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Abstract

A graph is k-choosable if it can be colored whenever every vertex
has a list of at least k available colors. We prove that if cycles of
length at most four in a planar graph G are pairwise far apart, then
G is 3-choosable. This is analogous to the problem of Havel regarding
3-colorability of planar graphs with triangles far apart.

1 Introduction

All graphs considered in this paper are simple and finite. The concepts of list
coloring and choosability were introduced by Vizing [13] and independently
by Erdős et al. [7]. A list assignment of G is a function L that assigns to
each vertex v ∈ V (G) a list L(v) of available colors. An L-coloring is a
function ϕ : V (G) →

⋃
v
L(v) such that ϕ(v) ∈ L(v) for every v ∈ V (G)

and ϕ(u) 6= ϕ(v) whenever u and v are adjacent vertices of G. If G admits
an L-coloring, then it is L-colorable. A graph G is k-choosable if it is L-
colorable for every list assignment L such that |L(v)| ≥ k for all v ∈ V (G).
The distance between two vertices is the length (number of edges) of the
shortest path between them. The distance d(H1, H2) between two subgraphs
H1 and H2 is the minimum of the distances between vertices v1 ∈ V (H1) and
v2 ∈ V (H2).
The well-known 4-color theorem (Appel and Haken [3, 4]) states that

every planar graph is 4-colorable. Similarly, Grötzsch [8] proved that every
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triangle-free planar graph is 3-colorable. For some time, the question whether
these results hold in the list coloring setting was open; finally, Voigt [14, 15]
found a planar graph that is not 4-choosable, and a triangle-free planar graph
that is not 3-choosable. On the other hand, Thomassen [10, 11] proved that
every planar graph is 5-choosable and every planar graph of girth at least
5 is 3-choosable. Also, Kratochvíl and Tuza [9] observed that every planar
triangle-free graph is 4-choosable.
Motivated by Grötzsch’s result, Havel asked whether there exists a con-

stant d such that if the distance between each pair of triangles in a planar
graph is at least d, then the graph is 3-colorable. This question was open
for many years, finally being answered in affirmative by Dvořák, Král’ and
Thomas [6] (although their bound on d is impractically large). Due to the
result of Voigt [15], an analogous question for 3-choosability needs also to
restrict 4-cycles: does there exist a constant d such that if the distance be-
tween each pair of (≤4)-cycles in a planar graph is at least d, then the graph
is 3-choosable? We give a positive answer to this question:

Theorem 1. If G is a planar graph such that the distance between each pair
of (≤4)-cycles is at least 26, then G is 3-choosable.

This bound is quite reasonable compared to one given for Havel’s prob-
lem [6]. However, it is far from the best known lower bound of 4, given by
Aksionov and Mel’nikov [2].

2 Proof of Theorem 1

For a subgraph H of a graph G, let d(H) = minF d(H,F ), where the
minimum goes over all (≤ 4)-cycles F of G distinct from H . Let t(G) =
minH d(H), where the minimum goes over all (≤ 4)-cycles H of G. A path
of length k (or a k-path) is a path with k edges and k + 1 vertices. For a
path or a cycle X, let ℓ(X) denote its length. Let r be the function defined
by r(0) = 0, r(1) = 2, r(2) = 4, r(3) = 9, r(4) = 13 and r(5) = 16. For
a path P , let r(P ) = r(ℓ(P )). Let B = 26. Using the proof technique of
precoloring extension developed by Thomassen [11], we show the following
generalization of Theorem 1:

Theorem 2. Let G be a planar graph with the outer face C such that t(G) ≥
B, and P a path such that V (P ) ⊆ V (C). Let L be a list assignment such
that

(S1) |L(v)| = 3 for all v ∈ V (G) \ V (C);
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OBSTa1 OBSTa2 OBSTa3

OBSTa4 OBSTa5 OBSTa6 OBSTa7

OBSTx1 OBSTx1a OBSTx1b OBSTx1c

OBSTx2a OBSTx2b OBSTx3

OBSTx4

Figure 1: Forbidden configurations of Theorem 2, ℓ(P ) ≤ 2
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OBSTb1 OBSTb1a OBSTb1b

OBSTb2 OBSTb2a OBSTb2a’ OBSTb2b

OBSTb3 OBSTb4 OBSTb5

OBSTb6

Figure 2: Forbidden configurations of Theorem 2, ℓ(P ) ≤ 5
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(S2) 2 ≤ |L(v)| ≤ 3 for all v ∈ V (C) \ V (P );

(S3) |L(v)| = 1 for all v ∈ V (P ), and the colors in the lists give a proper
coloring of the subgraph of G induced by V (P );

(I) the vertices with lists of size two form an independent set;

(T) if uvw is a triangle, |L(u)| = 2 and v has a neighbor with list of size
two distinct from u, then w has no neighbor with list of size two distinct
from u; and

(Q) if a vertex v with list of size two has two neighbors w1 and w2 in P ,
then L(v) 6= L(w1) ∪ L(w2).

In this situation, if ℓ(P ) ≤ 2 and

(OBSTa) every subgraph H ⊆ G isomorphic to one of the graphs drawn in Fig-
ure 1 is L-colorable,

then G is L-colorable. Furthermore, if ℓ(P ) ≤ 5, d(P ) ≥ r(P ) and

(OBSTb) every subgraph H ⊆ G isomorphic to one of the graphs drawn in Fig-
ure 2 is L-colorable,

then G is L-colorable.

Note that we view the single-element lists as a precoloring of the vertices of
P . Also, P does not have to be a part of the facial walk of C, as we only
require V (P ) ⊆ V (C). The notation used in Figures 1 and 2 is the following:
We mark the vertices of P (precolored vertices) by full circles, the vertices
with list of size three by empty circles, and the vertices with list of size two
by empty squares. In the conditions (OBSTa) and (OBSTb), we require the
lists of the vertices of H according to L to match the sizes prescribed by
Figures 1 and 2.
Let us remark that the assumption (T) is necessary—Figure 3 shows a

non-L-colorable graph G1 with only one precolored vertex x1 satisfying all
other assumptions of Theorem 2. By repeating the left part of this graph,
x1 can be made arbitrarily far apart from the triangle. Let G2 and G3 with
precolored vertices x1 and x2 be the copies of G1 with the color A replaced
by colors A′ and A′′, respectively, in the lists of all vertices. Let G be the
graph obtained from G1, G2 and G3 by identifying the vertices x1, x2 and x3

to a single vertex whose list is {A,A′, A′′}. Note that G is a counterexample
to Theorem 2 without the assumption (T) and that G has no precolored
vertices and t(G) can be arbitrarily large.
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Figure 3: Assumption (T) is necessary
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Figure 4: C-obstacles

In his paper showing that every planar graph with at most three triangles
is 3-colorable, Aksionov [1] also proved that if G is a plane graph with exactly
one (≤4)-cycle, then any precoloring of a 5-face ofG extends to a 3-coloring of
G. Thomassen [11] showed that in a planar graph of girth 5, any precoloring
of an induced cycle C of length at most 9 extends to a 3-coloring, unless a
vertex has three neighbors in C. Walls [16] extended this characterization for
cycles of length at most 11 (giving more subgraphs that prevent the coloring
from being extended), Thomassen [12] generalized it for list-coloring, and
Dvořák and Kawarabayashi [5] extended both of these results for the cycles
of length 12. Similarly, Theorem 2 implies a result regarding extension of a
precoloring of a (≤8)-cycle, assuming that (≤4)-cycles are far apart.
Let C be a (≤ 8)-cycle. We call a plane graph F a C-obstacle if C ⊆ F

bounds the outer face of F , F contains exactly one (≤4)-cycle, and

O1: F − V (C) is a tree (with at most ℓ(C) − 6 vertices), or

O2: F − V (C) is a graph (with at most ℓ(C)− 3 vertices) whose only cycle
is a triangle, or

O3: F is one of the graphs drawn in Figure 4.

Corollary 3. Let G be a plane graph with the outer face bounded by an
induced (≤ 8)-cycle C, such that t(G) ≥ B. Furthermore, assume that G
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does not contain a C-obstacle as a subgraph. Let L be an assignment of lists
of size 1 to the vertices of C and lists of size 3 to the other vertices of G. If
L prescribes a proper coloring of C, then G is L-colorable.

Let us give a proof of this result in a slightly more general setting, which
we are going to use in the inductive proof of Theorem 2. A graph G1 is
smaller than G2 if

• G1 has smaller number of (≤4)-cycles than G2, or

• G1 and G2 have the same number of (≤4)-cycles and satisfy |V (G1)| <
|V (G2)|, or

• G1 and G2 have the same number of (≤ 4)-cycles, |V (G1)| = |V (G2)|
and |E(G1)| < |E(G2)|.

Lemma 4. Let G be a plane graph satisfying the assumptions of Corollary 3.
If Theorem 2 holds for all graphs smaller than G, then G is L-colorable.

Proof. Suppose for a contradiction that G is a non-L-colorable graph satis-
fying the assumptions, such that Lemma 4 holds for all graphs smaller than
G. Let K 6= C be a (≤ 8)-cycle in G, and H the subgraph of G drawn in
the closed disk bounded by K. If H 6= K, then, by the minimality of G,
G− (E(H) \E(K)) has an L-coloring ϕ, and since G is not L-colorable, the
precoloring of K given by ϕ does not extend to an L-coloring of H . By the
minimality of G, we conclude that either K is not an induced cycle in H or
H contains a K-obstacle F . Assume the latter. Note that each internal face
K ′ of F has length at most 7, and let H ′ be the subgraph of G drawn in the
closed disk bounded by K ′. Since F contains a (≤ 4)-cycle and t(G) ≥ B,
K ′ is an induced cycle in H ′ and H ′ does not contain any K ′-obstacle. It
follows that H ′ = K ′ for every internal face K ′ of F , and thus H = F . We
conclude that

every (≤8)-cycle K 6= C in G either bounds a face, has a chord drawn inside
the disk bounded by K, or the subgraph drawn inside K is a K-obstacle.

(1)
In particular, every (≤5)-cycle bounds a face.
Consider a vertex v ∈ V (G) \ V (C), and assume that v has more than

one neighbor in C. If v has at least three neighbors in C, then G contains
the C-obstacle consisting of v, C and three edges incident with v (satisfying
the condition O1). Thus, suppose that v has exactly two neighbors w1, w2 ∈
V (C). Furthermore, suppose that ℓ(C) ≤ 7 or that w1 and w2 are non-
adjacent. Let K1 and K2 be the two cycles formed by w1vw2 and the two
paths between w1 and w2 in C, and note that ℓ(K1), ℓ(K2) ≤ 8 and both
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K1 and K2 are induced cycles. By (1) and the assumption that t(G) ≥ B,
we conclude that at least one of K1 and K2 (say K1) bounds a face. By
the minimality of G, v has degree at least three, thus K2 does not bound a
face. Again, since t(G) ≥ B, this implies that ℓ(K1) ≥ 5 and 6 ≤ ℓ(K2) ≤ 7.
Thus, the subgraph F2 drawn inside K2 is a K2-obstacle satisfying condition
O1 or O2, and F2 ∪K1 is a C-obstacle in G. It follows that

no vertex v ∈ V (G)\V (C) has more than one neighbor in C, unless ℓ(C) = 8
and the neighbors of v in C are adjacent.

(2)
Also, observe that

if ℓ(C) = 8 and v has two adjacent neighbors w1 and w2 in C, then no
neighbor x of v distinct from w1 and w2 is adjacent to a vertex in C,

(3)
as otherwise (1) together with t(G) ≥ B implies that x has two (non-
adjacent) neighbors in C.
Suppose now that two adjacent vertices v1, v2 ∈ V (G)\V (C) both have a

neighbor in C. By (2) and (3), each of them has exactly one such neighbor;
let wi ∈ V (C) be the neighbor of vi, for i ∈ {1, 2}. Furthermore, suppose that
both (induced) cycles K1 and K2 consisting of w1v1v2w2 together with a path
joining w1 with w2 in C have length at least 6. Note that ℓ(K1) + ℓ(K2) =
ℓ(C)+6, thus ℓ(K1), ℓ(K2) ≤ ℓ(C) and ℓ(C) ≥ 6. Since t(G) ≥ B, (1) implies
that say K1 bounds a face and the subgraph of G in K2 is a K2-obstacle.
Consider the graph G′ obtained from G by contracting an edge e of the path
K1 − {w1, v1, v2, w2} and giving the resulting vertex a color different from
the color of its neighbors. By (1), e does not belong to a (≤ 5)-cycle in G,
thus the contraction does not create any (≤ 4)-cycle. Also, as G contains
only one cycle of length at most 4 (drawn inside K2), the restriction on the
distance between (≤ 4)-cycles in G′ is vacuously true. The graph G′ is not
L-colorable, and by the minimality of G, it contains an obstacle satisfying
O1 or O2. However, this gives a corresponding C-obstacle in G. Therefore,

if each of two adjacent vertices v1, v2 ∈ V (G) \ V (C) has a neighbor in C,
then they together with a path in C bound a face of length at most 5.

(4)
If 3 ≤ ℓ(C) ≤ 4, then consider the graph G′ obtained from G by sub-

dividing an edge of C by 5 − ℓ(C) new vertices, and giving these vertices
distinct colors that do not appear in any of the lists of G. Note that G′ is
smaller than G, since it contains fewer (≤ 4)-cycles, and by the minimality
of G, we conclude that G′ is L-colorable. However, that gives an L-coloring
of G, thus we may assume that ℓ(C) ≥ 5.
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Let us now show that there exists a set X ⊆ V (C) of max(1, ℓ(C) − 5)
consecutive vertices of C such that

• every path of length at most 3 whose endvertices belong to X is con-
tained in the subgraph of G induced by X, and

• no vertex of X has a neighbor in a triangle.

