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Abstract

Unique-sink orientations (USOs) are an abstract class of orientations of the n-
cube graph. We consider some classes of USOs that are of interest in connection
with the linear complementarity problem. We summarise old and show new lower
and upper bounds on the sizes of some such classes. Furthermore, we provide a
characterisation of K-matrices in terms of their corresponding USOs.
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1 Introduction

Unique-sink orientations (USOs) are an abstract class of orientations of the n-cube
graph. A number of concrete geometric optimisation problems can be shown to have the
combinatorial structure of a USO. Examples are the linear programming problem [10],
and the problem of finding the smallest enclosing ball of a set of points [10, 25], or a set of
balls [6]. In this paper, we count the USOs of the n-cube that are generated by P-matrix
linear complementarity problems (P-USOs). This class covers many of the “geometric”
USOs. We show that the number of P-USOs is 2Θ(n3). The lower bound construction is
the interesting contribution here, and it even yields USOs from the subclass of K-USOs
whose combinatorial structure is known to be very rigid [7]. In contrast, the number of
all n-cube USOs is doubly exponential in n [13].
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Unique-sink orientations

We follow the notation of [7]. Let [n] := {1, 2, . . . , n}. For a bit vector v ∈ {0, 1}n and
I ⊆ [n], let v ⊕ I be the element of {0, 1}n defined by

(v ⊕ I)j :=

{

1 − vj if j ∈ I,

vj if j /∈ I.

Instead of v ⊕ {i} we write v ⊕ i.
Under this notation, the (undirected) n-cube is the graph G = (V, E) with

V := {0, 1}n, E := {{v, v ⊕ i} : v ∈ V, i ∈ [n]}.

A subcube of G is a subgraph G′ = (V ′, E ′) of G where V ′ = {v⊕ I : I ⊆ C} for some
vertex v and some set C ⊆ [n], and E ′ = E ∩

(

V ′

2

)

. The dimension of such a subcube
is |C|.
Let φ be an orientation of the n-cube (a digraph with underlying undirected graph G).

If φ contains the directed edge (v, v ⊕ i), we write v
φ−→ v ⊕ i, or simply v → v ⊕ i if φ is

clear from the context. If V ′ is the vertex set of a subcube, then the directed subgraph
of φ induced by V ′ is denoted by φ[V ′]. For F ⊆ [n], let φ(F ) be the orientation of the
n-cube obtained by reversing all edges in coordinates contained in F ; formally

v
φ(F )

−−→ v ⊕ i :⇔
{

v
φ−→ v ⊕ i if i /∈ F,

v ⊕ i
φ−→ v if i ∈ F.

An orientation φ of the n-cube is a unique-sink orientation (USO) if every subcube
G′ = (V ′, E ′) has a unique sink (that is, vertex of outdegree zero) in φ[V ′]. It is not
difficult to show that in a unique-sink orientation, every subcube also has a unique source
(that is, vertex of indegree zero).
A special USO is the uniform orientation, in which v → v ⊕ i if and only if vi = 0.
Unique-sink orientations enable a graph-theoretic description of simple principal pivot-
ing algorithms for linear complementarity problems. They were introduced by Stickney
and Watson [24] and have recently received much attention [9, 10, 13, 17, 22, 23, 25].

Linear complementarity problems

A linear complementarity problem (LCP(M, q)) is for a given matrix M ∈ R
n×n and a

vector q ∈ R
n, to find vectors w, z ∈ R

n such that

w − Mz = q, w, z ≥ 0, wTz = 0. (1)

A P-matrix is a square real matrix whose principal minors are all positive. If M is a
P-matrix, the appertaining LCPs are called P-LCPs ; in this case there exists a unique
solution for any q.
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Let B ⊆ {1, 2, . . . , n}, and let AB be the n × n matrix whose ith column is the ith
column of −M if i ∈ B, and the ith column of the n×n identity matrix In otherwise. If
M is a P-matrix, then AB is invertible for every set B. We call B a basis. If A−1

