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Abstract. We show that every cubic bridgeless graph G has at
least 2|V (G)|/3656 perfect matchings. This confirms an old conjec-
ture of Lovász and Plummer.

1. Introduction

Given a graph G, letM(G) denote the set of perfect matchings in G.
A classical theorem of Petersen [14] states that every cubic bridgeless
graph has at least one perfect matching, i.e. M(G) 6= ∅. Indeed, it
can be proven that any edge in a cubic bridgeless graph is contained
in some perfect matching [13], which implies that |M(G)| ≥ 3.

In the 1970s, Lovász and Plummer conjectured that the number of
perfect matchings of a cubic bridgeless graph G should grow exponen-
tially with its order (see [11, Conjecture 8.1.8]). It is a simple exercise
to prove that G contains at most 2|V (G)| perfect matchings, so we can
state the conjecture as follows:

Lovász-Plummer conjecture. There exists a universal constant ε >
0 such that for any cubic bridgeless graph G,

2ε|V (G)| ≤ |M(G)| ≤ 2|V (G)|.

The problem of computing |M(G)| is connected to problems in
molecular chemistry and statistical physics (see e.g. [11, Section 8.7]).
In general graphs, this problem is ]P -complete [16]. Thus we are inter-
ested in finding good bounds on the number of perfect matchings for
various classes of graphs such as the bounds in the conjecture above.
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For bipartite graphs, |M(G)| is precisely the permanent of the graph
biadjacency matrix. Voorhoeve proved the conjecture for cubic bipar-
tite graphs in 1979 [17]; Schrijver later extended this result to all regular
bipartite graphs [15]. We refer the reader to [10] for an exposition of
this connection and of an elegant proof of Gurvits generalizing Schri-
jver’s result. For fullerene graphs, a class of planar cubic graphs for
which the conjecture relates to molecular stability and aromaticity of
fullerene molecules, the problem was settled by Kardoš, Král’, Miškuf
and Sereni [8]. Chudnovsky and Seymour recently proved the conjec-
ture for all cubic bridgeless planar graphs [1].

The general case has until now remained open. Edmonds, Lovász
and Pulleyblank [4] proved that any cubic bridgeless G contains at
least 1

4
|V (G)| + 2 perfect matchings (see also [12]); this bound was

later improved to 1
2
|V (G)| [9] and then 3

4
|V (G)| − 10 [6]. The order

of the lower bound was not improved until Esperet, Kardoš, and Král’
proved a superlinear bound in 2009 [5]. The first bound, proved in
1982, is a direct consequence of a lower bound on the dimension of
the perfect matching polytope, while the more recent bounds combine
polyhedral arguments with analysis of brick and brace decompositions.

In this paper we solve the general case. To avoid technical difficulties
when contracting sets of vertices, we henceforth allow graphs to have
multiple edges, but not loops. Let m(G) denote |M(G)|, and let m?(G)
denote the minimum, over all edges e ∈ E(G), of the number of perfect
matchings containing e. Our result is the following:

Theorem 1. For every cubic bridgeless graph G we have

m(G) ≥ 2|V (G)|/3656.

We actually prove that at least one of two sufficient conditions ap-
plies:

Theorem 2. For every cubic bridgeless graph G, at least one of the
following holds:

[S1] m?(G) ≥ 2|V (G)|/3656, or
[S2] there exist M,M ′ ∈M(G) such that M4M ′ has at least

|V (G)|/3656 components.

To see that Theorem 2 implies Theorem 1, we can clearly assume that
[S2] holds since m?(G) ≤ m(G). Choose M,M ′ ∈M(G) such that the
set C of components of M4M ′ has cardinality at least |V (G)|/3656,
and note that each of these components is an even cycle alternating
between M and M ′. Thus for any subset C ′ ⊆ C, we can construct a
perfect matching MC′ from M by flipping the edges on the cycles in C ′,
i.e. MC′ = M4⋃C∈C′ C. The 2|C| perfect matchings MC′ are distinct,
implying Theorem 1.

We cannot discard either of the sufficient conditions [S1] or [S2]
in the statement of Theorem 2. To see that [S2] cannot be omitted,
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Figure 1. A graph cubic bridgeless graph G with
m?(G) = 1.

consider the graph depicted in Figure 1 and observe that each of the
four bold edges is contained in a unique perfect matching. To see that
[S1] cannot be omitted, it is enough to note that there exist cubic
graphs with girth logarithmic in their size (see [7] for a construction).
Such graphs cannot have linearly many disjoint cycles, so condition
[S2] does not hold.

1.1. Definitions and notation.
For a graph G and a set X ⊆ V (G), G|X denotes the subgraph of

G induced by X. For a set X ⊆ V (G), let δ(X) denote the set of
edges with exactly one endpoint in X, and let EX denote the set of
edges with at least one endpoint in X, i.e. EX = E(G|X)∪ δ(X). The
set C = δ(X) is called an edge-cut, or a k-edge-cut, where k = |C|,
and X and V (G) \ X are the sides of C. A k-edge-cut is said to be
even (resp. odd) if k is even (resp. odd). Observe that the parity of
an edge-cut δ(X) in a cubic graph is precisely that of |X|. An edge-
cut δ(X) is cyclic if both G|X and G|(V (G) \ X) contain a cycle.
Observe that every 2-edge-cut in a cubic graph is cyclic. If G contains
no edge-cut (resp. cyclic edge-cut) of size less than k, we say that G is
k-edge-connected (resp. cyclically k-edge-connected).

Observe that the number of perfect matchings of a graph is the prod-
uct of the number of perfect matchings of its connected components.
Hence, in order to prove Theorem 1, we restrict ourselves to connected
graphs for the remainder of this paper (this means, for example, that
we can consider the terms 2-edge-connected and bridgeless to be inter-
changeable, and the sides of a cut are well-defined).

For a matching M and vertex set X, we say that M covers X or
that X is M-covered if every vertex in X is an endpoint of an edge in
M . Further, we use M |X to denote the set M ∩ E(G|X).

1.2. Constants. Let x := log(4
3
)/ log(2). The following constants

appear throughout the paper:

α := x
314
, β1 := 154x

314
, β2 := 74x

314
, γ := 312x

314
.

We avoid using the numerical values of these constants for the sake of
clarity. Throughout the paper we make use of the following inequalities,
which can be routinely verified:
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0 < α ≤ β2 ≤ β1,(1)

1/3656 ≤ α

9β1 + 3
,(2)

β2 + 6α ≤ β1,(3)

74α ≤ β2,(4)

146α ≤ β1,(5)

β2 + 80α ≤ β1,(6)

6α + γ ≤ log(6)/ log(2),(7)

γ + 2β1 + 7α− β2 ≤ 1,(8)

6α + 2β1 ≤ log(4
3
)/ log(2),(9)

2β1 + 4α ≤ γ.(10)

The integer 3656 is chosen minimum so that the system of inequalities
above has a solution. Inequalities (4), (6), (9), and (10) are tight.

