
NOTES ON ENTOURAGES AND LOCALIC GROUPS

JORGE PICADO AND ALEŠ PULTR

Abstract. The relation between the cover (Tukey type) uniformi-
ties and the entourage (Weil type) ones, in the point-free context,
is studied and a transparent translation is presented. In particular
the natural uniformities on localic groups are discussed, and the
uniformity of localic group homomorphisms is proved.

Introduction

In the classical spaces, a uniformity on X is approached, basically,
by two different (but equivalent) ways:

– one can take systems of special covers of X (reminiscent of the
system of covers of a metric space by the ε-balls) — the Tukey
mode (see e.g. [24, 11]),
– or one can consider systems of special “neighborhoods of the
diagonal” (entourages) in the product X × X (reminiscent of
the ε-entourages {(x, y) | ρ(x, y) < ε} in a metric space) — the
Weil mode ([25]).

Both can be extended to the point-free spaces (locales). Thus we have
a quite extensive literature about the cover uniformities, starting with
the pioneering Isbell’s [12] (further see e.g. [1, 2, 3, 10, 22, 23], etc.).
On the other hand the entourage and kindred types of uniformities
were thoroughly studied e.g. in [19, 20, 21] and from another technical
standpoint (a functional one in nature, based on a certain kind of Galois
connections – axialities – rather than on entourages) e.g. in [8, 9] (for
a discussion of the relation with the entourage technique see [7]).
There is a fundamental difference in these two extensions of the clas-

sical structures to the more general point-free context. While the cover
description (see 1.2 below) is a straightforward generalization of the
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classical one (covers are covers, star-refinement corresponds to the clas-
sical one), the entourage definition is, rather, just an extension by anal-
ogy, or mimicking the classical definition in the category of locales: the
(binary) product of locales (coproduct of frames L⊕L) does not quite
correspond to the product of spaces, and hence we can think of the
entourages E ∈ L ⊕ L (see 1.4) only guardedly as of models of open
sets containing the diagonal.
Nevertheless, the two approaches are, again, equivalent (which should

come, in a way, as a bit of surprise).
Now while, as we have already said, there is abundant literature on

both the cover and the entourage uniformities, the relation between the
two has been somewhat neglected. The equivalence was proved by the
first author in his Thesis ([19]; cf. [20]) using a certain technical detour
(specifically, Lemma 3.1 of [20] about the behaviour of the composition
operator on down-sets of L×L); but this seems to be about all. Thus,
one does not have, to our knowledge, a direct proof of the equivalence
in the standard journal literature; one of the aims of this paper is to
fill in this gap.
Further, we concentrate on the uniform structure of localic groups

(analogues of topological groups in the point-free context). In the orig-
inal article about this subject ([13]) it was shown that similarly like
in the classical case one has natural cover uniformities induced by the
group structure. In fact one has equally (if not even more) natural
entourage ones ([21]). We describe them and show their relation to
(of course, an equivalence with) the cover ones; while doing this we
also discuss the semigroup of open parts of a localic group (which has
not yet been presented in this detail). As an application we present
an extremely simple proof of the fact that the localic group homomor-
phisms are uniform; it should be noted that this fact has so far, to our
knowledge, not been proved in the literature by the cover methods, and
even remaking our simple entourage proof to a cover one by translation
seems to be rather complex. We see it as another corroboration of the
usefulness of the entourage approach.

—————————–

Only basic knowledge of classical topology and of category theory (as
in the less involved parts of [18]) is assumed. The necessary definitions
and facts concerning frames (locales) are presented in Preliminaries
below.
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1. Preliminaries

1.1. Recall that a frame is a complete lattice satisfying the distribu-
tive law

(
∨

A) ∧ b =
∨
{a ∧ b | a ∈ A}

for all subsets A ⊆ L and all b ∈ L. A frame homomorphism h : L→M

preserves all joins (including the void one, the bottom 0) and all finite
meets (including the top 1). The resulting category will be denoted by

Frm.

A typical frame is the lattice Ω(X) of all open sets of a topological
space X; if f : X → Y is a continuous map then Ω(f) = (U 7→
f−1[U ]) : Ω(Y ) → Ω(X) is a frame homomorphism. Thus one has a
contravariant functor Ω : Top → Frm (where Top is the category of
topological spaces). Setting

Loc = Frmop

one obtains the category of locales. Then Ω becomes a contravariant
functor Top → Loc; furthermore, restricted to the subcategory Sob
of sober spaces it is a full embedding. Thus one can think of locales as
a generalization of (sober) topological spaces. For more about frames
see e.g. [14, 23].