B q ≥ 0,
let

wi :=

{

0 if i ∈ B

(A−1
B q)i if i /∈ B

, zi :=

{

(A−1
B q)i if i ∈ B

0 if i /∈ B
. (2)

The vectors w, z are then a solution to the LCP (1).
A problem P-LCP(M, q) is nondegenerate if (A−1

B q)i 6= 0 for allB and i. Following [24],
a nondegenerate P-LCP(M, q) induces a USO: For v ∈ {0, 1}n, let B(v) := {j ∈ [n] :
vj = 1}. Then the unique-sink orientation φ induced by P-LCP(M, q) is given by

v
φ−→ v ⊕ i :⇔ (A−1

B(v)q)i < 0. (3)

The run of a simple principal pivoting method (see [19, Chapter 4]) for the P-LCP then
corresponds to following a directed path in the orientation φ. Finding the sink of the
orientation is equivalent to finding a basis B with A−1

B q ≥ 0, and thus via (2) to finding
the solution to the P-LCP.
In this paper, we are primarily interested in establishing bounds for the number of

n-dimensional USOs satisfying some additional properties (for instance, USOs induced
by P-LCPs), which we introduce in the next section.

2 Matrix classes and USO classes

It is NP-complete to decide whether a solution to an LCP exists [2]. If the matrix M
is a P-matrix, however, a solution always exists. The problem of finding it is unlikely
to be NP-hard, because if it were, then NP = co-NP [14]. Even so, no polynomial-
time algorithms for solving P-LCPs are known. Hence our motivation to study some
special matrix classes and investigate what combinatorial properties their USOs have.
The ultimate goal is then to try and exploit these combinatorial properties in order to
find an efficient algorithm for the corresponding LCPs.
A Z-matrix is a square matrix whose all off-diagonal elements are non-positive. A
K-matrix is a matrix which is both a Z-matrix and a P-matrix. A hidden-K-matrix is
a P-matrix such that there exist Z-matrices X and Y and non-negative vectors r and s
with MX = Y , rT X + sT Y > 0.
The importance of these matrix classes is due to the fact that polynomial-time algo-
rithms are known for solving the LCP(M, q) if the matrix M is a Z-matrix [1, 21], a
hidden-K-matrix [12], or the transpose of a hidden-K-matrix [20].
A USO is a P-USO if it is induced via (3) by some LCP(M, q) with a P-matrix M ;
it is a K-USO if it is induced by some LCP(M, q) with a K-matrix M ; and it is a
hidden-K-USO if it is induced by some LCP(M, q) with a hidden-K-matrix M .
A USO is a Holt–Klee USO if in each of its subcubes, there are d directed paths from
the source to the sink of the subcube, with no two paths sharing a vertex other than
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source and sink; here d is the dimension of the subcube. A USO φ is strongly Holt–Klee
if φ(F ) is Holt–Klee for every F ⊆ [n]. By [9], every P-USO is a strongly Holt–Klee USO.
Finally, a USO is locally uniform, if

whenever ui = uj = 0 and u
φ−→ u ⊕ i, u

φ−→ u ⊕ j,

then u ⊕ i
φ−→ u ⊕ {i, j}, u ⊕ j

φ−→ u ⊕ {i, j} (4)

and

whenever ui = uj = 0 and u ⊕ i
φ−→ u, u ⊕ j

φ−→ u,

then u ⊕ {i, j} φ−→ u ⊕ i, u ⊕ {i, j} φ−→ u ⊕ j. (5)

By [7], every K-USO is locally uniform, and every locally uniform USO is acyclic. Thus
we have:

K-USOs ⊆ locally uniform P-USOs ⊂ acyclic P-USOs ⊂ P-USOs
⊂ strongly Holt–Klee USOs ⊂ Holt–Klee USOs.