2. The proof of Theorem 2

In this section we sketch the proof of Theorem 2, postponing the
proofs of two main lemmas until later sections. Our general approach
to Theorem 2 is to reduce on cyclic 2-edge-cuts and cyclic 3-edge-
cuts and prove inductively that either [S1] or [S2] holds. Dealing
with [S1] is relatively straightforward – perfect matchings containing
a given edge behave well with reductions on a cut, which is our main
motivation for considering m?(G). To deal with [S2], we do not directly
construct perfect matchings M and M ′ for which M4M ′ has many
components. Instead, we prove the existence of a vector w in the
perfect matching polytope that in turn guarantees the existence of
such perfect matchings M and M ′. In order to do this, we define a
special type of vertex set in which a given random perfect matching
admits an alternating cycle with high probability (i.e. at least 1

3
). We

call these sets burls and we call a set of disjoint burls a foliage – a
large foliage will guarantee the existence of two perfect matchings with
many components in their symmetric difference. In the end, the vector
w we seek in the perfect matching polytope will be uniformly valued
1
3

except inside the burls.

2.1. Alternating sets and the perfect matching polytope.
To define burls properly, we must first define three notions of a vertex

set X being alternating. The first is simple. Given a matching M such
that X is M -covered, we say that X is M-alternating if there is another
matching M ′ such that X is M ′-covered and M4M ′ ⊆ (G|X). The
other two notions require consideration of random variables in M(G).
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Let M be a random perfect matching, i.e. a random variable M in
M(G), and let w be a real edge weighting in RE(G). We say that M
corresponds to w (and vice-versa) if for every edge e, we have Pr[e ∈
M] = w(e). The perfect matching polytope PMP(G) is the set of edge
weightings w with at least one corresponding random variable Mw on
M(G). The second notion of an alternating set involves a weighting
w ∈ PMP(G). For such w we say that X is w-alternating if for every
Mw corresponding to w, we have

Pr[X is Mw-alternating] ≥ 1/3.

If {X1, . . . , Xk} is a collection of disjoint w-alternating sets, then for a
random variable Mw inM(G) corresponding to w, the probability that
Mw is Xi-alternating for at least k/3 values of i is non-zero. Thus [S2]
is satisfied as long as we have a vector w ∈ PMP(G) and a collection
of at least 3

3656
· |V (G)| disjoint w-alternating sets. Unfortunately the

notion of w-alternating sets has a troublesome shortcoming: When
deciding whether or not X is a w-alternating set, we want the freedom
to ignore the weighting w on edges not intersecting X.

Thus for the third notion of an alternating set, we look at partial
edge weightings. Given a vertex set X, let wX be a weighting on the
edges of EX , i.e. those edges with at least one endpoint in X. Let
M(G,X) denote the set of matchings contained in EX and covering
X. As with edge weightings in RE(G), we say that a random variable
MX

w ∈ M(G,X) corresponds to wX (and vice-versa) if for every edge
e ∈ EX , we have Pr[e ∈ M] = w(e). We say that the set X is
strongly wX-alternating if for every random variable MX

w onM(G,X)
corresponding to wX , we have

Pr[X is MX
w-alternating] ≥ 1/3.

Given an edge weighting w and an edge set E ′ such that w gives each
edge in E ′ a weight, let w|E ′ denote the restriction of w to E ′. Clearly,
if we have a total edge weighting w ∈ PMP(G) such that a vertex set
X is strongly (w|EX)-alternating, then X is w-alternating.

We now extend this idea. We wish to take a collection of disjoint
vertex sets {X1, . . . , Xk} and partial edge weightings wXi

such that
each Xi is strongly wXi

-alternating, and construct from them a total
edge weighting w such that each Xi is w-alternating. To do this as
simply as possible we want w, which must be in PMP(G), to agree
with each wXi

. Thus we certainly want the partial weightings to agree
– this only concerns edges on the boundaries of the vertex sets – but
we need more restrictions. To determine a sufficient set of restrictions
for wXi

, we use Edmonds’ characterization of the perfect matching
polytope:

Theorem 3 (Edmonds [3]). Let G be a graph and let w be a vector in
RE(G). Then w is in PMP(G) precisely if the following hold:
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(i) 0 ≤ w(e) ≤ 1 for each e ∈ E(G),
(ii) w(δ({v})) = 1 for each vertex v ∈ V , and

(iii) w(δ(X)) ≥ 1 for each X ⊆ V of odd cardinality.

This characterization immediately tells us that for any bridgeless
cubic graph, the vector 1

3
, i.e. the vector valued 1

3
on each edge, is in

PMP(G). Given a vertex set X, let ∂X denote the set of vertices in
X incident to edges in δ(X). We say that a partial edge weighting
wX on EX is extendable from X if it satisfies the following sufficient
restrictions:

EXT1: wX(e) ∈ {0, 1
3
, 2

3
} for each e ∈ EX ,

EXT2: wX(δ({v})) = 1 for each vertex v ∈ X,
EXT3: wX(e) = 1

3
for each e ∈ δ(X),

EXT4: wX(C) ≥ 1
3

for every non-empty edge-cut C in G|X,
EXT5: if wX(C) < 1 for some edge-cut C in G|X with |C| odd

then either |C| = 1 or one of the sides of C contains exactly
one vertex in ∂X.

We are finally ready to formally define burls and foliages. A vertex
set X is a burl if there exists a vector wX ∈ REX such that (1) X is
wX-alternating, and (2) wX is extendable from X. In this case we say
that wX is a certificate for the burl X. Again, a collection of disjoint
vertex sets {X1, . . . , Xk} is a foliage if each Xi is a burl.

We already noted that 1
3
∈ PMP(G). We can also verify that for any

vertex set X, the partial weighting 1
3
|EX is extendable from X. Actu-

ally, much more is true. The following lemma clarifies our motivation
for the definition of a foliage:

Lemma 4. Let G be a cubic bridgeless graph, let X = {X1, . . . , Xk}
be a foliage, and for each i let wXi

be a certificate for Xi. Let w be an
edge weighting for G defined as

w(e) =

{
wXi

(e) if e ∈ E(G|Xi)

1/3 if e /∈ ⋃iE(G|Xi)

Then every set Xi ∈ X is w-alternating.

Proof. Since every partial weighting wXi
is equal to 1

3
on the boundary

of Xi, we know that each Xi is strongly (w|EXi
)-alternating. Therefore

each Xi is w-alternating. It remains to confirm that w ∈ PMP(G).
By Theorem 3 it suffices to check that w satisfies conditions (i), (ii)
and (iii). The first two conditions are satisfied by (EXT1), (EXT2)
and (EXT3). To verify (iii), consider an odd Y ⊆ V (G). We show that
w(δ(Y )) ≥ 1.

It follows from (EXT1) and (EXT2) that 3w(δ(Y )) is an odd integer.
Therefore, it is sufficient to verify that w(δ(Y )) > 1/3. Let Xi ∈ X
be such that C = δ(Y ) ∩ E(G|Xi) is a non-empty edge-cut in G|Xi.
(If no such Xi exists then w(δ(Y )) ≥ 1

3
|δ(Y )| ≥ 1 by (EXT3).) It
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follows from (EXT1), (EXT2) and (EXT3) that |C| and 3w(C) have
the same parity. Therefore, w(δ(Y )) > 1/3 by (EXT3) and (EXT4),
unless |C| is odd and δ(Y ) = C. In this last case, we have |C| > 1, as
G is bridgeless and by (EXT5) one of the sides of C, without loss of
generality Xi ∩ Y , contains exactly one vertex in ∂Xi. Then δ(Y \Xi)
consists only of edges incident to this vertex, contradicting once again
the fact that G is bridgeless. �

In light of what we have already discussed, we get the following key
fact as a consequence:

Corollary 5. If a cubic bridgeless graph G contains a foliage X , then
there exist perfect matchings M,M ′ ∈ M(G) such that M4M ′ has at
least |X |/3 components.

