dimensions we obtain a counterexample by using
suspensions of the complex  L.

Theorem 1.2. For every d ≥ 2 there is a simplicial complex which is topo-
logically d-representable but not d-collapsible.

Additional background. Conjecture 1.1 is a natural question in the con-
text of Helly-type theorems. For example the Helly theorem [Hel23] can be

1Different notions of a good cover appear in the literature. Sometimes the cells are
assumed being compact instead of open. The intersection of G′ can be also assumed
contractible instead of being a d-cell. For our purposes there is not a big difference while
constructing a counterexample. It can be easily modified to fulfill the above mentioned
conditions.
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formulated in such a way that a convexly d-representable simplicial com-
plex containing all d-faces has to be already a full simplex. Once we know
that convexly d-representable simplicial complexes are d-collapsible, it is a
simple consideration to prove the Helly theorem2. In this case, the Helly the-
orem has a topological extension for topologically d-representable simplicial
complexes [Hel30]. Many Helly type theorems have a similar topological ex-
tension; see, e.g., the introduction of [MT09] for more detailed list. However,
the conclusion for d-collapsible complexes may be stronger than for topolog-
ically d-representable complexes, e.g., in [KM05]. Our counterexample thus
shows that results for d-collapsible complexes cannot be generalized all at
once for topologically d-representable complexes.

2 Planar case

We start this section with describing the complex  L. Let A1, A2, A3, B1, B2, B3,

C1, C2, C3, D, X1, X2, X3, Y1, Y2, Y3, Z1, Z2, Z3 be the (open) sets from the Fig-
ure 2. We also set A := {A1, A2, A3}, B := {B1, B2, B3}, C := {C1, C2, C3},
D := {D}, X := {X1, X2, X3}, Y := {Y1, Y2, Y3}, and Z := {Z1, Z2, Z3}. Let
L be the collection of all these sets, i.e., L := A ∪ B ∪ C ∪ D ∪ X ∪ Y ∪ Z.
Finally,  L is the nerve of L.

We will show that  L is topologically 2-representable but not 2-collapsible.

2.1 Topological representability

It is sufficient to show that L is a good cover. This property can be hand-
checked; however, we offer an alternative approach.

First we realize that all sets of L\Z are convex. Thus L\Z is a good cover.
It remains to check that adding sets of Z does not violate this property.

Let Z ∈ Z and let LZ := {L ∩ Z : L ∈ L}. We are done as soon as we
show that LZ1 ,LZ2, and LZ3 are good covers.

Because of the symmetry we show it only for LZ1. The sets of LZ1 can
be transformed into convex sets by a homeomorphism of R

2. See Figure 2.1.
Thus they form a good cover.

2.2 Non-collapsibility by case analysis

Here we prove that  L is not 2-collapsible by case analysis. We get a bit
stronger results that will help us for higher dimensions. Disadvantage of this
proof is that it does not give an explanation how is the complex constructed.

2There is also a simple geometric proof of the Helly theorem, of course.
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Figure 1: The sets A1, . . . , Z3. We rather supply more detailed description
of the sets if the picture is print only in black and white: The sets A∗ are the
ovals on the boundary; B∗ are the small discs close to the boundary; C∗ are
the bread-shaped sets; D is the triangle in the center; X∗ are the circles close
to the center; Y∗ are the bell-shaped sets; and Z∗ are the boomerang-shaped
sets
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Figure 2: A transformation of LZ1. Whatever is outside of Z1 can be ignored.

Therefore we supply an additional heuristic explanation in the next subsec-
tion, although it would need a bit more effort to turn that explanation into
a proof.

For a simplicial complex K we set

γ0(K) := min{d : K has a d-collapsible face}.

The fact that  L is not 2-collapsible is implied by the following proposition.

Proposition 2.1. γ0( L) = 3.

In order to prove the proposition we need a simple lemma.

Lemma 2.2. Let K be a simplicial complex and σ be a 1-face (edge) of
it. Assume that u and v are vertices of K not belonging to σ such that
σ ∪ {u} ∈ K, σ ∪ {v} ∈ K, but σ ∪ {u, v} 6∈ K. Then σ is not a 2-collapsible
face of K.

5



Proof. If τ is a unique maximal face of K containing σ then u, v ∈ τ due to
the conditions of the lemma. However, σ ∪ {u, v} 6∈ K.

Proof of Proposition 2.1. In the spirit of Lemma 2.2 for every 1-face σ ∈  L
we find a couple of vertices u, v ∈  L such that σ ∪ {u}, σ ∪ {v} ∈  L, but
σ ∪ {u, v} 6∈  L. It is sufficient to check 1-faces since if a 0-face (vertex) w is
1-collapsible then any 1-face containing w is 1-collapsible as well. Moreover,
it is sufficient to check only some 1-faces because of the symmetries of the
complex. The rest of the proof is given by the following table.

