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Abstract

In this paper we present an extension of the removal lemma to
integer linear systems over abelian groups. We prove that, if the k–
determinantal of an integer (k×m) matrix A is coprime with the order
n of a group G and the number of solutions of the system Ax = b

with x1 ∈ X1, . . . , xm ∈ Xm is o(nm−k), then we can eliminate o(n)
elements in each set to remove all these solutions.

1 Introduction

In 2005 Green [6] introduced the so-called Removal Lemma for Groups. It
roughly says that if a linear equation with integer coefficients

a1x1 + a2x2 + · · ·+ amxm = 0

has not many solutions with variables taking values from given subsets
X1, . . . , Xm of a finite Abelian group G, then one can delete all these so-
lutions by removing a small quantity of elements in each subset. This result
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mimics the Removal Lemma for Triangles (see [11]) in graphs, where it takes
the name from.

The Removal Lemma for Groups has been extended to one equation with
elements in non-necessarily Abelian groups (see [8]) and, by confirming a
conjecture of Green [6], to linear systems over Finite Fields independently
by Shapira [12] and the authors [9].

Shapira [12] asked for an extension of the result to Abelian groups. This
work attempts to answer this question.

Recall that the k-th determinantal dk(A) of an integer matrix A is the great-
est common divisor of all the k× k submatrices of A. Our main result is the
following:

Theorem 1. Let A be an integer (k × m) matrix, m ≥ k. For every real
positive number ǫ > 0 there exists a δ(ǫ, A) > 0 such that the following holds.

For every Abelian group G of order n coprime with dk(A), for every family
of subsets X1, . . . , Xm of G and for every vector b ∈ Gk, if the linear system
Ax = b has at most δnm−k solutions with x1 ∈ X1, . . . , xm ∈ Xm then there
are sets X ′

1 ⊂ X1, . . . , X
′

m ⊂ Xm with |X
′

i| ≤ ǫn, for all i, such that there is
no solution of the system with x1 ∈ X1 \ X ′

1, . . . , xm ∈ Xm \ X ′

m.

In the little ‘o’ notation, Theorem 1 states that, if an integer linear system
over an Abelian group of order n (with the condition that the determinantal
of the matrix is coprime with the order of the group), has o(nm−k) solutions,
then we can destroy all the solutions by removing o(n) elements in each set.

Let us remark that the condition over the determinantal dk(A) in the state-
ment of Theorem 1 indicates that the system is, in a sense, well defined. It
is analogous to the condition in the version of Theorem 1 for linear systems
over finite fields that the matrix A has full rank.

A general framework for the study of this type of results is discussed by
Szegedy [13]. The author proves a Symmetry Removal Lemma and applies
it to give a diagonal version of the Szemerédi Theorem on arithmetic pro-
gressions in Abelian groups. Our work follows the direction of our original
argument for the nonabelian case presented in [8], and it provides a gen-
eral answer for linear systems Ax = b, which includes the case of arithmetic
progressions [13, Theorem 3].

The proof of Theorem 1 uses the Removal Lemma for colored hypergraphs.
The extension of the Removal Lemma to hypergraphs has been obtained by
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several authors, see Austin and Tao [1], Elek and Szegedy [3], Gowers [5],
Ishigami [7] or Nagle, Rödl and Schacht [10].

An r-colored k-uniform hypergraph is a pair (V, E) formed by a set V of
vertices and a subset E ⊂

(

V

k

)

of edges which are k–subsets of vertices, and
a map c : E → [1, r] which assigns ‘colors’ to the edges. Given two colored
k–uniform hypergraphs H and K, we say that K contains a copy of H if
there is an injective homomorphism f : H 7→ K, a map from the set of
vertices of H to the set of vertices of K whose natural extension to edges
preserves edges and colors. We also say that K contains two disjoint copies
of H if there are two injective homomorphisms f, f ′ : H 7→ K such that
f(E(H))∩f ′(E(H)) = ∅. The hypergraph K is H–free if it contains no copy
of H . We shall use the following version of the hypergraph Removal Lemma,
which follows, for instance, from [1, Theorem 2.1].

