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Abstract

Let G be a plane graph and T an even subset of its vertices. It
has been conjectured that if all T -cuts of G have the same parity and
the size of every T -cut is at least k, then G contains k edge-disjoint
T -joins. The case k = 3 is equivalent to the Four Color Theorem, and
the cases k = 4, which was conjectured by Seymour, and k = 5 were
proved by Guenin. We settle the next open case k = 6.

1 Introduction

We study packings of T -joins in plane graphs. Let G be a graph and T an
even-size subset T of its vertices. A T -join is a subgraph H of G such that
the odd-degree vertices of H are precisely those in T . A cut is a partition
of the vertex set of a graph G into two sets A and B, which we refer to as
sides; the size of the cut is the number of edges with one end-vertex in A and
the other end-vertex in B. A cut is trivial if one its sides consists of a single
vertex and a cut is odd if the size of A is odd. Finally, a T -cut is a cut such
that |T ∩ A| is odd.
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Clearly, if G has a T -cut of size k, it cannot have more than k edge-disjoint
T -joins. We are interested when the converse is also true. Seymour [7] (also
see Problem 12.18 in [3]) conjectured the following for k = 4.

Conjecture 1. Let G be a plane graph and T an even-size subset of its
vertices. If the sizes of all T -cuts in G have the same parity and the size of
every T -cut is at least k, then G contains k edge-disjoint T -joins.

The case k = 3 is equivalent to the Four Color Theorem. The cases k = 4
and k = 5 were proved by Guenin [4]. We remark that the case k = 4 implies
the Four Color Theorem, as pointed out by Seymour [7]. Here, we prove the
next open case. Our main result is the following.

Theorem 1. Let G be a plane multigraph and T an even subset of its vertices.
If every T -cut of G has the same parity and the size of every T -cut is at least
six, then G contains six edge-disjoint T -joins.

Guenin [4] argued that it suffices to prove Conjecture 1 for plane graphs
G with V (G) = T that are k-regular, i.e., every vertex has degree k. In such
case, the existence of k edge-disjoint T -joins is equivalent to the existence of
a k-edge-coloring; a k-edge-coloring is an assignment of colors to the edges
such that no vertex is incident with two edges of the same color. Hence,
Theorem 1 for k = 6 is equivalent to the next theorem which we prove in the
following sections of the paper.

Theorem 2. Let G be a 6-regular plane multigraph. If G has no odd cut of
size less than 6, then G has a 6-edge-coloring.

Note that the condition that G has no odd cut of size less than six implies
that the number of vertices of G is even (otherwise, consider a cut with one
of the sides empty). Let us remark that Conjecture 1 would be implied by
the following more general conjecture of Seymour (replacing the condition
of not containing Petersen by a stronger condition of being planar yields a
statement equivalent to Conjecture 1).

Conjecture 2. Let G be a k-regular graph with no Petersen minor. The
graph G is k-edge-colorable if and only if every odd cut of G has size at least
k.

The case k = 3 is the well-known Tutte’s three edge-coloring conjecture,
whose solution is announced by Robertson, Sanders, Seymour and Thomas
(see [5]). Indeed, the case k = 3 is a special case of another well known
conjecture by Tutte, which is known as the Tutte’s four flow conjecture.
Conjecture 2 would also imply the following conjecture of Conforti and

Johnson [2], also see [1].
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Conjecture 3. Let G be a graph with no Petersen minor and T a set of its
odd-degree vertices. Then, the maximum number of edge-disjoint T -joins is
equal to the size of the smallest T -cut.

Conjectures 1, 2 and 3 are paid attention by many researchers, because
they are connected not only to T -joins, T -cuts and edge-coloring but also to
cycle covers and flows. For more details, we refer the reader to the books by
Cornuéjols [1] and by Schrijber [6], respectively.

2 Notation

We now introduce notation used throughout the paper. A vertex of degree
d is called a d-vertex. An ≥ d-vertex is a vertex of degree at least d and an
≤ d-vertex is a vertex of degree at most d. In a 2-connected plane graph, a
d-face is a face incident with exactly d edges. Analogously to vertices, we
use an ≤ d-face and an ≥ d-face.
Two faces in a plane graph are adjacent if they share a common edge.

We say that a face is k-big if it is adjacent to k ≥ 4-faces. A bigon is a 2-face
and a series of consecutively adjacent bigons is called multigon. The order
of a multigon is the number of edges forming it, i.e., the number of bigons
forming it increased by one. Multigons of order three are called trigons and
those of order four quadragons. Two multigons are incident if they share a
vertex. If f is a face, then two multigons are f -incident if they contain edges
consecutive on the boundary of f . We extend this notion to a multigon and
a face and to two faces in the natural way.
A 5-face is dangerous if either it is adjacent to two trigons and at least

one bigon or it is adjacent to a trigon and at least three bigons. A 7-face
is dangerous if it is adjacent to three trigons and three bigons. Finally, a
multigon t is dangerous if

• t is a quadragon,

• t is a trigon adjacent to a dangerous 5-face f such that t is f -incident
with a multigon, or

• t is a trigon adjacent to a dangerous 7-face f such that t is f -incident
with two multigons.

The rest of the paper is devoted to proving Theorem 2. With respect
to this proof, a plane graph G is said to be a minimal counterexample if G
satisfies the assumptions of Theorem 2, i.e.,

• G is 6-regular,
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• every odd cut of G has size at least six, and

• G has no 6-edge-coloring, and

it also holds that

• subject to the previous conditions, G has the smallest order,

• subject to the previous conditions, G has as many quadragons as pos-
sible,

• subject to the previous conditions, G has as many trigons as possible,
and

• subject to the previous conditions, G has as many bigons as possible.

By Lemma 2.2 from [4], in order to prove Theorem 2, it is enough to exclude
the existence of a minimal counterexample.
In our arguments, we will often need to transform an edge-coloring to

another one. To simplify our arguments, we will use the letters α, β, γ, δ,
ε and ϕ to denote the colors used on edges. If G is a graph with maximum
degree d that is d-edge-colored, then an αβ-chain, where α and β are two
colors used on the edges of G, is a cycle or a maximal path formed by edges
with the colors α and β only. Swapping the colors the of edges on an αβ-
chain means recoloring α-colored edges of the chain with β and β-colored
edges with α.

3 Structure of a minimal counterexample

In this section, we analyze structure of a minimal counterexample; in the
next section, we then prove that there exists no minimal counterexample
using the discharging method.

3.1 Odd cuts

We start with analyzing sizes and structure of odd cuts in a minimal coun-
terexample. As the first step, we prove the following simple observation.

Lemma 3. Every non-trivial odd cut in a minimal counterexample G has
size at least eight.
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Proof. Since G is 6-regular, every cut in G has even size. Hence, if G has a
non-trivial odd cut of size less than eight, its size must be six. Let A and B
be the sides of such a non-trivial odd cut.
Let GA be the (plane) graph obtained from G by replacing A with a

single vertex incident with the six edges of the cut (A, B). Similarly, GB is
the graph obtained from G by replacing B with a single vertex incident with
the six edges of the cut (A, B). By the minimality of G, both GA and GB

have 6-edge-colorings. These edge-colorings combine to a 6-edge-coloring of
G (the edges of the cut receive six distinct colors) which contradicts that G
is a minimal counterexample.

Using Lemma 3, we prove the following simple observation on the struc-
ture of multigons in a minimal counterexample.

Lemma 4. In a minimal counterexample G, the order of every multigon is
a most four and the sum of the orders of any two incident multigons is at
most five.

Proof. If G contains a multigon of order five or two incident multigons with
orders summing to six, then there is a vertex v that has only two neighbors,
say v′ and v′′. Unless G has exactly four vertices, the set {v, v′, v′′} forms
a side of a non-trivial odd cut of size six which is impossible by Lemma 3.
Hence, G has exactly four vertices and it is straightforward to show that it
can be 6-edge-colored.