The first inclusion is not known to be strict; see also Section 4.
An LP-USO is an orientation of the n-cube admitting a realisation as a polytope in
the n-dimensional Euclidean space, combinatorially equivalent to the n-cube, such that
there exists a linear function f and

v
φ−→ v ⊕ i if and only if f(v ⊕ i) > f(v).

It follows from [11, 16, 18, 20] that LP-USOs are exactly hidden-K-USOs, and we have:

K-USOs ⊂ LP-USOs = hidden-K-USOs ⊂ acyclic P-USOs.

In the next section we examine the numbers of n-USOs in the respective classes.
It is also possible to obtain USOs from completely general linear programs. The
reduction in [10] yields PD-USOs, i.e., USOs generated by LCPs with symmetric positive
definite matrices M . Since these are exactly the symmetric P-matrices [3, Section 3.3],
we also have PD-USOs ⊂ P-USOs. The USOs that are obtained from the problem
of finding the smallest enclosing ball of a set of points [8, Section 3.2] are “almost”
PD-USOs in the sense that every subcube not containing the origin 0 is oriented by a
PD-USO [15]. For the USOs from smallest enclosing balls of balls [6], we are not aware
of a similar result.

3 Counting USOs

First counting results about USOs were obtained by Matoušek [13], who gave asymptotic
bounds on the number of all USOs and acyclic USOs.
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Next, Develin [4]—in order to show that the Holt–Klee condition does not characterise
LP-USOs—proved that the number of n-dimensional LP-USOs is bounded from above
by 2O(n3), whereas the number of Holt–Klee USOs is bounded from below by 2Ω(2n/

√
n).

Using similar means, we prove an upper bound of 2O(n3) on the number of P-USOs,
and observe that a slight modification of Develin’s construction yields a lower bound

of 2( n−1
⌊(n−1)/2⌋) for strongly Holt–Klee locally uniform USOs. Furthermore, we provide

a construction of 2Ω(n3) K-USOs. These results imply that the number of K-USOs,
LP-USOs, as well as P-USOs, is 2Θ(n3).
Previously known and new bounds on the number of n-dimensional USOs in the classes
defined in the previous section are summarised in the following table:

class lower bound upper bound

K-USOs 2Ω(n3)

LP-USOs 2O(n3) [4]

P-USOs 2O(n3)

strongly Holt–Klee USOs 2Ω(2n/
√

n)

Holt–Klee USOs [4] 2Ω(2n/
√

n)

locally uniform USOs 2Ω(2n/
√

n)

acyclic USOs [13] 22n−1
(n + 1)2n

all USOs [13] nΩ(2n) nO(2n)

3.1 An upper bound for P-USOs

Every P-USO is determined by the sequence σ(M, q) =
(

sgn(A−1
B(v)q)i : v ∈ {0, 1}n, i ∈

[n]
)

, which is a function of the P-matrix M and the right-hand side q. Furthermore, we
are interested only in nondegenerate right-hand sides q, which means we are interested
only in sequences containing no 0.
In order to be able to apply algebraic tools, we first derive an equivalent description
of the USO, using only polynomials.

3.1 Lemma. Each entry of the vector σ(M, q) is the sign of a polynomial in the entries
of M and q of degree at most n.

Proof. The entries of the matrix A−1
B(v) can be computed as

(A−1
B(v))rs =

1

det AB(v)

(−1)r+sMsr,

where Mrs is the determinant of the submatrix of AB(v) obtained by deleting the rth
row and the sth column, which is a polynomial of degree at most n − 1. Hence

(A−1
B(v)q)i =

1

det AB(v)

n
∑

s=1

qs · (−1)i+s · Msi.
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Recall that AB(v) has |B(v)| columns of −M and n − |B(v)| columns of the identity
matrix; thus sgn det AB(v) = (−1)|B(v)|, since M is a P-matrix. Therefore

sgn(A−1
B(v)q)i = sgn

(

(−1)|B(v)| ·
n

∑

s=1

qs · (−1)i+s · Msi

)

,

which is the sign of a polynomial of degree at most n.

The algebraic tool we will apply is the following theorem.