Theorem 2. For every positive integers m ≥ k ≥ 2 and every ǫ > 0 there is
a δ > 0 depending on m, k and ǫ such that the following holds.

Let H and K be colored k-uniform hypergraphs with m = |V (H)| and M =
|V (K)| vertices respectively. If the number of copies of H in K (preserving
the colors of the edges) is at most δMm, then there is a set E ′ ⊆ E(K) of
size at most ǫMk such that the hypergraph K ′ with edge set E(K) \ E ′ is
H–free.

2 Circular Unimodular Matrices

In this section we will prove Theorem 1 in the particular case of homoge-
neous linear systems with what we call standard circular unimodular matri-
ces, which enjoy some useful particular properties. We will show in Section 3
how the statement extends to the general case.

Throughout the paper Ai denotes the i–th row of a matrix A and Aj its
j–th column. Recall that a square integer matrix is unimodular if it has
determinant ±1.

We say that a (k ×m) integer matrix is standard circular unimodular if the
following properties hold:

(U1) A = (Ik|B), where Ik denotes the identity matrix of order k.

(U2) For each j = 1, . . . , m, the determinant formed by k consecutive columns
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in the circular order, {Aj+1, Aj+2, . . . , Aj+k} is ±1, where the super-
scripts are taken modulo m.

We simply call matrices satisfying property U2 circular unimodular. Note
that property U1 can always be imposed to a circular unimodular matrix
by using elementary matrix transformations. The next key Lemma proves
Theorem 1 for circular unimodular matrices by constructing an hypergraph
associated to a given linear system. The approach is similar to the one by
Candela [2] and by the authors [8].

Lemma 3. Let A be a (k ×m) circular unimodular matrix with m ≥ k + 2.
For each ǫ > 0 there is a δ(ǫ, A) > 0 such that the following holds.

For every Abelian group G of order n and every collection of subsets X1, . . . ,
Xm ⊂ G, if the number of solutions of the system Ax = 0 with x ∈

∏m

i=1 Xi

is at most δnm−k, then there are subsets X ′

i ⊂ Xi with |X ′

i| < ǫn for all i
such that there is no solution of the system Ax = 0 with x ∈

∏m

i=1 (Xi \ X ′

i).

Moreover, if we have Xj = G, for j ∈ I, where I ⊂ {1, . . . , m} has cardinality
|I| ≤ k, then we can choose the sets X ′

i in such a way that X ′

j = ∅ for each
j ∈ I.

Proof. We start by defining an integer (m × m) matrix C from which we
will construct a pair of colored hypergraphs H and K. The purpose of this
construction is to establish a correspondence between solutions of the system
Ax = 0 with copies of H in K.

By property U2, the j–th column of A can be written, for every j, as an
integer linear combination of the preceding k columns in the circular ordering:

Aj =

j−1
∑

i=j−k

Ci,jA
i,

where the superscript i is taken modulo m.

For j = 1, 2, . . . , m we let Cj,j = −1 and, if i does not belong to the circular
interval [j − k, j], then we set Ci,j = 0 . Thus,

∑

i

Ci,jA
i = 0, j = 1, 2, . . . , m. (1)

Notice that, since all the determinants of k consecutive columns of A in the
circular ordering are±1, the coefficients of C are integers (apply the Cramer’s
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rule to solve the corresponding linear systems). By the same reason, we have

Cj−k,j = ±1,

since the determinants of the matrices formed by the columns Aj−k+1, . . . , Aj

and by the columns Aj−k, . . . , Aj−1 are both ±1.

The integer (m×m) matrix C = (Ci,j) will be used to define our hypergraph
model for the given linear system.

Let H be a (k + 1)-uniform colored hypergraph with m vertices labelled
{1, 2, . . . , m}. The edges of H are the m “cyclic” (k + 1)–subsets

{1, . . . , k + 1}, {2, . . . , k + 2}, . . . , {m, 1, . . . , k},

(entries taken modulo m). The i-th edge {i, i + 1, . . . , i + k} is colored with
color i. Since m ≥ k + 2, H contains m different edges of mutually different
colors.