One of possible ways to to obtain an edge-coloring of minimal counterex-
ample, which is assumed not to exist, is reducing a minimal counterexample
to another 6-regular graph of the same order but with multigons of larger
order. Such a reduction can only be possible if the resulting graph has no
odd cuts of size less than six. One operation that will observe this property
is the swapping operation that we now introduce.
If G is a plane graph such that it is possible to draw a closed curve in the

plane that intersects G only at vertices v1, . . . , vk for k even and G contains
edges v2v3, v4v5, . . ., vk−2,k−1 and vkv1 (such a k-tuple of vertices v1, . . . , vk is
called eligible), then the graph obtained from G by the v1 . . . vk-swap is the
plane graph obtained by removing the edges v2v3, v4v5, . . ., vk−2,k−1 and vkv1

and inserting the edges v2i−1v2i for i = 1, . . . , k/2.
A crucial property of this operation is that the size of odd cuts can de-

crease by at most two if k is four or six. We prove this in the next two
lemmas.

Lemma 5. Let G be a minimal counterexample and let k be either four or
six. Any graph G′ obtained from G by a v1v2v3vk-swap for eligible vertices
v1, . . . , vk is 6-regular and has no odd cut of size less than six.
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Proof. Clearly, the graph G′ is 6-regular. Consider an odd cut with sides
A and B of G′. Observe that this cut is also odd in G. By symmetry, we
can assume that |A ∩ {v1, . . . , vk}| ≤ 3. Let A′ ⊆ A be those vertices vi of
A such that vi−1 or vi+1 is in A. Since |A ∩ {v1, . . . , vk}| ≤ 3, the set A′ is
either empty or formed by two or three consecutive vertices. If A′ is empty
or formed by three consecutive vertices, the number of edges leaving A′ to B
is the same in G and G′. If A is formed by two consecutive vertices, then the
number of such edges leaving A′ to B is either increased or decreased by two.
Since the number of edges between the vertices of A \ A′ and the vertices of
B is preserved, every odd cut of G′ has size at least six.

3.2 Existence of e-colorings

A crucial property of a minimal counterexample is the existence of an e-
coloring. Let us define this notion formally. If G is a 6-regular graph and
e an edge of G, then an e-coloring of G is a coloring of edges of G with six
colors such that every edge except for e is assigned one color, e is assigned
three or more colors, and for every color, each vertex is incident with an odd
number of edges assigned that color. Observe that in an e-coloring, every
vertex except the end-vertices of e must be incident with edges of mutually
different colors, i.e., an e-coloring is proper at all vertices except for the end
vertices of e. Also observe that the number of colors assigned to e in an
e-coloring must always be odd.
The following lemma appears as Lemma 2.5 in [4].

Lemma 6. Let G be a minimal counterexample. For every edge e, there
exists an e-coloring.

We now strengthen Lemma 6 for the case when e is contained in a multi-
gon of order at least three.

Lemma 7. Let G be a minimal counterexample and e = vv′ an edge of G
contained in a multigon of order three or more. There exists an e-coloring
such that e is assigned precisely three colors, say α, β and γ, and one of
these colors, say α, is assigned to other two edges incident with v as well as
other two edges incident with v′.

Proof. By Lemma 6, there exists an e-coloring of G. Recall that e must be
assigned an odd number of colors. Assume that e is assigned exactly three
colors, say α, β and γ. If an edge contained in the multigon with e is assigned
one of these three colors, say γ, then we can obtain a 6-edge-coloring of G
by assigning to this edge the color α and assigning the edge e the color β
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only. Hence, either e is contained in a trigon and the other two edges of the
trigon are assigned the colors δ and ε (by symmetry) or e is contained in a
quadragon and the other three edges are assigned the colors δ, ε and ϕ.
By permuting the colors of the edges of the multigon and exchanging the

roles of v and v′, we can assume that one of the following cases apply:

• The vertex v is incident with two edges colored with α in
addition to e and the vertex v′ is also incident with two edges

colored with α in addition to e. In this case, the edge-coloring is
of the type described in the statement of the lemma.

• The vertex v is incident with two edges colored with α in
addition to e and the vertex v′ is also incident with two edges

colored with β in addition to e. Let e1 be one of the edges incident
with v′ assigned the color β. Let e2 be the end edge of the αβ-chain
of G \ e starting at e1. The edge e2 is either an edge colored with
α incident with v or the other edge colored with β incident with v′.
If e2 is incident with v, we can obtain a proper 6-edge-coloring of G
by swapping the colors on the chain and assigning e the color γ only.
Hence, e2 is incident with v′. In this case, we swap the colors on the
chain and obtain an e-coloring of the type described in the statement
of the lemma.

• The vertex v is incident with two edges colored with α in
addition to e and the vertex v′ is incident with three edges

colored with ϕ. Observe that the order of the multigon must be
three in this case.

Consider the αϕ-chains of G\e starting at edges incident with v′. Since
v′ is incident with three edges colored with ϕ and no edge colored with
α in G \ e, at least one of these chains ends at an edge incident with v.
Let ev be this edge.

If ev is colored with α, swap the colors α and ϕ on the αϕ-chain and
color e with the colors β, γ and ϕ. An e-coloring of the desired type
can now be obtained by exchanging the colors α and ϕ in the whole
graph.

Hence, we can assume that there is no αϕ-chain starting an edge in-
cident with v′ and ending at an edge incident with v with the color
α. Consequently, there exists an αϕ-chain starting and ending at an
edge incident with v′. By swapping the colors α and ϕ on this chain,
we obtain an e-coloring of the type described in the statement of the
lemma.
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• Each of the vertices v and v′ is incident with three edges col-

ored with ϕ. Observe that the order of the multigon must again be
three.

Since v is incident with three edges colored with ϕ and no edge colored
with α in G \ e, there exists a αϕ-chain in G \ e that starts at an edge
incident with v and ends at an edge incident with v′. Swap now the
colors α and ϕ on this chain and color e with the colors β, γ and ϕ.
The desired edge coloring of G can now be obtained by exchanging the
colors α and ϕ in the whole graph.

Assume now that e is assigned five colors, say α, β, γ, δ and ε. If one
of these colors, say ε, is assigned to another of edge of the multigon, then
assign e the colors α, β and γ only and assign δ to the edge colored ε. On the
other hand, if other two edges in the multigon are assigned the color ϕ, then
assign to e the colors α, β and γ only and recolor the other two edges with δ
and ε. In either of the two cases, we have found an e-coloring of G assigning
e exactly three colors. Since we have already analyzed such e-colorings, the
proof is now completed.

Hereafter, we will sometimes refer to the assumption of Lemma 7. In
particular, the color α will be the color assigned to other two edges incident
with v as well as other two edges incident with v′.
The existence of e-colorings is related to the notion of mates which also

appeared in [4]. We use a slightly different but equivalent terminology to
that in [4]. If G is a minimal counterexample, e an edge of G and c one of
the colors used in an e-coloring, then a c-mate Mc is a set of edges of G that
form an odd cut containing e such that, for every color c′ 6= c, Mc contains
exactly one edge that is assigned the color c′. A c-mate is non-trivial if it
forms a non-trivial cut of G. Lemma 2.6 in [4] asserts the existence of mates
in a minimal counterexample.

Lemma 8. Let G be a minimal counterexample and e an edge of G. For
every e-coloring and every color c, there exists a c-mate.

The following observation on the structure of mates is often used in our
arguments. We state it as a proposition for future references.

Proposition 9. Let G be a minimal counterexample and e an edge of G.
In each e-coloring, every non-trivial c-mate Mc contains at least five edges
(possibly including e) assigned the color c.

Proof. By Lemma 3, the mate Mc contains at least eight edges. Since the
edge e is assigned at least three colors and Mc contains exactly one edge
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assigned each of the colors c′ 6= c,Mc must include at least five edges assigned
the color c.