σ u, v σ u, v σ u, v

{A1, A2} B2, Z2 {A1, B1} C1, A3 {A1, C1} B1, B2

{A1, Y1} B1, Z1 {A1, Z1} C1, A3 {B1, C1} A1, C3

{B1, Y1} C1, A3 {C1, C2} B2, D {C1, D} C2, C3

{C1, X1} Y1, Y2 {C1, Y1} B1, Z1 {C1, Z1} Y1, Z2

{D, X1} Y1, Y2 {D, Y1} C1, X3 {X1, X2} Y2, X3

{X1, Y1} D, Z1 {X1, Z1} Y1, Z2 {Y1, Z1} C1, A3

{Z1, Z2} A1, X1

2.3 Sketch of non-collapsibility

The purpose of this subsection is to give a rough idea why the complex  L
should not be 2-collapsible. This description could be useful, for instance, for
generalizations. However, the reader can easily skip this part. The author
still prefer to include this discussion in order to explain how the complex is
built up.

Let us split the collection L into two parts L+ := A ∪ B ∪ C ∪ D and
L− := X ∪ Y ∪ Z. The nerve of L+, resp. L−, is denoted by  L+, resp.  L−.
Both  L+ and  L− are triangulations of a disc with only three boundary edges
{A1, A2}, {A1, A3}, and {A2, A3}; resp. {Z1, Z2}, {Z1, Z3}, and {Z2, Z3};
see Figure 2.3. Only these boundary faces are 2-collapsible faces of  L+, resp.
 L−.

By suitable overlapping of L+ and L− (i.e., obtaining L) we get that also
the above mentioned boundary faces are not 2-collapsible anymore (in whole
 L). For instance Z1 ∩ Z2 intersects A1 (in addition to X1 already in L−);
however, A1 and X1 are disjoint. Thus {Z1, Z2} is not a 2-collapsible face of
L.

It remains to check that merging L+ and L− does not introduce any new
problems. It is, in fact, checked in a detail in the previous section. We just
mention that there is no problem with 1-faces which already appear in  L+
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Figure 3: The complexes  L+ and  L−.
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or  L−. However; new 1-faces are introduced when one vertex comes from
 L+ and the second one from  L−. For another triangulations these newly
introduced faces can be 2-collapsible.3

3 Higher dimensions

Joins of simplicial complexes will help us to generalize the counterexample
to higher dimensions. Let K and K

′ be simplicial complexes with the vertex
sets V (K) and V (K′). Their join is a simplicial complex K ⋆ K

′ whose
vertex set is the disjoint union V (K) ⊔ V (K′);4 and whose set of faces is
{α ⊔ β : α ∈ K, β ∈ K

′}.
We need the following two lemmas.

Lemma 3.1 ([MT09, Lemma 4.2]). For every two simplicial complexes K,
K

′ we have γ0(K ⋆ K
′) = γ0(K) + γ0(K

′).

Lemma 3.2. Let K be a convexly/topologically d-representable complex and
K

′ be a convexly/topologically d′-representable complex. Then K ⋆ K
′ is a

convexly/topologically (d + d′)-representable complex.

Proof. Let F be a collection of convex sets/good cover in R
d such that K

is isomorphic to the nerve of F . Similarly F ′ is a suitable collection in R
d
′

such that K
′ is isomorphic to the nerve of F ′.

Let us set

F ⋆ F ′ := {F × R
d
′

: F ∈ F} ∪ {R
d × F ′ : F ′ ∈ F ′}.

Then it is easy to check that K ⋆ K
′ is isomorphic to the nerve of F ⋆ F ′.

Moreover F ⋆ F ′ is a collection of convex sets/good cover in R
d+d′ .

Now we can finish the proof of our main result.

Proof of Theorem 1.2. Let T be the simplicial complex consisting of two
isolated points. The complex T is topologically 1-representable and γ0(T) =
1. Let us set

J =  L ⋆ T ⋆ · · · ⋆ T
︸ ︷︷ ︸

d−2

.

3It would be perhaps possible to show that the complex is not 2-collapsible even if the
newly introduced faces were 2-collapsible. Listing all 1-faces in the previous subsection
seems, however, more convenient for the current purpose.
4If A and B are sets with A ∩ B 6= ∅ then their disjoint union can be defined as

A ⊔ B := A × {1} ∪ B × {2}.
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In topology, the complex J would be called (d − 2)-tuple suspension of  L.
Then γ0(J) = d + 1 due to Proposition 2.1 and Lemma 3.1. On the other
hand, J is topologically d-representable due to Lemma 3.2.

4 Conclusion

In the spirit of Helly-type theorems we could ask whether there is at least
some weaker bound for collapsibility of topologically d-representable com-
plexes.

Question 4.1. For which d ≥ 2 there is a d′ ∈ N (as least as possible) such
that every topologically d-representable complex is d-collapsible?

Using joins of multiple copies of  L (instead of suspensions of  L) we obtain
the following bound.

Proposition 4.2. For every d ≥ 2 there is a simplicial complex which is
topologically 2d-representable but not (3d − 1)-collapsible.

Proof. Consider the complex  L ⋆ · · · ⋆  L
︸ ︷︷ ︸

d

.

If there is a wider gap among these notions it will also reflect at the
gap between d-representable and d-Leray complexes obtained (with a similar
method) by Matoušek and the author [MT09].
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