Let K be a (k + 1)-uniform colored hypergraph with vertex set G × [1, m].
For each element ai ∈ Xi, the (k + 1)–subset {(gi, i), . . . , (gi+k, i + k)} form
an edge labelled ai and colored with color i if

ai =
i+k
∑

j=i

Ci,jgj. (2)

Thus the edges of K bear both, a color and a label. Note that, for each fixed
ai ∈ Xi, the system (2) has nk solutions. Indeed, since Ci,i = ±1, we can fix
arbitrary values gi+1, . . . , gi+k and get a value for gi satisfying the equation.
Therefore each element ai ∈ Xi gives rise to nk edges colored i and labeled
ai.

We next show that each solution to Ax = 0 creates nk edge-disjoint copies of
the hypergraph H inside K and, also, that each copy of H inside K comes
from a solution of the system Ax = 0.

Claim 1. If H ′ is a copy of H in K, then x = (x1, . . . , xm) is a solution of
the system, where xi is the label of the edge colored by i in H ′.

Proof. The copy H ′ has an edge of each color and is supported over m ver-
tices. Since the edge colored i contains a vertex in G × {i}, then the copy
H ′ has one vertex on each G × {i}, 1 ≤ i ≤ m. Hence the vertex set of
H ′ is of the form {(g1, 1), (g2, 2), . . . , (gm, m)} for some g1, . . . , gm ∈ G. If
the edge ((gi, i), . . . , (gi+k, i + k)) colored i in H ′ has label xi then, by the
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construction of K, we have xi =
∑

s Ci,sgs. Therefore, it holds that Cg = x
where g = (g1, g2, . . . , gm). Hence, as all the columns in C are in the kernel
of A, we have 0 = ACg = Ax and x is a solution of the system.

Claim 2. For any solution α = (α1, . . . , αm) of the system Ax = 0 with αi ∈
Xi, there are precisely nk edge–disjoint copies of the edge–colored hypergraph
H in the hypergraph K with edges labelled with α1, . . . , αm.

Proof. Fix a solution α = (α1, . . . , αm) of Ax = 0 with αi ∈ Xi, 1 ≤ i ≤ m.

Observe that, by property U2, α is uniquely determined by any of its sub-
sequences (αi, αi+1, . . . , αi+m−k−1) of m − k consecutive coordinates in the
circular ordering.

By the construction of the matrix C, its i-th row Ci has an entry ±1 in
the i–th column and has its support contained in columns Ci, Ci+1, . . . , Ci+k

(where the superscripts are taken modulo m.) Therefore, the m− k columns
of C with indices in [1, m] \ [i + 1, . . . , i + k] have a unique nonzero entry in
the main diagonal, which is ±1.

With the previous remark in mind, we observe that, for every choice of a
vector (gi+1, . . . , gi+k) ∈ Gk (subscripts modulo m), there is a unique vector
(gi+k+1, . . . , gi−1, gi) ∈ Gm−k which satisfies the system Cg = α, where α =
(α1, . . . , αm) is the solution of the system Ax = 0 with αi ∈ Xi we have
fixed from the beginning and g = (g1, g2, . . . , gm). Indeed, for each t, once
the values (gi+1−t, gi+2−t, . . . , gi+k−t) have been found, we can determine gi−t

from the equation

αi−t =
i+k−t
∑

s=i−t

Ci−t,sgs, (3)

since Ci−t,i−t = ±1. In this way, starting with the vector

(gi+1, . . . , gi+k−1, gi+k) ∈ Gk

and m−k consecutive elements of α, {αi+k+1, . . . , αi−1, αi}, we find a unique
m-dimensional vector g = (g1, . . . , gm). Observe that β = Cg ∈ Gm satisfies
Aβ = A(Cg) = (AC)g = 0g = 0. Therefore β is a solution of the system
Ax = 0 which sharesm−k consecutive values with the given solution α, hence
β = α. It follows that the equations (3) hold for all t. Since these are the
defining equations (2) for the k–tuple (gi, i), . . . , (gi+k, i+k) to be an edge of
K colored i and labeled xi, we conclude that each vector (gi+1, . . . , gi+k) ∈ Gk