2.2. Burls, twigs, and foliage weight.
We now introduce a special class of burls. Let G be a cubic bridgeless

graph and let X ⊆ V (G). We say that X is a 2-twig if |δ(X)| = 2, and
X is a 3-twig if |δ(X)| = 3 and |X| ≥ 5 (that is, X is not a triangle or
a single vertex). A twig in G is a 2- or 3-twig. Before we prove that
every twig is a burl, we need a simple lemma.

Lemma 6. Let G be a cubic bridgeless graph. Then
(1) m(G− e) ≥ 2 for every e ∈ E(G), and
(2) m(G) ≥ 4 if |V (G)| ≥ 6. In particular, for any v ∈ V (G) there

is an e ∈ δ({v}) contained in at least two perfect matchings.

Proof. The first item follows from the classical result mentioned in
the introduction: every edge of a cubic bridgeless graph is contained
in a perfect matching. The second is implied by the bound m(G) ≥
1
4
|V (G)|+ 2 from [4]. �

Lemma 7. Every twig X in a cubic bridgeless graph G is a burl.

Proof. We show that wX = 1
3
|EX is a certificate for X. As we already

noted, wX is extendable from X. Let MX
w be a random matching

in M(G,X) corresponding to wX , as in the definition of a strongly
alternating set.

If X is a 2-twig, let H be obtained from G|X by adding an edge e
joining the vertices in ∂X. Then H is cubic and bridgeless. By applying
Lemma 6(1) to H, we see that the set X is M -alternating for every
M ∈ M(G,X) such that M ∩ δ(X) = ∅. As Pr[MX

w ∩ δ(X) = ∅] ≥
1−MX

w(δ(X)) = 1/3, we conclude that X is strongly wX-alternating.
Suppose now that X is a 3-twig. Let δ(X) = {e1, e2, e3}. Let H be

obtained from G by identifying all the vertices in V (G)−X (removing
loops but preserving multiple edges). We apply Lemma 6(2) to H,
which is again cubic and bridgeless. It follows that for some 1 ≤ i ≤ 3,
the edge ei is in at least two perfect matchings of H. Therefore X is
M -alternating for every M ∈ M(G,X) such that M ∩ δ(X) = {ei}.



8 L. ESPERET, F. KARDOŠ, A. D. KING, D. KRÁL’, AND S. NORINE

Finally, Pr[MX
w ∩ δ(X) = {ei}] = 1/3 and thus X is strongly wX-

alternating. �

The weight of a foliage X containing k twigs is defined as fw(X ) :=
β1k + β2(|X | − k), that is each twig has weight β1 and each non-twig
burl has weight β2. Let fw(G) denote the maximum weight of a foliage
in a graph G.

2.3. Reducing on small edge-cuts.
We now describe how we reduce on 2-edge-cuts and 3-edge-cuts, and

consider how these operations affect m?(G) and foliages. Let C be a
3-edge-cut in a cubic bridgeless graph G. The two graphs G1 and G2

obtained from G by identifying all vertices on one of the sides of the
edge-cut (removing loops but preserving multiple edges) are referred to
as C-contractions of G and the vertices in G1 and G2 created by this
identification are called new.

We need a similar definition for 2-edge-cuts. Let C = {e, e′} be a
2-edge-cut in a cubic bridgeless graph G. The two C-contractions G1

and G2 are now obtained from G by deleting all vertices on one of the
sides of C and adding an edge joining the remaining ends of e and e′.
The resulting edge is now called new.

In both cases we say that G1 and G2 are obtained from G by a
cut-contraction. The next lemma provides some useful properties of
cut-contractions.

Lemma 8. Let G be a graph, let C be a 3- or a 2-edge-cut in G, and
let G1 and G2 be the two C-contractions. Then

(1) G1 and G2 are cubic bridgeless graphs,
(2) m?(G) ≥ m?(G1)m

?(G2), and
(3) For i = 1, 2 let Xi be a foliage in Gi such that for every X ∈ Xi,

if |C| = 3 then X does not contain the new vertex, and if
|C| = 2 then E(Gi|X) does not contain the new edge. Then
X1 ∪ X2 is a foliage in G. In particular, we have fw(G) ≥
fw(G1) + fw(G2)− 2β1.

Proof.

(1) This can be confirmed routinely.
(2) Consider first the case of the contraction of a 2-edge-cut C =

δ(X) in G. Let e be an edge with both ends in X = V (G1).
Every perfect matching of G1 containing e combines either with
m?(G2) perfect matchings of G2 containing the new edge of G2,
or with 2m?(G2) perfect matchings of G2 avoiding the new edge
of G2. If e lies in C, note that perfect matchings of G1 and G2

containing the new edges can be combined into perfect match-
ings of G containing C. Hence, e is in at least m?(G1)m

?(G2)
perfect matchings of G.
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Now consider a 3-edge-cut C = δ(X). If e has both ends in
X ⊂ V (G1), perfect matchings of G1 containing e combine with
perfect matchings of G2 containing either of the 3 edges of C.
If e is in C, perfect matchings containing e in G1 and G2 can
also be combined into perfect matchings of G. In any case, e is
in at least m?(G1)m

?(G2) perfect matchings of G.
(3) By (EXT3), the coordinates of the new elements (if they are

defined) in their respective certificates are precisely 1/3, so as-
signing 1/3 (if necessary) to the edges of C in G yields valid
certificates for the elements of X1 ∪ X2. Since β1 ≥ β2, this
implies fw(G) ≥ fw(G1) + fw(G2)− 2β1. �

It is not generally advantageous to reduce on a 3-edge-cut arising
from a triangle, unless this reduction leads to a chain of similar reduc-
tions. Thus we wish to get rid of certain triangles from the outset. We
say that a triangle sharing precisely one edge with a cycle of length
three or four in a graph G is relevant, and otherwise it is irrelevant.
A graph G is pruned if it contains no irrelevant triangles. The follow-
ing easy lemma shows that we can prune a bridgeless cubic graph by
repeated cut-contraction without losing too many vertices.

Lemma 9. Let G be a cubic bridgeless graph, and let k be the size of
maximum collection of vertex-disjoint irrelevant triangles in G. Then
one can obtain a pruned cubic bridgeless graph G′ from G with |V (G′)| ≥
|V (G)| − 2k by repeatedly contracting irrelevant triangles.

Proof. We proceed by induction on k. Let a graph G′′ be obtained
from G by contracting an irrelevant triangle T . The graph G′′ is cubic
and bridgeless by Lemma 8(1). Since T is irrelevant in G, the unique
vertex of G′′ obtained by contracting T is not in a triangle in G′′.
Therefore if T is a collection of vertex disjoint irrelevant triangles in
G′′ then T ∪ {T} is such a collection in G. (After the contraction of
an irrelevant triangle, triangles that were previously irrelevant might
become relevant, but the converse is not possible.) It follows that
|T | ≤ k − 1. By applying the induction hypothesis to G′′, we see that
the lemma holds for G. �

Corollary 10. Let G be a cubic bridgeless graph. Then we can obtain
a cubic bridgeless pruned graph G′ from G with |V (G′)| ≥ |V (G)|/3 by
repeatedly contracting irrelevant triangles.