If ℓ(C) ≤ 7, then by (2), at most three vertices of C are incident with or have
a neighbor in a triangle, and at most two vertices are incident with a 4-cycle.
Since t(G) ≥ B, these cases are mutually exclusive, thus we can choose X
as a subset of the remaining (at least ℓ(C) − 3) vertices. Hence, suppose
that ℓ(C) = 8 and C = v1v2 . . . v8. If say v2v3 is an edge of a triangle, then
none of v5, . . . , v8 has a neighbor in a triangle. If v5v6v7 is not a part of the
boundary walk of a 5-face, then set X = {v5, v6, v7}; otherwise, v6v7v8 is not
a part of the boundary walk of a 5-face by (2), and we set X = {v6, v7, v8}.
We choose the set X in the same way in case that a triangle shares a single
vertex v2 with C, or a 4-cycle shares at most two vertices v2 and v3 with
C, or no (≤ 4)-cycle intersects C and at least 4 consecutive vertices v5, v6,
v7 and v8 have no neighbor in a triangle. It remains to consider the case
that no (≤ 4)-cycle intersects C and among each 4 consecutive vertices, at
least one has a neighbor in a triangle. If three vertices of C had a neighbor
in a triangle, then (1) would imply that G − V (C) is a triangle, giving a
C-obstacle satisfying O2. Therefore, two opposite vertices of C, say v1 and
v5, have a neighbor in a triangle. However, this contradicts (2) or (4).
Let C − X = v1v2 . . . vk, where k = ℓ(C) − |X| ≤ 5. Let G′ = G − X,

with the list assignment L′ obtained from L by removing from the list of
each vertex the color of its neighbor (if any) in X. Furthermore, we set
L′(v1) = L(v1) ∪ L(v2) and L

′(vk) = L(vk) ∪ L(vk−1). By the choice of X,
G′ with the list assignment L′ satisfies the assumptions of Theorem 2, and
every vertex incident with a triangle that does not belong to V (C) has list of
size three. An L′-coloring of G would correspond to an L-coloring of G, thus
we conclude that k = 5 (and hence ℓ(C) ≥ 6) and G′ contains a subgraph H
isomorphic to one of the graphs OBSTa1 – OBSTa7 drawn in Figure 1 (with
matching lengths of lists according to L′). However, a case analysis shows
that

• if H is OBSTa1 or OBSTa2, then G contains a C-obstacle satisfying
(O2),

• if H is OBSTa3, then G contains the C-obstacle drawn in Figure 4(a).

• if H is OBSTa4, OBSTa5 or OBSTa7, then G contains the C-obstacle
drawn in Figure 4(b).
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• if H is OBSTa6, then G contains the C-obstacle drawn in Figure 4(c).

Let us now give a short outline of the proof of Theorem 2. We basically
follow the proof of Grötzsch theorem by Thomassen [11], which the reader
should be familiar with. We consider the hypothetical smallest counterexam-
ple. First, we give constraints on short paths Q whose endvertices belong to
V (C) and internal vertices do not belong to V (C) (claims (6), (7) and (9) in
the proof), by splitting the graph along Q, coloring one part and extending
the coloring to the second one, with Q playing the role of the precolored
path in the second part. However, due to the existence of counterexamples
to the statement “every precoloring of a path of length two can be extended”
(depicted in Figure 1), we cannot exclude such paths entirely. However, us-
ing the ability to color vertices of a path of length up to 5 if we can in the
process ensure that there are no (≤4)-cycles nearby, we can strengthen these
constraints sufficiently if the vertices of Q are close to P (claims (15) and
(18)). Then, as in the Thomassen’s proof, we try to color up to five appro-
priately chosen vertices of G near to P and remove their colors from the lists
of their neighbors, so that the resulting graph G′ satisfies the assumptions of
Theorem 2. This may only fail if a (≤4)-cycle T appears near to the colored
vertices, making (I) or (T) false (claims (19) and (21)). Note that this implies
that ℓ(P ) ≤ 2. Many of these problematic configurations (those where T is a
4-cycle, or where (T) is false in G′) can be reduced by precoloring up to three
more vertices near to T , extending the precolored path and at the same time
removing some vertices so that T disappears. Still, some cases (e.g., when
T contains a vertex in C whose distance from P is at most four) remain.
However, then we observe that we can apply the symmetric argument on the
other side of P , and if that fails as well, a (≤4)-cycle T ′ must be close to the
vertices that we try to color there as well. Since the distance between any
two (≤4)-cycles in G is at least B, it follows that T ′ = T , which implies that
G contains a short path Q with endvertices in C. Using the constraints on
such paths, we can find a suitable set of vertices to color and remove in this
case as well, finally finishing the proof.
Let us now provide the details of this argument, which unfortunately

turns out to be rather lengthy and technical.

Proof of Theorem 2. Suppose that G together with lists L is a smallest coun-
terexample, i.e., Theorem 2 holds for every graph smaller than G and G
satisfies the assumptions of Theorem 2, but G is not L-colorable. Let C be
the outer face of G and P a path with V (P ) ⊆ V (C) as in the statement of
the theorem. We first derive several properties of this counterexample. Note
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that each vertex v of G has degree at least max(2, |L(v)|), and if two vertices
u and v are adjacent, then L(u) ∩ L(v) 6= ∅, unless uv is an edge of P . In
particular, if v 6∈ V (P ) is adjacent to a vertex p ∈ V (P ), then L(p) ⊂ L(v).
Lemma 4 implies that

every (≤8)-cycle K in G either bounds a face, has a chord drawn inside the
disk bounded by K, or the subgraph drawn inside K is a K-obstacle.

(5)
In particular, every (≤5)-cycle in G bounds a face. Furthermore,

The graph G is 2-connected.
(6)

Proof. Clearly, G is connected. Suppose that G is not 2-connected, and let
G = G1 ∪G2, where V (G1) ∩ V (G2) = {v} and |V (G1)|, |V (G2)| ≥ 2. If say
P ⊆ G1, then by the minimality ofG, an L-coloring ϕ1 of G1 exists. Let L2 be
the list assignment such that L2(x) = L(x) for x 6= v and L(v) = {ϕ1(v)}. By
the minimality of G, we have that G2 is L2-colorable. However, this gives an
L-coloring of G. Similarly, in case that the cut-vertex v is an internal vertex
of P , the minimality of G implies that both G1 and G2 are L-colorable, giving
an L-coloring of G. This is a contradiction.

A chord of a cycle K is an edge e 6∈ E(K) joining two vertices of K. A
vertex of a path is internal if its degree in the path is two, and an endvertex
otherwise.

Every chord of C joins two vertices u and v with list of size three, such that
either u and v have a common neighbor with list of size two, or there exists
a triangle w1w2w3 with |L(w2)| = 2, a neighbor z 6∈ {w2, w3} of w1 with
|L(z)| = 2, and uz, vw3 ∈ E(G) or uw3, vz ∈ E(G).

(7)

Proof. Let uv be a chord of C. Let G = G1 ∪ G2, where V (G1) ∩ V (G2) =
{u, v} and |V (G1)|, |V (G2)| ≥ 3. By symmetry, we may assume that |V (G1)∩
V (P )| ≥ |V (G2) ∩ V (P )|. If u, v ∈ V (P ), then by the minimality of G, both
G1 and G2 are L-colorable, and their colorings combine to an L-coloring
of G. This is a contradiction, thus we may assume that v 6∈ V (P ). Let
Pi = (P ∩Gi) ∪ {uv} for i ∈ {1, 2}.
By the minimality of G, there exists an L-coloring ϕ of G1. Let L

′ be the
list assignment such that L′(x) = L(x) for x 6∈ {u, v} and L′(x) = {ϕ(x)} for
x ∈ {u, v}. Since G is not L-colorable, G2 is not L

′-colorable, thus it violates
(Q), (OBSTa) or (OBSTb).
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Suppose first that u is not an internal vertex of P . Then only two vertices
are precolored in G2, and thus G2 contains either a vertex with list of size two
adjacent to u and v or OBSTx1. By (I) and (T), neither u nor v have a list of
size two. Furthermore, note that u cannot be an endvertex of P : Otherwise,
we have d(P ) ≤ 2, thus ℓ(P ) ≤ 2. Let c 6= ϕ(v) be a color in L(v) \ L(u)
and L2 the list assignment such that L2(v) = {c} and L2(x) = L(x) for
x 6= v. Note that G2 with list assignment L2 satisfies (Q) and (OBSTa),
and by the minimality of G, G2 is L2-colorable. It follows that G1 cannot be
L2-colorable. However, we have d(P1) ≥ B − 4 ≥ r(P1) in G1. Since G1 is
not L2-colorable, it follows that G1 violates (Q). However, that implies that
G contains a non-L-colorable OBSTx1c, OBSTx2a or OBSTx2b, which is a
contradiction. Therefore, the chord uv satisfies the conclusion of (7) in this
case.
Let us now consider the case that u is an internal vertex of P . By the

choice of G1 and G2, we have 2ℓ(P2) ≤ ℓ(P )+2. Suppose first that ℓ(P2) = 2.
By the minimality of G, we conclude that (S3), (Q) or (OBSTa) fails for G2

with the list assignment L′. This implies that d(P ) ≤ 3, and since G satisfies
the assumptions of Theorem 2, we have ℓ(P ) = 2. However, by symmetry G1

with the precolored path P1 also fails (S3), (Q) or (OBSTa), implying that
t(G) ≤ 6. This is a contradiction.
Therefore, we may assume that ℓ(P2) = 3, and thus ℓ(P ) ≥ 4 and d(P ) ≥

r(P ). Note that d(P2) ≥ d(P )−1, and thus d(P2) ≥ r(P2). By the minimality
of G, we have that G2 fails (Q), and G2 contains a vertex w with |L(w)| = 2
adjacent both to v and to an endvertex of P . Analogously, G1 (with the
precolored path P1) also fails (Q), or ℓ(P ) = 5 and G1 fails either (S3)
or (OBSTb) due to a subgraph isomorphic to OBSTb1 or OBSTb2. The
obstruction in G1 together with the 5-cycle G2 form one of the subgraphs H
described in (OBSTb), namely OBSTb1, OBSTb1a, OBSTb1b, OBSTb5 or
OBSTb6; and by (5), this subgraph H is unique. By (OBSTb), H has an L-
coloring ψ. However, by the minimality ofG, this implies that the precoloring
that assigns v the color ψ(v) extends both to G1 and G2, contradicting the
assumption that G is not L-colorable.

Let us note that (7) implies that P is a subpath of C. Furthermore,
observe that there exists an L-coloring of the subgraph of G induced by
V (C), unless G contains a non-L-colorable OBSTx1, OBSTx1a or OBSTx1b.
Lemma 4 then implies that

ℓ(C) ≥ 9.
(8)

Proof. If ℓ(C) ≤ 8, then G would contain a C-obstacle H , and by (5), it
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would actually be equal to this C-obstacle. Since each C-obstacle contains
a (≤4)-cycle whose distance from any vertex of C is at most 4, this is only
possible if ℓ(P ) ≤ 2. However, a straightforward case analysis shows that
either G is L-colorable or violates (OBSTa). More precisely,

• If H satisfies (O1) and |V (H) \ V (C)| = 1, then G contains OBSTa1
or is L-colorable.

• If H satisfies (O1) and |V (H) \ V (C)| = 2, then G contains OBSTa6
or OBSTx4, or is L-colorable.

• If H satisfies (O2) and |V (H) \ V (C)| = 3, then G contains OBSTa2
or is L-colorable.

• If H satisfies (O2) and |V (H) \ V (C)| = 4, then G is L-colorable.

• If H satisfies (O2) and |V (H) \ V (C)| = 5, then G contains OBSTa3,
OBSTa4 or OBSTa7, or is L-colorable.

• If H satisfies (O3), then G is L-colorable.

For k ≥ 2, a k-chord of a cycle K is a path Q = q0q1 . . . qk of length
k joining two distinct vertices of K, such that V (K) ∩ V (Q) = {q0, qk}.
We consider a chord to be a 1-chord. Suppose that neither q0 nor qk is an
internal vertex of P . Let G1 and G2 be the maximal connected subgraphs
of G intersecting in Q, such that P ⊆ G1. We say that Q splits off a face if
G2 is a cycle. For one of the obstructions O drawn in Figures 1 and 2, the
k-chord Q splits off O if G2 is isomorphic to O and

• the vertices drawn in the Figures by full circles coincide with the (not
necessarily proper) subpath of Q consisting of the vertices x ∈ V (Q)
such that |L(x)| ∈ {1, 3}, and

• the sizes of the lists of all other vertices of G2 are equal to those given
by Figure 1 or 2.

Let Q = q0q1 . . . qk be a k-chord of C such that no endvertex of Q is an
internal vertex of P and Q does not split off a face. If k ≤ 2, or if k = 3
and q3 has list of size two, then Q splits off one of the obstructions drawn in
Figure 1.