We use the existence of a c-mate Mc in the following way: if Mc contains
an edge adjacent to a face f or an edge in a multigon adjacent to f , then
f is ≥ 4-face unless f is incident with an end-vertex of e, or f is adjacent
to an edge of Mc colored with a color different from c or f is adjacent to a
multigon containing edges with colors different from c only.
Let us demonstrate the use of this approach in the following lemma.

Lemma 10. Every face f adjacent to a quadragon is ≥ 5-big.

Proof. Let e be the edge of the quadragon incident with f and consider an
e-coloring as described in Lemma 7. Let Mc be a c-mate for c 6= α and ec

another edge of f contained in Mc. Let fc be the other face containing the
edge ec. Since the edges of the quadragon are assigned all six colors and the
mate Mc contains at least five edges with the color c by Proposition 9, the
face fc contains another edge with the color c. Hence, fc is ≥ 4-face. Since
the faces fc differ for different choices of c, we conclude that f is ≥ 5-big.

Another application of the mates is the following.

Lemma 11. Every face f adjacent to a trigon is adjacent to at least one
edge not contained in a multigon.

Proof. Let e be an edge of the trigon and consider an e-coloring as described
in Lemma 7. Let Mϕ be a ϕ-mate. Since the edges of the trigon have all
the five colors different from ϕ, all the other edges contained in Mϕ have the
color ϕ. Since the only vertices incident with two edges of the same color are
the end vertices of e, no edge of Mϕ except for those contained in the trigon
is contained in a multigon. In particular, the edge of f contained in Mϕ and
not in the trigon is not contained in a multigon.

In the rest of this section, we will focus in more detail on multigons
adjacent to faces of various sizes.

3.3 Structure of 3-faces

In this subsection, we focus on 3-faces. We start with 3-faces adjacent to a
trigon.

Lemma 12. If a 3-face f in a minimal counterexample is adjacent to a
trigon, then f is adjacent to no other multigon, both the faces adjacent to
f are ≥ 5-big and the other face adjacent to the trigon is also ≥ 5-big. In
particular, it is ≥ 6-face.
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Figure 1: Notation used in the proof of Lemma 12 and the swap.

Proof. Let e = v1v2 be an edge of the trigon adjacent to f and consider
an e-coloring as in Lemma 7. Since the edges incident with v1 and v2 not
contained in the trigon have the colors α and ϕ only and no vertex except
for v1 and v2 is incident with two edges of the same color, the face f cannot
be adjacent to another multigon and the other two edges adjacent to f have
the colors α and ϕ.
Let v3 be the remaining vertex of the face f , f ′ the other face adjacent to

the trigon, f ′′ the face incident with the edge v1v3 and v4 a neighbor of v3 on
the face f ′′ (see Figure 1). The graph G′ obtained from G by the v1v2v3v4-
swap has a 6-coloring by the minimality of G (there is a quadragon between
v1 and v2 after the swap) and Lemma 5. By symmetry, we can assume that
the colors of the edges of the quadragon between v1 and v2 are β, γ, δ and
ε, and the color of the edge v1v3 is ϕ. If the edge v3v4 has a color different
from α, then we can obtain a proper 6-edge-coloring of G by assigning the
edges v2v3 and v4v1 the color of the edge v3v4. Hence, the color of v3v4 is α.
Consider now the following e-coloring: the edge e is colored with α, β, γ, the
other edges of the trigon with δ and ε, the edge v2v3 is colored with α, the
edge v1v4 is also colored with α and the remaining edges of G have the same
colors as in G′.
Let Mc be a c-mate for c 6= α. Observe that Mc contains the three edges

of the trigon and the edge v1v3 which is colored with ϕ (it cannot contain the
edge v2v3 because its color is α). We show that both f ′ and f ′′ are ≥ 5-big.
Since G is 2-connected (it is 6-regular and 6-edge-connected), the faces f ′

and f ′′ are different. We now argue that f ′ is ≥ 5-big. Let ec be the edge
incident with f ′ that is contained in Mc and that is not contained in the
trigon. Clearly, the color of ec is c. Let fc be the face adjacent to ec that is
distinct from f ′. Since the mateMc contains at least five edges with the color
c by Proposition 9, fc is also distinct from f ′′. Since fc contains another edge
colored with c by Proposition 9, fc must be ≥ 4-face. Since the faces fc are
different for different choices of c 6= α, the face f ′ is ≥ 5-big. The argument
that f ′′ is ≥ 5-big follows the same lines.
Switching the roles of v1 and v2 yields that the face adjacent to f distinct

from f ′′ is also ≥ 5-big.
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Figure 2: Notation used in the proof of Lemma 13 and the swap.

We now focus on 3-faces adjacent to bigons.

Lemma 13. If a 3-face of a minimal counterexample is adjacent to at least
two bigons, then it is adjacent exactly to two bigons and the other faces
adjacent to these bigons are ≥ 5-big.

Proof. Let v1, v2 and v3 be the vertices of f in such an order that there is
a bigon between v1 and v2 and between v1 and v3. Let f ′ be the other face
adjacent to the bigon between v1 and v2 and f ′′ the other face adjacent to the
bigon between v1 and v3. Finally, let v4 be the neighbor of v1 on f ′′ different
from v3. Also see Figure 2.
By the minimality of G and Lemma 5, the graph G′ obtained from G by

the v1v2v3v4-swap has a 6-edge-coloring. Let β, γ and δ be the colors assigned
to the edges between v1 and v2 and ε and ϕ the colors of the edges between
v1 and v3. Since the edge v3v4 cannot have the color ε or ϕ, we can assume
that its color is α or β by symmetry. In the latter case, coloring the edges of
the bigon between v1 and v2 with the colors γ and δ, the edges v1v4 and v2v3

with β and the other edges with their colors in G′ yields a 6-edge-coloring
of G. Hence, the color of v3v4 is α. Observe that this implies that the edge
v2v3 is not contained in a multigon.
Consider now the following e-coloring where e is one of the edges of the

bigon between v1 and v2: the edge e is assigned the colors α, β and γ, the
other edge of the bigon the color δ, the edges v1v4 and v2v3 the color α and
the remaining edges preserve their colors. Consider a c-mate Mc for c 6= α.
This mate must contain all the edges of the bigons between v1 and v2 and
between v1 and v3. Let ec be the edge of f

′ contained in Mc. The color of ec

must be c and the other face containing ec must contain another edge with
the color c. Consequently, it is a ≥ 4-face. We conclude (by considering all
choices of c) that f ′ is ≥ 5-big face. A symmetric argument applies to the
face adjacent to the bigon between v1 and v3.

Before considering 3-faces adjacent to a single bigon, we have to prove
the following lemma:
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Figure 3: Notation used in the proof of Lemma 15 and the swap.

Lemma 14. In a minimal counterexample, any trigon adjacent to an ≤ 2-big
face is also adjacent to an ≥ 4-big face.

Proof. Let e be an edge of the trigon, f the ≤ 2-big face adjacent to the
trigon and f ′ the other face adjacent to the trigon. Consider an e-coloring
described in Lemma 7 and let Mc be a c-mate for c 6= α.
The mateMϕ contains at least five edges colored with ϕ by Proposition 9

and no edges of other colors except for those contained in the trigon. Hence,
one of the (at most) two ≥ 4-faces adjacent to f shares with f an edge
colored ϕ. By symmetry with respect to the colors β, γ, δ and ε, we can
assume that the other ≥ 4-face adjacent to f (if it exists) shares with f an
edge with color different from β, γ and δ.
Consider now a mate Mc, c ∈ {β, γ, δ, ϕ}. On the face f , the mate Mc

either contains an edge colored with ϕ or (if c 6= ϕ) an edge colored with the
color c that lies on a ≤ 3-face (which forces Mc to contain an edge incident
with this face that is colored with ϕ). In both cases, since the mate Mc

contains at least five edges colored with c by Proposition 9, one of these edges
(which are colored with c) must lie on the face f ′ and the face containing this
edge different from f ′ is ≥ 4-face. Since these faces are different for different
values of c in {β, γ, δ, ϕ}, the face f ′ is ≥ 4-big.