3.2 Theorem (Warren [26]). Let p1, . . . , ps be real polynomials in k variables, each of de-
gree at most d. If s ≥ k, then the number of sign sequences σ(x) = (sgn p1(x), . . . , sgn pm(x))
that consist of terms +1, −1 is at most (4eds/k)k.

Now all is set to prove an upper bound on the number of P-USOs.

3.3 Theorem. The number of distinct n-dimensional P-USOs is at most 2O(n3).

Proof. By Lemma 3.1, each P-USO is determined by a vector of n2n nonzero signs of
polynomials of degree at most n. The number of variables is n2+n (equal to the number
of entries of the matrix M and the vector q). By Theorem 3.2, there are at most

(

4e · n · n2n

n2 + n

)n2+n

≤ (4e · 2n)n2+n = 2O(n3)

such sign vectors.

3.2 A lower bound for strongly Holt-Klee and locally uniform USOs

A monotone Boolean function is a function f : {0, 1}k → {0, 1} such that if x ≤ y, then
f(x) ≤ f(y). Counting monotone Boolean functions is known as Dedekind’s problem.
Let M be the set of 0, 1-vectors of length k with exactly ⌊k/2⌋ ones. A lower bound
of 2( k

⌊k/2⌋) on the number of k-variate monotone Boolean functions can be obtained by
taking for each subset A ⊆ M the function fA given by

fA(x) = 1 iff {y ∈ A : y ≤ x} 6= ∅.

3.4 Theorem. The number of acyclic locally uniform strongly Holt–Klee n-USOs is at

least 2( n−1
⌊(n−1)/2⌋) = 2Ω(2n/

√
n).

Proof. Given an (n−1)-variate monotone Boolean function f , we construct an n-USO φ
by setting

v
φ−→ v ⊕ i if i 6= n and vi = 0,

v
φ−→ v ⊕ n if vn + f(v′) = 1,
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where v′ ∈ {0, 1}n−1 is formed by the initial n − 1 bits of v.
The orientation φ is clearly acyclic because any directed walk in φ is monotone on the
first n − 1 bits. It is easy to show local uniformity too. The assumption of (5) is never

satisfied. For (4) it suffices to consider the case j = n: If u
φ−→ v ⊕ n, then f(v′) = 1,

hence v ⊕ i
φ−→ v ⊕ {i, n}.

For the strong Holt–Klee property, let F ⊆ [n] and let V ′ = {v ⊕ i : i ∈ C} be the
vertex set of a subcube with |C| =: d. If n /∈ C, then φ(F )[V ′] is isomorphic to the
uniform orientation, which is well-known to satisfy the Holt–Klee property. So suppose
n ∈ C. Let V0 := {v ∈ V ′ : vn = 0} and V1 := {v ∈ V ′ : vn = 1} and let s be the source
and t the sink of φ(F )[V ′]. Note that φ(F )[V0] and φ(F )[V1] are identical if we truncate
the last coordinate of their vertices, and isomorphic to the uniform USO.
Now we distinguish two cases. First, if b := sn = tn, there are d − 1 disjoint paths
from s to t in φ(F )[Vb] and another path obtained by concatenating the edge s → s ⊕ n,
a path in φ(F )[V1−b] from s ⊕ n to t ⊕ n, and the edge t ⊕ n → t.
Second, let b := sn = 1 − tn. Without loss of generality we may assume that b = 0
and n /∈ F . Let P (i1, . . . , id) denote the directed path s → s ⊕ {i1} → s ⊕ {i1, i2} →
· · · → s ⊕ {i1, i2, . . . , id}. Order the elements of C \ {n} = {j1, j2, . . . , jd−1} so that for
jk ∈ F and jℓ /∈ F we have k < ℓ. Since φ(F )[V0] and φ(F )[V1] are both isomorphic
to the uniform orientation and sn 6= tn, we have t = s ⊕ C. Now we claim that
the paths P (j1, j2, . . . , jd−1, n), P (j2, j3, . . . , jd−1, n, j1), . . . , P (jd−1, n, j1, j2, . . . , jd−2),
P (n, j1, j2, . . . , jd−1) are vertex-disjoint directed paths from s to t. The only non-obvious
fact to show is that for any k, there is a directed edge u := s ⊕ {jk, jk+1, . . . , jd−1} →
v := s ⊕ {jk, jk+1, . . . , jd−1, n}. Note that u → v if and only if f(u′) = 1 and that
f(s′) = f(t′) = 1. If jk /∈ F , then s′ ≤ u′ and so 1 = f(s′) ≤ f(u′), thus f(u′) = 1. If
on the other hand jk ∈ F , then t′ ≤ u′ and so 1 = f(t′) ≤ f(u′), thus f(u′) = 1. Hence
u → v.
Therefore the number of acyclic locally uniform strongly Holt–Klee n-USOs is lower
bounded by the number of (n−1)-variate monotone Boolean functions, which concludes
the proof.