(9)
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Proof. Suppose for a contradiction that there exists a k-chord Q violating
(9). Let G1 and G2 be the maximal connected subgraphs of G intersecting
in Q, such that P ⊆ G1. Let us choose Q among all (≤3)-chords of C that
violate (9) so that |V (G2)| is minimal.
By the minimality of G, there exists an L-coloring ϕ of G1. Let L

′ be the
list assignment such that L′(x) = L(x) if x 6∈ V (Q), L′(q3) = {ϕ(q2), ϕ(q3)}
if k = 3 and L′(qi) = {ϕ(qi)} for 0 ≤ i ≤ 2. Observe that G2 is not L

′-
colorable, thus it violates (Q) or (OBSTa). Let H be the minimal subgraph
of G2 that contains Q and violates (Q) or (OBSTa). Note that H contains
a (≤ 4)-cycle T whose distance to any vertex of H is at most four. By (5),
each face of H except for the outer one is also a face of G.
We claim that G2 = H , that is, Q splits off H . Otherwise, consider a

k′-chord Q′ 6= Q of G2 that is a subpath of the union of Q and of the outer
face of H . If Q′ satisfies the assumptions of (9), then by the choice of Q,
we have that that Q′ splits off a subgraph H ′ that is either a face or an
obstruction drawn in Figure 1. However, H ′ contains a (≤4)-face T ′, whose
distance to Q′ is at most three. It follows that d(T, T ′) ≤ 7 < B, which
is a contradiction. Therefore, Q′ does not satisfy the assumptions of (9).
Since every vertex with list of size two in H belongs to the outer face of G,
the inspection of the graphs in Figure 1 shows that this is only possible if
k = 3, H is OBSTx1 and Q′ = q3q2q1uv for vertices u, v ∈ V (H) \ V (Q)
such that |L(u)| = 3 and |L(v)| = 2. However, in this case let G′

1 and G
′

2

be the subgraphs of G that intersect in Q′, let ϕ′ be an L-coloring of G′

1 and
let L2 be the list assignment such that L2(x) = {ϕ′(x)} for x ∈ {v, q1, q2},
L2(q3) = {ϕ′(q2), ϕ

′(q2)}, L2(v) = {ϕ′(u), ϕ′(v)} and L2(x) = L(x) for other
vertices x ∈ V (G′

2). Since t(G) ≥ B and H contains T , we conclude that G′

2

satisfies the assumptions of Theorem 2, hence G′

2 is L2-colorable. This gives
an L-coloring of G, which is a contradiction.

(5) and (9) imply that G does not contain a subgraph isomorphic to ones
described in (OBSTa) or (OBSTb), such that the sizes of the lists match
those prescribed by Figures 1 and 2: If G contained such a subgraph H , we
would conclude that G = H as in the proof of (9), and by the assumptions,
G would be L-colorable.

If Q = q0q1q2 is a 2-chord of C in G, then at most one endvertex of Q belongs
to P .

(10)

Proof. Suppose that both q0 and q2 belong to P . Then Q together with a
subpath of P forms a cycle K of length at most ℓ(P )+2, and by (5) together
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with the assumption that d(P ) ≥ r(P ) if ℓ(P ) > 2, this cycle bounds a face.
Observe that q1 cannot have a neighbor in P distinct from q0 and q2. Let
L′ be the list assignment such that L′(q1) ⊆ L(q1) \ (L(q0) ∪ L(q2)) has size
one and L′(x) = L(x) for x 6= q1. Let G

′ = G − q0q2 if K is a triangle and
G′ = G−(V (K)\V (Q)) otherwise. Note that the vertices with list of size one
form an induced path P ′ inG′, and the length of P ′ is at most ℓ(P )−1 ifK has
length at least 5 and at most ℓ(P )+1 otherwise. In the former case, if d(P ) ≥
r(P ), then d(P ′) ≥ r(P ′), since d(P ′) ≥ d(P )−1. In the latter case, we have
ℓ(P ) ≤ 2 and d(P ′) ≥ r(P ′), since d(K) ≥ B. Since G′ is smaller than G and
is not L′-colorable, we conclude that it violates (Q) or (OBSTb). However,
in these cases, G itself would violate (OBSTb): If G′ violates (Q), then G
contains OBSTb1b; if G′ contains OBSTb1, then G contains OBSTb3; and
if G′ contains OBSTb2, then G′ contains OBSTb4.

Suppose that C has either a 3-chord Q = q0q1q2q3, or a 4-chord Q =
q0q1q2q3q4 such that |L(q4)| = 2, where no endvertex of Q is an internal
vertex of P . Let G1 and G2 be the maximal connected subgraphs of G that
intersect in Q, such that P ⊆ G1. Assume that either

• ℓ(P ) ≥ 4 and d(P, qi) ≤ r(4) − r(3) = 4 for 0 ≤ i ≤ 3, or

• G1 contains a (≤4)-cycle T such that d(P, qi) ≤ B−r(3) for 0 ≤ i ≤ 3.

Then G2 is a 5-cycle, and hence q0 and q3 have a common neighbor with list
of size two (equal to q4 if Q is a 4-chord).

(11)

Proof. Let ϕ be an L-coloring of G1 that exists by the minimality of G.
Let L2 be the list assignment such that L2(qi) = {ϕ(qi)} for 0 ≤ i ≤ 3,
if Q is a 4-chord, then L2(q4) = {ϕ(q3), ϕ(q4)}, and L2(x) = L(x) for x 6∈
V (Q). The graphG2 is not L2-colorable. Furthermore, we have d(q0q1q2q3) ≥
r(q0q1q2q3), since either ℓ(P ) ≥ 4 and d(q0q1q2q3) + (r(4) − r(3)) ≥ d(P ) ≥
r(P ), or d(q0q1q2q3) + (B − r(3)) ≥ B. By the minimality of G, we conclude
that G2 violates (Q), hence a vertex x with a list of size two is adjacent
to both q0 and q3. Furthermore, by (5) and (9), G2 is equal to the 5-face
q0q1q2q3x.

We may assume that ℓ(P ) ≥ 2; otherwise, we can color 2 − ℓ(P ) vertices
adjacent to P in C so that the resulting list assignment L′ either still satisfies
the assumptions of Theorem 2 or violates (OBSTa). But, in the latter case,
(5) and (9) would imply that G with the list assignment L′ is equal to one
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of the obstructions in Figure 1. However, then it is easy to see that G either
is L-colorable or contains OBSTx1. Let P = p0p1 . . . pm, where m = ℓ(P ).
A subgraph H of G is a near-obstruction if it is isomorphic to one of the

graphs in Figure 1 or 2, where the vertices drawn by full circles coincide with
the vertices of H belonging to P and the sizes of lists of other vertices of H
are greater or equal to the sizes prescribed by the Figure. A near-obstruction
H is tame when for every vertex v of H that is depicted in Figure 1 or 2 by
a square, if v is adjacent to a vertex in P , then v ∈ V (C).

The graph G contains no tame near-obstruction.
(12)

Proof. Suppose that H is a tame near-obstruction in G, and let K be the
cycle bounding the outer face of H . Let Q0 = q0q1 . . . qk be the subpath of K
vertex-disjoint with P such that V (K) ⊆ V (Q0) ∪ V (P ). Suppose first that
both q0 and qk are adjacent to an endvertex of P , say q0 to p0 and qk to pm;
by the assumption that d(P ) ≥ r(P ) and that H is tame and by (7), this is
the case unless H is OBSTx1 and ℓ(P ) = 2. Let Q be the path consisting of
Q0 and those of the edges q0p0 and qkpm that do not belong to C.
Note that |V (H)| < |V (G)|, since otherwise either G violates (OBSTa) or

(OBSTb), or is L-colorable. Let G′ = G−(V (H)\V (Q)). By the minimality
of G, the graph H is L-colorable. Let ϕ be an L-coloring of H , and let L′ be
the list assignment such that L′(x) = {ϕ(x)} if x ∈ V (Q) and L′(x) = L(x)
otherwise. Note that G′ is not L′-colorable, and by the minimality of G, it
cannot satisfy the assumptions of Theorem 2. But, clearly G′ satisfies (I) and
(T). Let us now discuss several cases; we always assume that the precolored
vertices of the drawing of H in Figure 1 or 2 are labeled from left to right,
i.e., p0 is the the leftmost precolored vertex in the drawing.

• H is OBSTx2a or OBSTx2b: Since q1p2 is not a chord by (7), we
have q1 6∈ V (C). By (9), the 2-chord q0q1p2 splits off a subgraph H

′

which is isomorphic to one of the graphs drawn in Figure 1. Since
V (H) 6= V (G), H ′ is not OBSTx1. Since H ⊆ G, we have that q1
has degree at least three in H ′ and that q1, p2 and two vertices of a
triangle are incident with a common 5-face in H ′. This implies that
H ′ is OBSTa1, OBSTa3 or OBSTx4. However, then q0 is adjacent to
a vertex with list of size two in H ′, and thus |L(q0)| = 3. It follows
that the 5-cycle p0p1p2q1q0 has at least two L-colorings, and at least
one of them extends to H ′. Therefore, G is L-colorable, which is a
contradiction.

• ℓ(Q) ≤ 5: Since t(G) ≥ B or d(P ) ≥ r(P ), no vertex of Q is contained
in a (≤ 4)-cycle. The inspection of the graphs depicted in Figures 1
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and 2 shows that among any three consecutive internal vertices of Q,
at least one has degree two in H . This implies that Q is an induced
path in G, since otherwise by (5), G would contain a vertex of degree
two with list of size three. Similarly, we conclude that in G, no vertex
with list of size two has two neighbors in Q, unless H is OBSTa1 (or
OBSTx2a, but that was already excluded). However, if H is OBSTa1
and q0 and q3 have a common neighbor x with list of size two, then (5)
and (9) imply that V (G) = V (H)∪ {x}, and it is easy to see that G is
L-colorable. We conclude that G′ satisfies (S3) and (Q).

Let us discuss several subcases regarding m:

– m = 2: That is, H is one of the obstructions drawn in Fig-
ure 1, except for OBSTa5, OBSTx1, OBSTx2b or OBSTx3 (or
OBSTx2a, which was already excluded). Note that in all these
cases, ℓ(Q) ≤ 4. Also, H contains a triangle whose distance from
any vertex ofQ is at most three, and thus G′ satisfies d(Q) ≥ r(Q).
It follows that G′ violates (OBSTb), i.e., ℓ(Q) = 4, H is OBSTa3,
OBSTa4, OBSTa6, OBSTa7, OBSTx1a, OBSTx1b or OBSTx4
and G′ is OBSTb1 or OBSTb2. Since G does not contain a vertex
of degree two with list of size three, if G′ is OBSTb2, then H is
OBSTa7. The case analysis of the possible combinations of H and
G′ shows that G is L-colorable, which is a contradiction.

– m = 4: The case that H is OBSTb1 is excluded by (9), since
d(P ) ≥ d(T ), thus H is OBSTb2. (9) furthermore implies that
|L(q2)| = 3, and thus we may choose the L-coloring ϕ so that
ϕ(q1) 6∈ L(q0) \ L(p0). Let L

′′ be the list assignment defined by
L′′(q0) = (L(q0) \ L(p0)) ∪ {ϕ(q1)} and L

′′(x) = L′(x) otherwise.
Note that only a path q1q2q3q4 of length three is precolored in G

′

according to this list assignment and d(q1q2q3q4) ≥ d(P ) − 3 ≥
r(P ) − 3 ≥ r(q1q2q3q4) and thus G

′ is L′′-colorable. This gives an
L-coloring of G, which is a contradiction.

– m = 5: By (10), H cannot be OBSTb3 or OBSTb4. Thus, H is
OBSTb1a, OBSTb1b, OBSTb2a, OBSTb2a’, OBSTb2b or OB-
STb5, and ℓ(Q) ≤ 4. We conclude that G′ is OBSTb1 or OB-
STb2 and ℓ(Q) = 4 (excluding the cases that H is OBSTb1a or
OBSTb1b). Note that q2 has degree two in H , and since it has
degree at least three in G, we conclude that G′ is OBSTb1. The
case analysis of the possible combinations of H and G′ shows that
G is L-colorable, which is a contradiction.
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• ℓ(Q) > 5: Thus, H is OBSTa5, OBSTx3 or OBSTb6. Let us discuss
these cases separately:

– H is OBSTa5: Let w be the common neighbor of q1 and q6, and
w′ the common neighbor of w, q3 and q4. If there exist colors
c1 ∈ L(q1) \ (L(q0) \L(p0)) and c2 ∈ L(q6) \ (L(q7) \L(p2)) so that
L(w) 6= L(p1) ∪ {c1, c2}, then consider the graph G1 = G− V (P )
with the list assignment L1 such that L1(q1) = {c1}, L1(q6) =
{c2}, L1(w) chosen as an arbitrary one-element subset of L(w) \
(L(p1)∪{c1, c2}), L1(q0) = (L(q0)\L(p0))∪{c1}, L1(q7) = (L(q7)\
L(p2)) ∪ {c2} and L1(x) = L(x) otherwise. The graph G1 cannot
be L1-colorable, thus it violates (OBSTa). This is only possible if
G1 is OBSTa1, but then V (G) = V (H) and thus G is L-colorable.

So, we have |L(q0)| = |L(q7)| = 3, L(q1) = (L(q0) \ L(p0)) ∪ {c1},
L(q6) = (L(q7) \L(p2))∪ {c2} and L(w) = L(p1)∪ {c1, c2}. Let ψ
be an L-coloring of q1q0p0p1p2q7q6 such that ψ(q1), ψ(q6) 6∈ L(w) \
L(p1). Let G2 = G − (V (P ) ∪ {w′}), with the list assignment
L2 such that L2(x) = {ψ(x)} for x ∈ {q0, q1, q6, q7}, L2(w) is
an arbitrary singleton list disjoint with L2(q1) and L2(q6) and
L2(x) = L(x) otherwise. Since an L2-coloring of G2 corresponds
to an L-coloring of G (choosing the color of w′ different from the
colors of q3 and q4, and the color of w different from the color of p1

and w2), we have that G2 is not L2-colorable. By (5), G2 satisfies
(S3) and (Q), and the internal face of G2 incident with w has
length at least six, thus G2 satisfies (OBSTb). Furthermore, since
d(q3q4w

′) ≥ B in G, we have d(q0q1wq6q7) ≥ B−3 ≥ r(q0q1wq6q7).
Therefore, G2 is a counterexample to Theorem 2 smaller than G,
which is a contradiction.