We wish to restrict our attention to pruned graphs, so we must make
sure that the function m?(G) and the maximum size of a foliage does
not increase when we contract a triangle.

Lemma 11. Let G′ be obtained from a graph G by contracting a tri-
angle. Then m?(G′) ≤ m?(G) and the maximum size of a foliage in G′

is at most the maximum size of a foliage in G.
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Proof. Let xyz be the contracted triangle, and let ex, ey, and ez be the
edges incident with x, y, z and not contained in the triangle in G. Let
t be the vertex of G′ corresponding to the contraction of xyz. Every
perfect matching M ′ of G′ has a canonical extension M in G: assume
without loss of generality that ex is the unique edge of M ′ incident to
t. Then M consists of the union of M ′ and yz. Observe that perfect
matchings in G containing yz necessarily contain ex, so every edge of
G is contained in at least m?(G′) perfect matchings.

Now consider a burl X ′ in G′ containing t, and let w′ a the certificate
for X ′. Let w be the vector w′ with three new coordinates w(xy) =
w′(ez), w(yz) = w′(ex) and w(xz) = w′(ey), then w is a certificate
showing that X = X ′ ∪ {x, y, z} \ t is a burl in G. Properties (EXT1),
(EXT2), and (EXT3) are trivially satisfied. Now consider an edge-
cut C in G|X. If B = C ∩ {xy, yz, xz} is empty, (EXT4) and (EXT5)
follow directly from the fact that w′ is a certificate for X ′. Otherwise B
contains precisely two elements, say xy and yz. Then we have w(C) ≥
w(xy) + w(yz) ≥ 1

3
by (EXT1) and (EXT2), and therefore, (EXT4)

follows. If |C| ≥ 3 is odd and w(C) < 1, then without loss of generality
w(xy) = 0. Using (EXT4) it can be checked that only one of the
following two cases applies:

If C ∩{ex, ez} = ∅ then C ′ = C ∪{ex, ez} \ {xy, yz} is an edge-cut of
the same weight and cardinality as C in G|X, but also in G′|X ′, and
consequently, (EXT5) follows.

If C ∩E{x,y,z} = {xy, yz, ez} then C has cardinality at least five and
C ′′ = C ∪ {ex} \ {xy, yz, ez} is an odd edge-cut in G|X, but also in
G′|X ′ of cardinality at least 3 and weight w(C ′′) = w(C). Since w′

satisfies (EXT5), w also satisfies (EXT5) in this case.
Since a burl avoiding t in G′ is also a burl in G, it follows from the

analysis above that the maximum size of a foliage cannot increase when
we contract a triangle. �

2.4. Proving Theorem 2.
We say that G has a core if we can obtain a cyclically 4-edge-

connected graph G′ with |V (G′)| ≥ 6 by applying a (possibly empty)
sequence of cut-contractions to G (recall that this notion was defined
in the previous subsection).

We will deduce Theorem 2 from the next two lemmas. This essen-
tially splits the proof into two cases based on whether or not G has a
core.

Lemma 12. Let G be a pruned cubic bridgeless graph. Let Z ⊆ V (G)
be such that |Z| ≥ 2 and |δ(Z)| = 2, or |Z| ≥ 4 and |δ(Z)| = 3.
Suppose that the δ(Z)-contraction G′ of G with Z ⊆ V (G′) has no
core. Then there exists a foliage X in G with

⋃
X∈X X ⊆ Z and

fw(X ) ≥ α|Z|+ β2.
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By applying Lemma 12 to a cubic graph G without a core and Z =
V (G) \ {v} for some v ∈ V (G), we obtain the following.

Corollary 13. Let G be a pruned cubic bridgeless graph without a core.
Then

fw(G) ≥ α(|V (G)| − 1) + β2.

On the other hand, if G has a core, we will prove that either fw(G) is
linear in the size of G or every edge of G is contained in an exponential
number of perfect matchings.

Lemma 14. Let G be a pruned cubic bridgeless graph. If G has a core
then

m?(G) ≥ 2α|V (G)|−fw(G)+γ.

We finish this section by deriving Theorem 2 from Lemmas 12 and 14.

Proof of Theorem 2. Let ε := 1/3656. By Corollary 10 there exists a
pruned cubic bridgeless graph G′ with |V (G′)| ≥ |V (G)|/3 obtained
from G by repeatedly contracting irrelevant triangles. Suppose first
that G′ has a core. By Corollary 10 and Lemmas 11 and 14, condition
[S1] holds as long as ε|V (G)| ≤ α|V (G)|/3 − fw(G′). Therefore we
assume fw(G′) ≥ (α

3
−ε)|V (G)|. It follows from the definition of fw(G′)

that G′ has a foliage containing at least (α
3
− ε)|V (G)|/β1 burls. If G′

has no core then by Corollary 13 and the fact that α ≤ β2, fw(G′) ≥
α(|V (G′)| − 1) + β2 ≥ α|V (G′)|, so G′ contains a foliage of size at
least α|V (G′)|/β1 ≥ α|V (G)|/3β1. In both cases condition [S2] holds
by Corollary 5 and Lemma 11, since Equation (2) tells us that 3ε ≤
(α

3
− ε)/β1. �

3. Cut decompositions

In this section we study cut decompositions of cubic bridgeless graphs.
We mostly follow notation from [1], however we consider 2- and 3-edge-
cuts simultaneously. Cut decompositions play a crucial role in the proof
of Lemma 12 in the next section.

Let G be a graph. A non-trivial cut-decomposition of G is a pair
(T, φ) such that:

• T is a tree with E(T ) 6= ∅,
• φ : V (G)→ V (T ) is a map, and
• |φ−1(t)|+ degT (t) ≥ 3 for each t ∈ V (T ).

For an edge f of T , let T1, T2 be the two components of T \ f , and
for i = 1, 2 let Xi = φ−1(Ti). Thus (X1, X2) is a partition of V (G) that
induces an edge-cut denoted by φ−1(f). If |φ−1(f)| ∈ {2, 3} for each
f ∈ E(T ) we call (T, φ) a small-cut-decomposition of G.

Let (T, φ) be a small-cut-decomposition of a 2-edge-connected cubic
graph G, and let T0 be a subtree of T such that φ−1(V (T0)) 6= ∅. Let
T1, . . . , Ts be the components of T \ V (T0), and for 1 ≤ i ≤ s let fi be
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the unique edge of T with an end in V (T0) and an end in V (Ti). For
0 ≤ i ≤ s, let Xi = φ−1(V (Ti)). Thus X0, X1, . . . , Xs form a partition
of V (G). Let G′ be the graph obtained from G as follows. Set G0 = G.
For i = 1, . . . , s, take Gi−1 and let Gi be the (φ−1(fi))-contraction
containing X0. Now let G′ denote Gs. Note that G′ is cubic. We
call G′ the hub of G at T0 (with respect to (T, φ)). If t0 ∈ V (T ) and
φ−1(t0) 6= ∅, by the hub of G at t0 we mean the hub of G at T0, where
T0 is the subtree of T with vertex set {t0}.