1.2. Cover (Tukey) uniformities. A cover of a frame L is a
subset U ⊆ L such that

∨
U = 1. A cover U refines (or is a refinement

of) a cover V if

∀u ∈ U ∃v ∈ V such that u ≤ v.

This is indicated by writing U ≤ V .
For covers U, V we have the largest common refinement in the pre-

order ≤,
U ∧ V = {u ∧ v | u ∈ U, v ∈ V }.

If U ⊆ L is a cover and a ∈ L we set

Ua =
∨
{u ∈ U | u ∧ a 6= 0}

and for covers U, V define

UV = {Uv | v ∈ V }.

Note that if U is a cover of L and if h : L → M is a frame homomor-
phism then

(1.2.1) h[U ]h(a) ≤ h(Ua)

(if h(u)∧ h(a) 6= 0 then u∧ a 6= 0 and hence h(u) ≤ h(Ua) for u ∈ U).

Finally, for a set of covers U define a relation

b ⊳U a ≡df there is a U ∈ U such that Ub ≤ a.
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U is said to be admissible if

∀a ∈ L, a =
∨
{b | b ⊳U a}.

A (cover-) uniformity on a frame L is an admissible non-empty sys-
tem of covers U such that

(U1) if U ∈ U and U ≤ V then V ∈ U ,
(U2) if U, V ∈ U then U ∧ V ∈ U ,
(U3) for every U ∈ U there is a V ∈ U such that V V ≤ U .

Note that if U is a uniformity then the relation ⊳U interpolates, that
is, if a ⊳U b then there is a c such that a ⊳U c ⊳U b (if Ua ≤ b take a
V from (U3) and set c = V a; use the easy fact that U(V x) ≤ (UV )x
to obtain V c ≤ b).

1.3. Recall (see e.g. [14, 23]; it should be noted that the first
construction of frame coproducts appeared in [6]) that the coproduct
L⊕M in Frm (product in Loc) can be constructed as follows.
First take the Cartesian product L×M as a poset and D(L×M) =

{U ⊆ L×M | ↓U = U 6= ∅} (where ↓U = {(x, y) | (x, y) ≤ (a, b) ∈ U},
as usual), and call a U ∈ D(L×M) saturated if

(1) for any subset A ⊆ L and any b ∈ M , if A × {b} ⊆ U then
(
∨

A, b) ∈ U , and
(2) for any a ∈ L and any subset B ⊆ M , if {a} × B ⊆ U then

(a,
∨

B) ∈ U .

The set A resp. B can be void; hence, in particular, each saturated set
contains as a subset

n = {(0, b), (a, 0) | a ∈ L, b ∈M}.

It is easy to check that for each (a, b) ∈ L×M ,

a⊕ b =↓(a, b) ∪ n is saturated.

To finish the construction of a coproduct one takes

L⊕M = {U ∈ D(L×M) | U saturated}

with the coproduct injections

ιL = (a 7→ a⊕ 1) : L→ L⊕M, ιM = (b 7→ 1⊕ b) : M → L⊕M.

Note that we have

(1.3.1) for each saturated U ,

U =
∨
{a⊕ b | (a, b) ∈ U} =

⋃
{a⊕ b | (a, b) ∈ U}, and

(1.3.2) if a⊕ b ≤ c⊕ d and b 6= 0 then a ≤ c.

1.4. Entourage (Weil) uniformities. An entourage in L is an
element E ∈ L⊕ L such that

{u | u⊕ u ≤ E}
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is a cover of L.
For entourages E, F of L set

E ◦ F =
∨
{a⊕ c | ∃b 6= 0, a⊕ b ≤ E and b⊕ c ≤ F} =

=
∨
{a⊕ c | ∃b 6= 0, (a, b) ∈ E and (b, c) ∈ F}.

(Caution: unions of saturated sets are not necessarily saturated and
the join above is typically bigger than the corresponding union.)
Further, for an entourage E set

E−1 = {(a, b) | (b, a) ∈ E}

(which is obviously an entourage again).

If E is an entourage (resp. E a set of entourages) write

b ⊳E a if E ◦ (b⊕ b) ≤ a⊕ a, and b ⊳E a if ∃E ∈ E , b ⊳E a.

A set of entourages E is said to be admissible if

∀a ∈ L, a =
∨
{b | b ⊳E a}.

An entourage uniformity on a frame L is an admissible set of en-
tourages E such that

(E1) if E ∈ E and E ≤ F then F ∈ E ,
(E2) if E, F ∈ E then E ∩ F ∈ E ,
(E3) if E ∈ E then E−1 is in E , and
(E4) for every E ∈ E there is an F ∈ E such that F ◦ F ≤ E.