– H is OBSTx3: Let q1w1w2q3 be the path in H such that w1, w2 6=
q2. If |L(q0)| = 2, then consider an L-coloring ψ of the sub-
graph of G induced by {q0, q1, w1, w2, p0, p1} such that ψ(w2) 6∈
L(q7) \ L(p2). Let L

′ be the list assignment defined by L′(q0) =
{ψ(q0), ψ(q1)}, L

′(x) = {ψ(x)} for x ∈ {q1, w1, w2}, L
′(q7) =

(L(q7) \ L(p2)) ∪ {ψ(w2)} and L
′(x) = L(x) otherwise. We con-

clude that G−V (P ) is not L′-colorable, thus it violates (OBSTa).
Note that w1 has degree two in G− V (P ) and the face with that
it is incident does not share any vertex with the triangle, and that
q7 is not incident with the triangle, thus G− V (P ) contains OB-
STx2a. By (5) and (9), G−V (P ) is equal to OBSTx2a. However,
then q2, q5 and q7 have list of size two and G contains OBSTx3,
which is a contradiction.
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So, we have |L(q0)| = 3. Then, there exist c1 ∈ L(q1) \ (L(w1) \
L(p1)) and c0 ∈ L(q0) \ L(p0) such that c0 6= c1. Let G1 be the
graph obtained from G−{p0, p1, w1, w2} by adding the edge q1p2.
Let c be a color that does not appear in any of the lists of G. Let
L1 be the list assignment such that L1(q0) = {c0}, L1(q1) = {c1},
L1(p2) = {c}, L1(q7) = (L(q7) \ L(p2)) ∪ {c} and L1(x) = L(x)
for all other vertices of G1. Observe that G1 is not L1-colorable.
Furthermore, the distance of q1 from the triangle q4q5q6 is three
both in G and G1, and the distance of q1 and q7 to any other
(≤4)-cycle is at least B − 3, thus t(G1) ≥ B. The internal face F
of G1 incident with q1p2 has length at least six, as otherwise the
cycle F−q1p2+q1w1p1p2 has length at most seven and contradicts
(5). Furthermore, observe that neither q0 nor q1 is adjacent to a
vertex of the triangle q4q5q6, thus G1 contains neither OBSTx1
nor OBSTx1a. It follows that G1 satisfies (OBSTa), and thus
it is a counterexample to Theorem 2 smaller than G. This is a
contradiction.

– H is OBSTb6: Let q1w1w2p3 be the path in H with w1 adjacent to
p1. If |L(q6)| = 2, then let c′ be the unique color in L(q6) \ L(p5),
and note that there exists c ∈ L(q5)\(L(p3)∪{c′}). Let G1 = G−
{p4, p5} and let L1 be the list assignment such that L1(q5) = {c},
L1(q6) = {c, c′} and L1(x) = L(x) for x 6∈ {q5, q6}. Note that
G1 is not L1-colorable, and since a path of length 4 is precolored
in G1 and H is a subgraph of G, we conclude that G1 contains
OBSTb2. However, this implies that G contains OBSTb6, which
is a contradiction.

Therefore, |L(q6)| = 3. Then, there exists an L-coloring ψ of the
subgraph of G induced by {q3, q4, q5, q6, p3, p5} such that ψ(q3) 6∈
L(w2) \ L(p3). Let G2 be the graph obtained from G − (V (P ) ∪
{w1, w2}) by adding a vertex w adjacent to q0 and q3. Let c be
a new color that does not appear in L(q0) ∪ L(q3). Let L2 be
the list assignment such that L2(x) = ψ(x) for x ∈ {q3, q4, q5, q6},
L2(w) = {c}, L2(q0) = (L(q0) \ L(p0)) ∪ {c} and L2(x) = L(x)
otherwise. Observe that an L2-coloring of G2 corresponds to an
L-coloring of G, thus G2 is not L2-colorable. Furthermore, a path
P2 = wq3q4q5q6 of length 4 is precolored in G2. Let us remark that
the newly added vertex w is not incident with a (≤ 4)-cycle, as
otherwise either t(P ) < r(P ) in G, or (5) implies that q2 is a vertex
of degree two with list of size three. Furthermore, t(G2) ≥ B, since
only the added path q0wq3 could result in shortening the distance
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between (≤4)-cycles, in G we have d(q0) ≥ d(P ) − 1 ≥ r(P ) − 1
and d(q3) ≥ d(P ) − 2 ≥ r(P ) − 2, and 2r(P ) − 1 > B. Also,
d(P2) ≥ d(P ) − 2 ≥ r(P2).

Note that G2 satisfies (S3), since w is not adjacent to q6 and
d(P ) ≥ r(P ). Similarly, G2 satisfies (Q), since otherwise (5) would
imply that q4 is a vertex of degree two with list of size three.
Hence, G2 violates (OBSTb). Since q4 has degree at least three,
G2 contains OBSTb1. But then q4 and q0 have a common neighbor
x, and the existence of q2 together with d(P2) ≥ r(P2) contradicts
(5) applied to the 7-cycle q0q1w1w2q3q4x.

Finally, let us consider the case that say q0 is not adjacent to an endvertex
of P , that is, ℓ(P ) = 2, H is OBSTx1, q0 is adjacent to p1 and q3 is adjacent
to p2. An L-coloring of H does not extend to an L-coloring of the subgraph
G′ that is split off by the path p0p1q0q1q2q3. If p0 and q1 have a common
neighbor with list of size two, then either G is L-colorable or contains OB-
STa1. Otherwise, G′ satisfies (S3) and (Q), as q1 cannot be a vertex of degree
two with list of size three. Therefore, G′ violates (OBSTb). If |L(q3)| = 2,
then G′ may only be OBSTb1, OBSTb1b, OBSTb2 or OBSTb2b. OBSTb1
and OBSTb1b are excluded, since q1 must have degree at least three; if G

′

is OBSTb2, then G is L-colorable, and if G′ is OBSTb2b, then G contains
OBSTa3. If |L(q3)| = 3, then there exist L-colorings ψ1 and ψ2 of H such
that ψ1(q0) = ψ2(q0), ψ1(q1) 6= ψ2(q1), ψ1(q2) 6= ψ2(q2) and ψ1(q3) 6= ψ2(q3).
The inspection of the graphs in Figure 2 shows that at least one of ψ1 and ψ2

extends to an L-coloring of G′, unless G′ contains a subgraph H ′ isomorphic
to OBSTb1, OBSTb1a, OBSTb1b, OBSTb3 or OBSTb5. By (5) and (9) we
conclude that G′ = H and G = H ∪H ′. However, all possible combinations
of H and H ′ result in an L-colorable graph, which is a contradiction.

Let v1, v2, . . . , vs be the vertices of C − V (P ) labeled so that C =
p0 . . . pmv1v2 . . . vs, where s = ℓ(C) −m− 1. Let us also define v0 = pm.

For 1 ≤ i ≤ 4, if the edge vi−1vi is not contained in a cycle of length at most
4 and a vertex v ∈ V (G) is adjacent to both vi and an endvertex p of P , then
v ∈ V (C).

(13)

Proof. Suppose for a contradiction that v 6∈ V (C). Let G2 be the subgraph
of G that is split off by the 2-chord vivp according to (9), and G1 = G −
(V (G2) \ {vi, v, p}). If p = pm, then i ∈ {3, 4}, since vi−1vi does not belong
to a (≤4)-cycle. By (5) and the fact that every vertex of degree two has list
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of size two, we have that i = 4 and G2 contains a triangle. It follows that
m ≤ 2. Consider an L-coloring ψ of G2, and let L1 be the list assignment such
that L1(v) = {ψ(v)}, L1(v4) = {ψ(vi)} and L1(x) = L(x) for x 6∈ {v, v4}.
Note that G1 is not L1-colorable. By (7), (9), (8) and the assumption that
v 6∈ V (C), we conclude that G1 satisfies (S3) and (Q). Therefore, using (5)
and (9) we conclude that G1 is equal to (OBSTb1) or (OBSTb2). However,
all combinations of (OBSTb1) or (OBSTb2) with a pmv1v2v3v4v-obstacle are
L-colorable.
Let us now consider the case that p = p0. Since a (≤ 4)-cycle in G2 is

in distance at most 4 from P , we have ℓ(P ) ≤ 2. Let K be the cycle of
length at most 8 formed by the 2-chord vivp0, the path P , and the vertices
v1, v2, . . . , vi. Since t(G) ≥ B, G1 cannot be a K-obstacle, and if K is not
a face, then ℓ(K) = 8 and K has a chord splitting K to two 5-faces. If K is
not a face, then since each vertex with list of size three has degree at least
three, we conclude that |L(v1)| = |L(v3)| = 2, |L(v2)| = 3 and the chord of
K is v2p0. However, this contradicts (7). Therefore, K is a face. Since v has
degree at least three, G2 is not a face. Furthermore, G2 is not (OBSTx1b),
thus |L(vi)| = 3. Hence, there exist L-colorings ψ1 and ψ2 of K such that
ψ1(v) 6= ψ2(v) and ψ1(vi) 6= ψ2(vi). The inspection of the graphs in Figure 1
shows that at least one of ψ1 and ψ2 extends to an L-coloring of G2, giving
an L-coloring of G. This is a contradiction.

Suppose that m = 5. For 1 ≤ i ≤ 4, if a vertex v ∈ V (G) is adjacent to both
vi and to p ∈ {p1, p4}, then v ∈ V (C), unless p = p4 and i = 2, or p = p1

and i = s− 1.
(14)

Proof. Suppose that v 6∈ V (C) is adjacent to p4 and vi. Since d(P ) ≥ r(P )
and every vertex with list of size three has degree at least three, (5) implies
that i = 2.
Hence, assume that v 6∈ V (C) is adjacent to p1 and vi. Let Q = p0p1vvi,

let G1 be the subgraph of G drawn in the cycle bounded by vp1 . . . p5v1 . . . vi

and G2 = G − (V (G1) \ V (Q)). By the minimality of G, there exists an
L-coloring ϕ of G1. Let L2 be the list assignment such that L2(x) = ϕ(x)
for x ∈ {v, vi} and L2(x) = L(x) otherwise; the graph G2 cannot be L2-
colorable. Since only an induced path Q of length three is precolored in G2

(and d(Q) ≥ d(P ) − 2 ≥ r(P ) − 2 ≥ r(Q)), we conclude that G2 violates
(Q), thus there exists a vertex w with list of size two adjacent to p0 and vi.
By (7), we have C = p0p1 . . . p5v1 . . . viw, and thus i = s− 1.
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If vi has degree two and is incident with a triangle, then i ≥ 4. Furthermore,
if 4 ≤ i ≤ 6, vi has degree two and is incident with a triangle, then |L(vi+2)| 6=
2.

(15)

Proof. Suppose first that vi is such a vertex, with 1 ≤ i ≤ 3. Clearly,
this is only possible if ℓ(P ) ≤ 2. By the minimality of G, the subgraph
G0 of G induced by V (P ) ∪ {v1, . . . , vi+1} has an L-coloring ψ. Let L

′ be
the list assignment such that L′(x) = {ψ(x)} for x ∈ {v1, . . . , vi+1} and
L′(x) = L(x) otherwise, and let Q = p0p1p2v1 . . . vi−1vi+1. Let G

′ = G − vi.
Then, G′ is not L′-colorable. Furthermore, by (7) and (8), G′ satisfies (Q).
Since d(Q) ≥ d(vi−1vivi+1) − 4 ≥ B − 4 ≥ r(Q), G′ violates (OBSTb), and
by (5) and (9), G′ is equal to one of the graphs drawn in Figure 2. If i = 2,
then either G′ is OBSTb1 and thus G contains OBSTx2b, or G′ is OBSTb2
and G is L-colorable. Therefore, i = 3. If |L(v1)| = 3, then we can assume
that ψ(v2) 6∈ L(v1) \ L(p2), thus there exist two L-colorings of the subgraph
of G0 that differ only in the color of v1. Furthermore, the degree of v1 in
G′ is at least three. The inspection of the graphs drawn in Figure 2 shows
that at least one of these colorings extends to G′, which is a contradiction. If
|L(v1)| = 2, then by (T) we have that either G′ is OBSTb1b and G contains
OBSTx2a, or G′ is OBSTb2b and G contains OBSTx3.
Suppose now that 4 ≤ i ≤ 6 and |L(vi+2)| = 2. Again, m = 2. By (T),

|L(vi−2| = 3, and by (7), p0p1p2v1 . . . vi−1vi+1 is an induced path. Thus, there
exists its L-coloring ψ such that L(vi) 6= {ψ(vi−1), ψ(vi+1)} and ψ(vi+1) 6∈
L(vi+2). Let G

′ = G − {vi−1, vi, vi+1} with the list assignment L
′ such that

L′(vj) = {ψ(vj)} for 1 ≤ j ≤ i − 3, L′(vi−2) = {ψ(vi−3), ψ(vi−2)}, L
′(x) =

L(x) \ {ψ(y)} for a vertex x ∈ V (G′) with a neighbor y ∈ {vi−1, vi+1} and
L′(x) = L(x) otherwise. The graph G′ is not L′-colorable. Furthermore,
by (7), (S2) holds, and by (9), (I) is satisfied as well. Let w be a common
neighbor of two vertices of the path Q = p0p1p2v1 . . . vi−3 in G

′. By (7), we
have w 6= vi−2 and |L(w)| = 3. Furthermore, |L′(w)| = 3, since otherwise w
would be adjacent to vi−1 or vi+1 as well, and (5) would imply that vi−2 has
degree two inG. This shows that (Q) is true. Note that d(Q) ≥ B−7 > r(P ).
Therefore, G′ violates (OBSTb). This implies that i ≥ 5; observe that there
exist L-colorings ψ1 and ψ2 of Q such that ψ1(vi−1) = ψ2(vi−1) = ψ(vi−1),
ψ1(vi+1) = ψ2(vi+1) = ψ(vi+1), ψ1(vi−2) 6= ψ2(vi−2), ψ1(vi−3) 6= ψ2(vi−3) and
if i = 6, then ψ1(v1) = ψ2(v1). Note that vi−4 is not adjacent to a vertex x
with |L′(x)| = 2 and that vi−2 is the only such vertex adjacent to vi−3, by
(7), (5) and the fact that vi−2 has degree at least three in G. Since neither ψ1

nor ψ2 extends to an L
′-coloring of G′, the inspection of the graphs depicted
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in Figure 2 shows that i = 6 and G′ contains OBSTb3. If v8 is adjacent to
p0, then G contains OBSTx3. Otherwise, (7) and (9) imply that the edge
of OBSTb3 incident with vi−2 (distinct from vi−3vi−2) is a chord of C that
splits off OBSTx1 in G; however, the resulting graph is L-colorable.