Remark. After swapping the roles of 0 and 1 in the nth coordinate, the above con-
struction is the same as Mike Develin’s construction [4] of many orientations satisfying
the Holt–Klee condition. Thus, both Develin’s and our construction yield Holt–Klee
orientations, but local uniformity is obtained only in our variant.
The logarithm of the total number of acyclic n-USOs is no more than 2n log(n + 1)
[13]. In comparison, the exponent in the lower bound obtained from Theorem 3.4 is of
the order 2n/

√
n, and therefore still exponential. Restricting to K-USOs, the exponent

goes down to a polynomial in n.

3.3 A lower bound for K-USOs

3.5 Theorem. The number of distinct K-USOs in dimension n is at least 2Ω(n3).
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Proof. Consider the upper triangular matrix

M(β) =













1 −1 − β1,2 −1 − β1,3 . . . −1 − β1,n

0 1 −1 − β2,3 . . . −1 − β2,n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . −1 − βn−1,n

0 0 0 . . . 1













and the vector q = (−1, 1,−1, . . . , (−1)n)T . We will now examine how the choice of the
parameters βi,j influences the USO induced by the LCP(M(β), q). Our goal is to show
that we can make 2Ω(n3) choices, each of which induces a different USO.
First, let B ⊆ [n] and, analogously to the definition of AB, let AB(β) be the matrix
whose ith column is the ith column of −M(β) if i ∈ B, and the ith column of In

otherwise. The reader is kindly invited to verify, by straightforward computation, that

σr ·
(

(AB(β))−1
)

r,s
=











1 if r = s,

0 if r > s or if r < s and s /∈ B,

2p(B,r,s) + tB,r,s(β) if r < s and s ∈ B,

where σr = −1 if r ∈ B and σr = 1 if r /∈ B, p(B, r, s) = |{j ∈ B : r < j < s}|
and tB,r,s(β) is a polynomial in variables βi,j for (i, j) ∈ {(i, j) ∈ [n] × B : i < j,
(j < s) or (j = s and i ≥ r)} with no constant term. Moreover, βr,s appears in tB,r,s

only in the linear term βr,s (that is, with coefficient 1).
From now on, we will write

(i, j) ≺ (i′, j′) for (j < j′) or (j = j′ and i > i′).

Note that ≺ is a (strict) total ordering on {(i, j) ∈ [n]2 : i < j}.
Let B ⊆ [n] be a basis such that, for m = maxB, we have i ≡ m+1 (mod 2) for each

i ∈ B \ {m}. Then qm · qi = −1 for each i ∈ B \ {m}, and hence
(

(AB(β))−1q
)

r
= (−1)m

(

tB,r,m(β) −
∑

s∈B\{m}
tB,r,s(β)

)

= (−1)m
(

βr,m − t′B,r,m(β)
)

(6)

for all r < m such that r ≡ m + 1 (mod 2). Here t′B,r,m(β) is some polynomial in
variables βi,j for (i, j) ∈ {(i, j) ∈ [n] ×B : i < j, (i, j) ≺ (r, m)} with no constant term.
3.6 Lemma. Whenever t′B,r,m is defined, let

β̄ = max
{

|βi,j| : (i, j) ∈ [n] × B, i < j, (i, j) ≺ (r, m)
}

.