Note that obviously intersections of saturated elements are saturated;
hence the E ∩ F in (E2) makes sense.

1.5. If U resp. E is a cover- resp. entourage-uniformity on L one
speaks of (L,U) resp. (L, E) as a cover- resp. entourage-uniform frame.
As a rule it is obvious which of the two it is, and one speaks simply of
a uniform frame.

1.5.1. Let (L,U), (M,V) be cover-uniform frames. A frame homo-
morphism h : L→ M is said to be uniform if

∀U ∈ U , h[U ] ∈ V.

1.5.2. Let (L, E), (M,F) be entourage-uniform frames. A frame
homomorphism h : L→ M is said to be uniform if

∀E ∈ E , (h⊕ h)(E) ∈ F

(where h⊕ h is the frame homomorphism L⊕L→M ⊕M defined by
(h⊕ h)ιi = ιih for i = 1, 2).

1.6. Bases of uniformities. A uniformity is often described by a
basis U ′ ⊆ U (E ′ ⊆ E), that is, a subset such that

U = {V | U ≤ V for a U ∈ U ′} resp. E = {F | E ≤ F for an E ∈ E ′}
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(the ≤ in the former is the refinement preorder while in the latter it is
the order in the frame L⊕ L).
Note that an entourage uniformity has for instance the basis con-

stituted by the symmetric entourages, that is, entourages E such that
E−1 = E: indeed, for a general E consider the E−1 ∩ E ≤ E.

1.6.1. One very often works, instead of with the whole uniformities
with their bases, usually very naturally described. Then the formulas
for homomorphisms are modified to

∀U ∈ U ∃V ∈ V such that h[U ] ≥ V,

resp. ∀E ∈ E ∃F ∈ F such that (h⊕ h)(E) ≥ F.

2. Translations

2.1. In this section we will prove that the two concepts of unifor-
mity from 1.2 and 1.4 are equivalent in the sense that there are natural
translations of one into the other, with satisfactory properties (for in-
stance frame homomorphisms are uniform iff they are uniform when
the uniformities are replaced by the associated ones).
Recall from the Introduction that while the cover uniformities are

genuine generalization of the classical ones, the entourage ones are,
rather, just an analogy of the classical definition (since products of
locales – coproducts of frames – do not quite correspond to products
of classical spaces). Hence the fact of equivalence is somewhat deeper
than it sounds.

2.2. The following will play a crucial role.

Lemma. Let U be a cover of L and let x⊕ y ≤
∨
{u⊕ u | u ∈ U}.

Let y 6= 0. Then x ≤ Uy.

Proof. We have

x⊕ y =
∨
{(u ∧ x)⊕ (u ∧ y) | u ∈ U} =

=
∨
{(u ∧ x)⊕ (u ∧ y) | u ∈ U, u ∧ y 6= 0} ≤ (Uy ∧ x)⊕ y.

Thus, if y 6= 0, x ≤ x ∧ Uy, and finally x ≤ Uy. �

2.3. Lemma. If UE = {x | x⊕ x ≤ E} is a cover then E ≤ E ◦E.

Proof. Let a⊕ b ≤ E and b 6= 0. We have

b =
∨
{b ∧ u | u ∈ UE} =

∨
{b ∧ u | u ∈ UE , u ∧ b 6= 0}.

Now we have, for b∧ u 6= 0, a⊕ (b∧ u) ≤ E and (b∧ u)⊕ (b∧ u) ≤ E,
hence a⊕ (b ∧ u) ≤ E ◦E and hence a⊕ b = a⊕

∨
{b ∧ u | u ∈ UE} =∨

{a⊕ (b ∧ u) | u ∈ UE} ≤ E ◦ E. �
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2.4. For an entourage E define

Ẽ =
∨
{u⊕ u | u⊕ u ≤ E}.

2.4.1. Lemma. Let F be a symmetric entourage and let F ◦F ≤ E.
Then for each a⊕ b ≤ F we have (a ∨ b)⊕ (a ∨ b) ≤ E

Consequently, if E is a uniformity then for each E ∈ E , Ẽ ∈ E .

Proof. Let a⊕ b ≤ F , so that also b⊕ a ≤ F and hence

a⊕ a, b⊕ b ≤ F ◦ F ≤ E;

by 2.3 also

a⊕ b, b⊕ a ≤ F ◦ F ≤ E.

Thus a⊕ (a∨ b) ≤ E, b⊕ (a∨ b) ≤ E and finally (a∨ b)⊕ (a∨ b) ≤ E

and we conclude that a⊕ b ≤ (a ∨ b)⊕ (a ∨ b) ≤ Ẽ. �

2.5. Translations. For a cover U define an entourage EU , and for
an entourage E define a cover UE as follows.

EU =
∨
{x⊕ x | x ∈ U},

UE = {x | x⊕ x ≤ E}.