We have |L(v1)| = 2 or |L(v2)| = 2.
(16)

Proof. Suppose that |L(v1)| = |L(v2)| = 3. Let L′ be the list assignment
such that L′(v1) = L(v1) \ L(pm) and L′(x) = L(x) otherwise. Let G′ =
G − pmv1. By (7), G

′ with the list assignment L′ satisfies (I). Suppose that
(T) is violated. Then there exists a triangle w1w2w3 such that either v1 = w2

and both w1 and w3 have a neighbor with list of size two, or |L(w2)| = 2,
w1 is adjacent to v1 and w3 has a neighbor w distinct from w1 with list of
size two. By (9), the former is not possible, and in the latter case, we have
w1 = v2, w2 = v3 and w3 = v4. However, that contradicts (15). Therefore,
(T) holds. Furthermore, by (7), v1 is not adjacent to any vertex of P other
than pm, and thus (Q) is satisfied. Since an L

′-coloring of G′ would give an
L-coloring ofG, it follows that G′ with the assignment L′ violates (OBSTa) or
(OBSTb). However, this implies that G with the list assignment L contains
a tame near-obstruction H , contradicting (12).

If ℓ(P ) = 5, then ℓ(C) ≥ 10.
(17)

Proof. By (8), we have ℓ(C) ≥ 9. Suppose that ℓ(C) = 9. By (16), either
|L(v1)| = 2 or |L(v2)| = 2. Applying (16) symmetrically on the other end of
P , we also have that |L(v2)| = 2 or |L(v3)| = 2. Therefore, either |L(v1)| =
|L(v3)| = 2 and |L(v2)| = 3, or |L(v1)| = |L(v3)| = 3 and |L(v2)| = 2. In
the former case, L-color the path v1v2v3 so that v1 gets a color different
from the color of p5 and v3 a color different from the color of p0. Let G

′ =
G−{v1, v2, v3}, with the list assignment L

′ obtained from L by removing the
colors of the vertices v1, v2 and v3 from the lists of their neighbors. Note that
G′ satisfies (I), since otherwise v1v2v3 would be a part of a 5-cycle, and by (5),
v2 would have degree two. Furthermore, (T) is satisfied since d(P ) ≥ r(P )
and (Q) is satisfied by (10). Note also that no vertex adjacent to p0 or p5

has list of size 2, thus G′ satisfies (OBSTb). This is a contradiction, since an
L′-coloring of G′ corresponds to an L-coloring of G.
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In the latter case, let G′ be the graph with list assignment L′ obtained
from G by coloring v2 from its list arbitrarily, removing v2 and removing its
color from the lists of its neighbors. Again, (I), (T) and (Q) are obviously
satisfied by G′. Furthermore, since d(P ) ≥ r(P ), the distance between any
pair of vertices of G′ with list of size two is at least three. This implies that G′

satisfies (OBSTb), unless it contains OBSTb1b. However, that is excluded
by (10).

Let X be the set of vertices defined as follows: If |L(v1)| = 3 (and thus
|L(v2)| = 2 by (16) and |L(v3)| = 3) and |L(v4)| = 3, then X = {v2}. If
|L(v1)| = 3 and |L(v4)| = 2, then X = {v2, v3}. If |L(v1)| = 2 (and thus
|L(v2)| = 3) and |L(v3)| = 3, then X = {v1}. If |L(v1)| = |L(v3)| = 2 (and
thus |L(v4)| = 3) and v5 = p0 or |L(v5)| = 3, then X = {v2, v3}. Otherwise,
X = {v2, v3, v4}.

Let Q = q0q1 . . . qk be a k-chord of C such that no endvertex of Q is an
internal vertex of P and Q does not split off a face. If k ≤ 2, or if k = 3
and q3 has list of size two, then q0 6∈ X.

(18)

Proof. Let G2 be the subgraph of G that is split off by Q and G1 = G −
(V (G2) \ V (Q)). Let Q be chosen so that G2 is as large as possible. Let i
be the index such that vi = q0. By (9) we can assume that ℓ(P ) = 2, since
otherwise G2 contains a triangle whose distance from q0 is at most four, hence
its distance from P is at most 8, contradicting d(P ) ≥ r(P ).
By (7) and (15), the path consisting of P and v1v2v3v4 is induced. Suppose

now that qk ∈ {v1, v2, v3, v4}, and let K be the cycle bounded by Q and
a subpath of v1v2v3v4. Since Q does not split off a face, (5) implies that
ℓ(K) ≥ 6, thus k = 3 and {q0, qk} = {v1, v4}. If q0 = v1 ∈ X, then
|L(v1)| = 2 and |L(v2)| = |L(v3)| = 3. However, (5) implies that v2 or v3 has
degree two, which is a contradiction.
If q0 = v4 ∈ X, then (5), (15) and the choice of X imply that either

v2q2 ∈ E(G), or v2, q2 and q0 are adjacent to vertices of a triangle T . In the
former case, let ψ1 and ψ2 be L-colorings of the subgraph of G induced by
V (P ) ∪ {v1, v2, q2} such that ψ1(v1) = ψ2(v1), ψ1(v2) 6= ψ2(v2) and ψ1(q2) 6=
ψ2(q2), let G

′ = G− v1v2 and let L1 and L2 be the list assignments such that
Lj(x) = {ψj(x)} for x ∈ {v1, v2, q2} and Lj(x) = L(x) otherwise. Note that
G′ satisfies (Q) by (9) and that G′ is not Lj-colorable for j ∈ {1, 2}, thus G′

with both of these assignments violates (OBSTb). This is only possible if G′

contains OBSTb3, but then G contains OBSTx4. In the latter case, let t1
and t2 be the vertices of T adjacent to v2 and v4, respectively, let ψ be an
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L-coloring of pmv1v2v3v4 such that either ψ(v2) 6∈ L(t1) or L(t1) \ {ψ(v2)} 6=
L(t2)\{ψ(v4)}, and let G

′ be the graph obtained fromG−V (T ) by identifying
v2 with v3 to a new vertex z. Note that z is not contained in a (≤4)-cycle by
(5), and observe that t(G′) ≥ B. let L′ be the list assignment defined in the
following way: L′(vi) = {ψ(vi)} for i ∈ {1, 4}, L′(z) = {c} for a new color
c that does not appear in any of the lists, and L′(x) = L(x) for any other
vertex x ∈ V (G′). Observe that G′ is not L′-colorable and satisfies (Q) by (7)
and (8), hence G′ contains a subgraph H violating (OBSTb). Since q1 has
degree at least three, (5) implies that v1zv4q1q2 is the only cycle of length at
most 5 in G′ containing z, and that every cycle of length 6 containing z also
contains q1. It follows that q1 ∈ V (H). Unless H is OBSTb1b or OBSTb2b,
|L′(q1)| = 3 implies that v5 ∈ V (H), thus v4 has degree at least three in H .
Note that H is neither OBSTb1b nor OBSTb2b, since then we would have
v5 6∈ V (H) and a (≤3)-chord contained in the outer face of H incident with
v4 would contradict (9). The only obstruction in that the endvertex of the
precolored path has degree greater than two is OBSTb4, however H is not
OBSTb4 since q1 is not adjacent to pm.
Therefore, qk 6∈ {v1, v2, v3, v4}. By (9), G2 is one of the graphs depicted

in Figure 1. Observe that there exists a color c ∈ L(q0) such that every
L-coloring of Q that assigns c to q0 extends to an L-coloring of G2. Suppose
first that there exists an L-coloring ψ of the path P ′ = p0p1p2v1 . . . vi such
that ψ(q0) = c. Let L1 be the list assignment such that L1(x) = {ψ(x)} for
x ∈ {v1, . . . , vi−1}, L1(vi) = {ψ(vi), ψ(vi−1)} and L1(x) = L(x) otherwise.
Note that the path P1 = P ′ − vi that is precolored in G1 has length at most
5. Furthermore, G2 contains a triangle whose distance from vi is at most 4,
thus d(P1) ≥ B − 10 ≥ r(P1), and since G is not L-colorable, G1 is not L1-
colorable. By (7), G1 satisfies (I) and (Q). Note that the distance in G1 from
vi to any triangle is at least B − 4 > 1, thus G1 satisfies (T). We conclude
that G1 violates (OBSTb), and thus i ∈ {3, 4}. The choice of Q implies that
if Q′ 6= Q is a path in G1 of length at most three from a vertex vj with
j ≤ i to a vertex with list of size two, then the endvertex of Q′ is q0 and Q

′

bounds a face. The inspection of the graphs in Figure 2 shows that G1 can
only satisfy this condition if it contains OBSTb1, OBSTb1a or OBSTb1b.
However, if G1 contains one of these graphs, then (5) and (7) imply that
both v1 and v2 have degree two, which is a contradiction.
Let us now consider the case that there is no L-coloring of the path P ′

assigning the color c to vi. Since the path P
′ is induced, this is only possible

if i = 1, or if i = 2 and |L(v1)| = 2. If |L(vi)| = 2, then i = 1 and (9)
implies that k = 2 and G2 is OBSTx1b. However, that is excluded by (15).
Therefore, |L(vi)| = 3. There exist two L-colorings ψ1 and ψ2 of P

′ such
that ψ1(vi) 6= ψ2(vi), and by the minimality of G, both of them extend to
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L-colorings ϕ1 and ϕ2 of G1. Furthermore, neither ϕ1 nor ϕ2 extends to an
L-coloring of G2. The inspection of the graphs in Figure 1 shows that this is
only possible if G2 is OBSTa1 or OBSTx1c, or if k = 3 and G2 is OBSTa2 or
OBSTx2a. The case that G2 is OBSTx2a is excluded by (15). Let us discuss
the rest of the cases separately:

• If G2 is OBSTa1, then there exists a color c1 ∈ L(q1) \ {ψ1(q0)} such
that every coloring of Q that assigns ψ1(q0) to q0 and c1 to q1 extends
to an L-coloring of G2. By (9), no neighbor of q1 has list of size two.
Let L′ be the list assignment such that L′(vj) = {ψ1(vj)} for 1 ≤ j ≤ i,
L′(q1) = {ψ1(q0), c1} and L

′(x) = L(x) otherwise. Note that G1 is not
L′-colorable, thus it violates (Q) or (OBSTb). If (OBSTb) is violated,
i.e., G1 contains OBSTb1 or OBSTb2, then G contains a (≤ 3)-chord
contradicting the choice of Q, thus suppose that (Q) is false. Then, (9)
implies that i = 2 and q1 is adjacent to p1. However, then consider the
path Q′ = p0p1q1q2 (or Q

′ = p0p1q1q2q3 if k = 3). Similarly to (11),
we conclude that p0 and q2 have a common neighbor with list of size
two, and since q2 has degree at least three, this common neighbor is
not equal to q3. However, then G contains OBSTa5.

• If G2 is OBSTx1c, then by (15), q0 has degree two in G2. Since neither
ϕ1 nor ϕ2 extends to an L-coloring of G2, this implies that Q is a 3-
chord. Note that there exists an L-coloring ϕ of the path pmv1 . . . vi+2

such that ϕ(vi+2) 6∈ L(q3). Let L
′ be the list assignment such that

L′(vj) = {ϕ(vj)} for 1 ≤ j ≤ i + 1, L′(vi+2) = {ϕ(vi+1), ϕ(vi+2)} and
L′(x) = L(x) otherwise. The graph G′ = G−vi+2q3 is not L

′-colorable,
thus it contains a subgraph H violating (OBSTb). By (9), if i = 2 then
G′ does not contain OBSTb1 or OBSTb2, hence vi+1, vi+2 ∈ V (H). By
(5), we conclude that vi has degree at least three in H , and by the
choice of Q, we have q3 ∈ V (H). By (5) and (9), we have G′ = H . If
H is OBSTb3, then G is OBSTx4. Otherwise, G contains a subgraph
H ′ depicted in Figure 5. Observe that every L-coloring of G − V (H ′)
extends to an L-coloring of G, contradicting the minimality of G.

• If G2 is OBSTa2, then let w1 and w2 be the neighbors of vi and vi+2,
respectively, that are incident with the triangle T of the configuration.
Since neither ϕ1 nor ϕ2 extends to an L-coloring ofG2, we have L(w1) =
L(w2). Let ϕ be a coloring of the path pmv1 . . . vi+2 such that ϕ(vi) 6=
ϕ(vi+2). Let G

′ be the graph obtained from G − (V (T ) ∪ {vi+1}) by
adding the edge vivi+2, and L

′ the list assignment such that L′(vj) =
{ϕ(vj)} for 1 ≤ j ≤ i+ 2 and L′(x) = L(x) otherwise. Note that G′ is
not L′-colorable. By (5), no (≤4)-cycle in G′ contains the edge vivi+2,
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q0

q1

q2

q3

Figure 5: A configuration from claim (18).

thus the minimality of G implies that G′ violates (Q) or (OBSTb). If
G′ violates (Q), then q3 is adjacent to p0, and since q1 has degree at
least three, (5) applied to the cycle p0p1 . . . q0q1q2q3 shows that i = 2
and q1 is adjacent to p1. It follows that G contains OBSTa4. Suppose
now that G′ contains a subgraph H violating (OBSTb). Observe that
vi+3 belongs to H ; and, the inspection of the graphs in Figure 2 shows
that vi+3 has degree two in H . However, since Q is a 3-chord, vi+3 = q3
has degree at least three in G, contradicting (5) or (9).