If β̄ < 1, then |t′B,r,m(β)| < 9m−r+1β̄.

Proof. The bound is actually very rough. First, by induction one can easily prove that
the number of terms in each tB,r,s is at most 3s−r, and the maximum coefficient in
each tB,r,s is also at most 3s−r. Since β̄ < 1, higher-degree terms can also be upper-
bounded by β̄. Hence |t′B,r,m(β)| <

∑m
s=r 32(s−r)β̄ < 9m−r+1β̄.
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3.7 Lemma. Let r, m ∈ [n], r < m, r ≡ m + 1 (mod 2) and let B, B′ ⊆ [n] be bases
such that max B = maxB′ = m and that i ≡ m + 1 (mod 2) for all i ∈ (B ∪B′) \ {m}.
Then the polynomial t′B,r,m(β) − t′B′,r,m(β) is identically zero if and only if B = B′.

Proof. Assume that B 6= B′. Without loss of generality, there exists some s ∈ B\B′. Let
t̃B,r,m(βr,s), t̃B′,r,m(βr,s) be the univariate polynomials obtained from t′B,r,m(β), t′B′,r,m(β)

respectively, by setting βi,j = 0 for all (i, j) 6= (r, s). Then t̃B′,r,m(βr,s) is identically zero
but t̃B,r,m(βr,s) is not. Hence t′B,r,m(β) − t′B′,r,m(β) is not identically zero. The converse
implication is trivial.

Now let r, m ∈ [n], r < m, r ≡ m + 1 (mod 2). Let

C = {i ∈ [n] : r < i < m, i ≡ m + 1 (mod 2)}

and let
V ′ = {(0 ⊕ m) ⊕ I : I ⊆ C}.

Note that |C| = (m − r − 1)/2 and so |V ′| = 2(m−r−1)/2.
Furthermore, suppose that the values of βi,j are fixed for all j < m and so are the
values of βi,m for i > r, and that these values satisfy:

v, v′ ∈ V ′, v 6= v′ =⇒ t′B(v),r,m(β) 6= t′B(v′),r,m(β). (7)

For each v ∈ V ′, the direction of the edge between v and v ⊕ r in the USO induced
by LCP(M(β), q) is by (6) determined by the sign of the difference βr,m − t′B(v),r,m(β).

By (7), there are |V ′|+1 choices for βr,m so that the resulting USOs will differ from one
another in the orientation of at least one of these edges. Moreover, by Lemma 3.7, the
choices can be made in such a way that (7) is satisfied by the successor of (r, m) with
respect to ≺ (which is either (r − 1, m), or (m, m + 1)).
The options to choose βr,m are, of course, not independent of the values of the
other βi,j’s. However, they depend only on the βi,j’s with (i, j) ≺ (r, m). Hence it
is possible to make the choices sequentially in the order given by ≺; starting with β1,2

and finishing with β1,n.
Therefore the number of distinct USOs induced by LCP(M(β), q) for various values
of βi,j, as described above, is at least

n
∏

m=1

∏

1≤r<m
r≡m+1 (mod 2)

(

2(m−r−1)/2 + 1
)

=

n
∏

m=1

⌊m/2⌋−1
∏

i=0

(

2i + 1
)

= 2Ω(n3).

Finally, it follows from Lemma 3.6 that the values of all βi,j’s can be chosen to satisfy
|βi,j| < 1, so that M(β) is a K-matrix.
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3.4 The number of USOs from a fixed matrix

In this section, we prove the following

3.8 Theorem. For a P-matrix M ∈ R
n×n, let u(M) be the number of USOs determined

by LCPs of the form LCP(M, q) for q ∈ R
n. Furthermore, define u(n) = maxM u(M),

where the maximum is over all n × n P-matrices. Then

u(n) = 2Θ(n2).