2.5.1. Lemma. (a) U ≤ UEU
≤ UU .

(b) Ẽ = EUE
≤ E.

Proof. (a) If x⊕ x ≤ EU then for any u0 ∈ U such that u0 ∧ x 6= 0
we have by 2.2

x ≤ U(u0 ∧ x) ≤ Uu0.

Thus,

UEU
= {x | x⊕ x ≤ EU} ≤ UU.

On the other hand, trivially, U ≤ UEU
.

(b) We have, by the definitions, EUE
=

∨
{x⊕ x | x⊕ x ≤ E} = Ẽ.

�

2.5.2. Lemma. (a) b ⊳E a ⇒ UEb ≤ a.
(b) Ub ≤ a ⇒ b ⊳EU

a.

Proof. (a): Let u ∈ UE and u ∧ b 6= 0. Then u ⊕ (u ∧ b) ≤ EU and
(u ∧ b) ⊕ b ≤ b ⊕ b, and hence u ⊕ b ≤ E ◦ (b ⊕ b) ≤ a ⊕ a; thus, as
b 6= 0, u ≤ a and we conclude that UEb ≤ a.

(b): Let Ub ≤ a and let x ⊕ y ≤ EU and y ⊕ z ≤ b ⊕ b for some
y 6= 0. Then x ⊕ y ≤

∨
{u ⊕ u | u ∈ U} and by 2.2, x ≤ Uy. Thus,

x⊕ z ≤ Uy ⊕ b ≤ Ub⊕ b ≤ a⊕ a. �

For an entourage uniformity E set UE = {V | V ≥ UE , E ∈ E} and
for a cover uniformity U define EU = {F | F ≥ EU , U ∈ U}.
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2.5.3. Theorem. The correspondences E 7→ UE and U 7→ EU con-
stitute a one-one correspondence between the entourage uniformities
and the cover ones. More explicitly, EUE

= E and UEU = U .

Proof. By 2.5.2, ⊳U=⊳EU
(and ⊳E=⊳UE

). Thus, if any of the asso-
ciated uniformities is admissible then the other is as well.
By 2.5.1 we have the formulas EUE

= E and UEU = U .

Thus, it remains to be proved that the systems UE and EU are uni-
formities (of their types). We will prove (U3) and (E4), the other facts
are straightforward.
To prove (U3) we will show that if F is symmetric and (F ◦F )◦ (F ◦

F ) ≤ E then UF UF ≤ UE . Set F1 = F ◦ F . Fix a u ∈ UF and take
an arbitrary v ∈ UF such that u ∧ v 6= 0. Then because of u ∧ v 6= 0,
v ⊕ u ∈ F1 = F ◦ F and since F1 is saturated,

UF u⊕ u = (
∨
{v | v ∧ u 6= 0})⊕ u ≤ F1.

Since F is symmetric, F1 is symmetric as well and hence by 2.4.1 UF u⊕
UF u ≤ F1 ◦ F1 ≤ E, and UFu ∈ UE .
To prove (E4) we will show that EU ◦ EU ≤ EUU . Take an x⊕ y ≤

EU ◦EU ; hence there is a y 6= 0 such that x⊕ y ≤ EU and y⊕ z ≤ EU .
Choose a u ∈ U such that u ∧ y 6= 0. Since x ⊕ (u ∧ y) ≤ EU and
(u∧ y)⊕ z ≤ EU we obtain from 2.2 that x⊕ z ≤ Uu⊕Uu ≤ EUU . �

2.6. Proposition. For the associated entourage and cover unifor-
mities, the concepts of a uniform homomorphism coincide.

Proof. I. Suppose that for each E ∈ E there exists an F ∈ F such
that

(∗) (h⊕ h)(E) ≥ F.

Take U ∈ U and a V ∈ U such that V V ≤ U . By (∗) (and 1.4) there
exists in particular a W ∈ V such that

(h⊕ h)(EV ) ≥ EW .

Take a w ∈W . Then w ⊕ w ≤
∨
{h(v)⊕ h(v) | v ∈ V } and hence, by

Lemma 2.2, if we take a v0 ∈ V such that y = w ∧ h(v0) 6= 0 we obtain
that w ≤ h[V ]y ≤ h[V ]h(v0) ≤ h(V v0) ≤ h(u) for some u ∈ U . Thus,
W ≤ h[U ].

II. Let for each U ∈ U there be a V ∈ V such that

h[U ] ≥ V.