Let k be the index such that vk ∈ X and vk+1 6∈ X. We now show that
G contains one of several subgraphs near to P ; see Figure 6 for cases (A4)
and (A5).

One of the following holds:

(A1) |X| = 3 and v2v3v4 is a part of the boundary walk of a 5-face, or

(A2) a vertex of X is incident with a triangle, or

(A3) an edge of the path pmv1v2 . . . vk is incident with a 4-face, or

(A4) |X| = 3 and there exists a path w1w2w3w4w5 in G− (X ∪ V (P )) such
that w2w4, v2w1, v3w3, v4w5 ∈ E(G), or

(A5) |L(v1)| = |L(v3)| = |L(v6)| = 2 and there exist adjacent vertices z1, z2 ∈
V (G) \ (X ∪ V (P )) such that z1v2, z2v4, z2v5 ∈ E(G).

(19)

Proof. Assume for a contradiction that X satisfies none of these conditions.
Since no vertex of X is incident with a triangle, (7) implies that the subgraph
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Figure 6: Configurations from claims (19) and (21)
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R induced by V (P ) ∪ {v1, . . . , vk} is either a path or equal to the cycle C.
Observe that there exists an L-coloring ψ of R such that

• if v1 ∈ X, then ψ(v1) 6∈ L(pm), and

• if v1 6∈ X and |L(v1)| = 2, then ψ(v2) is different from the unique color
in L(v1) \ L(pm), and

• if |L(vk+1)| = 2, then ψ(vk) ∈ L(vk) \ L(vk+1).

Let G′ = G − X and let L′ be the list assignment obtained from L by
removing the colors of vertices of X from the lists of their neighbors, with
the following exception: if v1 6∈ X and |L(v1)| = 2, then L′(v1) = L(v1) (note
that still, an L′-coloring of G′ corresponds to an L-coloring of G, since ψ(v2)
does not belong to L(v1)\L(pm)). By (7), no neighbor of a vertex of X other
than v1 and vk+1 has list of size less than three in L; furthermore, since (A2)
and (A3) are false, no vertex of G′ has two neighbors in X. It follows that G′

satisfies (S2). By (7) and (10), no vertex of V (G) \ V (P ) has two neighbors
in P , thus (Q) holds. Let us now show that (I) holds: otherwise, there would
exist adjacent vertices w1, w2 ∈ V (G′) such that |L′(w1)| = |L′(w2)| = 2.
We may assume that |L(w1)| = 3, and thus w1 has a neighbor in X. If
|L(w2)| = 3, then w2 has a neighbor in X as well, and by (5), it follows
that (A1), (A2) or (A3) holds. If |L(w2)| = 2 and w1 6∈ V (C), then (18) is
contradicted, unless (A2) holds. If w1 ∈ V (C), then since (A2) is false, (18)
implies that w1 ∈ {v1, vk+1}. If w1 = v1, then the chord w1w2 contradicts
(7), hence w1 = vk+1 and w2 = vk+2. However, the set X was chosen so that
if |L(vk+1)| = 3, then |L(vk+2)| = 3, which is a contradiction.
Suppose now that (T) is violated, that is, there exists a path w1w2w3w4w5

in G′ such that |L′(w1)| = |L′(w3)| = |L′(w5)| = 2 and w2w4 ∈ E(G). If
|L(w3)| = 2, then by (T) and symmetry, we may assume that |L(w1)| = 3,
and hence w1 has a neighbor x ∈ X. If w1 6∈ {v1, vk+1}, then (18) implies
that a subpath of xw1w2w3 splits off a face F , and since |L(w3)| = 2, we have
ℓ(F ) ≤ 4. However, d(F,w2w3w4) < B, which is a contradiction. If w1 = v1,
then by (9), a subpath of w1w2w3 splits off a triangle T or OBSTx1. However,
then (A2) holds. It follows that w1 = vk+1. If |L(w5)| = 3, by symmetry we
have w5 = vk+1 = w1, which is a contradiction. Therefore, |L(w5)| = 2 and
by (9), w3w4w5 is a subpath of C. Since the triangle w2w3w4 is outside of
the subgraph split off by w1w2w3, we also conclude that w1w2w3 ⊂ C, thus
wj = vk+j for 1 ≤ j ≤ 5. However, then k ≤ 3, since both vk+1 and vk+2

have a list of size three, and |L(vk+5)| = 2 and vk+3 is a vertex of degree
two incident with a triangle, contradicting (15). Thus, |L(w3)| = 3 and w3

has a neighbor y ∈ X. If |L(w1)| = |L(w5)| = 3, then each of them has a
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neighbor in X, and thus (A4) holds. Therefore, assume that say |L(w1)| = 2.
If w3 6∈ {v1, vk+1}, then by (18) a subpath of yw3w2w1 splits off a face of
length at most four whose distance from w2w3w4 is less than B, which is a
contradiction. Similarly, (9) shows that w1w2w3 ⊂ C, hence wj = vk+4−j

for 1 ≤ j ≤ 3. If |L(w5)| = 2, a symmetrical argument would show that
w5 = vk+3 = w1, thus we have |L(w5)| = 3 and w5 has a neighbor in X. By
the choice of X, it follows that (A5) holds.
Therefore, G′ satisfies (S1), (S2), (S3), (I), (Q) and (T), and by the

minimality of G, we conclude that G′ violates (OBSTa) or (OBSTb). Thus
G contains a near-obstruction H , and by (12), there exists a vertex v ∈
V (H)\V (C) such that |L′(v)| = 2. By (13), v is not adjacent to an endvertex
of P , hence either m = 2 and H is OBSTx1, or m = 5 and H is OBSTb1
or OBSTb2, with a vertex p ∈ {p0, pm} not contained in H . Let vt be the
neighbor of v in X.
Suppose first that m = 2. Let q0q1q2q3 be the subpath of the outer face

of H , where q0q2 ∈ E(G) and q3 = v. If p = p0, then H is drawn inside
the closed disk bounded by K = p2p1vvtvt−1 . . . v1. Then, (5) implies that
t ≥ 3. Since at most one of v2 and v3 has degree two, only the vertices q0,
q1 and q2 are contained in the open disk bounded by K. Since at most one
of v1 and v2 has degree two, v2 is adjacent to a vertex of the triangle q0q1q2.
Considering the path Q = p0p1vvt, as in (11) we conclude that Q splits off a
face and p0 and vt have a common neighbor with list of size two. However,
such a graph G is L-colorable. Hence, suppose that p = p2 and observe that
t = 2 and v2 has list of size three. Therefore, v2 has degree at least three,
and q1, q2, q3 6∈ V (C) by (11). It follows that |L(q1)| = 3 and q1 is adjacent
to a vertex x ∈ X. Note that x and p0 have a common neighbor with list of
size two by (11) applied to xq1q0p0. But, such a graph G is L-colorable.
Let us now consider the case that m = 5. By (14) and symmetry (we will

no longer use any properties of the set X), we may assume that p = p5 and
v is adjacent to v2 and p4. Let K be the cycle bounding the outer face of H
and Q = K − (V (P ) ∪ {v1}) = q0q1 . . ., where q0 is adjacent to p0. By (13),
we have q0 ∈ V (C). Let G1 = G− (V (H) \ V (Q)).
If H is OBSTb1, then note that v2 has degree at least three, thus by

(11) q0 and v2 have a common neighbor with list of size two. However,
then G contains OBSTb2b. Therefore, H is isomorphic to OBSTb2. There
exists an L-coloring ϕ of H such that ϕ(q1) 6∈ L(q0) \ L(p0). Let L1 be
the list assignment defined by L1(x) = ϕ(x) for x ∈ V (Q) \ {q0}, L1(q0) =
(L(q0) \ L(p0)) ∪ {ϕ(q1)} and L1(x) = L(x) otherwise; G1 cannot be L1-
colorable. Since a path Q−q0 of length 4 is precolored in G1 and d(Q−q0) ≥
d(P )−3 ≥ r(P )−3 = r(Q−q0), the minimality of G implies that G1 violates
(Q) or (OBSTb). In the former case, as q2 cannot be a vertex of degree two
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with a list of size three, (9) implies that G consists of H and a vertex with list
of size two adjacent to q2 and v2, and it is L-colorable. Similarly, in the latter
case, G1 must be OBSTb2 and G is L-colorable. This is a contradiction.

Let H be one of the obstructions from Figure 1 or 2. A set U ⊆ V (H)
has lists determined by the rest of H if whenever L1 and L2 are two list
assignments to H such that

• the size of the list of each vertex is given by Figure 1 or 2,

• L1(x) = L2(x) for each x 6∈ U ,

• vertices with list of size one give a proper coloring of the path induced
by them, and

• H is neither L1-colorable nor L2-colorable,

then L1 = L2. That is, the list assignment that does not extend to H is
uniquely determined once it is known on all the vertices except for those in
U . We call H k-determined if every subset U of vertices of H of size at most
k consisting only of vertices with list of size two has lists determined by the
rest of H . A straightforward case analysis shows the following.

All graphs in Figures 1 and 2 are 1-determined. All except OBSTa2, OB-
STx1c, OBSTx2b, OBSTb1, OBSTb1a, OBSTb3, OBSTb5 and OBSTb6 are
2-determined.

(20)
Let us now further discuss the subcase (A1) of (19); see Figure 6 for cases

(B3) and (B4).

If |X| = 3 and v2v3v4z2z1 is a 5-face, then there exists

(B1) a triangle incident with v2, v4, z1 or z2, or

(B2) a 4-face incident with z1 or z2, or

(B3) adjacent vertices w1, w2 ∈ G − (X ∪ {z1, z2}) such that
w1z2, w2v5, w2v6 ∈ E(G), and furthermore, |L(v7)| = 2, or

(B4) a path w1w2w3w4w5 in G− (X ∪{z1, z2}) such that w2w4 ∈ E(G), and
either v2w1, z1w3, z2w5 ∈ E(G) or z1w1, z2w3, v4w5 ∈ E(G) (possibly
with w1 = v1 in the former case or w5 = z5 in the latter case).

(21)

31



Proof. Suppose that none of these conditions is satisfied. Since v2 and v4

have list of size three, they must have degree at least three in G, and thus
(18) implies that z1, z2 6∈ V (C), unless (B1) holds. Let ϕ be the coloring of
X, G′ = G − X and L′ the list assignment to G′ as chosen in the proof of
(19). Note that |L′(z1)|, |L

′(z2)| ≥ 2. As in the proof of (19), we conclude
that G′ − {z1, z2} is L

′-colorable.
There exist at least two L′-colorings ϕ1 and ϕ2 of the path z1z2 such

that ϕ1(z1) 6= ϕ2(z1) and ϕ1(z2) 6= ϕ2(z2). For i ∈ {1, 2}, let Li be the list
assignment obtained from L′ by removing the colors of z1 and z2 according
to ϕi from the lists of their neighbors. Then (18) implies that Li satisfies
(S2), and by (10), (Q) holds as well.
Let G′′ be the graph obtained from G′ − {z1, z2} by repeatedly removing

the vertices whose degree is less than the size of their list both in L1 and in L2.
Note that G′′ is Li-colorable if and only if G is L-colorable, for i ∈ {1, 2}.
Let us argue that (I) is satisfied in G′′. Unless (B1) or (B2) holds, (18)
implies that no neighbor of z1 and z2 other than v2 and v4 lies in C, and
furthermore, there exists no path wxy, where w ∈ {z1, z2}, x 6∈ {v2, v4, z1, z2}
and |L(y)| = 2. Thus, (I) holds unless there exists a path wxyv with w ∈
{z1, z2}, v ∈ {v2, v4, z1, z2} and x, y ∈ V (G)\(V (C)∪{z1, z2}. Since (B1) and
(B2) are false, we have w = z1 and v = v4 or w = z2 and v = v2. However,
then (5) implies that z1 or z2 has degree two, which is a contradiction.
Let us now consider the condition (T) for G′′. Suppose that there exists a

path w1w2w3w4w5 with w2w4 ∈ E(G) and |Li(w1)| = |Li(w3)| = |Li(w5)| = 2
for some i ∈ {1, 2}. If |L(w3)| = 2, then by (T) and symmetry, we may
assume that |L(w1)| = 3, and thus w1 6∈ {v1, v5} and by (18), w1 6∈ V (C).
Consider the (≤5)-chord Q contained in X∪{z1, z2, w1, w2, w3, w4} such that
the subgraph F of G that is split off by Q contains neither P nor the triangle
w2w3w4. We have d(Q) ≥ B − 3 ≥ r(Q) in F , since the triangle w2w3w4

intersects Q. By the minimality of G and the choice of Q, we conclude
that F violates (S3), (Q) or (OBSTb) (with the list assignment matching
L on V (F ) \ V (Q) and an L-coloring of the rest of the graph on Q). If
F violates (OBSTb), then by (5) and (9), F is isomorphic to one of the
graphs in Figure 2. Since |L(w3)| = 2, this is only possible if ℓ(Q) = 5 and
w5 ∈ V (F )\V (Q). However, note that v5 has degree two in F and thus it has
degree one in G−X. It follows that v5 6∈ V (G′′), and similarly we conclude
that (V (F ) \ V (Q)) ∩ V (G′′) = ∅. This implies that w5 6∈ V (G′′), which is a
contradiction. If F violates (S3) or (Q), then (5) and (9) imply that Q splits
off a face. In particular, we have v4 ∈ V (Q). If (S3) fails, then we have that
v5 = w3 and that w1 is adjacent to z2. Since w1 has degree at least three, (5)
implies that w5 is not adjacent to v2, z1 or z2; therefore, |L(w5)| = 2, and
by (9) we have w5 = v7 and G satisfies (B3). If (Q) fails, then note that v5
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has degree one in G − X, hence v5 6∈ V (G′′) and consequently, v5 6= w5. It
follows that v5 is adjacent to w2, and by (T), we have |L(w5)| = 3. However,
by symmetry of the path w1w2w3w4w5, we conclude that v5 is also adjacent
to w4, which is a contradiction since v5 6= w3.
Suppose now that |L(w3)| = 3 and w3 has a neighbor in X ∪ {z1, z2}. If

|L(wi)| = 3 or wi ∈ {v1, v5} holds for each i ∈ {1, 5}, then since both z1
and z2 have degree at least three, (5) implies that (B4) holds. Therefore, by
symmetry we may assume that |L(w1)| = 2 and w1 6∈ {v1, v5}. Again, we
consider the (≤ 5)-chord Q contained in X ∪ {z1, z2, w1, w2, w3, w4} and the
subgraph F of G that is split off by Q containing neither P nor the triangle
w2w3w4. As in the previous paragraph, we conclude that F is a face and
violates (S3) or (Q). If |L(w5)| = 2, then by symmetry we can assume that
w5 ∈ V (F ), and thus w5 = v5. However, in that case w5 6∈ V (G′′), which is
a contradiction. Therefore, |L(w5)| = 3 and w5 6∈ V (F ). Since z1 has degree
at least three, w5 is adjacent to z1 by (5). However, v5 is adjacent to w2, and
the path v5w2w3w4w5 satisfies (B4).
It follows that G′′ satisfies (T). Let us now show that G′′ is L1-colorable or