Let Y be a collection of disjoint subsets of V (G). We say that a
small-cut-decomposition (T, φ) of G refines Y if for every Y ∈ Y there
exists a leaf v ∈ V (T ) such that Y = φ−1(v). Collections of subsets of
V (G) that can be refined by a small-cut decomposition are charaterized
in the following easy lemma.

Lemma 15. Let G be a cubic bridgeless graph. Let Y be a collection of
disjoint subsets of V (G). Then there exists a small-cut-decomposition
refining Y if |Y | ≥ 2 and |δ(Y )| ∈ {2, 3} for every Y ∈ Y, and either

(1) Y = ∅ and G is not cyclically 4-edge-connected, or
(2) Y = {Y }, and |V (G) \ Y | > 1, or
(3) |Y| ≥ 2.

Proof. We only consider the case |Y| ≥ 3, as the other cases are routine.
Take T to be a tree on |Y| + 1 vertices with |Y| leaves {vY | Y ∈ Y}
and a non-leaf vertex v0. The map φ is defined by φ(u) = vY , if u ∈ Y
for some Y ∈ Y , and φ(u) = v0, otherwise. Clearly, (T, φ) refines Y
and is a small-cut-decomposition of G. �

We say that (T, φ) is Y-maximum if it refines Y and |V (T )| is maxi-
mum among all small-cut decompositions of G refining Y . The follow-
ing lemma describes the structure of Y-maximum decompositions. It
is a variation of Lemma 4.1 and Claim 1 of Lemma 5.3 in [1].

Lemma 16. Let G be a cubic bridgeless graph. Let Y be a collection
of disjoint subsets of V (G) and let (T, φ) be a Y-maximum small-cut-
decomposition of G. Then for every t ∈ V (T ) either φ−1(t) = ∅, or
φ−1(t) ∈ Y, or the hub of G at t is cyclically 4-edge-connected.

Proof. Fix t ∈ V (T ) with φ−1(t) 6= ∅ and φ−1(t) 6∈ Y . Let f1, . . . , fk be
the edges of T incident with t, and let T1, . . . , Tk be the components of
T \{t}, where fi is incident with a vertex ti of Ti for 1 ≤ i ≤ k. Let X0

= φ−1(t), and for 1 ≤ i ≤ k let Xi = φ−1(V (Ti)). Let G′ be the hub
of G at t, and let G′′ be the graph obtained from G′ by subdividing
precisely once every new edge e corresponding to the cut-contraction
of a cut C with |C| = 2. The vertex on the subdivided edge e is called
the new vertex corresponding to the cut-contraction of C, by analogy
with the new vertex corresponding to the cut-contraction of a cyclic
3-edge-cut.
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Note that G′ is cyclically 4-edge-connected if and only if G′′ is cycli-
cally 4-edge-connected. Suppose for the sake of contradiction that
C = δ(Z) is a cyclic edge-cut in G′′ with |C| ≤ 3. Then |C| ∈ {2, 3}
by Lemma 8(1), as G′′ is a subdivision of G′ and G′ can be obtained
from G by repeated cut-contractions. Let T ′ be obtained from T by by
splitting t into two vertices t′ and t′′, so that ti is incident to t′ if and
only if the new vertex of G′′ corresponding to the cut-contraction of
φ−1(fi) is in Z. Let φ′(t′) = X0 ∩ Z, φ′(t′′) = X0 \ Z, and φ′(s) = φ(s)
for every s ∈ V (T ′) \ {t′, t′′}.

We claim that (T ′, φ′) is a small-cut-decomposition of G contradict-
ing the choice of T . It is only necessary to verify that |φ−1(s)| +
degT ′(s) ≥ 3 for s ∈ {t′, t′′}. We have |φ−1(t′)| + degT ′(t′) − 1 =
|Z ∩ V (G′′)| ≥ 2 as C is a cyclic edge-cut in G′′. It follows that
|φ−1(t′)|+ degT ′(t′) ≥ 3 and the same holds for t′′ by symmetry. �

Figure 2. Isomorphism classes of subgraphs induced by
elementary twigs.

We finish this section by describing a collection Y to which we will
be applying Lemma 16 in the sequel. In a cubic bridgeless graph G a
union of the vertex set of a relevant triangle with the vertex set of a cy-
cle of length at most four sharing an edge with it is called a simple twig.
Note that simple twigs corresponding to distinct relevant triangles can
intersect, but one can routinely verify that each simple twig intersects
a simple twig corresponding to at most one other relevant triangle. An
elementary twig is either a simple twig, that intersects no simple twig
corresponding to a relevant triangle not contained in it, or the union
of two intersecting simple twigs, corresponding to distinct relevant tri-
angles. An elementary twig is, indeed, a twig, unless it constitutes the
vertex set of the entire graph. Figure 2 shows all possible elementary
twigs. The next corollary follows immediately from the observations
above and Lemmas 15 and 16.

Corollary 17. Let G be a cubic bridgeless graph that is not cyclically
4-edge-connected with |V (G)| ≥ 8. Then there exists a collection Y
of pairwise disjoint elementary twigs in G such that every relevant
triangle in G is contained in an element of Y. Further, there exists a Y-
maximum small-cut-decomposition (T, φ) of G and for every t ∈ V (T )
either φ−1(t) = ∅, or φ−1(t) is an elementary twig, or the hub of G at
t is cyclically 4-edge-connected.
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4. Proof of Lemma 12.

The proof of Lemma 12 is based on our ability to find burls locally
in the graph. The following lemma is a typical example.

Lemma 18. Let G be a cubic bridgeless graph and let X ⊆ V (G) be
such that |δ(X)| = 4 and m(G|X) ≥ 2. Then X contains a burl.

Proof. Let w = 1
3
|EX . We already observed that w is extendable from

X. Note that if M ∈ M(G,X) contains no edges of δ(X) then X is
M -alternating. As M ∩ δ(X) is even for every M ∈M(G,X) we have

4
3

= E [|Mw ∩ δ(X)|] ≥ 2 Pr[Mw ∩ δ(X) 6= ∅].
Therefore Pr[Mw∩δ(X) = ∅] ≥ 1/3, and soX is strongly w-alternating.

�

The proof of Lemma 12 relies on a precise study of the structure
of small-cut trees for graphs with no core. The following two lemmas
indicate that long paths in such trees necessarily contain some burls.

Lemma 19. Let (T, φ) be a small-cut-decomposition of a cubic bridge-
less graph G, and let P be a path in T with |V (P )| = 10. If we have

• degT (t) = 2 for every t ∈ V (P ),
• the hub of G at t is isomorphic to K4 for every t ∈ V (P ), and
• |φ−1(f)| = 3 for every edge f ∈ E(T ) incident to a vertex in
V (P ),

then φ−1(P ) contains a burl.