We are now ready to consider 3-faces adjacent to a single bigon.

Lemma 15. If a 3-face f in a minimal counterexample is adjacent to a
single bigon and the the other face adjacent to this bigon ≤ 2-big, then the
other two faces adjacent to f are ≥ 3-big.

Proof. Let v1, v2 and v3 be the vertices of f in such an order that the bigon
is between v1 and v2. Let f ′ be the face incident with the edge v1v3, f ′′

the other face adjacent to the bigon and let v4 be the neighbor of v1 on f ′

different from v3. Also see Figure 3.
If G contains a trigon between the vertices v1 and v4, the claim follows

from Lemma 14. Otherwise, the minimality of G and Lemma 5 implies that
the graph G′ obtained from G by the v1v2v3v4-swap has a 6-edge-coloring.
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By symmetry, we can assume that the colors assigned to the edges between
v1 and v2 are β, γ and δ, and ε is the color of the edge v1v3. If the color of
the edge v3v4 is one of the colors β, γ and δ, we can obtain a 6-coloring of G
as in the proof of Lemma 12. Hence, we can assume that the color of v3v4 is
α.
Let e be one of the edges of the bigon and consider the following e-coloring:

the edge e is assigned the colors α, β and γ, the other edge of the bigon the
colors δ, the edges v1v4 and v2v3 are assigned the color α and the remaining
edges preserve their colors. Let Mc be a c-mate for c 6= α. Observe that each
mate Mc, c 6= α, contains the two edges of the bigon as well as the edge v1v3.
By Proposition 9, the mate Mϕ contains at least five edges colored with

ϕ. The construction of the e-coloring yields that all these edges must lie on
≥ 4-faces (since their end-vertices are distinct). Hence, one of the (at most)
two ≥ 4-faces adjacent to f ′′ shares an edge with color ϕ with f ′′.
The argument that we now present is symmetric with respect to the colors

β, γ, δ and ε. Hence, we can assume that the other ≥ 4-face adjacent to
f ′′ (if it exists) shares with f ′′ an edge with color different from ε. On the
face f ′′, each of the mates Mc, c ∈ {β, γ, δ}, either contains an edge colored
with ϕ or an edge colored with the color c that lies in a ≤ 3-face. In the
latter case, the other edge of that face contained in Mc must have the color
ϕ. Hence, Mc contains an edge ϕ in both cases. Since the mate Mc contains
at least five edges colored with c by Proposition 9, it contains at least three
additional edges colored with c. One of these edges must lie on the face f ′

and the face containing this edge different from f ′ must be a ≥ 4-face. Since
these faces are different for different values of c ∈ {β, γ, δ}, the face f ′ is
≥ 3-big.

We finish this subsection with an observation on faces around 3-faces
adjacent to trigons.

Lemma 16. A minimal counterexample G does not contain a vertex v1 in-
cident with mutually adjacent 3-face f3 and dangerous a 5-face f5, a bigon
contained in f3 but not in f5, and a trigon t contained in f5 such that t is
f5-incident to a bigon.

Proof. Let v2 be the other vertex contained in t, let v3, v4 and v5 be the
other vertices of f5 (in this order) and let v6 be the remaining vertex of f3.
Also see Figure 4.
Assume first that f5 is adjacent to a trigon between the vertices v3 and

v4. Let G′ be the graph obtained from G by the v1v2v3v4v5v6-swap. By
the minimality of G (none of the affected multigons has order four in G by
Lemma 10) and Lemma 5, the graph G′ has a 6-edge-coloring.
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Figure 4: Notation used in the proof of Lemma 16 and possible swaps.

Let C be the set of colors assigned to the four edges between v1 and v2 in
G′. Both the colors of the edges between v5 and v6 are in C: the two colors
not contained in C are assigned to the edges v1v6 and v1v5 and thus the two
edges between v5 and v6 cannot have either of these two colors.
At least three of the colors from C are used on the edges of the quadragon

between v3 and v4 in G′. Hence, there is a color c assigned to an edge between
v1 and v2, an edge between v3 and v4, and an edge between v5 and v6. Remove
the three edges colored with c between these pairs of vertices and insert the
edges of G missing in G′. Coloring the new edges with c yields a 6-edge-
coloring of G.
Assume next that G contains a trigon between v4 and v5. Let G′′ be the

graph obtained by the v2v3v4v5v6v1-swap and consider its 6-edge-coloring
which exists by the minimality of G and Lemma 5. Let C16 be the colors
of the edges in the trigon between v1 and v6 in G′′, C23 the colors of the
edges in the trigon between v2 and v3, and C45 the colors of the edges in the
quadragon between v4 and v5. Since G′′ contains a bigon between v1 and v2,
it holds that |C16 ∩ C23| ≥ 2. Similarly, because the vertices v1 and v5 are
joined by an edge, it holds that |C16 ∩C45| ≥ 2. Consequently, there exists a
color c ∈ C16 ∩ C23 ∩ C45. Removing edges of this color from the quadragon
and the two trigons and coloring the edges of G missing in G′′ with c yields
a 6-edge-coloring of G.
The final case to consider is that f5 is adjacent to three bigons but the
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only trigon adjacent to f5 is the one formed by the edges between v1 and v2.
Let G′′ be again the graph obtained by the v2v3v4v5v6v1-swap and consider
its 6-edge-coloring which exists by the minimality of G and Lemma 5. Let
C16 be the colors of the edges in the trigon between v1 and v6 in G′′, C23

the colors of the edges in the trigon between v2 and v3, and C45 the colors
of the edges in the quadragon between v4 and v5. Since G′′ contains a bigon
between v1 and v2, it holds that |C16 ∩ C23| ≥ 2. If C45 does not contain a
color from C16 ∩ C23, then the edges v1v5 and v3v4 have the same color that
is the unique color not contained in C45 ∪ (C16 ∩C23). This however implies
that the sets C16 and C23 must be the same: they do not contain the colors
of the two edges between v1 and v2 and the common color of the edges v1v5

and v3v4. Since the sets C23 and C45 have a common color, we conclude that
there exists a color c contained in all the sets C16, C23 and C45. Removing
the edges colored with c from the three trigons and coloring the edges of G
missing in G′′ with c yields a 6-edge-coloring of G.

3.4 Structure of 4-faces

In this subsection, we just prove two simple lemmas on 4-faces.

Lemma 17. If a trigon in a minimal counterexample G is adjacent to a
4-face f , then f is adjacent to no other multigon.

Proof. Let v1, . . . , v4 be the vertices of f in such an order that the trigon
adjacent to f is between v1 and v2. Apply the v1v2v3v4-swap. Since the
resulting graph G′ contains a new quadragon (and f is not adjacent to a
quadragon in G by Lemma 10), G′ has a 6-edge-coloring by the minimality
of G and Lemma 5. Let β, γ, δ and ε be the colors of the edges of the
quadragon in G′. If one of these colors appears on the edges between v3 and
v4, we can use this color for the edges v1v4 and v2v3 and obtain a proper
coloring of G. Hence, G′ contains a bigon between the vertices v3 and v4,
the colors of its two edges are α and ϕ, and G′ contains neither an edge v1v4

nor v2v3. In particular, in G, f is adjacent to a single multigon which is the
considered trigon.

Lemma 18. No 4-face in a minimal counterexample is adjacent to three or
four bigons.