L2-colorable, thus obtaining an L-coloring of G and a contradiction. Suppose
first that neither z1 nor z2 have a neighbor in P . Then both L1 and L2 satisfy
(S3). We conclude that G′′ violates (OBSTa) or (OBSTb). Thus, G contains
a (unique) near-obstruction H . The case that |Li(v)| = |L′(v)| for every
v ∈ V (G) is excluded similarly to (19), thus H has at least one vertex u1

such that say |L′(u1)| = 3 and |Li(u1)| = 2. Let K be the outer face of H ,
and let q0q1 . . . qt = K − V (P ), where q0 is the neighbor of p0 (or of p1, if H
is OBSTb1, OBSTb2 or OBSTx1 and p0 6∈ V (H)).
The vertex u1 cannot be adjacent to both z1 and z2, thus L1(u1) 6= L2(u1).

Since H is neither L1-colorable nor L2-colorable and H is 1-determined by
(20), it follows that H contains another vertex u2 such that |L

′(u2)| = 3 and
|Li(u2)| = 2. Suppose that u1 and u2 are both adjacent to z1 or both adjacent
to z2. Since (B1) and (B2) are false, the distance between u1 and u2 must be
at least three. Furthermore, we may assume that no other vertex between u1

and u2 in K−V (P ) has list of size two. This is only possible if H is OBSTa1,
OBSTa5, OBSTx2a, or OBSTx3. Note that H is not OBSTa1, OBSTa5 or
OBSTx3, since OBSTa1 is 2-determined and OBSTa5 and OBSTx3 are 4-
determined. Therefore, either H is OBSTx2a or we may assume that u1 is
adjacent to z1, u2 is adjacent to z2, and that Li(x) = L′(x) for i ∈ {1, 2}
and x ∈ V (H) \ {u1, u2}. In the latter case, we conclude that H is not 2-
determined. By (20), H is one of OBSTa2, OBSTx1c, OBSTx2b, OBSTb1,
OBSTb1a, OBSTb3, OBSTb5 or OBSTb6.
Let us make one more useful observation: suppose that ℓ(P ) = 2, q0 is

adjacent to p0 and |L1(q0)| = 2. If |L′(q0)| = 3, then consider the subgraph
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G2 of G that is split off by the path Q = p0q0zv, where z ∈ {z1, z2} and
v ∈ {v2, v4}. By the minimality of G, there exists an L-coloring of this path
that does not extend to G2. Since H contains a triangle whose distance to
Q is at most 3, we conclude that G2 violates (Q), and thus v5 is adjacent
to p0. However, then ℓ(C) ≤ 8, contradicting (8). Therefore, |L′(q0)| = 2,
and by (18), if (B1) and (B2) are false, then |L(q0)| = 2. Since u1 and u2

exist, in this situation H has at least three vertices with list of size two. This
implies that H is neither OBSTa2 not OBSTx1c. It also implies that H is
not OBSTx2a, since OBSTx2a is 2-determined.
Let us consider other obstructions separately:

• H is OBSTx2b: If p0 has degree two in H , then by the observation we
have |L(q0)| = 2, and thus H is a tame near-obstruction, contradicting
(12). Thus, p0 has degree three in H . Furthermore, (12) implies that
q5 6∈ V (C), and thus q5 is adjacent to z1 and q3 is adjacent to z2. If
|L(q1)| = 2, then by (11) applied to (a subpath of) v4z2q3q2q1, v5 is
adjacent to q2 (possibly v5 = z1). However, by (5) and (9) G does
not contain any other vertices, and such a graph is L-colorable. Thus,
|L(q1)| = 3 and q1 is adjacent to v4. By (11) for p0q0q1v4, we conclude
that v5 is adjacent to p0, contradicting (8).

• H is OBSTb1 or OBSTb1a: If p0 ∈ V (H), then by (11) for the path
v4z2u2p0, we have that v5 is adjacent to p0. However, thenG contains no
other vertices and is L-colorable. Thus, p0 6∈ V (H) and H is OBSTb1.
In this case, we similarly conclude that the path p0p1u2z2v4 splits off a
face, OBSTb1 or OBSTb2. In all these cases, G is L-colorable.

• H is OBSTb3: This is excluded by (10).

• H is OBSTb5: Suppose that u2 = q0. Then u1 = q2 and q4 = v1,
and by (11) applied to v4z2q0p0, we conclude that v5 is adjacent to p0.
However, such a graph is L-colorable. So, u2 = q2 and u1 = q4. If
|L(q0)| = 3, then q0 would be adjacent to v4, contradicting (18). Thus,
|L(q0)| = 2. Consider the path q0q1q2z2v4. By (11), v5 is adjacent to q1
(possibly v5 = q0). However, then G is L-colorable.

• H is OBSTb6: Let us note that only one two-element subset of vertices
of H with list of size two does not have lists determined by the rest
of H—the one consisting of the two rightmost square vertices in the
depiction of OBSTb6 in Figure 2). So, we may assume that p3 has
degree 4 in H , u2 = q4 and u1 = q6, and |L(q0)| = 2. If v4 is adjacent
to q2, then considering the subgraph split off by the path q0q1q2v4, we
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conclude that v5 = q2 and |L(q2)| = 2. If v4 is not adjacent to q2, then
|L(q2)| = 2 as well. By (11) applied to q2q3q4z2v4, we have that v5 is
adjacent to q3. And again, we conclude that G is L-colorable.

Let us now consider the case that z1 or z2 is adjacent to a vertex of P .
By (18), this vertex must be an internal vertex of P . If exactly one of z1
and z2 has a neighbor in P , then by (10) at least one of L1 and L2, say L1,
satisfies (S3). It follows that G′′ with the list assignment L1 must violate
(OBSTa) or (OBSTb), and contains a near-obstruction H . However, since
one of z1 and z2 has an internal vertex p ∈ P as a neighbor, p is a cut-vertex
in G′′, thus this is only possible if p ∈ {p1, pm−1} and either ℓ(P ) = 2 and
H is OBSTx1, or ℓ(P ) = 5 and H is OBSTb1 or OBSTb2. Suppose that
there exists a vertex v ∈ V (H) adjacent to p such that |L1(v)| = 2. By (7),
v is adjacent to v2, v4, z1 or z2. Since z1 or z2 is adjacent to p and neither
z1 nor z2 is incident with a (≤ 4)-cycle, (5) implies that z1 or z2 has degree
two. This is a contradiction. It follows that no vertex with list of size two
is adjacent to p, hence ℓ(P ) = 2. By (12), the two vertices of H with list of
size two are adjacent to z2 and v4, respectively. However, then p0 and v4 are
joined by a 2-chord contradicting (18).
Finally, suppose that both z1 and z2 have a neighbor in P . Since neither

(B1) nor (B2) holds, the neighbors of z1 and z2 are internal vertices of P by
(18), and ℓ(P ) ≥ 4. Let pi be the neighbor of z1 and pj the neighbor of z2.
Suppose that i < m−1 or j < m−3. By (5), P contains two adjacent vertices
of degree two that are not contained in any (≤5)-cycle. In that case, contract
these two vertices into one (and change its color so that it is consistent with
the colors of its neighbors). The resulting graph is a smaller counterexample
to Theorem 2, which is a contradiction. Therefore, i = m−1 and j = m−3.
Let Q = p0p1 . . . pm−3z2v4, and let ϕ be an L-coloring of the subgraph of G
induced by V (P ) ∪ X ∪ {v1, z1, z2} that exists by the minimality of G. Let
G3 = G − (V (P ) \ V (Q)) − {v1, v2, v3, z1}. Let L3 be the list coloring such
that L3(x) = ϕ(x) for x ∈ V (Q) and L3(x) = L(x) otherwise. The graph G3

is not L3-colorable, thus it violates (Q) or contains OBSTb1 or OBSTb2. If
G3 violates (Q), then (18) implies that v5 is adjacent to p0 and G contains
OBSTb2 or OBSTb2a. If G3 contains OBSTb1, then G contains OBSTb6.
Otherwise, G is L-colorable.

Let T be the 4-cycle in distance at most one or a triangle in distance at
most two from X, which exists by (19) and (21). Since d(P, T ) ≤ 4, we have
ℓ(P ) = 2.
Suppose that (A3) happens, i.e., T is a 4-cycle sharing an edge with the

path p2v1 . . . vk. Let vivi+1 be such an edge with i minimal and let ϕ be
an L-coloring of the path p2v1 . . . vi. Let G

′ be the graph obtained from
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G−vivi+1 by adding a vertex v adjacent to vi and vi+1. Let c be a color that
does not appear in the lists of vi and vi+1. Let L

′ be a list assignment such
that L′(x) = {ϕ(x)} for x ∈ {v1, . . . , vi}, L

′(v) = {c} if |L(vi+1)| = 2 and
L′(v) = {ϕ(vi), c} if |L(vi+1)| = 3, L′(vi+1) = (L(vi+1) \ {ϕ(vi)}) ∪ {c} and
L′(x) = L(x) for other vertices x ∈ V (G′). Note that G′ is not L′-colorable.
Furthermore, by the choice of X, if k = 4 then |L(vk)| = 4, hence a path
R of length at most 5 is precolored in P . Furthermore, since T contains
the edge vivi+1, we have d(R) ≥ B − 5 ≥ r(R). By (7) and (18), R is an
induced path and no vertex with list of size two other than vs, vi+1 and v is
adjacent to it, and since ℓ(C) ≥ 9, it follows that (S3) and (Q) are satisfied.
Since T is a 4-cycle, v cannot be in distance at most one from a triangle in
G′, thus (T) holds as well. By the minimality of G, we conclude that G′

violates (OBSTb); let H be the minimal non-L′-colorable subgraph of G′.
We have ℓ(R) ≥ 4, and consequently, i ≥ 1. If i = 1, then we also have
|L′(v)| = 1, |L(v2)| = 2 and |L(v1)| = 3; let w = v1. If i ≥ 2, then choose
w ∈ {v1, v2} such that |L(w)| = 3. Such a vertex w has degree at least three
in G, and thus it has degree at least three in H (even if w is an endvertex
of the precolored path of H , since then w has a neighbor x with list of size
two in H , and the edge wx belongs to C by (18)). There exist L-colorings
ϕ1 and ϕ2 of the path p2v1 . . . vi such that ϕ1(w) 6= ϕ2(w); let L′

1 and L
′

2

be the corresponding list assignments to G′. Since G′ is neither L′

1-colorable
nor L′

2-colorable, the inspection of the graphs in Figure 2 shows that H is
OBSTb1, OBSTb1a, OBSTb1b, OBSTb3 or OBSTb5. Since the edge vi−1vi

is not incident with T , the vertex vi has degree at least three in G, and hence
also in H ; therefore, H is OBSTb3 and |L′(v)| = 1. However, (5) and (9)
imply that V (G) = V (H) \ {v}, contradicting (8). We conclude that (A3) is
false.
Now, suppose that (B2) happens. If v4 ∈ V (T ), then let Y = {v3, v4}.

If v4 6∈ V (T ) and z2 ∈ V (T ), then let Y = {v3, v4, z2}; otherwise let Y =
{v3, v4, z2, z1}. Note that if z1 ∈ Y , then z2 is not incident with a 4-cycle,
and since (A3) is false, at most one of z1 and z2 has a neighbor in P . Thus,
there exists an L-coloring ψ of the subgraph G0 of G induced by Y ∪V (P )∪
{z1, v1, v2} such that ψ(v4) 6∈ L(v5). Let G

′ = G − Y and let L′ be the list
assignment such that L′(x) = {ψ(x)} for x ∈ {v1, v2}, L

′(x) = L(x) \ {ψ(y)}
if x ∈ V (G′) \ {v1, v2} has a neighbor y ∈ Y , and L′(x) = L(x) otherwise.
The graph G′ is not L′-colorable. Since z2 has degree at least three, (5)
and (18) together with the choice of Y imply that G′ satisfies (I) and (S2).
Obviously, (T) is satisfied as well. Suppose that a vertex v with |L′(v)| = 2
has two neighbors in p0p1p2v1v2. By (7), we have |L(v)| = 3, hence v is
adjacent to a vertex in Y . Suppose that v 6= z1. Since (A3) is false, v is
not adjacent to z1; but then (5) implies that z1 has degree two, which is a
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contradiction. Therefore, v = z1, and since ψ assigns a color to z1, G
′ satisfies

(Q). Hence, G′ violates (OBSTb); let H be the subgraph of G′ isomorphic
to OBSTb1 or OBSTb2. Note that v2 is adjacent to a vertex x such that
|L′(x)| = 2. Since z1 has degree at least three, (5) implies that x = z1,
and thus Y = {v3, v4, z2}. Furthermore, note that neither z1 nor z2 has a
neighbor in P , thus there exists an L-coloring ψ′ of the subgraph of G0 such
that ψ′(y) = ψ(y) for y ∈ {v1, v2, v3, v4} and ψ

′(z2) 6= ψ(z2). Since both
OBSTb1 and OBSTb2 are 1-determined, z2 has a neighbor in H different
from z1. Furthermore, H is not OBSTb2, since OBSTb2 is 2-determined
and z2 cannot have more than two neighbors in H whose list according to
L′ has size two. However, if H is OBSTb1, then p0 and v4 are joined by a
3-chord, and by (11), v5 is a common neighbor of p0 and v4. This contradicts
(8).
Therefore, neither (A3) nor (B2) holds and T is a triangle. Let us consider

the case that (B4) is true.