defines uniquely a copy of H in K. Hence the solution α induces nk copies
of H in K.
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Recall that each entry αi ∈ Xi of α gives rise to nk edges labeled αi in the
hypergraph K. On the other hand each of these edges belong to a unique
copy of H inside K related to the solution α. Since this holds for each of the
edges and for each αi, 1 ≤ i ≤ m, we conclude that the nk copies of H with
edges labelled with α1, . . . , αm are edge-disjoint.

Claims 1 and 2 show that there is a bijection between the solutions of the
system Ax = 0 and the copies of H inside K.

We now proceed with the proof of Lemma 3. Given ǫ > 0 let δ > 0 be the
value given by the Removal Lemma of colored hypergraphs (Theorem 2) for
the positive integers m, k + 1 and ǫ′ = ǫ/m > 0. If the number of solutions
of the system Ax = 0 is at most δnm−k, it follows from Claims 1 and 2, that
K contains δnm copies of H . By Theorem 2, there is a set E ′ of edges of K
with size ǫ′nk+1 such that, by deleting the edges in E ′ from K, the resulting
hypergraph is H-free.

The subsets X ′

i ⊂ Xi of removed elements are constructed as follows: if E
′

contains at least nk/m edges colored with i and labeled with xi, we remove
xi from Xi (that is, xi ∈ X ′

i.) In this way, the total number of elements
removed from all the sets Xi together is at most mǫ′n = ǫn. Hence, |X ′

i| ≤ ǫn
as desired. Suppose that there is still a solution x = (x1, x2, . . . , xm) with
xi ∈ Xi \ X ′

i. Consider the nk edge–disjoint copies of H in K corresponding
to x. Since each of these nk copies contains at least one edge from the set E ′

and the copies are edge–disjoint, E ′ contains at least nk/m edges with the
same color i and the same label xi for some i. However, such xi should have
been removed from Xi, a contradiction.

It remains to show the last part of Lemma 3. Let I be a subset of [1, m] with
|I| ≤ k, and suppose that Xj = G for each j ∈ I. Let L be the subgraph of
H formed by all the edges in H except the ones colored with i ∈ I. Note that
H contains a single copy of L. Since every vertex of H belongs to (k + 1)
edges, the subgraph L has no isolated vertices. It follows that a copy L′ of
L in K has precisely one vertex in G × {i} for each i = 1, 2, . . . , m. By the
construction of K, there is at most one copy H ′ of H in K containing L′,
namely the one whose labels are given by equation (2) given the gi’s. Since
Xj = G for each j ∈ I, then the label of each missing edge in L′, given
by this equation, belongs to the corresponding set Xj , thus such an edge is
indeed present in K. Hence, every copy of L in K can be uniquely extended
to a copy of H . Thus, K contains as many copies of H as of L. We can
apply Theorem 2 to L in the above argument to remove all copies of L by
removing only elements from sets Xi with i ∈ {1, . . . , m} \ I. This completes
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the proof.

The condition m ≥ k + 2 in the hypothesis of Lemma 3 has been used in the
proof for the construction of the hypergraphs associated to the linear system.
However, this condition is not restrictive for the proof of Theorem 1; in the
remaining cases (when m is k or k + 1), we apply the following lemma:

Lemma 4. Let A = (Ik|B) be a (k × m) integer matrix. If m = {k, k + 1}
then the statement of Theorem 1 holds for A.

Proof. For m = k the system has a unique solution and there is nothing to
prove. Suppose that m = k + 1. Then, for each element α ∈ Xk+1 there is
at most one solution to the system Ax = b with last coordinate xk+1 = α.
Let X ′

k+1 be the set of elements α ∈ Xk+1 such that xk+1 = α is the last
coordinate of some solution x. Since there are at most δn solutions we have
|X ′

k+1| ≤ δn and we are done by removing the set X ′

k+1. Thus the statement
of Theorem 1 holds with δ = ǫ.