Proof. Let v1, . . . , v4 be the vertices of f in such an order that the bigons
are (at least) between the pairs v1 and v2, v2 and v3, and v3 and v4. By the
minimality of G and Lemma 5, the graph G′ obtained by the v1v2v3v4-swap
has a 6-edge-coloring. Since G′ contains an edge v2v3, the trigons between
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the pairs v1 and v2, and v3 and v4 must have two edges with the same color.
Remove edges of this color from the trigons and insert them as edges between
v2 and v3, and v1 and v4. This yields a 6-edge-coloring of G.

3.5 Structure of ≥ 5-faces

We start this subsection with a lemma on 5-faces.

Lemma 19. In a minimal counterexample, if a 5-face f is adjacent to 5
multigons, then all these multigons are bigons and each such bigon b is adja-
cent to a ≥ 4-big face.

Proof. By Lemmas 10 and 11, f is adjacent to five bigons. Let e be an edge
of the bigon b and f ′ the other face adjacent to it. Consider an e-coloring
and c-mates Mc for different colors c. If e is assigned five colors, then each
mate Mc includes all six colors on the edges of b. Since a mate Mc cannot
include additional edges with a color different from c, such a mate cannot
include any other bigons which is impossible. Hence, we can assume that e
is assigned three colors, say α, β and γ. By symmetry, we can assign that
the other edge of b is colored with δ.
The mate Mε includes in addition to the bigon b another bigon adjacent

to f . The two edges of this bigon must be colored with the colors ε and ϕ
(they cannot have the same color since they are incident with a vertex that
is not an end-vertex of e). Let b′ be this bigon. Similarly, the mate Mϕ must
include a bigon with one edge colored ε and the other ϕ.
We claim that the bigons b and b′ are f -incident. If they were not, there

would a bigon b′′ f -incident with both b and b′. Let v be the vertex shared
by b′′ and b. Since v is incident with three edges assigned one of the colors
and the remaining five colors are assigned to a single edge each, one of the
edges b′ has the color ε or the color ϕ. This is however not possible, since
the edges of b′′ have the colors ε and ϕ.
Observe that the face f is adjacent to at most two bigons containing an

edge colored ε, one of these bigons being b′. Let bε be such a bigon different
from b′ if it exists. Similarly, let bϕ be the bigon different from b′ containing
an edge colored ϕ (if it exists). Let cε and cϕ be the colors of the other
edges contained in bε and bϕ (if the bigons do not exist, choose cε and cϕ

arbitrarily).
Let c be a color different from cε and cϕ. The mate Mc includes the two

edges assigned colors α, β, γ and δ which appear on the bigon b. Since it
contains exactly one edge of each color different from c, Mc must include a
bigon with edges colored ε and ϕ (which can be b′ or a different bigon of
this type). Consequently, Mc includes an edge colored with c on a face f ′
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and this edge must be contained in a ≥ 4-face since Mc includes more edges
colored with c (see Proposition 9). Since there are four choices of c different
from cε and cϕ, the face f ′ is ≥ 4-big.

In the next two lemmas, we apply the six-vertex swap operation to analyze
structure of 6-faces.

Lemma 20. In a minimal counterexample G, no 6-face f is adjacent to one
or two bigons and three trigons.

Proof. By Lemma 4, the trigons adjacent to f cannot be f -incident. Hence,
we can assume that the trigons adjacent to f are between the pairs of the
vertices v1 and v2, v3 and v4, and v5 and v6. By symmetry, there is a bigon
between the vertices v2 and v3. Consider the graphG′ obtained fromG by the
v1v2v3v4v5v6-swap. By the minimality of G and Lemma 5, G

′ has a 6-edge-
coloring. Let C1, C2 and C3 be the sets of colors of the three quadragons.
Since the vertices v2 and v3 are joined by an edge inG′, we have |C1∩C2| ≥

3. Since |C3| = 4, there exists a color c ∈ C1 ∩C2 ∩C3. Removing the edges
of the three quadragons colored with c and inserting the edges v2v3, v4v5 and
v6v1 colored with c yields a 6-edge-coloring of G. This contradicts the fact
that G is a minimal counterexample.

Lemma 21. In a minimal counterexample G, no 6-face f is adjacent to
three bigons and two trigons.

Proof. Let v1 · · · v6 be the vertices of the face f . By Lemma 11, f is incident
with an edge not contained in a multigon; let v1v6 be such an edge. Consider
the graph G′ obtained from G by the v1v2v3v4v5v6-swap. Let Ci, i = 1, 2, 3,
be the set of colors assigned to the edges of the multigon bi between v2i−1

and v2i. Since the order of each multigon between v2i−1 and v2i, i = 1, 2, 3,
is at least three, the size of each Ci is at least three.
Assume first that b2 is a trigon, i.e., |C2| = 3. If b1 is a quadragon, then

|C1 ∩ C2| ≥ 2 since the multigons b1 and b2 are joined by an edge. If b1 is
a trigon, then it also holds |C1 ∩ C2| ≥ 2 since the multigons b1 and b2 are
joined by two edges (there must be a trigon between v2 and v3 in G). A
symmetric argument yields that |C2 ∩ C3| ≥ 2. Consequently, there exists
a color c ∈ C1 ∩ C2 ∩ C3. Removing the edges with the color c from the
multigons b1, b2 and b3, and coloring the edges of G not present in G′ with c
yields a 6-edge-coloring of G.
We now consider the case that b2 is a quadragon, i.e., |C2| = 4. Since

no trigons in G can share a vertex, we can assume by symmetry that that
b1 is a quadragon and b3 is a trigon, i.e., |C1| = 4 and |C3| = 3. Since the
quadragons b1 and b2 are joined by an edge in G′, it follows |C1 ∩ C2| ≥ 3.
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Similarly, b2 and b3 are joined by an edge and thus |C2 ∩ C3| ≥ 2. Since the
size of C2 is four, it follows that there exists a color c ∈ C1 ∩ C2 ∩ C3. We
can now obtain a 6-edge-coloring of G as in the case that b2 is a trigon.

We now prove a lemma on bigons and trigons adjacent to 7-faces.

Lemma 22. In a minimal counterexample, every trigon t adjacent to a dan-
gerous 7-face f is adjacent to ≥ 5-big face (which is different from f).

Proof. Let e be an edge of the trigon and consider an e-coloring as described
in Lemma 7. Let Mc be a c-mate. The mate Mϕ cannot contain any edge
with color c 6= ϕ except for those contained in the trigon. Hence, Mϕ must
include the only edge of f not contained in a multigon and this edge must
be colored with ϕ. Consequently, every mate Mc, c 6= ϕ, includes either this
single edge, which has the color ϕ, or a multigon which has one edge of color
c and the other of color ϕ. We conclude that every mate Mc contains the
edge with the color ϕ either incident to f or contained in a multigon adjacent
to f .
Let f ′ be the face adjacent to t different from f . The mate Mc, c 6= α,

can only contain an edge colored with c on f ′ and the face fc containing this
edge must contain another edge colored with c by Proposition 9. Since no
vertex is incident with two edges with the color c, the face fc is ≥ 4-face. We
conclude that f ′ is ≥ 5-big.

In the next lemma, we consider 8-faces.

Lemma 23. In a minimal counterexample, no 8-face f is adjacent to three
bigons and four trigons.

