
Complexity of the cop and robber guarding

game

R. Šámal, R. Stolař, T. Valla

Charles University, Faculty of Mathematics and Physics,
Institute for Theoretical Computer Science (ITI)

Malostranské nám. 2/25, 118 00, Prague, Czech Republic

{samal, ruda, valla}@kam.mff.cuni.cz

Abstract

The guarding game is a game in which a set of cops has to guard
a region in a digraph against a robber. The robber and the cops are
placed on vertices of the graph; they take turns in moving to adjacent
vertices (or staying). The goal of the robber is to enter the guarded
region at a vertex with no cop on it. The problem is to find the
minimum number of cops needed to prevent the robber from entering
the guarded region. The problem is highly nontrivial even for very
simple graphs – when the robber moves in a tree, then the decision
version of the problem is NP-complete. Furthermore, if the robber is
moving in a DAG, the problem becomes PSPACE-complete. This was
the work of Fomin, Golovach, Hall, Mihalák, Vicari and Widmayer
[1]. We solve the question asked by Golovach and we show that if
the graph is an arbitrary directed or undirected graph, the problem
becomes ETIME-complete.

1 Introduction and motivation

The guarding game (~G, Vc, c) is played on directed graph ~G = (V,E) by two
players, the cop-player and the robber-player, each having his pawns (c cops
and one robber, respectively) on V . There is a protected region (called also
cop-region) VC ⊂ V . The remaining region V \ VC is called robber-region
and denoted VR. The cops guard VC by preventing the robber to enter the

0Supported by the GAUK Project 66010 of Charles University Prague.

1

protected region without being caught, which happens when the robber is
on a vertex of VC with a cop on it. The game is played in alternating turns.
In the first turn the robber-player places the robber on some vertex of VR.
In the second turn the cop-player places his c cops on vertices of VC (more
cops can share one vertex). In each subsequent turn the respective player
can move each of his pawns to a neighbouring vertex of the pawn’s position
(or leave it where it is). However, the cops can move only inside VC and the
robber can move only on vertices with no cops. At any time of the game
both players know the positions of all pawns. The robber-player wins if he
moves the robber to some vertex of VC with no cop on it. The cop-player
wins if in finite number of turns the robber-player did not win. Note that
after exponentially many turns the positions has to repeat and obviously if
the robber can win, he can win in less than |V |(c+1) turns.
For a given graph ~G and guarded region VC , the task is to find the mini-

mum number c such that cop-player wins.
Here we focus on the complexity issues of the decision problem. Given the

guarding game G = (~G, VC , c), how difficult is to find out the winner of the
game? Observe that the task of finding the minimum c such that G is cop-
win is at least as hard as the decision version of the problem. The decision
problem was studied by Fomin et al [1]. The computational complexity of
the problem depends heavily on the chosen restrictions. In particular, in [1]
the authors show that if the robber’s region is only a path, then the problem
can be solved in polynomial time. When the robber moves in a tree (or even
in a star), then the problem is NP-complete. Furthermore, if the robber is
moving in a directed acyclic graph, the problem becomes PSPACE-complete.
We investigate the general case for directed graphs. Let us consider the

class ETIME = DTIME(2O(n)) of languages recognisable by a determin-
istic Turing machine in time 2O(n). We consider log-space reductions, this
means that the reducing Turing machine is log-space bounded. We prove the
following theorem.

Theorem 1 The game G = (~G, VC , c), where ~G is a directed graph, is
ETIME-complete under log-space reductions.

After proving Theorem 1, we modify the proof and all constructions such
that it works even for undirected graph, therefore yielding the following the-
orem.

Theorem 2 The game G = (G, VC, c), where G is an undirected graph, is
ETIME-complete under log-space reductions.

2

We would like to point out the fact that we can prove the previous the-
orems without both with and withou prescribing the starting positions of
players.

2 The directed case

In order to prove ETIME-completeness of the guarding game G = (~G, VC , c),
we first show that G ∈ ETIME. Then we take an instance of the game F
and construct an equivalent guarding game G = (~G, VC , c), therefore proving
its ETIME-completeness.