Proof. Let P ′ = v−1v0 . . . v9v10 be a path in T such that P = v0 . . . v10.
Let fi = vi−1vi and let Ci = φ−1(fi), 0 ≤ i ≤ 10. Let X := φ−1(V (P )).
We assume without loss of generality that G|X contains no cycles of
length 4, as otherwise the lemma holds by Lemma 18. Let A be the
set of ends of edges in C0 outside of X, and let B be the set of ends
of edges in C10 outside of X. Observe that EX consists of 3 internally
vertex-disjoint paths from A to B, as well as one edge in G|φ−1({vi})
for 0 ≤ i ≤ 9. Let R1, R2 and R3 be these three paths from A to
B, and let uj be the end of Rj in A for j = 1, 2, 3. For 0 ≤ i ≤ 9,
we have φ−1(vi) = {xi, yi} so that xi ∈ V (Rj), yi ∈ V (Rj′) for some
{j, j′} ⊆ {1, 2, 3} with j 6= j′, and ei := xiyi ∈ E(G). Let the index of i
be defined as ({j, j′}, sgn(i)), where sgn(i) = 0 if the number of vertices
in Rj between uj and xi and the number of vertices in Rj′ between uj′
and yi have the same parity, and sgn(i) = 1 otherwise. There are 6
possible indices, so there exist 1 ≤ i < i′ ≤ 7 with the same indices.
Without loss of generality we assume that those indices are ({1, 2}, 0)
or ({1, 2}, 1).

To show that X is a burl, we construct a certificate w on EX . We
first set w(e) = 1

3
for every e ∈ δ(X). We then set w(ei′′) = 0 for

i < i′′ < i′ and w(ei′′) = 1
3

for 0 ≤ i′′ ≤ i and i′ < i′′ ≤ 9. On the edges
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of R1, R2, R3, and ei′ , we let w be the unique assignment of weights
that satisfies conditions (EXT2) and (EXT3), which gives each such
edge weight 1

3
or 2

3
on the paths and gives w(ei′) weight either 0 or 1

3
,

depending on the parity of i′− i. Two examples are shown in Figure 3.

xi
R1

R2

R3 yi−1

Z

xi′

xi′+1

yi yi′

xi−1

yi′+1 yi′+2

xi′+2

xi
R1

R2

R3

xi′

yi′+2

xi′+2
Z

yi yi′

yi′+1yi−1

xi′+1

xi−1

Figure 3. Certificates for the burl X when i′− i is odd
(left) and when i′ − i is even (right). Horizontal paths
are R1, R2 and R3, solid edges correspond to the value
1/3 of w, bold edges to value 2/3 and dashed edges to
value 0.

We claim that w is a certificate for X. Let Z consist of xi, yi, xi′ , yi′
and vertex sets of segments of R1 and R2 between these vertices. The
only edges in support of w in δ(Z) belong to either R1 or R2. As |Z|
is even, repeating the argument in the proof of Lemma 18, we deduce
that Pr[Mw∩δ(Z) = ∅] ≥ 1/3. As G|Z contains a spanning even cycle,
and therefore at least two perfect matchings, we conclude that Z, and
consequently X, are strongly w-alternating. It is easy to see that w
satisfies (EXT4). By our assumption that φ−1(P ) contains no cycles
of length 4, the edges ei−1, ei′+1 have ends on R3 and both R1 and R2

contain an end of one of the edges ei′+1 and ei′+2 (we insist that P
contains 10 rather than 7 vertices to ensure this property). Using this
fact, one can routinely verify that w satisfies (EXT5) and is therefore
extendable from X. �

Lemma 20. Let (T, φ) be a small-cut-decomposition of a cubic bridge-
less graph G. Let t1, t2 ∈ V (T ) be a pair of adjacent vertices of degree
2. Suppose that |φ−1(f)| = 2 for every edge f ∈ E(T ) incident to t1 or
t2. Then φ−1({t1, t2}) contains a burl.

Proof. Let t0t1t2t3 be a subpath of T and let Ci = φ−1(ti−1ti) for
i = 1, 2, 3 be an edge-cut of size 2. Assume that both G|φ−1(t1) and
G|φ−1(t2) have at most one perfect matching. By Lemma 18 it suffices
to show that G|φ−1({t1, t2}) has at least two perfect matchings. As
the hub G1 over t1 is cubic and bridgeless it contains at least 2 per-
fect matching avoiding any edge. Let e1, e2 ∈ E(G1) be the edges in
E(G1) − E(G) corresponding to C1- and C2-contraction, respectively.
By assumption, at most one perfect matching of G1 avoids both e1 and
e2. It follows that either two perfect matchings of G1 avoid e1 and
contain e2, or one avoids e1 and e2 and one avoids e1 and contains e2.
Let G2 be the hub over t2. The symmetric statement holds for G2.
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In any case, the perfect matchings in G1 and G2 can be combined to
obtain at least two perfect matchings of G|φ−1({t1, t2}). �

From the definition of a small-cut-decomposition, we immediately
get the following corollary:

Corollary 21. Let (T, φ) be a small-cut-decomposition of a cubic bridge-
less graph G, and let P be a path in T in which every vertex has degree
2. Suppose there exist three edges f1, f2, f3 of T incident to vertices
of P such that |φ−1(f1)| = |φ−1(f2)| = |φ−1(f3)| = 2. Then φ−1(P )
contains a burl.

Let B3 denote the cubic graph consisting of two vertices joined by
three parallel edges. Lemmas 19 and 20 imply the following.

Corollary 22. Let (T, φ) be a small-cut-decomposition of a cubic bridge-
less graph G and let P be a path in T with |V (P )| = 32. If for every
t ∈ V (P ), degT (t) = 2 and the hub of G at t is isomorphic to K4 or
B3, then φ−1(P ) contains a burl.

Proof. If at least three edges incident to vertices in V (P ) correspond
to edge-cuts of size 2 in G then the corollary holds by Corollary 21.
Otherwise, since there are 33 edges of T incident to vertices of P , there
must be 11 consecutive edges incident to vertices in P corresponding to
edge-cuts of size 3. In this case, the result follows from Lemma 19. �

Proof of Lemma 12. We proceed by induction on |Z|. If |Z| ≤ 6 then
Z is a twig. In this case the lemma holds since β1 ≥ β2 + 6α by
(3). We assume for the remainder of the proof that |Z| ≥ 7. It
follows that G′ is not cyclically 4-edge-connected, as G′ has no core.
Therefore Corollary 17 is applicable to G′. Let Y be a collection of
disjoint elementary twigs in G′ such that every relevant triangle in G′

is contained in an element of Y , and let (T, φ) be a Y-maximum small-
cut decomposition of G′. By Corollary 17, the hub at every t ∈ V (T )
with |φ−1(t)| 6= ∅ is either an elementary twig, in which case t is a leaf
of T , or is cyclically 4-edge-connected, in which case it is isomorphic
to either K4 or B3.

In calculations below we will make use of the following claim: If
degT (t) = 2 for some t ∈ V (T ), then |φ−1(t)| ≤ 2. If this is not the
case, the hub at t is isomorphic to K4, and at least three of its vertices
must be vertices of G. It follows that there is an edge f ∈ E(T ) incident
to t for which |φ−1(f)| = 2. Let v ∈ φ−1(t) be a vertex incident to an
edge in φ−1(f). Then C = φ−1(f)4δ(v) is a 3-edge-cut in G. As
in the proof of Lemma 16 we can split t into two vertices t′, t′′ with
φ−1(t′) = {v} and φ−1(t′′) = φ−1(t) \ v. We now have φ−1(t′t′′) = C
and the new small-cut-decomposition contradicts the maximality of
(T, φ). This completes the proof of the claim.
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Let t0 ∈ V (T ) be such that φ−1(t0) contains the new vertex or one
of the ends of the new edge in G′. Since G is pruned, G′ contains at
most one irrelevant triangle, and if such a triangle exists, at least one
of its vertices lies in φ−1(t0). As a consequence, for any leaf t 6= t0 of
T , φ−1(t) is a twig. Let t∗ ∈ V (T ) \ {t0} be such that degT (t∗) ≥ 3
and, subject to this condition, the component of T \ {t∗} containing t0
is maximal. If degT (t) ≤ 2 for every t ∈ V (T ) \ {t0}, we take t∗ = t0
instead.