Consider an E ∈ E . There is an F ∈ F such that h[UE ] ≥ UF . Let
v ⊕ v ≤ F . Then v ∈ UF and hence there is a u ∈ UE such that
v ≤ h(u). Then

v ⊕ v ≤ h(u)⊕ h(u) ≤ (h⊕ h)(u⊕ u) ≤ (h⊕ h)(E)

and hence (h⊕ h)(E) ≥ F̃ . Recall 2.4. �
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3. Localic groups and the associated
semigroups of open parts

3.1. Recall that a group in a category C with products is a collection
of data (A, m, i, e) with

m : A×A→ A, i : A→ A, e : T → A morphisms in C

(T = A0 is the empty product, that is, the terminal object of C, the
object such that from every X ∈ C there is precisely one morphism
tX : X → T ) such that

m(m× id) = m(id×m),

m(e× id) = m(id× e) = id, and

m(i× id)∆ = m(id× i)∆ = etA.

Note that if C is the category of sets (where products are the Carte-
sian ones and T = {∅} is the one-point set this is the classical group
(A, ·, (−)−1, e) and the identities above are the standard x(yz) = (xy)z,
xe = ex = x and xx−1 = x−1x = e; or e.g. in Top we have opera-
tions such that the maps (x, y) 7→ xy and x 7→ x−1 are continuous (the
classical topological group).
Since we will work with frames and frame homomorphisms rather

than with morphisms in Loc we will think of a localic group as a
system (L, µ, ι, ε) where

µ : L→ L⊕ L, γ : L→ L, ε : L→ 2 = {0, 1}

are frame homomorphisms such that

(µ⊕ id)µ = (id⊕ µ)µ,

(ε⊕ id)µ = (id⊕ ε)µ = id, and

∇(γ ⊕ id)µ = ∇(id⊕ γ)µ = σLε

where σL : 2 → L sends 0 to 0 and 1 to 1, and ∇ is the codiagonal
L⊕ L→ L defined by ∇ιi = id, i = 1, 2.

3.1.2. Note. A topological group does not always transform by the
functor Ω to a localic group, as one might expect. The map Ω(m) :
Ω(X) → Ω(X × X) is not a homomorphism with the target Ω(X) ⊕
Ω(X) and in general cannot be lifted to one. In special cases where Ω
respects products (locally compact groups, complete metric ones, etc.)
it does. See [13].

3.2. By Kock’s theorem ([17]) the counterpart of each identity that
can be deduced in a classical equational class (variety) of algebras holds
in the associated category of algebras in C.

We will need the following identities (τ : L ⊕ L → L ⊕ L is the
homomorphism defined by τιi = ι3−1, i = 1, 2):

(3.2.1) γγ = id (corresponding to (x−1)−1 = x),
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(3.2.2) εγ = ε (corresponding to e−1 = e),
(3.2.3) (γ ⊕ γ)µ = τµγ (corresponding to (xy)−1 = y−1x−1),
(3.2.4) and the fact that α = (id ⊕ ∇)(µ ⊕ γ) satisfies αα = id and

αι1 = µ (α corresponds to the mapping (x, y) 7→ (xy, y−1)).

Remark. Needless to say these identities can be deduced directly
(by a somewhat lengthy and tedious computation).

3.3. A frame L is not necessarily spatial, that is, isomorphic to an
Ω(X). The possible points are modeled by homomorphisms h : L→ 2
(mimicking the maps f : P → X where P is the one-point space).
Thus one obtains the spectrum ΣL of L, with open sets Σa = {h : L→
2 | h(a) = 1}, a ∈ L. Each localic group has at least one point, namely
ε : L → 2 (this may be the only one, even if L is large, see [13]); the
set

NL = {a | ε(a) = 1}

can be viewed as the set of (representatives of) the neighbourhoods of
the unit.

3.4. Recall that monotone maps f : (X,≤) → (Y,≤) are (Galois)
adjoint (f is the left one and g the right one) if

f(x) ≤ y iff x ≤ g(y).

We will denote the left adjoint f of g by

g#.

IfX, Y are complete lattices f is a left adjoint (resp. g is a right adjoint)
iff it preserves all suprema (resp. infima) (see any text on partially
ordered sets, e.g. [5]). Thus in particular each frame homomorphism
has a right adjoint. We have, though,

3.4.1. Proposition. (a) The multiplication µ in a localic group has
a left adjoint.
(b) Also µ⊕ id and id⊕ µ have left adjoints and there holds

(µ⊕ id)#(a⊕ b) = µ#(a)⊕ b and (id⊕ µ)#(a⊕ b) = a⊕ µ#(b).