Lemma 3 Let G = (~G, VC , c) be a cop guarding game. Then G ∈ ETIME.

Proof. We need to show that there is an algorithm deciding the outcome of
G in 2O(n) time, where n is the size of the instance of G. Consider the graph
H of all configurations of the game G – these are all possible positions of all
cops and the robber, together with the information whose turn it is. The
edge (c1, c2) belongs to E(H) if and only if c1 is cop turn and c2 is robber turn
(or vice versa) and the pawns of c1 can be legally moved into pawn positions
of c2. There is also a starting vertex s representing empty board with edges
going to every possible initial placement pi of cop pawns. For every pi there
are edge to every possible initial subsequent placement of robber pawn ri.
Using the following backwards-labelling algorithm we can decide the out-

come of every position in polynomial time in the size of the graph H . Let us
denote the robber-winning configurations by WR.

1. Construct the graph H .

2. Put all vertices that are a win for the robber-player to WR.

3. Add to WR all vertices v where robber is on turn and there is an edge
(v, w) ∈ E(H) and w ∈ WR.

4. Add to WR all vertices v where cop is on turn and for every edge
(v, w) ∈ E(H) the vertex w ∈WR.

5. Repeat |V (H)| times steps 3 and 4.

6. If s ∈WR the game G is robber-win, otherwise the game G is cop-win.

It remains to show that the size of H is 2O(n). The simplest upper bound
on |V (H)| is (c+1)n, which is unfortunately superexponential if c is close to
n. To find better upper bound, we use the fact that the cops are mutually

3

indistinguishable. Then, using elementary combinatorial counting, |V (H)| is
bounded by

|V (H)| ≤ 2|VR|

(

|VC | + c− 1

c

)

≤ 2n

(

n+ c− 1

c

)

≤ n2n+c = 2O(n),

thus the total size of H is 2O(n) as well. �

Let us first study the problem after the second move, where both players
have already placed their pawns. We reduce the problem from the following
formula-satisfying game F .
A position in F is a 4-tuple (τ, FR(C,R), FC(C,R), α) where τ ∈ {1, 2},

FR and FC are formulas in 12-DNF whose variables have been partitioned
into disjoint sets R and C, and α is an (C ∪ R)-assignment. The symbol τ
serves only to differentiate the positions where the first or the second player is
on move. Player I (II) moves by changing the values assigned to at most one
variable in R (C); either player may pass since changing no variable amounts
to a “pass”. Player I (II) wins if the formula FR (FC) is true after some move
of player I (II). More precisely, player I can move from (1, FR, FC , α) to
(2, FR, FC , α

′) in one move if and only if α′ differs from α in the assignment
given to at most one variable in R and FC is false under the assignment α;
the moves of player II are defined symmetrically.
According to Stockmeyer and Chandra [2], the set of winning positions

of player I in the game F is an ETIME-complete language under log-space
reduction.
Let us first informally sketch the reduction from F to G. We would like

to construct a guarding game, which simulates the alternating setting of
variables of R and C by players I and II such that whenever the formula
FR is satisfied, the robber is allowed to access the protected region VC , and
whenever the formula FC is satisfied, the cops are able to block the entrance
to VC forever. The setting of variables is represented by positions of certain
cops so that only one of these cops may move at a time. The variables (or
more precisely the corresponding cops) of C are under control of cop-player.
However, in spite of being represented by cops, the variables of R are under
control of the robber-player by a gadget in the graph ~G, which allows him to
force any setting of cops representing R.
When describing the features of various gadgets, we will often use the

term normal scenario. By normal scenario S of certain gadget (or even the
whole game) we mean a flow of the game such that whenever the robber-
player or cop-player do not exactly follow S, they will surely lose.
There are four cyclically repeating phases of the game, determined by the

current position of the robber. The normal scenario is that robber cyclically

4

goes through the following phases marked by four special vertices and in
different phases he can enter certain gadgets.

1. “Robber Move” (RM): Here the robber can enter the Manipulator
gadget, allowing him to force setting of variable in R.