Proof. Let us first show the upper bound. For a fixed M , we consider the n2n hyper-
planes of the form

{

x ∈ R
n : (A−1

B(v)x)i = 0
}

.

These hyperplanes determine an arrangement that subdivides R
n into faces of vari-

ous dimensions. Each face is an inclusion-maximal region over which the sign vector
(

sgn(A−1
B(v)x)i) : v ∈ {0, 1}n, i ∈ [n]

)

is constant. The faces of dimension n are called
cells ; within a cell, the sign vector is nonzero everywhere. From Section 3.1 we know
that LCP(M, q) yields a USO whenever q is in some cell, and for all q within the same
cell, LCP(M, q) yields the same USO. Thus, the number of cells in the arrangement is an
upper bound for the number u(M) of different USOs induced by M . It is well-known [5]
that the number of cells in an arrangement of N hyperplanes in dimension n is O(Nn).
In our case, we have N = n2n which shows that u(M) = O((n2n)n) = 2O(n2) for all M .
For the lower bound, recall that we have constructed in Section 3.3 a K-matrix M ′ ∈

R
(n−1)×(n−1) (resulting from fixing βi,j for all j < n), with the following property: for a
suitable right-hand side q, LCP(M, q) with

M =

(

M ′ b
0 1

)

yields 2Ω(n2) many different USOs in the subcube F corresponding to vertices with vn = 1,
when b is varied.
Since the subcube F corresponds to the solutions of w −Mz = q that satisfy wn = 0,
we have zn = qn within F . With w′ = (w1, . . . , wn−1)

T , z′ = (z1, . . . , zn−1)
T and q′ =

(q1, . . . , qn−1)
T , it follows that

w − Mz = q, wTz = 0, wn = 0

if and only if
w′ − M ′z′ = q′ − bqn, w′Tz′ = 0, zn = qn.

This is easily seen to imply that the induced USO in the subcube F is generated by
LCP(M ′, q′ − bqn). Thus, u(M ′) = 2Ω(n2), and the theorem is proved.
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4 Locally uniform USOs and K-matrices

Finally we present a note on the relationship between K-matrices and locally uniform
USOs.

4.1 Theorem. Let M be a P-matrix. M is a K-matrix if and only if for all nondegen-
erate q, the USO induced by LCP(M, q) is locally uniform.

Proof. The “only-if” direction is Proposition 5.3 in [7]. For the if-direction, suppose
that M is not a K-matrix. We will construct a vector q such that the induced USO
violates (4). First, since M is not a K-matrix, there exists an off-diagonal entry mij > 0,
i 6= j. W.l.o.g. assume that {i, j} = {1, 2} and define

Q =

(

m11 m12

m21 m22

)

.

Let us now consider B = {1, 2}. Then

AB =

(

−Q 0
0 In−2

)

,

and

A−1
B =

(

−Q−1 0
0 In−2

)

,

where

−Q−1 =
1

m11m22 − m21m12

(

−m22 m12

m21 −m11

)

.

Since Q is a P-matrix, its determinant is positive, hence −Q−1 has some positive off-
diagonal entry. Suppose first thatm12 > 0. Then we set q = (−m12,−(m22+1), 0, . . . , 0)
and observe that

(A−1
B q)1 =

−m12

m11m22 − m21m12
< 0.

Slightly perturbing q such that it becomes nondegenerate will not change this strict
inequality. But this is a contradiction to (4): at B = ∅, the edges in directions 1 and 2
are outgoing due to q1, q2 < 0, but at B = {1, 2}, the edge in direction 1 is not incoming
as required by (4). If m21 > 0, the vector q = (−(m11 + 1),−m21, 0, . . . , 0) leads to the
same contradiction.

Remark. It may be more interesting to answer the following open question: Is it true
that every locally uniform P-USO is a K-USO?
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