3 A reduction Lemma

In this section we prove some technical lemmas that will allow us to derive
Theorem 1 from Lemma 3 via a series of transformations to the given linear
system.

Recall that the adjugate matrix of L, denoted by adj(L), is the matrix C
with Ci,j = (−1)i+jMj,i(L), where Mj,i(L) is the determinant of the matrix
L with the row j and the column i deleted.

Throughout the section G denotes an Abelian finite group of order n. For an
integer a coprime with the order n of G the map g 7→ ag is an automorphism
of the group. We will also denote by a this automorphism and by a−1 its
inverse. Observe that if an (r × r) integer matrix L has determinant a =
det L coprime with n then the action x 7→ Lx of L on Gr is invertible with
L−1x = a−1(adj(L)x). Thus the linear system Lx = b has the unique solution
x = L−1b. By abuse of notation, in what follows we write L−1b and, for a
matrix M with appropiate dimensions, L−1M , in the sense that division by
a means the action of the automorphism a−1.

We let A denote a (k × m) integer matrix such that its k-th determinantal
dk(A) satisfies gcd(dk(A), n) = 1. Let b ∈ Gk and let X = X1 × X2 × · · · ×
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Xm be an m–tuple of subsets of G. We say that the triple {A, b,X} is a
restricted system. A solution of the restricted system {A, b,X} is a vector
x = (x1, . . . , xm) ∈ Gm such that Ax = b and xi ∈ Xi, i = 1, 2, . . . , m.

A restricted system {A′, b′,Y}, where A′ is a (k′ × m′) integer matrix and
Y = Y1 × Y2 × · · · × Ym′ , is an extension of {A, b,X} if the following two
conditions hold:

E1: k′ ≥ k, m′ ≥ m, m′ − k′ = m − k, and

E2: There is a subset I0 ⊂ [1, m′] with cardinality |I0| = m a bijection
σ : I0 → [1, m] and maps φi : Yi → Xσ(i) such that the map φ : Y → X
with (φ(y))i = φσ−1(i)(yσ−1(i)) induces a bijection between the set of
solutions of {A′, b′,Y} and the set of solutions of {A, b,X}. Moreover,
for each i ∈ [1, m′] \ I0, we have Yi = G.

Thus, an extension {A′, b′,Y} of {A, b,X} has the same number of solutions
and one can define a map φ such that, if {A′, b′,Y\Y ′} has no solutions, then

{A, b,X \ φ(Y ′)} has no solutions either (here Y \ Y ′ stands for
∏m′

i=1 Yi \ Y ′

i

and X \ φ(Y ′) refers to
∏m

i=1 Xi \ φσ−1(i)(Y
′

σ−1(i).)

When {A′, b′,Y} is an extension of {A, b,X} with k = k′, any bijection for
σ, and the φi’s are bijective for each i, we say that the two systems are
equivalent.

The purpose of this section is to show that any restricted system which fulfills
the hypothesis of Theorem 1 can be extended to an homogeneous one with
a circular unimodular matrix. This will lead to a proof of Theorem 1 from
Lemma 3.

We first show that the matrix A can be enlarged to an integer square matrix
M of orderm such that det(M) = dk(A). The following Lemma uses the ideas
of Zhan [14] and Fang [4] to extend partial integral matrices to unimodular
ones. We include the proof of the simpler version we need for our purposes.

Lemma 5 (Matrix extension). Let M be an r× s integer matrix, s ≥ r. Let
dM denote the greatest common divisor of the determinants of the

(

s

r

)

square
(r × r) submatrices of M .