2. “Robber Test” (RT): Here robber has a possibility to pass through the
Robber Gate into the protected region VC . The gate is only passable if
the formula FR is satisfied under the current setting of variables.

3. “Cop Move” (CM): If robber is here, this is the place (and the only
place in the whole game) where one (and at most one) variable cell Vx
for x ∈ C is allowed to change its value. This is realized by a gadget
called Commander.

4. “Cop Test” (CT): Here, if the formula FC is satisfied under the current
setting of variables, the cops are able to block the entrance to the
protected region forever (by temporarily leaving the Cop Gate gadget
unguarded and sending a cop to block the entrance to VC provided by
the Robber Gate gadgets).

See Figure 1 for the overview of the construction.

2.1 The variable cells

For every variable x ∈ C ∪ R we introduce a variable cell Vx, see Figure 2.
There is one cop (variable cop) located in every Vx and the position of the
cop on vertices Tx, Fx represents the boolean values true and false. All the
vertices of Vx belongs to VC .
The cells are organised into blocks C and R. The block C is under control

of cop-player, the block R is represented by cops as well, however, there are
the Manipulator gadgets allowing the robber-player to force any setting of
variables in R, by changing at most one variable in his turn.
Every variable cell Vy, y ∈ R has assigned the Manipulator gadget My

(see Figure 3).
The vertices {T ′

y, F
′

y, T
′′

y , F
′′

y , CM,CT} ⊂ VR, the rest belongs to VC .

Lemma 4 Let us consider variable cell Vy, y ∈ R, and the corresponding
Manipulator My. Let the robber be at the vertex CM , let the cop be either on
Ty or Fy and let no other cop can access any vertex of My. Then the normal
scenario is following: By entering the vertex T ′

y (F
′

y), robber forces the cop
to move towards the vertex Ty (Fy). Robber then has to enter the vertex CT .

5

Robber on move

Robber test

Cop on move

Cop test

Manipulators

Commander

Cop

gates

Robber

gates

Figure 1: The sketch of the construction

Tx

Fx

TFx
FTx

Figure 2: Variable cell Vx

Proof. If the cop refuses to move, the robber advances to T ′′

y or F
′′

y and
easily reaches VC before the cop can block him. �

Note that this is not enough to ensure that the variable cop really reaches
the opposite vertex and that only one variable cop from variable cells can

6

Tx

Fx

TFx
FTx

Cop region

Robber region

RM RT

T
′′

x
F

′′

x

T
′

x
F

′

x

Figure 3: The Manipulator gadget My

move. We deal with this issue later.
When changing variables of C, we have to make sure that at most one

variable is changed at a time. We ensure that by the gadget Commander
(see Figure 4), built over every Vx, x ∈ C.
The vertices {gx; x ∈ C} and CM belong to VR, the rest belongs to

VC . There is one cop, the “commander”, sitting at the vertex HQ. From
every vertex w ∈ V \ (VC ∪ {CM} ∪ {gx; x ∈ C}) we add the edge (w,HQ)

to ~G, thus the only time the commander can leave HQ is when the robber
stands at CM . The normal scenario is following: The commander decides
one variable x to be changed and moves to hx, simultaneously the cop in
the variable cell Vx starts its movement towards the opposite vertex. The
commander temporarily guards the vertex fx, which is otherwise guarded by
the cop in the cell Vx. Then the robber moves (away from CM) and the
commander has to return to HQ in the next move.

Lemma 5 Let us consider the Commander gadget and the variable cells Vx
for x ∈ C with exactly one cop each, standing either on Tx or Fx. Let the
robber be at the vertex CM and the cop at HQ, with the cop-player on move.

7

Cop region

Robber region

CM

gx

HQ

hx

fx

Figure 4: The Commander gadget

Let no other cop can access the vertices in the Commander gadget. Then
the normal scenario is that in at most one variable cell Vx, x ∈ X the cop
can change the position from Tx to Fx or vice versa.