Proof. (a) Recall (3.2.4). We have µ = αι1; α, as an isomorphism,
is its own adjoint, and ι1 has, as it is easy to check, the left adjoint

(ι1)#(u) =
∨
{x | ∃y 6= 0, x⊕ y ≤ u}.

Thus, we have µ# = (ι1)#α.
(b) It is easy to check that if E ∈ L⊕L is saturated then the union⋃
{↓(µ(x), y) | x⊕ y ≤ E} is saturated (recall 1.3) so that

(µ⊕ id)(E) =
⋃
{↓(µ(x), y | x⊕ y ≤ E}.
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Hence

F ≤ (µ⊕ id)(E)

iff ∀a⊕ b ≤ F, (a, b) ∈
⋃
{↓(µ(x), y) | x⊕ y ≤ E}

iff ∀a⊕ b ≤ F ∃x⊕ y ≤ E, a ≤ µ(x) and b ≤ y

iff ∀a⊕ b ≤ F ∃x⊕ y ≤ E, µ#(a) ≤ x and b ≤ y

iff ∀a⊕ b ≤ F µ#(a)⊕ b ≤ E

iff ϕ(F ) =
∨
{a⊕ b | µ#(a)⊕ b ≤ E} ≤ E.

In particular (µ⊕ id)#(a⊕ b) = ϕ(a⊕ b) = µ#(a)⊕ b. �

Note. The first statement is a part of Johnstone’s stronger observa-
tion ([15]) that µ is an open homomorphism (open homomorphisms are
counterparts of open continuous maps, and are characterized as Heyt-
ing homomorphisms that have left adjoint ([16]). The L in a localic
group is always regular, and hence the Heyting part follows from the
adjointness ([14, 23]).

3.5. The “semigroup of open parts”. The algebra (L, ∗, (−)−1)
to be introduced is a counterpart of the semigroup (with involution) of
open subsets of a topological group, with the operations

UV = {uv | u ∈ U, v ∈ V }, U−1 = {u−1 | u ∈ U}.

It appeared in passing in [4] with the proofs of the properties just
hinted. Here we will be more explicit.

On L define a (classical) binary operation ∗ and a unary operation
(−)−1 on L by setting

x ∗ y = µ#(x⊕ y), x−1 = γ(x).

3.5.1. Observation. Since ι1 is one-one, µ = αι1 is one-one and
we easily infer that

µµ# ≥ id and µ#µ = id.

In particular

µ#(0) = 0.

3.5.2. Proposition. (1) If x′ ≤ x and y′ ≤ y then x′ ∗ y′ ≤ x ∗ y.
(2) If x = 0 or y = 0 then x ∗ y = 0.
(3) The operation ∗ is associative.
(4) If y ∈ N then x ∗ y ≥ x and y ∗ x ≥ x.
(5) If x ∧ y 6= 0 then x ∗ y−1 ∈ N .
(6) (x ∗ y)−1 = y−1 ∗ x−1.
(7) If x ∈ N then x−1 ∈ N .

Proof. (1) and (2) are trivial.
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(3) Using 3.4.1 we obtain

a ∗ (b ∗ c) = µ#(a⊕ µ#(b⊕ c)) = µ#(id⊕ µ)#(a⊕ b⊕ c) =

= ((id⊕ µ)µ)#(a⊕ b⊕ c) = ((µ⊕ id)µ)#(a⊕ b⊕ c) =

= µ#(µ⊕ id)#(a⊕ b⊕ c) = µ#(µ#(a⊕ b)⊕ c) = (a ∗ b) ∗ c.

(4) Applying id⊕ ε on both sides of µµ#(x⊕ y) ≥ x⊕ y we obtain

x ∗ y ≥ (id⊕ ε)(x⊕ y) = x⊕ ε(y) = x ∧ ε(y).

(5) Since we have

σε(x ∗ y−1) = ∇(id⊕ γ)µµ#(id⊕ γ)(x⊕ y) ≥

≥ ∇(id⊕ γ)(id⊕ γ)(x⊕ y) = x ∧ y 6= 0,

ε(x ∗ y−1) cannot be 0.
(6) Since τ# = τ and γ# = γ, we obtain from (3.2.3) that

µ#(γ ⊕ γ) = γµ#τ,

and as τ(x⊕ y) = y ⊕ x we conclude

x−1 ∗ y−1 = µ#(γ(x)⊕ γ(y)) = γµ#(y ⊕ x) = (y ∗ x)−1.

(7) follows from (3.2.2). �

4. Uniformities on localic groups

4.1. More on the semigroup (L, ∗, (−)−1). Recall the system
N = NL = {a | ε(a) = 1} of “neighbourhoods of unit” from 3.3.
Obviously

a, b ∈ N ⇒ a ∧ b ∈ N and a ∈ N ⇒ a−1 = γ(a) ∈ N.