There is an s × s integer matrix M such that

(i) M contains M in its r first rows, and

(ii) det(M) = dM .
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Proof. Let S = U−1MV −1 be the Smith normal form of M , where U and V
are unimodular matrices. We have S = (D|0), where D is an (r×r) diagonal
integer matrix with | det(D)| = |dM | and 0 is an all–zero (r× (s−r)) matrix.

Recall that U and V are the row and column operations respectively which
transform M into S. Observe that the row operations do not modify the
value of the determinant of any (r × r) square submatrix of M . The column
operations may modify individual determinants but do not change the value
of dM .

Let S be the matrix:

S =

(

D 0
0 Is−r

)

,

where Ik denotes the identity matrix of order k. We have det(S) = det(D) =
dM .

Then, if we let V = V and

U =

(

U 0
0 Is−r

)

,

we obtain the matrix
M = U S V

which clearly (i) contains M as a submatrix in its first r rows, and (ii)
det(M) = det(S) = dM , since U and V are still unimodular.

We say that the restricted system {A, b,X} is thin if the set of solutions is a
subset of X1 × · · · ×Xi−1 ×{γj}×Xi+1 × · · ·×Xm, for some j and γj ∈ Xj.
Note that the statement of Theorem 1 is obvious if the system is thin since
it suffices to delete the element γj to remove all solutions. Thus there is no
loss of generality in assuming that our restricted system is not thin.

Lemma 6. The restricted system {A, b,X} is either thin or it has an exten-
sion {A′, b′,Y} such that

(i) k′ = m and m′ = 2m − k;

(ii) the matrix A′ has the form A′ = (Ik′|B);

(iii) b′ = 0;

(iv) gcd(Bi) = 1, where Bi denotes the i–row of the submatrix B and

(v) maxi,j{|A
′

i,j|} depends on the entries of A but not on the group G.
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(vi) the sets restricting variables corresponding to the columns of B in Y are
equal to the whole group G.

Proof. By using Lemma 5 we extend the matrix A into an m × m square
matrix

M =

(

A
E

)

with determinant det(M) = dk(A). We complete the square matrix M to
the m × (2m − k) matrix

M ′ =

(

A 0
E Im−k

)

= (M |B′).

We now consider the restricted system {M ′, b′,X ′} where b′ = (b, 0) is ob-
tained from b by adding zeros in the last m − k coordinates and

X ′

i =

{

Xi, 1 ≤ i ≤ m;
G, m + 1 ≤ i ≤ 2m − k.

By letting I0 = [1, m] and σ and φi be the identity maps we see that y is
a solution of {M ′, b′,X ′} if and only if x = φ(y′) is a solution of {A, b,X},
where y′ = (yi : i ∈ I0). Therefore {M

′, b′,X ′} is an extension of the original
system.

Let U = adj(M) denote the adjugate of M . Since a = dk(A) is relatively
prime with n, we get an equivalent restricted system {M ′′, b′′,X ′} by setting

M ′′ = (UM |UB′) = (a · Im|UB′), b′′ = Ub′′

and, by replacing each X ′

i, for i ∈ [1, m], by X̄ ′′

i = a−1X ′

i and X̄ ′′

i = X ′

i, for
i ∈ [m+1, 2m−k], we get a an equivalent system of the form {(Im|B

′′), b′′, X̄ ′′}
where B′′ = UB′. The system is equivalent since the matrix U is invertible
in G.

At this point we can erase the independent vector b by letting X ′′

i = X̄i
′′

− b′′i
for i = 1, . . . , m and leaving the other sets untouched. The solutions of the
homogeneous system (Im|B

′′)x = 0 with xi ∈ X ′′′

i are in bijective correspon-
dence with the solutions of M ′′x = b′′ with xi ∈ X ′′

i . So {(Im|B
′′), 0,X ′′} is

a system equivalent to {(Im|B
′′), b′′, X̄ ′′}, which fulfills conditions (i)-(iii) of

the Lemma.

We observe that, if B
′′

j = 0 for some j, then the j-th equation implies xj = 0.