Proof. Only the vertex fx is temporarily (for one move) guarded by the
commander. If two variable cops starts moving, some fy is unsecured and
robber exploits it. �

2.2 The gates to VC

For every clause φ of FR, there is one Robber gate gadget Rφ. If φ is satisfied
by the current setting of variables, Rφ allows the robber to enter VC .
Let φ = (ℓ1& . . .&ℓ12) where each ℓi is a literal. If ℓi = x then we put

the edge (Fx, zφ) to ~G. If ℓi = ¬x then we put the edge (Tx, zφ) to ~G. See
Figure 5 for illustration. The vertices {z′φ; φ ∈ FR} and RT belong to VR,
the rest belongs to VC .

Lemma 6 Let us consider a Robber Gate Rφ. Let the robber stand at the
vertex RT and let there be exactly one cop in each Vx, x ∈ φ, standing either

8

ZΦ

Cop region

Robber region

RT

Z ′

Φ

C ′
R′

Figure 5: The Robber Gate Rφ

on Tx or Fx. Let no other cop can access Rφ. Then in the normal scenario
robber can reach zφ if and only if φ is satisfied under the current setting of
variables (given by the positions of cops on variable cells).

Proof. If φ is satisfied, no cop at the variable cells can reach zφ in one step.
Therefore, the robber may enter zφ. On the other hand, if φ is not satisfied,
at least one cop is one step from zφ and the robber would be blocked forever
if he dares to approach zφ. �

For every clause ψ of FC , there is one Cop Gate gadget Cψ (see Figure 6).
If ψ is satisfied, Cψ allows cops to forever block the entrance to VC , the
vertices zφ from each Robber Gate Rφ.
Let ψ = (ℓ1& . . .&ℓ12) where each ℓi is a literal. If ℓi = x then we put the

edge (Tx, bψ,x) to ~G. If ℓi = ¬x then we put the edge (Fx, bψ,x) to ~G. From
the vertices aψ and a′′ψ there is an edge to every bψ,x and from a′′ψ there is an
edge to every zφ (from each Robber Gate Rφ). There is a cop at the vertex
aψ, we call him Arnold. The vertices {b′ψ,x; ψ ∈ FC , x ∈ ψ} and CT belong
to VR, the rest belongs to VC .

Lemma 7 Let us consider a Cop Gate Cψ. Let there be one cop at the vertex
aψ (we call him Arnold) and let there be exactly one cop in each Vx, x ∈ ψ,
standing on either Tx or Fx. Let the robber be at the vertex CT and let no
other cop can access Cψ. Then in normal scenario, Arnold is able to move
to a′′ψ (and therefore block all the entrances zφ forever) without permitting

9

Cop region

Robber region

CT

C ′
R′

BΨ,X

B′

Ψ,X

Z1

Z2

Z3

A′′

Ψ

A′

Ψ

AΨ

A′′′

Ψ

Figure 6: The Cop Gate Cψ

robber to enter CC if and only if ψ is satisfied under the current setting of
variables (given by the position of cops in the variable cells).

Proof. If ψ is satisfied, the vertices bψ,x, x ∈ ψ are all guarded by the
variable cops, therefore Arnold can start moving from aψ towards a′′ψ. If the
robber meanwhile moves to some b′ψ,x, the variable cop from Vx will intercept
him by moving to bψ,x. On the other hand, if ψ is not satisfied, there is
some bψ,x unguarded by the cop from Vx. Therefore, Arnold cannot leave aψ,
because otherwise robber would reach bψ,x before Arnold or the cop from Vx
could block him. �

2.3 The big picture

We further need to assure that the cops cannot move arbitrarily. This means,
that the following must be the normal scenario:

1. During the “Robber Move” phase, the only cop who can move is the
cop in variable cell Vx chosen by the robber when he enters Manipulator
Mx. All other variable cops must stand on either Tx of Fx vertices for
some variable x. The cop in Vx must reach the vertex Tx from Fx (or
vice versa) in two consecutive moves.