Here are some more facts about the multiplication.

4.1.1. Lemma. If c ∗ b ≤ a, u ∗ u−1 ≤ c and v ∧ b 6= 0 then u ≤ a.

Proof. We have c⊕ b ≤ µ(a) and u⊕ γ(u) ≤ µ(c) so that

u⊕γ(u)⊕ b ≤ µ(c)⊕ b = (µ⊕ id)(c⊕ b) ≤ (µ⊕ id)µ(a) = (id⊕µ)µ(a).

Applying id⊕∇(γ ⊕ id) we obtain on the leftmost side u⊕ (u ∧ b) (as
∇(x⊕ y) = x ∧ y) and on the rightmost one

(id⊕ (∇(γ ⊕ id)µ)µ(a) = (id⊕ σε)µ(a) =

= (id⊕ σ)(id⊕ ε)µ(a) = (id⊕ σ)(a) = a⊕ 1.

Thus u⊕ (u ∧ b) ≤ a⊕ 1 and since u ∧ b 6= 0, u ≤ a. �

4.1.2. Lemma. For each a ∈ N there are b, c ∈ N such that
b ∗ b ≤ a and c ∗ c−1 ≤ a

Proof. Any L can be viewed as a coproduct

2
σL−−−→ L

idL←−−− L
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and since σ2 = id2 we have

ε = id2 ⊕ ε : L = 2⊕ L→ 2⊕ 2 = 2.

Hence, ε = (id2 ⊕ ε)(ε⊕ idL)µ = (ε⊕ ε)µ and we obtain, for a ∈ N ,

1 = ε(a) =
∨
{ε(x)⊕ε(y) | x⊕y ≤ µ(a)} =

∨
{ε(x)⊕ε(y) | x∗y ≤ a}

so that there are x, y such that x ∗ y ≤ a and ε(x) = ε(y) = 1. Set
b = x ∧ y and c = x ∧ γ(y). �

4.2. For an a ∈ N set

U(a) = {x ∈ L | x⊕ γ(x) ≤ µ(a)} = {x ∈ L | x ∗ x−1 ≤ a},

V (a) = {x ∈ L | γ(x)⊕ x ≤ µ(a)} = {x ∈ L | x−1 ∗ x ≤ a}

and consider the systems

U = {U | U ≥ U(a), ε(a) = 1} and V = {V | V ≥ V (a) ε(a) = 1}.

4.2.1. Proposition. U and V are uniformities on L.

Proof. It will be done for U .

I. Each U(a) is a cover. We have

U(a) = {x ∧ y | x⊕ y ≤ (id⊕ γ)µ(a)}.

(Indeed, if x⊕γ(x) ≤ µ(a) then x⊕x ≤ (id⊕γ)(x⊕γ(x)) ≤ (id⊕γ)µ(a).
On the other hand, if x ⊕ y ≤ (id ⊕ γ)µ(a) then (x ∧ y)⊕ γ(x ∧ y) ≤
(id⊕ γ)(x⊕ y) ≤ (id⊕ γ)(id⊕ γ)µ(a) = µ(a).)
Thus,

∨
U(a) =

∨
{x ∧ y | x⊕ y ≤ (id⊕ γ)µ(a)} =

=
∨
{∇(x⊕ y) | x⊕ y ≤ (id⊕ γ)µ(a)} =

= ∇
∨
{x⊕ y | x⊕ y ≤ (id⊕ γ)µ(a)} = ∇(id⊕ γ)µ(a) = σε(a) = 1.

II. The system U is admissible. By 4.1.1, if c ∗ b ≤ a then U(c)b ≤ a.
We have a = (ε⊕ id)µ(a) =

∨
{ε(c)⊕ b | c⊕ b ≤ µ(a)} =

∨
{b | u ∗ b ≤

a, c ∈ N} ≤
∨
{b | U(c)b ≤ a, c ∈ N}.

III. Trivially U(a ∧ b) ≤ U(a) ∧ U(b).
IV. For a ∈ N choose, by 4.1.2, a b ∈ N such that b∗b∗b−1 ∗b−1 ≤ a.

We will show that U(b)U(b) ≤ U(a).
Fix an x ∈ U(b) and consider any u ∈ U(b) such that u ∧ x 6= 0.