Let T1, . . . , Tk be all the components of T \{t∗} not containing t0. By
the choice of t∗, each Ti is a path. If |V (Ti)| ≥ 33 for some 1 ≤ i ≤ k
then let T ′ be the subtree of Ti containing a leaf of T and exactly 32
other vertices. Let f be the unique edge in δ(T ′). Let H (resp. H ′) be
the φ−1(f)-contraction of G (resp. G′) containing V (G′) \φ−1(T ′), and
let Z ′ consist of V (H ′) ∩ Z together with the new vertex created by
φ−1(f)-contraction (if it exists). If H is not pruned then it contains a
unique irrelevant triangle and we contract it, obtaining a pruned graph.
By the induction hypothesis, either |Z ′| ≤ 6 or we can find a foliage X ′
in Z ′ with fw(X ′) ≥ α(|Z ′| − 2) + β2. If |Z ′| ≤ 6 let X ′ := ∅.

Let t′ be a vertex of T ′ which is not a leaf in T . Since degT (t′) = 2,
|φ−1(t′)| 6= ∅. Therefore φ−1(t′) is isomorphic to B3 or K4 and we can
apply Corollary 22. This implies that φ−1(T ′) contains an elementary
twig and a burl that are vertex-disjoint, where the elementary twig is
the preimage of the leaf. Further, we have |φ−1(T ′)| ≤ 8 + 2 · 32 =
72, since an elementary twig has size at most 8 and the preimage of
every non-leaf vertex of T ′ has size at most 2 by the claim above. By
Lemma 8(3), we can obtain a foliage X in Z by adding the twig and
the burl to X ′ and possibly removing a burl (which can be a twig)
containing the new element of H ′ created by φ−1(f)-contraction. It
follows that if |Z ′| ≥ 7 then

fw(X ) ≥ α(|Z ′| − 2) + 2β2 ≥ (α|Z|+ β2)− 74α + β2 ≥ α|Z|+ β2,

by (4), as desired. If |Z ′| ≤ 6 then |Z| ≤ 78 and

fw(X ) ≥ β1 + β2 ≥ 78α + β2 ≥ α|Z|+ β2,

by (5).
It remains to consider the case when |V (Ti)| ≤ 32 for every 1 ≤ i ≤ k.

Suppose first that t∗ 6= t0 and that |φ−1(T0)| ≥ 7, where T0 denotes
the component of T \ t∗ containing t0. Let f0 be the edge incident to
t∗ and a vertex of T0. We form the graphs H, H ′ and a set Z ′ by
a φ−1(f0)-contraction as in the previous case, and possibly contract a
single irrelevant triangle. As before, we find a foliage X ′ in Z ′ with
fw(X ′) ≥ α(|Z ′| − 2) + β2. Note that φ−1(Ti) contains a twig for every
1 ≤ i ≤ k. By Lemma 8(3), we now obtain a foliage X in Z from X ′,
adding k ≥ 2 twigs and possibly removing one burl (which can be a
twig) from X ′. We have |φ−1(Ti)| ≤ 8+31 · 2 = 70 for every 1 ≤ i ≤ k,
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and |φ−1(t∗)| ≤ 4. Therefore |Z| ≤ |Z ′| + 70k + 4. It follows from (5)
that

fw(X ) ≥ α(|Z ′| − 2) + β2 + (k − 1)β1 ≥
≥ α|Z|+ β2 − 76α + (k − 1)(β1 − 70α) ≥ α|Z|+ β2.

Now we can assume t∗ = t0 or |φ−1(T0)| ≤ 6. First suppose t∗ 6= t0 but
|φ−1(T0)| ≤ 6. Then again |φ−1(t∗)| ≤ 4, so we have |Z| ≤ 70k + 10.
Let X be the foliage consisting of twigs in T1, . . . , Tk. Thus by (6), we
have

fw(X ) = kβ1 ≥ (α|Z|+ β2) + k(β1 − 70α)− 10α− β2 ≥ α|Z|+ β2.

Finally we can assume t∗ = t0. Then |φ−1(t∗)| ≤ 4, unless k = 1 and
φ−1(t∗) is an elementary twig. In either case, |Z| ≤ 70k + 8 and the
equation above applies. �

5. Proof of Lemma 14

The following lemma is a direct consequence of a theorem of Kotzig,
stating that any graph with a unique perfect matching contains a bridge
(see [6]).

Lemma 23. Every edge of a cyclically 4-edge-connected cubic graph
with at least six vertices is contained in at least two perfect matchings.

Let G be a cubic graph. For a path v1v2v3v4, the graph obtained
from G by splitting along the path v1v2v3v4 is the cubic graph G′ ob-
tained as follows: remove the vertices v2 and v3 and add the edges
v1v4 and v′1v

′
4 where v′1 is the neighbor of v2 different from v1 and v3

and v′4 is the neighbor of v3 different from v2 and v4. The idea of this
construction (and its application to the problem of counting perfect
matchings) originally appeared in [17]. We say that a perfect match-
ing M of G is a canonical extension of a perfect matching M ′ of G′ if
M4M ′ ⊆ E(G)4E(G′), i.e. M and M ′ agree on the edges shared by
G and G′.

Lemma 24. Let G be a cyclically 4-edge-connected cubic graph with
|V (G)| ≥ 6. If G′ is the graph obtained from G by splitting along some
path v1v2v3v4, then

(1) G′ is cubic and bridgeless;
(2) G′ contains at most 2 irrelevant triangles;
(3) fw(G) ≥ fw(G′)− 2β1;
(4) Every perfect matching M ′ of G′ avoiding the edge v1v4 has a

canonical extension in G.

Proof.

(1) The statement is a consequence of an easy lemma in [5], stating
that the cyclic edge-connectivity can drop by at most two after
a splitting.
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(2) Since G is cyclically 4-edge-connected and has at least six ver-
tices, it does not contain any triangle. The only way an irrele-
vant triangle can appear in G′ is that v1 and v4 (or v′1 and v′4)
have precisely one common neighbor (if they have two common
neighbors, the two arising triangles share the new edge v1v4 or
v′1v
′
4 and hence, are relevant).

(3) At most two burls from a foliage of G′ intersect the edge v1v4 or
the edge v′1v

′
4. Therefore, a foliage of G can be obtained from

any foliage of G′ by removing at most two burls.
(4) The canonical extension is obtained (uniquely) from M ′∩E(G)

by adding either v2v3 if v′1v
′
4 6∈ M ′ or {v′1v2, v3v

′
4} if v′1v

′
4 ∈

M ′. �

Proof of Lemma 14. We proceed by induction on |V (G)|. The base
case |V (G)| = 6 holds by Lemma 23 and (7).

For the induction step, consider first the case that G is cyclically
4-edge-connected. Fix an edge e = uv ∈ E(G). Our goal is to show
that e is contained in at least 2α|V (G)|−fw(G)+γ perfect matchings.