2. During the “Robber Test” phase, no cop can move.

10

3. During the “Cop Move” phase, only the commander and the cop in
exactly one variable cell Vx can move. The cop in Vx must reach the
vertex Tx from Fx (or vice versa) in two consecutive moves.

4. During the “Cop Test” phase, no other cop than Arnold may move.
Arnold may move from vertex aψ to a′′ψ and he must do that in two
consecutive steps (and of course Arnold may do that only if the clause
ψ is satisfied).

We say that we force the vertex w by the vertex set S, when for every
v ∈ S we add the oriented path Pv,w = (v, pvw, p

′

vw, w) of length 3 to the
graph ~G. We say that we block the vertex w by the vertex set S, when for
every v ∈ S we add the edge (v, w) to ~G.
Case 1: For every variable x ∈ C ∪R do the following construction. Let

Sx = {RM,RT} ∪ {V (Vy); y ∈ C ∪R, x 6= y}. We force the vertices Tx and
Fx by the set Sx. Let S = {RM} ∪ {V (Vx); x ∈ C ∪R}. For each Cop Gate
Cψ, we force the vertex aψ by the set S. Finally, we block the vertex HQ
by the set S. Observe that whenever a cop from any other Vy than given by
the Manipulator Mx is not on Ty or Fy, the robber can reach VC faster than
the variable cop can block him. On the other hand, if all variable cops are
in right places, the robber may never reach VC unless being forever blocked.
The same holds for Arnold on vertices aψ and a′′ψ. The commander cannot
move trivially. If the variable cop does not use his second turn to finish his
movement, the robber will exploit this by reaching VC by a path from the
vertex RT .
Case 2: Let S = {RT} ∪ {z′φ; φ ∈ FR} and let F = {Tx, Fx; x ∈

C ∪R}∪{aψ; ψ ∈ FC}. We force every v ∈ F by the set S and we block the
vertex HQ by S. Observe that in the normal scenario no cop may move.
Case 3: Let S = {CM} and let F = {Tx, Fx; x ∈ R} ∪ {aψ; ψ ∈ FC}.

We force every v ∈ F by S. Now, in normal scenario, no variable cop from Vx,
x ∈ R may move a by Lemma 5, only commander and exactly one variable
cop from Vy, y ∈ C may move.
Case 4: Let S = {CT} and let F = {Tx, Fx; x ∈ C ∪ R}. We force

every v ∈ F by S and we block the vertex HQ by S. Observe that in normal
scenario no variable cop and the commander may move. The rest follows
from Lemma 7 and the fact, that a′′ψ is forced by the vertex RM .

All the construction elements so far presented prove the following corol-
lary.

Corollary 8 For every game F = (τ, FC(C,R), FR(C,R), α) there exist a

guarding game G = (~G, VC , c) with a prescribed starting positions such that
player I wins F if and only if the cop-player wins the game G.

11

2.4 Forcing the starting position of pawns

Here we show, that we can modify our current construction so that it fully
conforms to the definition of the guarding game.

Lemma 9 Let G = (~G, VC , c) be a guarding game with a prescribed starting
positions P ⊆ VC, |P | = c of cops and a prescribed starting position r ∈ VR
of robber. The position r must have no in-going edge. Then there exists a
guarding game G′ = (~G′, V ′

C, c
′), ~G ⊆ ~G′, VC ⊆ V ′

C such that

• the result and complexity of both games are equal

• if the cops do not place their pawns exactly on P in their first move,
they will lose

• if the robber does not place his pawn on r in his first move, the cops
win.

Proof. Consider an edge (u, v) ∈ E(~G) such that u ∈ VR and v ∈ VC (a
border edge). Observe, that the outdegree of each such vertex u in our
construction is exactly 1. Let t = |{v ∈ VC ; (u, v) ∈ E(~G), u ∈ VR}| be the
number of vertices from VC directly threatened by the robber region.
Let us define the graph ~G′ = (V ′, E ′) such that V ′ = V (~G) ∪ {r} ∪ T

where T = {t1, . . . , tt} and E ′ = E(~G) ∪ {(r, v); v ∈ T ∪ P}. Consider the
game G′ = (~G′, V ′

C , c
′) where V ′

C = VC ∪ T and c′ = c + t. See Figure 7 for
illustration.