Thus, the solution set of {(Im|B
′′), b′′, X̄ ′′} is inside X

′′

1 × · · ·×X
′′

j−1 ×{0}×
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X
′′

j+1 × · · · ×X
′′

m′ , which implies that the solution set for the original system
is inside X1 × · · · × Xj′−1 × {γj′} × Xj′+1 × · · · × Xm, for some γj′ ∈ Xj′.
Thus, if B

′′

j = 0, then the system is thin. Therefore we can assume that all

the rows in B
′′

are non–zero.

Suppose that gcd(B′′

i ) = s > 1, where B′′

i denotes the i–th row of B′′. Then
the i–th coordinate yi, i ∈ [1, m], of a solution of (Im|B

′′)y = 0 belongs to the
subgroup s ·G of G. Thus we may assume that X ′′

i ⊂ s ·G. Let Yi = s−1(X ′′

i ),
where now s−1 denotes the preimage of the canonical projection s : G → s ·G
defined by s(g) = sg, and divide the entries of the i–row B′′

i by s. In this
way we obtain an extension of {(Im|B

′′), 0,X ′′} where the map φi : Yi → Xi,
i ∈ [1, m], is the multiplication by s. By repeating the same procedure with
each row of B′′ we eventually obtain an extension {A′, 0,Y} satisfying the
conditions (i)-(iv) of the Lemma. Moreover, since all operations performed on
A to obtain A′ depend only on the entries of A and not on G, the condition
(v) also holds. The condition (vi) is satisfied as we have added the last
variables corresponding to the columns in B and they run over the full group
G. This completes the proof.

Our final step is to show that, if the restricted system {A, 0,X}, where A
satisfies the conclusions of Lemma 6, is non–thin, then it admits an extension
with a circular unimodular matrix.

Lemma 7. Let {A, 0,X} be a non–thin restricted system where A = (Ik|B)
and gcd(Bi) = 1 for every row i. There is an extension {A′, 0,X ′} with
k′ = k′(A) depending only on the entries of A such that all matrices formed
by k′ consecutive columns of A′ in the circular ordering are unimodular.
Moreover, up to a reordering on the indices j, X ′ = X ×

∏k′+m−k

j=m+1 G.

Proof. The stated extension is based on the following construction. Let M
be a unimodular matrix of order m−k. By adding toM a row at the bottom
of the form M1 +

∑

i=2 λiMi, where λi ∈ Z and Mi denotes the i–th row of
M , the last (m− k) rows of the resulting matrix form a unimodular matrix.
By choosing appropriate row operations at each step we may transform M
into the identity matrix. By putting each such transformation as a new row
at the bottom of M we obtain a matrix of the form

M ′ =





M
T

Im−k





such that every (m − k) × (m − k) submatrix of M ′ formed by consecutive
rows is unimodular. The same procedure can be repeated by adding rows to
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the top of M to obtain a matrix of the form

M ′′ =













Im−k

S
M
T

Im−k













and again every (m − k) × (m − k) submatrix of M ′′ formed by consecutive
rows is unimodular. Note that the dimensions of S and T depend on the
number of row operations needed to transform M into the identity matrix.
These operations involve performing an Euclidian algorithm on the entries
of M and its number can be upper bounded by five times the logarithm of
the largest entry in the matrix.

We apply the above procedure to the matrix B in the following manner. As
each row Bi of the submatrix B is such that gcd(Bi) = 1, we can apply
Lemma 5 to the row Bi, by using M = Bi, r = 1 with s = m − k, and
obtain a (m − k) × (m − k) square matrix Bi with determinant ±1. Thus,
by applying the above procedure to each of the resulting matrices B1, . . . , Bk

we may construct the following k′ × (m − k) rectangular matrix:

B′ =





















































Im−k

S1

B1

T1

Im−k

S2

B2

T2

Im−k

· · ·
Im−k

Sk

Bk

Tk

Im−k





















































,

for some k′ depending on B. Let

A′ = (Ik′|B′).

Observe that every set of k′ consecutive columns in the circular order in A′

form a unimodular matrix. To check this, let M(i) be the square submatrix
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formed by k′ consecutive columns of A′ in the circular order starting with
the i–th column.