Proof. Let v1, . . . , v8 be the vertices of f in the cyclic order around f . By
Lemma 4 and the symmetry, we can assume that the trigons are between the
vertices vi and vi+1 for i = 1, 3, 5, 7 and the bigons are between the vertices
vi and vi+1 for i = 2, 4, 6. Hence, there is either a single edge or a bigon
between the vertices v1 and v8.
Consider now the graph G′ obtained from G by the v1 . . . v8-swap. We

claim that G′ has no odd cut of size less than six. Consider an odd cut with
sides A and B that has the smallest size in G′. By symmetry, we can assume
that |A ∩ {v1, . . . , v8}| ≤ 4. Let A′ ⊆ A be those vertices vi of A such that
vi−1 or vi+1 is contained in A. Observe that |A′| ≤ 4.
If A′ is empty or A′ is formed by a single sequence of an odd number of

vertices, then the size of the cut with sides A and B is the same in G and G′.
If A′ is formed by a single sequence of an even number of vertices, then the
size is either increased or decreased by two, and thus the size of the cut is
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at least six by Lemma 3. Otherwise, A′ is formed by at least two sequences.
Since |A′| ≤ 4, A′ is formed by two sequences of consecutive vertices, each of
length two.
Suppose that the size of the cut with the sides A and B is less than six in

G′. Since its size in G is at least eight and the size of the cut cannot decrease
by more than two unless A′ = {v1, v2, v5, v6} or A′ = {v3, v4, v7, v8}, A

′ must
be equal to one of these two sets. By symmetry, A = {v1, v2, v5, v6} and thus
B ∩ {v1, . . . , v8} = {v3, v4, v7, v8}. Note that the roles of A and B are now
completely symmetric. Since the sizes of the cut with the sides A and B in
G and G′ can differ by at most four, it follows that its size in G is eight and
in G′ is four.
Since G′ is a plane graph, then v1 and v5 are not joined by a path formed

by vertices of A only or v3 and v7 are not joined by a path formed by vertices
of B only. By symmetry, we can assume the former to be the case: let A1

be the component of the side A containing the vertices v1 and v3, and set
A2 = A \ A1. Since the size of the cut with sides A and B in G′ is four, the
size of the cut with sides A1 and B ∪A2 is at most two or the size of the cut
with sides A2 and B ∪ A1 is at most two. This contradicts the choice of A
and B.
We have shown that G′ has no odd cuts of size less than six which implies

that G′ has a 6-edge-coloring by the minimality of G. Let Ci be the set of
the four colors assigned to the edges between v2i−1 and v2i, i = 1, 2, 3, 4, in
G′. Since the vertices v2i and v2i+1 for i = 1, 2, 3 are joined by an edge, it
holds that |Ci ∩ Ci+1| ≥ 3 for i = 1, 2, 3. Hence, |C1 ∩ C2 ∩ C3| ≥ 2. This
combines with |C3 ∩ C4| ≥ 3 to the fact that |C1 ∩ C2 ∩ C3 ∩ C4| ≥ 1. Let c
be the color contained in all the sets Ci, i = 1, 2, 3, 4. We can now obtain a
6-edge-coloring of G by removing the edges in the quadragons of G′ colored
with c and coloring the edges of G not contained in G′ with c.

We finish this section with two lemmas on dangerous trigons which we
will apply in the proof of Lemma 32.

Lemma 24. Let G be a minimal counterexample and f a ≥ 5-big face of G.
If f is adjacent to a dangerous multigon t, then f is adjacent to at least four
≥ 4-faces that are not f -incident with t.

Proof. Consider an e-coloring for an edge e contained in t of the type de-
scribed in Lemma 7 and let Mc be a c-mate.
If t is a quadragon, then Mc contains only edges colored with c except

for the edges contained in t. Hence, each Mc, c 6= α, contains an edge on f
colored with c contained in ≥ 4-face. Since the edges f -incident with t are
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colored with α, we conclude that f is adjacent to at least five ≥ 4-faces that
are not f -incident with t.
In the rest, we assume that t is a trigon. Let f ′ be the dangerous face

adjacent to t. If f ′ is a 7-face, then t is f -incident with two edges not
contained in a bigon. The colors of these edges are α. The mate Mϕ must
contain an edge of f ′ not contained in a multigon and thus the only such edge
incident with f ′ has the color ϕ. Every mate Mc, c 6= α, either contains the
edge of f ′ not contained in a multigon, which is colored with ϕ, or a multigon
adjacent to f ′. In either of the two cases, it includes an edge colored with ϕ.
Consequently, it must include an edge of f that is colored with c (and thus
not f -incident with t) and that is contained in ≥ 4-face. We conclude that
f is adjacent to at least five ≥ 4-faces not f -incident with t.
It remains to consider the case that f ′ is a 5-face. If t is f ′-incident

with two multigons, the same argument as in the case of a 7-face applies.
Hence, we can assume that t is f ′-incident with a single multigon and let
e′ be the edge incident with f ′ that is f ′-incident to t and not contained in
a multigon. If the color of e′ is α, then f ′ must contain an edge with the
color ϕ not contained in a multigon. Each mate Mc, c ∈ {β, γ, δ, ε}, either
contains the edge colored with ϕ or a multigon adjacent to f (which has one
of its edges colored with ϕ). Hence, Mc must contain an edge of f colored
with c that is contained in a ≥ 4-face. Such a ≥ 4-face cannot be f -incident
with t and the claim follows.
Assume now that the color of e′ is ϕ. Hence, the two edges f -incident with

t have the color α. Let c0 be the color of the other edge of f
′ not contained in

a multigon (if it exists). Each mateMc, c 6∈ {α, c0}, contains an edge colored
with ϕ contained in a multigon adjacent to f ′ and thus it contains an edge
colored with c incident with f that is contained in a ≥ 4-face different from
f . Again, f is adjacent to at least ≥ 4-faces that are not f -incident with
t.

Lemma 25. Let G be a minimal counterexample and f a ≥ 5-big face of G.
If f is a adjacent to a dangerous multigon t that is f -incident with a bigon,
then f is adjacent to at least five ≥ 4-faces that are not f -incident with t.

Proof. Lemma 4 and the fact that G is 6-regular implies that the face f ′

adjacent to t that is different from f is a dangerous 5-face. Let e be an edge
of t and consider an e-coloring as described in Lemma 7. Let e′ be the edge of
f ′ that is f ′-incident with t and not contained in the bigon f ′-incident with
t. Observe that the color of e′ must be α (the bigon f -incident with t must
have edges with the colors α and ϕ). Let Mc be a c-mate for c 6= α. Since
the bigon f -incident with t contains an edge colored with α and the edge
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f -incident with t (which is on the other side of t than the bigon) is colored
with α, the mate Mc, c 6= α contains neither this bigon nor this edge.
Let us focus on the mate Mϕ. Since the trigon t contains edges of all the

colors different from ϕ, the mate Mϕ cannot include any multigon adjacent
to f ′. Consequently, f ′ is adjacent to an edge e′′ different from e′ that is not
contained in a multigon and the color of this edge is ϕ. Since f ′ is dangerous,
we conclude that f ′ is adjacent to the trigon t, another trigon, a bigon and
the edges e′ and e′′.
The mate Mϕ contains the trigon t, the edge e′′ and some edges colored

with ϕ. Since no two edges colored with ϕ share the same vertex, we conclude
that f is incident with an edge colored with ϕ that is not f -incident with t
and that is contained in a ≥ 4-face different from f .
The mate Mc, c ∈ {β, γ, δ, ε}, contains the trigon t and the edge e′′ (note

that the edges of the bigon f ′-incident with t are α and ϕ). Hence, Mc must
contain an edge of f colored with c that is not f -incident with t and that is
contained in a ≥ 4-face different from f . It follows that f is adjacent to at
least five ≥ 4-faces that are not f -incident with t.

4 Discharging phase

4.1 Discharging rules

We consider a minimal counterexample and assign every d-face, d ≥ 3, d− 3
units of charge, every bigon −1 unit of charge, every trigon −2 units of
charge and every quadragon −3 units of charge. Note that the minimal
counterexample can contain multigons of order at most four (see Lemma 4).
Vertices are assigned no charge. Since the minimal counterexample is 6-
regular, the Euler formula implies that the total sum of charge assigned to
faces is negative.
Next, charge gets redistributed among ≥ 3-faces and multigons using the

following rules (also see Figure 5). We attempt to name the rules mnemotech-
nically: the names start with R, followed by a character B, T, M and 3 to
denote the type of faces it involves (bigons, trigons, multigons and 3-faces)
and sometimes by another character to distinguish the rules further (e.g.,
“b” stands for big, “d” for dangerous, “t” for a trigon, etc.).