T

r

P

~G′

Figure 7: Forcing starting positions

Suppose that robber-player places the robber in the first move to some
vertex v ∈ VR \ {r}. Then there are t vertices in VC directly threatened by
edges going from VR and because we have at least t cops available, the cops
in the second move can occupy all these vertices and prevent the robber from
entering VC forever. So the robber must start at the vertex r. Then observe,
that c cops must occupy the positions P and t cops must occupy the vertices

12

T . If any cop does not start either on T or P , the robber wins in the next
move. The cops on T remain there harmless to the end of the game. The
game is frozen until robber decides to leave the vertex r. �

Let us have a guarding game G = (~G, VC, c) with prescribed starting
positions. We add a vertex r and the edge (r, CM) to ~G and by the previous
lemma there is an equivalent guarding game G′, F ′ ⊆ G without prescribed
starting positions.
Theorem 1 is now proved.

3 The undirected case

In this section we prove Theorem 2. The idea is following: We take the same
construction of directed graph ~G we used to prove Corollary 8. Then we
forget the orientation of all edges. However, for each edge we build a gadget
such that whenever the resulting undirected edge is used by cop (robber) in
bad direction, the cop-player (robber-player) will lose the game.
To obtain the undirected graph G, let us take the graph ~G, forget the

orientation of the edges and subdivide each edge e ∈ E(~G), e = (u, v) by
three vertices (see Figure 8). We number all vertices by 0, 1, 2, 3, where 0
belongs to former starting point of each edge e ∈ E(~G) and the newly added
vertices e1, e2, e3 are numbered by 1, 2, 3 according to the orientation of e. If
u ∈ VR(~G) then u = e0, e1, e2, e3 ∈ VR(G), otherwise e0, . . . , e3 ∈ VC(G).

u v

e

u v

e0 e1 e2 e3

Figure 8: Subdividing directed edges

We introduce the gadget Clock (see Figure 9). From the vertex Ω there
are edges to every vertex v such that {u, v} ∈ E(G), u ∈ VR, v ∈ VC . Every
subdivided edge is connected to Clock as in Figure 9. There is one cop (we
call him Chuck) in the Clock. His purpose is following: If the robber is on
vertex with number i and moves to vertex with number j = (i + 1) mod 4,
the only thing he can do is to go to vertex cj. However, whenever robber
does an illegal move (to vertex with number j = (i− 1) mod 4), Chuck may
enter Ω, thus winning the game. Therefore, this gadget forces the robber to
pass through undirected edges only in the direction from the old graph ~G.

Lemma 10 Let there be exactly one cop in the Clock gadget (we call him
Chuck). Let the robber be at the vertex ei and let Chuck be at the vertex ci.

13

Ω

c0 c1

c2c3

c′
1

c′
0

c′
2c′

3

cop region

robber region

0 1 2 3 0 13

g3 e0 e1 e2 e3 f0 f1

u v

g′
3

e′
0

e′
1

e′
2

e′
3

f ′

0
f ′

1

Figure 9: The Clock gadget

Then the normal scenario is that robber must move to a vertex ei+1 or f0

for some f (ie. with number j = (i + 1) mod 4) and Chuck must move to
vertex cj.

Proof. Suppose first that the robber moved to a vertex ej and Chuck did not
move to cj (he may be at c′i, c

′

i−1 mod 4, ci−1 mod 4 or stay at ci). Then robber
may move to e′j and Chuck cannot prevent him from entering cop-region in
the next move.
Suppose now that the robber moved to vertex ek where k = (i−1) mod 4.

The Chuck goes to c′k, preventing robber from immediately enter cop-region.
In the next move, robber may or may not enter e′k. Is he does so, Chuck
moves c′k and guards it until the robber leaves. In both cases, Chuck moves
afterwards to Ω, thus being able to block all entrances to cop-region in one
move. This is because for every border edge {u, v} ∈ E(G) where u ∈ VR
and v ∈ VC , the degree of u is exactly 1, so whenever the robber moves to u,
Chuck may block the vertex v.
If the robber does not move in his turn, Chuck approaches c′i. If robber

move to e′i, Chuck keeps guarding c
′

i until robber leaves e
′

i and then Chuck
moves to Ω. Using the same argument as above, the game is a cop-win now.