Since the matrix A′ has the form

A′ =

(

Ik′

∣

∣

∣

∣

Im−k

X

)

for some matrix X, then each matrix M(i) for i = 1, . . . , m − k is a circular
permutation of a lower triangular matrix with all ones in the diagonal. Hence
M(i) is unimodular for these values of i.

For the remaining values of i, det M(i) equals, up to a sign, the determinant
of a submatrix ofB′ formed bym−k consecutive rows which, by construction,
is unimodular. More precisely, det M((m − k) + t) equals, up to a sign, the
determinant of the matrix formed by the rows B′

t+1, B
′

t+2, . . . , B
′

t+(m−k).

In order to complete the proof of the Lemma we must construct the family
X ′ of m′ = k′ +m−k sets. Let I1

0 ⊂ [1, m′] be the set of subscripts for which
the i–row of B′ corresponds to a row σ(i) of the original matrix B and let
I2
0 = [m′ − (m − k) + 1, m′]. Let I0 = I1

0 ∪ I2
0 . By setting X ′

i = Xσ(i) for
i ∈ I1

0 , X
′

i = Xi−m′+m for i ∈ I2
0 , and X ′

i = G otherwise, we get an extension
(A′, 0,X ′) of the given restricted system with

φ :

k
∏

i=1

X ′

σ−1(i) ×
m
∏

i=k+1

X ′

i+m′
−m →

k
∏

i=1

Xi ×
m
∏

i=k+1

Xi

the identity map. This completes the proof.

Observe that Lemma 6 and Lemma 7 can be concatenated to obtain a single,
coherent, extension. The variables added in Lemma 6, that run over the
whole groupG, will also be moving overG after the second extension provided
by Lemma 7. We summarize the results of this Section in the following
Proposition.

Proposition 8. Let G be an abelian group of order n. Let {A, b,X}, where A
is an integer (k×m) matrix, be a non–thin restricted system with gcd(dk(A), n)
equal to 1. There is an extension {A′, b′,X ′} of {A, b,X} with k′ = k′(A)
such that A′ is of the form A′ = (Ik′|B), b′ = 0 and every k′ consecutive
columns of A′ form a unimodular matrix.
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4 Proof of Theorem 1

We complete here the proof of Theorem 1. We assume that the system is not
thin, otherwise, the result holds by deleting just one element of one set.

By Lemma 4 we may assume that m′ − k′ ≥ 2. Let ǫ > 0 and an integer
(k × m) matrix A be given. Let G be an Abelian group of order n coprime
with dk(A), and let {A, b,X} be a restricted system in G. It follows from
Proposition 8 that there is an extension {A′, 0,X ′} of {A, b,X} such that A′

is a circular unimodular matrix of dimension (k′ ×m′) with m′ − k′ = m− k
and k′ = k′(A). Moreover there is a subset I0 ⊂ [1, m′] with cardinality m, a
bijection σ : I0 → [1, m] and maps φi : X ′

i → Xσ(i), 1 ≤ i ≤ m such that the
map φ : X ′ → X with (φ(x′))i = φσ−1(i)(x

′

σ−1(i)) induces a bijection between

the set of solutions of {A′, 0,X ′} and the set of solutions of {A, b,X}. In
addition, I = [1, m′] \ I0 has cardinality less than k′ and X ′

i = G for each
i ∈ I.

We apply Lemma 3 to the extension {A′, 0,X ′} to obtain a set X̄ ′ with
|X̄ ′

i| < ǫn for all i ∈ [1, m′] such that {A′, 0,X ′ \ X̄ ′} has no solution. We
use the last part of Lemma 3 to ensure that X̄ ′ can be chosen in such a way
that X̄ ′

i = ∅ for each i ∈ I = [1, m′] \ I0. This shows that {A, b,X \φ(X̄ ′)} is
solution free and |(φ(X̄ ′))i| < ǫn for i ∈ [1, m]. This completes the proof of
Theorem 1.
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