Rule RMb Every dangerous multigon t adjacent to a≥ 4-big face f receives
1.5 units of charge from f .

Rule RMd Every dangerous multigon t adjacent to a dangerous face f
receives 0.5 unit of charge from f .
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Figure 5: Illustration of discharging rules (dashed edges denote edges that
can be single or contained in multigons).
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Rule RT Every trigon such that neither Rule RMb nor Rule RMd applies
to it receives 1 unit of charge from each adjacent face.

Rule RB3 A bigon adjacent to a 3-face and a ≥ 3-big face f receives 1 unit
of charge from f .

Rule RB5 A bigon adjacent to a ≥ 4-big face f and to a 5-face adjacent to
5-multigons receives 1 unit of charge from f .

Rule RB A bigon such that neither Rule RB3 nor Rule RB5 applies to it
receives 0.5 unit of charge from each adjacent face.

Rule R3 A 3-face f that is adjacent to a bigon and two ≥ 3-big faces
receives 0.25 unit of charge from each adjacent ≥ 3-big face.

Rule R3t A 3-face f that is adjacent to a trigon and a ≥ 5-big face f ′

receives 0.5 unit of charge from f ′.

Charge of ≥ 3-faces and multigons after these rules are applied is referred to
as final charge. In the remainder of this section, we show that final charge
of every face and every multigon is non-negative.

4.2 Final charge of multigons

We first analyze final charge of multigons.

Lemma 26. The final amount of charge of every multigon in a minimal
counterexample G is non-negative.

Proof. Recall that the initial amount of charge of a multigon of order k + 1
is −k. By Lemma 4, G can contain only bigons, trigons and quadragons.
Every bigon receives either 1 unit of charge by Rule RB3 or RB5 from an
adjacent face or 0.5 unit of charge by Rule RB from each adjacent face.
Hence, every bigon receives at least 1 unit of charge in total. Let us consider
trigons. If a trigon is not dangerous, then Rule RT applies twice. If a trigon
is dangerous, then one of the faces adjacent to it is ≥ 4-big by Lemma 14
(note that a dangerous face must be ≤ 2-big) and Rules RMb and RMd
apply (each once). Hence, every trigon also receives two units of charge in
total. Finally, every quadragon receives 1.5 units of charge by Rule RMb
from each adjacent face which is ≥ 4-big by Lemma 10.
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4.3 Final charge of 3-faces and 4-faces

In this subsection, we analyze final charge of 3-faces and 4-faces. Let us start
with 3-faces.

Lemma 27. The final amount of charge of every 3-face f in a minimal
counterexample G is non-negative.

Proof. Faces of a minimal counterexample send charge to adjacent multigons
and 3-faces only. Hence, if f sends out any charge, it is ≤ 2-big. In particular,
f can send out some charge by Rules RT and RB only. Consequently, if f
is adjacent to no multigon, f sends out no charge and its final charge is
non-negative.
If f is not adjacent to multigons of order three or more, then it is adjacent

to at most two bigons by Lemma 13. If it is adjacent to two bigons, each of
these bigons is adjacent to a ≥ 5-big face by Lemma 13, and thus Rule RB3
applies to it. Consequently, Rule RB does not apply to f . If f is adjacent
to a single bigon and the other face adjacent to the bigon is ≥ 3-big, again,
Rule RB3 applies and f sends out no charge. If the other face adjacent to the
bigon is ≤ 2-big, then f is adjacent to two ≥ 3-faces by Lemma 15. In this
case, f sends a half of unit of charge to the bigon by Rule RB and receives
twice a quarter of unit of charge by Rule R3.
If f is adjacent to a trigon, then Lemma 12 yields that f is adjacent to

no other multigon and the other two faces adjacent to f are ≥ 5-big. Hence,
f sends to the trigon 1 unit of charge by Rule RT and receives 0.5 from
each of the adjacent ≥ 5-big face by Rule R3t. The final charge is again
non-negative.
Since f cannot be adjacent to a quadragon by Lemma 10, the proof is

completed.

Let us analyze final charge of 4-faces.

Lemma 28. The final amount of charge of every 4-face f in a minimal
counterexample G is non-negative.

Proof. If f is ≥ 3-big, only Rules RT, RB3, RB or R3 can apply and at most
one of them applies. Hence, f sends out at most one unit of charge and its
final charge is non-negative.
In the rest of the proof, we assume that f is ≤ 2-big which implies that

only Rules RT and RB can apply. If f is adjacent to a trigon, then f is
adjacent to no other multigon by Lemma 17. Hence, Rule RT applies once
and no other rule can apply to f . Consequently, f sends out one unit of
charge and its final charge is zero.
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If f is adjacent to no multigons of order three or more, then, by Lemma 18,
f is adjacent to at most two bigons. Hence, Rule RB can apply at most twice
to f and thus the final amount of charge of f is non-negative.

4.4 Final charge of ≥ 5-faces

In this subsection, we analyze the amount of final charge of ≥ 5-faces. The
case of 5-faces needs to be treated separately. So, we start with them.

Lemma 29. The final amount of charge of every 5-face f in a minimal
counterexample G is non-negative.

Proof. If f is≥ 4-big, then at most one of the rule applies to f . Consequently,
f sends out at most 1.5 units of charge and its final charge is positive.
If f is 3-big, then either at most two rules apply to f each once or the

same rule applies to f twice. Since f cannot send out charge by Rules RMb,
f sends out at most two units of charge in total and its final charge is non-
negative.
If f is ≤ 2-big, then only Rules RMd, RT and RB can apply to f . Since

no two trigons are incident by Lemma 4, f is adjacent to at most two trigons.
If f is adjacent to two trigons and no other multigons, Rule RT applies twice
and the final charge of f is zero.
If f is adjacent to two trigons and one bigon, then at least one of the

trigons is f -incident with the bigon. Observe that f is dangerous in this
case. Hence, Rule RMd applies once (with respect to the trigon f -incident
with the bigon), Rule RMd or RT applies once and Rule RB applies. We
conclude that the final amount of charge of f is non-negative.
If f is adjacent to two trigons and two bigons, then both trigons are f -

adjacent to a bigon. Again, f is dangerous. Hence, Rule RMd applies twice
and Rule RB also applies twice. Consequently, final charge of f is zero.
Finally, f cannot be adjacent to two trigons and three bigons by Lemma 19.
If f is adjacent to a single trigon and at most two bigons, it sends out

at most two units of charge (Rule RT applies once, Rule RB at most twice).
If f is adjacent to a single trigon and three bigons, then Rule RMd applies
once (note that f is dangerous) and Rule RB three times. Again, f sends
out at most two units of charge. Finally, f cannot be adjacent to a single
trigon and four bigons by Lemma 19. In all these case, f sends out at most
two units of charge and its final amount of charge is non-negative.
If f is adjacent to no trigon and at most four bigons, f sends out at

most two units of charge in total by Rule RB. On the other hand, if f is
adjacent to five bigons, Lemma 19 yields that Rule RB5 will apply to each
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of the adjacent bigons and f sends out no charge. Again, the final amount
of charge of f is non-negative.

Before proving the final lemma (Lemma 32) of this section which deals
with ≥ 6-faces, we have to state two auxiliary lemmas that will be useful in
analyzing final charge of 4-big and 5-big faces. The next two lemmas use the
same notation which we will later use in the proof of Lemma 32.

Lemma 30. Let G be a minimal counterexample and f an ℓ-face, ℓ ≥ 6. Let
v1, . . . , vℓ be the vertices incident with the face f in the cyclic order around
f , and let f1, . . . , fℓ be the face or the multigon adjacent to f through the
edge vivi+1 (indices taken modulo ℓ). Finally, let si be the amount of charge
sent by f to fi, i = 1, . . . , ℓ. It holds that

si + si+1 ≤ 2 (1)

for every i = 1, . . . , ℓ (indices again taken modulo ℓ).