14

It remains to show that robber may not enter the vertex e′i. If he does so,
Chuck will move to c′i, preventing the robber from entering VC , and guarding
there until robber leaves e′i. Then Chuck moves to Ω and again wins the
game using the same argument as above. �

We have ensured the correct movement of robber, imitating the function-
ality of the graph ~G on an undirected graph. We still have to do similar thing
for cops, as they have to respect the edge orientation as well. In our argu-
ment, every pawn has to move in his move. Because staying at one vertex
may be a desired part of cop-player strategy, for every v ∈ VC(G) we glue
a subdivided loop lv of length 4 to v, such that the pawn will move, but in
fact stay at one vertex of the original graph ~G. The vertices of lv are again
numbered as above.
For every subdivided edge e = {u, v} ∈ E(G), u, v ∈ VC(G), and loop lv,

we add to G the CopDir gadgetDe (see Figure 10). For every edge f ∈ E(~G),
we add edges {fi, de,i}, i = 0, 1, 2, 3, to G. We connect all vertices d′e,i to the
vertex Ω in Clock. The vertices de,0, . . . , de,3 belong to VR(G), the vertices
d′e,0, . . . , de,3 belong to VC(G).

De

de,0 de,1 de,2 de,3

d
′

e,0 d
′

e,1 d
′

e,2
d
′

e,3

u v

e0 e1 e2 e3 l
w

0

w
l
w

1

l
w

2

l
w

3

Figure 10: The CopDir gadget De

Lemma 11 Let us have the CopDir gadget De for the subdivided edge (or
loop) e with a cop on it, and let all pawns be on a vertex with number i,
robber being on move. Suppose the robber moves to a vertex with number
j = (i+ 1) mod 4. Then the normal scenario is that the cop on the vertex ei
moves to a vertex with number j.

Proof. Suppose the cop does not move and stays on ei. Then the robber
moves to de,j and the cop is unable to block him in time. If the cop move to
a vertex with number k = (i−1) mod 4, again, the robber wins by moving to
de,j. Thus the only thing the cop can do is to go to a vertex with number j.�

15

Note that we have now proved that in the normal scenario, at the begin-
ning of the robber move all pawns stand on vertices with the same number.
Observe that using Lemma 10 and Lemma 11, the following corollary holds.

Corollary 12 For every game F = (τ, FC(C,R), FR(C,R), α) there exist
a guarding game G = (G, VC, c), G undirected, with a prescribed starting
positions such that player I wins F if and only if the cop-player wins the
game G.

It remains to show, that we can force the starting position of all pawns,
starting with an empty graph. Observe that the same method as used in
Lemma 9 works. We have proved Theorem 2.

4 Further questions

For a guarding game G = (G, VC, c), what happens if we restrict the size
of strongly connected components of G? If the sizes are restricted by 1, we
get DAG, for which the decision problem is PSPACE-complete. For unre-
stricted sizes we have shown that G is ETIME-complete. What is the thresh-
old for G to become ETIME-complete from being PSPACE-complete?
What happens if we restrict the degrees of vertices of G? And what if we

restrict the treewidth, treedepth, pathwidth, . . .

5 Acknowledgements

The authors would like to thank Peter Golovach for giving a nice talk about
the problem, which inspired them to work on it. We would also like to thank
Jarik Nešetřil for suggesting the previous open questions.

References

[1] F. Fomin, P. Golovach, A. Hall, M. Mihalák, E. Vicari, P. Widmayer,
How to Guard a Graph?, Algorithmica 2008.

[2] L. Stockmeyer, A. Chandra, Provably Difficult Combinatorial Games
SIAM J. Comput. Volume 8, Issue 2, pp. 151–174 (1979).

16