Let w 6= u be a neighbor of v and let w1 and w2 be the two other
neighbors of w. Let xi, yi be the neighbors of wi distinct from w for
i = 1, 2. Let G1, . . . , G4 be the graphs obtained from G by splitting
along the paths vww1x1, vww1y1, vww2x2 and vww2y2. Let G′i be
obtained from Gi by contracting irrelevant triangles for i = 1, . . . , 4.
By Lemma 24(2) we have |V (G′i)| ≥ |V (G)| − 6.

Suppose first that one of the resulting graphs, without loss of gen-
erality G′1, does not have a core. By Corollary 13, Lemma 11 and
Lemma 24, we have

α|V (G)| ≤ α(|V (G′1)|+ 6) ≤ fw(G′1) + 7α− β2 ≤ fw(G1) + 7α− β2 ≤
≤ fw(G) + 2β1 + 7α− β2.

Therefore

α|V (G)| − fw(G) + γ ≤ γ + 2β1 + 7α− β2 ≤ 1

by (8) and the lemma follows from Lemma 23.
We now assume that all four graphs G′1, . . . , G

′
4 have a core. By

Lemma 24(4), every perfect matching containing e in Gi canonically
extends to a perfect matching containing e in G. Let S be the sum of
the number of perfect matchings of Gi containing e, for i ∈ {1, 2, 3, 4}.
By induction hypothesis and Lemmas 11 and 24,

S ≥ 4 · 2α(|V (G)|−6)−fw(G)−2β1+γ.

On the other hand, a perfect matching M of G containing e is the
canonical extension of a perfect matching containing e in precisely three
of the graphs Gi, i ∈ {1, 2, 3, 4}. For instance if w1y1, ww2 ∈ M , then
G2 is the only graph (among the four) that does not have a perfect
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matching M ′ that canonically extends to M (see Figure 4). As a con-
sequence, there are precisely S/3 perfect matchings containing e in G.
Therefore,

m?(G) ≥ 4
3
· 2α(|V (G)|−6)−fw(G)−2β1+γ ≥ 2α|V (G)|−fw(G)+γ,

by (9), as desired.
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Figure 4. Perfect matchings in only three of the Gi’s
canonically extend to a given perfect matching of G con-
taining e.

It remains to consider the case when G contains a cyclic edge-cut
C of size at most 3. Suppose first that for such edge-cut C, both C-
contractions H1 and H2 have a core. Then, by Lemma 8(3), fw(G) ≥
fw(H1) + fw(H2) − 2β1 and, by induction hypothesis, applied to H1

and H2 (after possibly contracting one irrelevant triangle in each) and
Lemma 8,

m?(G) ≥ m?(H1)m
?(H2) ≥ 2α|V (G)|−4α−fw(G)−2β1+2γ ≥ 2α|V (G)|−fw(G)+γ,

by (10), as desired. Finally, if for every cyclic edge-cut C of size at
most 3 only one C-contraction has a core, we apply Corollary 17 to G.
Let (T, φ) be the resulting small-cut-decomposition of G. There exists
a unique vertex t ∈ V (T ) such that the hub H of G at t is cyclically
4-edge-connected with |V (H)| ≥ 6. Let T1, . . . , Tk be the components
of T − t and let Zi = φ−1(V (Ti)). We apply Lemma 12 to Z1, . . . , Zk.
Note that Lemma 12 is indeed applicable, as G is pruned, and therefore
every triangle in G belongs to an elementary twig. Consequently, no
edge-cut corresponding to an edge of (T, φ) separates exactly 3 vertices
of G.

Let X1,X2, . . . ,Xk be the foliages satisfying the lemma. Let X0 be
the maximal foliage in H avoiding new vertices and edges created by
contraction of the edge-cuts δ(Z1), . . . , δ(Zk). Then fw(X0) ≥ fw(H)−
kβ2, as H contains no twigs (it is cyclically 4-edge-connected). Since
X0 ∪ X1 ∪ . . . ∪ Xk is a foliage in G we have

fw(G) ≥ fw(H)− kβ2 +
k∑
i=1

fw(Xi) ≥ fw(H) + α

k∑
i=1

|Zi|,

by the choice of X1, . . . ,Xk. It remains to observe that

m?(G) ≥ m?(H) ≥ 2α|V (H)|−fw(H)+γ ≥ 2α(|V (G)|−
∑k

i=1 |Zi|)−fw(H)+γ ≥
≥ 2α|V (G)|−fw(G)+γ,
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by the above. �

6. Concluding remarks

6.1. Improving the bound. We expect that the bound in Theorem 1
can be improved at the expense of more careful case analysis. In par-
ticular, it is possible to improve the bound on the length of the path
in Corollary 22. We have chosen not to do so in an attempt to keep
the argument as short and linear as possible.

In [2] it is shown that for some constant c > 0 and every integer n
there exists a cubic bridgeless graph on at least n vertices with at most
c2n/17.285 perfect matchings.

6.2. Number of perfect matchings in k-regular graphs. In [11,
Conjecture 8.1.8] the following generalization of the conjecture consid-
ered in this paper is stated. A graph is said to be matching-covered if
every edge of it belongs to a perfect matching.

Conjecture 25. For k ≥ 3 there exist constants c1(k), c2(k) > 0 such
that every k-regular matching covered graph contains at least

c2(k)c1(k)
|V (G)|

perfect matchings. Furthermore, c1(k)→∞ as k →∞.

While our proof does not seem to extend to the proof of this conjec-
ture, the following weaker statement can be deduced from Theorem 1.
We are grateful to Paul Seymour for suggesting the idea of the following
proof.

Theorem 26. Let G be a k-regular (k− 1)-edge-connected graph on n
vertices for some k ≥ 4. Then

log2m(G) ≥ (1− 1
k
)(1− 2

k
) n

3656
.

Proof. Let w be an edge-weighting of G assigning weight 1/k to every
edge. It is easy to deduce from Theorem 3 that w ∈ PMP(G). Let
Mw be a random variable in M(G) corresponding to w. We choose
a triple of perfect matchings of G as follows. Let M1 ∈ M(G) be
arbitrary. We have

E[|Mw ∩M1|] =
n

2k
.

Therefore we can choose M2 ∈ M(G) so that |M2 ∩M1| ≤ n
2k

. Let
Z ⊆ V (G) be the set of vertices not incident with an edge of M1 ∩M2.
Then |Z| ≥ (1− 1

k
)n. For each v ∈ Z we have

Pr[Mw ∩ δ({v}) ∩ (M1 ∪M2) = ∅] = 1− 2
k
.

Therefore the expected number of vertices whose three incident edges
are in Mw, M1 and M2 respectively, is at least (1 − 1

k
)(1 − 2

k
)n. It

follows that we can choose M3 ∈ M(G) so that the subgraph G′ of G
with E(G′) = M1 ∪M2 ∪M3 has at least (1 − 1

k
)(1 − 2

k
)n vertices of
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degree three. Note that G′ is by definition matching-covered. It follows
that the only bridges in G′ are edges joining pairs of vertices of degree
one. Let G′′ be obtained from G′ by deleting vertices of degree one
and replacing by an edge every maximal path in which all the internal
vertices have degree two. The graph G′′ is cubic and bridgeless and
therefore by Theorem 1 we have

log2m(G) > log2m(G′) ≥ log2m(G′′) ≥ 1
3656
|V (G′′)| ≥ (1− 1

k
)(1− 2

k
) n

3656
,

as desired. �
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