Proof. Let w be the vertex shared by fi and fi+1. Assume that si +si+1 > 2.
Since the charge sent out by f following the discharging rules can only be
equal to 0, 0.25, 0.5, 1 and 1.5, it follows that si or si+1 is equal to 1.5. By
symmetry, assume that si = 1.5. Consequently, Rule RMb applies to fi and
fi is either a trigon or a quadragon. By Lemma 4, fi+1 cannot be a trigon
or a quadragon. Consequently, si+1 = 1 and one of Rules RB3 or RB5 must
apply. Since G is 6-regular, Rule RB5 cannot apply. Consequently, fi+1 is a
bigon adjacent to a 3-face and fi is a trigon.
The trigon fi cannot be adjacent to a dangerous 5-face f ′ and f ′-incident

with a bigon by Lemma 16. On the other, the trigon fi cannot be adjacent
to a dangerous 7-face f ′ and f ′-incident with two bigons since G is 6-regular.
Hence, Rule RMb cannot apply. The inequality (1) now follows.

Lemma 31. Let G be a minimal counterexample and f a ≥ 3-big ℓ-face,
ℓ ≥ 6. Let v1, . . . , vℓ be the vertices incident with the face f in the cyclic
order around f , and let f1, . . . , fℓ be the face or the multigon adjacent to
f through the edge vivi+1 (indices taken modulo ℓ). Finally, let si be the
amount of charge sent by f to fi, i = 1, . . . , ℓ. It holds that

si + si+1 + si+2 ≤ 3.5 (2)

for every i = 1, . . . , ℓ (indices again taken modulo ℓ) and the equality can
hold if and only if si = si+2 = 1.5, si+1 = 0.5 and fi+1 is a bigon.
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Proof. The values of si, si+1 and si+2 are among 0, 0.25, 0.5, 1 and 1.5.
Hence, si + si+1 + si+2 ≤ 3 + si+1. On the other hand, Lemma 30 yields that
si + si+1 + si+2 ≤ 4 − si+1. We conclude that (2) holds and the equality is
attained only if si = si+2 = 1.5 and si+1 = 0.5.
Assume that si = si+2 = 1.5 and si+1 = 0.5. Observe that fi and fi+2 are

multigons of order three or four. Let w and w′ be the vertices shared by fi

and fi+1 and fi+1 and fi+2, respectively. If fi+1 is not a bigon and si+1 = 0.5,
then Rule R3t must apply. Hence, fi+1 is a 3-face adjacent to a trigon. Since
both fi and fi+2 are multigons of order three or more, this is impossible by
Lemma 4. The lemma now follows.

We now analyze the amount of final charge of ≥ 6-faces.

Lemma 32. In a minimal counterexample, the amount of final charge of
every ≥ 6-faces f is non-negative.

Proof. Let ℓ be the size of f . Assume first that f is ≤ 2-big. Hence, only
Rules RMd, RT and RB can apply to f . If f is adjacent to no trigon, then
f sends out at most ℓ/2 units of charge. Since the initial amount of charge
of f is ℓ− 3 ≥ ℓ/2 (recall ℓ ≥ 6), the final charge of f is non-negative. If f is
adjacent to a trigon, f is adjacent to at most ℓ− 1 multigons by Lemma 11.
Moreover, Lemma 4 implies that no two trigons are incident. Hence, Rule
RT applies at most ⌊ℓ/2⌋ times and Rules RMd, RT and RB together apply
at most ℓ − 1 times. Consequently, f sends out at most

1

2

(

ℓ − 1 +

⌊

ℓ

2

⌋)

(3)

units of charge. The value of (3) is at most ℓ − 3 unless ℓ ∈ {6, 7, 8}. By
considering the number of bigons and trigons adjacent to f , we derive that f
sends out at most the amount of its initial charge unless one of the following
cases applies (recall that one of the edges incident to f is not in a multigon
and no two trigons can share a vertex):

1. The face f is a 6-face and f is adjacent to two trigons and
three bigons. This case is excluded by Lemma 21.

2. The face f is a 6-face and f is adjacent to three trigons and
at least one bigon. This case is excluded by Lemma 20.

3. The face f is a 7-face and f is adjacent to three trigons and
three bigons. In this case, f is dangerous and at least one of the
trigons is f -incident with two bigons. Hence, Rule RB applies three
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times and either Rule RMd applies twice and Rule RT once or Rule
RMd applies once and Rule RT twice. In both cases, the face f sends
out at most four units of charge and its final charge is non-negative.

4. The face f is a 8-face and f is adjacent to four trigons and
three bigons. This case is excluded by Lemma 23.

Adopt now the notation from the statements of Lemmas 30 and 31. If
f is 3-big, then Rule RMb never applies. Hence, it holds si ≤ 1 for every
i = 1, . . . , ℓ. Since f is 3-big, f sends no charge to at least three of f1, . . . , fℓ,
and thus f sends out at most ℓ − 3 units of charge.
Let us assume that f is k-big. Further, let i1, . . . , ik be the indices i such

that fi is a ≥ 4-face and set Ij = {ij + 1, . . . , ij+1 − 1} (indices modulo ℓ
and k where appropriate). If ij + 1 = ij+1, then Ij = ∅. We now prove the
following claim:

Claim 1. It holds that
∑

i∈Ij

si ≤ |Ij| + 0.50 (4)

for every j = 1, . . . , k. Moreover, if k = 4 or k = 5, then it holds that

∑

i∈Ij

si ≤ |Ij| + 0.25 (5)

for every j = 1, . . . , k.

If |Ij | = 1, the estimate (4) follows from the fact that no face or multigon
receives more than 1.5 units of charge from f . If |Ij| ≥ 2, the estimate (4)
directly follows from Lemmas 30 and 31. Lemmas 30 and 31 also yield that
the equality in (4) holds only if |Ij| is odd, sij+1 = sij+3 = · · · = sij+1−1 = 1.5
and sij+2 = sij+4 = · · · = sij+1−2 = 0.5.
We now establish the inequality (5). If |Ij| = 1, then Rule RMb applies

to fij+1 and the face f is adjacent to at least four ≥ 4-faces distinct from
fij and fij+1

by Lemma 24. This implies that f is ≥ 6-big, i.e., k ≥ 6 which
contradicts the assumptions.
Assume that |Ij| ≥ 3. Since sij+1 + sij+2 + sij+3 = 3.5, fij+2 is a bigon

by Lemma 31. Lemma 25 applied to fij+1 and the bigon fij+2 now implies
that the face f is adjacent to at least five ≥ 4-faces besides fij which again
implies that k ≥ 6. The proof of the claim is now finished.
By Claim 1, if f is 4-big or 5-big, then the sum s1 + . . . + sℓ is at most

|I1| + . . . + |Ik| + k/4 = ℓ − 3k/4. In particular, the charge sent out by the
face f is at most ℓ − 3k/4 ≤ ℓ − 3 and the final charge of f is non-negative.
If f is ≥ 6-big, then Claim 1 yields that the sum s1 + . . . + sℓ is at most
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|I1| + . . . + |Ik| + k/2 = ℓ − k/2. Again, the charge sent out by f is at most
ℓ − 3 and its final charge is non-negative.

4.5 Finale

In order to prove Theorem 2 which implies Theorem 1, we have to exclude
the existence of a minimal counterexample. Assume that G is a minimal
counterexample and assign charge to the multigons and ≥ 3-faces of G as
described in Subsection 4.1 and apply the Rules as described. By Lemmas 26–
32, the final amount of charge of every multigon and every face of G is non-
negative. Since charge is preserved during the application of the rules and the
sum of the amounts of initial charge is negative, a minimal counterexample
cannot exist. This establishes Theorem 2.
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