Thus, x∗x−1 ≤ b and u∗u−1 ≤ b and, by 3.5.2, (u∧x)−1 ∗ (u∧x) ∈ N .
Thus,

u ≤ u ∗ (u ∧ x)−1 ∗ (u ∧ x) ≤ u ∗ u−1 ∗ x ≤ b ∗ x

and hence U(b)x ≤ b∗x and finally, since also b−1 ∈ N , again by 3.5.2,

U(b)x ∗ (U(b)x)−1 ≤ b ∗ x ∗ x−1 ∗ b−1 ≤ b ∗ b ∗ b−1 ≤ b ∗ b ∗ b−1 ∗ b−1 ≤ a

and U(b)x ∈ U(a). �
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4.2.2. The uniformity U (resp. V) is called the left uniformity (resp.
right uniformity) on the localic group.

4.3. An alternative description by entourages. For an a ∈ NL

set

E(a) = (id⊕ γ)µ(a) and F (a) = (γ ⊕ id)µ(a);

hence

E(a) =
∨
{x⊕ y | x⊕ y ≤ (id⊕ γ)µ(a)} =

∨
{x⊕ y | x ∗ y ≤ a},

and similarly for F (a).

Observation. E(a) and F (a) are entourages.

Proof. For x ∈ U(a) we have x⊕ γ(x) ≤ µ(a). Hence
∨
{x | x⊕ x ≤ E(a)} ≥

∨
U(a) = 1

since U(a) is a cover, as we already know. �

4.4. Denote by E ′ resp. F ′ the system of entourages {E(a) | a ∈ N}
resp. {F (a) | a ∈ N}, and set

E = {E | E entourage, E ≥ E(a) ∈ E ′},

F = {E | E entourage, E ≥ F (a) ∈ F ′}.

Proposition. The systems E and F are entourage-uniformities and
we have, in the notation of 4.2 and 2.5, E = EU and F = EV .

Proof. We will show that E = {E | E entourage, E ≥ E(a) ∈ E ′} =
EU = {E | E entourage, E ≥ EU(a), a ∈ N}.
We have EU(a)(=

∨
{x⊕ x | x⊕ γ(x) ≤ µ(a)}) ≤ E(a).

To obtain an estimate from the other side, choose by 4.1.2 b, c ∈ N

such that b∗ b−1 ≤ c and c∗ c−1 ≤ a. Let x⊕y ≤ E(b). We can assume
x⊕ y 6= 0, hence x 6= 0 6= y. First, as y 6= 0, we have by 3.5.2 ((4), (5)
and (7)),

x ∗ x−1 ≤ x ∗ y−1 ∗ y ∗ x−1 ≤ b ∗ b−1 ≤ c and x ∗ y−1 ≤ b ∗ b−1 ≤ c

and hence (x, x), (x, y) ∈ E(c) and since E(c) is saturated (recall 1.3)
we have, for z = x ∨ y,

(x, z) ≤ E(c), that is, x ∗ z−1 ≤ c.

Now (x∗z−1)∗(x∗z−1)−1 ≤ c∗c−1 ≤ a, hence (x∗z−1)⊕(x∗z−1) ≤ EU(a)

and (x ∗ z−1) ∗ (x ∗ z−1)−1 ≤ µ(EU(a)). Since x ∧ z 6= 0 we have
(x ∗ z−1)−1 ∈ N by 3.5.2(5), and by 3.5.2(4) we obtain

x ∗ z−1 ≤ x ∗ z−1 ∗ (x ∗ z−1)−1 ≤ µ(EU(a))

so that x⊕ y ≤ x⊕ z ≤ EU(a). Thus, E(b) ≤ EU(a). �
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4.5. Localic group homomorphisms. A localic group homomor-
phism (briefly, LG-homomorphism)

h : (L, µL, γL, εL)→ (M, µM , γM , εM)

is a frame homomorphism h : L→ M such that

(hom) µMh = (h⊕ h)µL, γMh = hγL and εMh = εL

(that is, it is the standard homomorphism between algebras defined in
the category Loc represented in the category of frames).

4.5.1. Proposition. Each LG-homomorphism h : (L, µL, γL, εL)→
(M, µM , γM , εM) is uniform with respect to both the left and the right
uniformities.

Proof. We will prove it for the left uniformity. By 4.4 and 2.6 we
can choose whether we will prove it for the U or for the entourage
uniformity E . We will do it for the latter. By (hom) we have

(h⊕ h)(E(a)) = (h⊕ h)(idL ⊕ γ)µL(a) =

= (idM ⊕ γM)(h⊕ h)µL(a) = (idM ⊕ γM)µM(h(a)) = E(h(a))

(since εMh = εL, h(a) ∈ NM , and E(h(a)) makes sense). �

4.6. Remarks. (1) Note that we did not have to prove that E is a
uniformity. It followed from the fact that EU is one.
(2) The proof of 4.5.1 shows an advantage of the entourage approach.

A proof of the fact based on the cover description seems to be rather
difficult.
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