• Suppose first that v2w1, z1w3, z2w5 ∈ E(G). Note that v1 may be equal
to w1. Let S = L(v2) \ (L(v1) \ L(p2)). If S 6⊆ L(z1), then let L

′ be
the list assignment such that L′(v1) = L(v1) \L(p2), L

′(v2) = S \L(z1)
and L′(x) = L(x) otherwise. Observe that the graph G − {z1, w3} is
not L′-colorable and that it satisfies the assumptions of Theorem 2 (it
satisfies (OBSTb), since v3 is the only neighbor of v2 with list of size
two and v1v2v3 cannot be a subpath of a 5-cycle), contradicting the
minimality of G. Thus, S ⊆ L(z1). If S 6= L(v3), then choose a color
c ∈ S\L(v3); let L

′ be the list assignment obtained from L by removing
c from the lists of neighbors of v2 other than v1. Note that G − v2 is
not L′-colorable, and as in (19), we conclude that G − v2 is a smaller
counterexample to Theorem 2, which is a contradiction. Similarly, we
exclude the case that a color c′ ∈ L(v4) \ L(v5) does not belong either
to S or to L(z2). Therefore, there exists a color c

′ ∈ S ∩ L(z2). By (5)
and (18), z2 is not adjacent to a vertex of P .

Suppose that w1 and w5 do not have a common neighbor. Let G
′ be the

graph obtained from G−{w3, z1, v3} by identifying v2 with z2 to a new
vertex v. Let L′ be the list assignment such that L′(v1) = L(v1)\L(p2),
L′(v) = {c′}, L′(v4) = {c′′} for a color c′′ ∈ L(v4) \ {c′} such that
L(v3) 6= {c′, c′′} and L′(x) = L(x) otherwise. Note that t(G′) ≥ B,
since both v2 and z2 are in distance at least B − 2 in G from any
(≤ 4)-cycle different from T . Since w1 and w5 do not have a common
neighbor, (5) implies that v is not contained in any (≤ 4)-cycle in G′.
Since G′ is not L′-colorable, we conclude that it violates (OBSTb). Let
H be the subgraph of G′ isomorphic to one of the graphs in Figure 2.
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v1 = w1

(a)

v2 v3 v4

w2 w3

w4 w5

v1

(b)

v2 v3 v4
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w2

w3

w4

v5 = w5

Figure 7: Configuration in case that (B4) holds.

By (7), p1 is not adjacent to a vertex with list of size two, hence v4

belongs to H . Note that v has degree at least three in H , as otherwise
G contains a cycle K of length at most 7 such that v1v2v3v4 ⊂ K

and the open disk bounded by K contains z1, z2 and w3, contradicting
(5). The inspection of the graphs in Figure 2 shows that v has degree
exactly three and that both internal faces incident with v in H have
length five. Similarly, (5) implies that vw5 ∈ E(H) and w1 = v1. But
then v1vw5w4w2 is the only 5-cycle in G′ containing the edge v1v, thus
v1w2 ∈ E(H) and v1 has degree at least three in H . This is only
possible if H is OBSTb4. However, then H is the graph in Figure 7(a),
which is L-colorable.

So, suppose that w1 and w5 have a common neighbor w, and thus
by (5), w2 and w4 have degree three. By (18), |L(w)| = 3. Let ψ
be an L-coloring of p2v1v2v3v4z2 such that ψ(v4) = c′. Let d be a
color in L(z1) \ {ψ(v2), ψ(z2)}. Note that z2 has no neighbor in P by
(5). If w1 6= v1, then let d

′ be a color in L(w1) \ {ψ(v2)} such that
L(w2) \ {d′} = L(w3) \ {d}, if such a color exists, and an arbitrary
color in L(w1) otherwise. Among the possible choices of ψ, d and d

′,
we choose them so that the following additional conditions hold:

– If w1 is adjacent to p1, then L(w1) 6= L(p2) ∪ {ψ(v2), d
′}.

– If w1 = v1, then either ψ(v1) 6∈ L(w2) or L(w2)\{ψ(v1)} 6= L(w3)\
{d}.

– If w1 6= v1, w1 is not adjacent to p1 and p1 has a neighbor z 6∈
V (C), then L(z) \ L(p1) 6= L(w5) \ {ψ(z2)}.

Let G′ = G−{w2, w3, w4, z1, z2, v3, v4}, with the list assignment L
′ such

that L′(x) = {ψ(x)} for x ∈ {v1, v2}, L
′(w1) = L(w1) \ {d

′} if w1 6= v1,
L′(x) = L(x) \ {ψ(y)} for every vertex x with a neighbor y ∈ {v4, z2}
and L′(x) = L(x) otherwise. The graph G′ is not L′-colorable. If w1
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had a common neighbor with v4 or z2, then (5) would imply that w
has degree two; hence (18) implies that G′ satisfies (I). If G′ violated
(Q), then (5) and (18) would imply that w1 is adjacent to p1. But, in
that case the choice of ψ, d and d′ ensures that (Q) holds. Hence, G′

violates (OBSTb) and contains a subgraph H isomorphic to OBSTb1
or OBSTb2. Then v2 is adjacent to a vertex with list of size two, and
by (5), this vertex is w1; hence, we have w1 6= v1. Note that there
exists a path w1xy in H such that y has list of size two. By (18), we
have |L(y)| = 3, hence y is adjacent to z2 or v4. Since w has degree at
least three, (5) implies x = w and y = w5. If H were OBSTb1, then
w5 would be adjacent to p0, and by (11) applied to v4z2w5p0, we would
have that v5 is adjacent to p0, contradicting (8). It follows that H is
OBSTb2. Note that w1 is not adjacent to p1, thus the unique neighbor
z of p1 in V (H) \ V (C) satisfies L′(z) \L(p1) 6= L′(w5). However, then
H is L′-colorable, contradicting the assumption that (OBSTb) does not
hold.

• Next, consider the case that z1w1, z2w3, v4w5 ∈ E(G). Note that w5

may be equal to v5. Similarly to the previous case, we conclude that
L(v2)\(L(v1)\L(p2)) = L(v3) ⊆ L(v4), that each color c

′ ∈ L(v4)\L(v5)
belongs to both L(v3) and L(z2) and that L(z1) = L(z2)—otherwise, we
can color a subset Y of X ∪{z2}, remove the colors of the vertices of Y
from the lists of their neighbors, and obtain a smaller counterexample
to Theorem 2.

If L(z2) 6= L(v4), then let ψ be an L-coloring of p2v1v2v3v4 such that
ψ(v4) 6∈ L(z2). Let G

′ be the graph obtained from G − {v3, z2, w3} by
adding the edge v2v4. Let c be a color that does not appear in any
of the lists and L′ the list assignment such that L′(x) = {ψ(x)} for
x ∈ {v1, v2}, L

′(v4) = {c}, L′(x) = (L(x) \ {ψ(v4)}) ∪ {c} for all other
vertices x adjacent to v4, and L

′(x) = L(x) otherwise. Note that G′

is not L′-colorable. Also, by (5), the edge v2v4 is not incident with
a (≤ 4)-cycle, and thus t(G′) ≥ B. Furthermore, the distance from
v2 to T in G is three, thus r(p0p1p2v1v2v4) ≥ B − 7 ≥ r(5). Since
v2 is not incident with a vertex with list of size two and every cycle
containing the edge v2v4 has length at least seven, G

′ satisfies (OBSTb)
and contradicts the minimality of G.

Therefore, L(z2) = L(v4). If p1 is adjacent to z1, then let G
′ = G −

{p2, v1, v2, v3, v4, z2, w3}. Let ψ be an L-coloring of the subgraph of G
induced by {p1, p2, v1, v2, v3, v4, z1, z2, w1, w2} such that ψ(v4) 6∈ L(v5)
and ψ(w2) 6∈ L(w3) \ {ψ(z2)}. Let L

′ be the list assignment such that
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L′(x) = {ψ(x)} for x ∈ {z1, w1, w2}, L
′(x) = L(x) \ {ψ(v4)} if x is a

neighbor of v4 and L
′(x) = L(x) otherwise. By (5), neither w1 nor w2

has a common neighbor with v4 (since if w5 6= v5, then w5 has degree
at least three). By (18), w1 has no neighbor with list of size two in G

′,
and since w1 has degree at least three, (5) implies that G

′ satisfies (Q).
Since G′ is not L-colorable, by the minimality of G we conclude that
G′ violates (OBSTb). Because w1 has degree at least three, (5) implies
that G′ contains OBSTb2. Let y be the neighbor of w2 with list of size
two and consider the path Q = v4w5w4w2y. If Q is not a subpath of C,
then v4 and w2 have a common neighbor by (11), implying that w2 has
degree two, which is a contradiction. Therefore, w5 = v5 and Q ⊂ C.
However, then there exists an L-coloring ψ′ of the subgraph of G split
off by the 3-chord p1z1w1w2 that differs from ψ exactly in the colors of
w1 and w2, and at least one of ψ and ψ

′ extends to an L-coloring of G.
This is a contradiction.

It follows that p1z1 6∈ E(G). Suppose now that w1 and w5 do not
have a common neighbor. Then, let G′ be the graph obtained from
G − {v3, z2, w3} by identifying z1 with v4 to a new vertex v, with the
list assignment L′ such that L′(v) = L(v4) \ L(v3), L

′(v1) = L(v1) \
L(p2), L

′(v2) ⊆ L(v2) \L
′(v1) has size one and L

′(x) = L(x) otherwise.
Observe that G′ satisfies t(G′) ≥ B and that it is not L′-colorable.
Also, since p1 is not adjacent to z1, (18) implies that G

′ satisfies (S3).
No vertex with list of size two is adjacent to p1 or v2 and the only
vertex with list of size two adjacent to v is v5, thus G

′ satisfies (Q).
We conclude that G′ violates (OBSTb); let H be the subgraph of G′

isomorphic to one of the graphs drawn in Figure 2. By (18), v2 has
degree two in H . If v had degree two, then v1v2v3v4 would be a subpath
of a cycle K of length at most seven in G, such that the open disk
bounded by K contains z1, z2 and w3. This contradicts (5), hence
v has degree three in H and H is OBSTb4. Let x be the common
neighbor of p2 and v in H . By (18), x is adjacent to z1 in G. In H ,
there exists a path xyzv5, and by (5) we have x = w1, y = w2, z = w4

and v5 = w5. Then G is the graph depicted in Figure 7(b), which is
L-colorable.

Therefore, w1 and w5 have a common neighbor w. By (18), |L(w)| = 3,
and by (5), w2 and w4 have degree three. Suppose now that w1 has no
neighbor in P . Then there exists an L-coloring ψ of the subgraph G0 of
G induced by V (P ) ∪ {v1, v2, v3, v4, z1, z2, w1} such that ψ(v4) 6∈ L(v5)
and either ψ(w1) 6∈ L(w2) or L(w2) \ {ψ(w1)} 6= L(w3) \ {ψ(z2)}. Let
G′ = G − {v3, v4, z2, w2, w3, w4} with the list assignment L

′ such that
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L′(x) = {ψ(x)} for x ∈ {v1, v2, z1}, L
′(w1) = {ψ(z1), ψ(w1)}, L

′(x) =
L(x)\{ψ(v4)} if x is a neighbor of v4 and L

′(x) = L(x) otherwise. Note
that G′ is not L′-colorable. By (5) and (18), G′ satisfies (I), and since
p1 is not adjacent to z1, G

′ satisfies (S3). Since w1 has no neighbor in
P and v2 has no neighbor with list of size two, G

′ also satisfies (Q).
We conclude that (OBSTb) is violated and that G′ contains one of the
graphs depicted in Figure 2; let H be such a subgraph. The inspection
of such graphs shows that if v2 has degree three in H , then it is incident
with a path v2xyz with |L′(z)| = 2, where z 6= w1. By (5), z is not
a neighbor of v4, hence |L(z)| = 2. However, that contradicts (18).
Therefore, v2 has degree two in H . Similarly, we conclude that v1 has
degree two inH , thusH is OBSTb1a, OBSTb1b or OBSTb4. Note that
there exists an L-coloring ψ′ of G0 such that ψ

′ matches ψ on v1, v2, v3

and v4, either ψ
′(w1) 6∈ L(w2) or L(w2) \ {ψ

′(w1)} 6= L(w3) \ {ψ
′(z2)},

and ψ′(z1) 6= ψ(z2) (ψ
′ may or may not differ from ψ on w1). Note

that ψ′ does not extend to a coloring of H ; that is only possible if H is
OBSTb1a and ψ(w1) = ψ′(w1). But then there exists a path v2z1xyp0

with |L′(y)| = 2. By (18), we have |L(y)| = 3, thus y is adjacent to v4.
However, then v4yp0 is a 2-chord contradicting (18).

Finally, consider the case that w1 has a neighbor pi ∈ V (P ). By (5), z1
has degree three. Observe that there exist colors c1 ∈ L(w1)\L(pi) and
c2 ∈ L(v2)\(L(v1)\L(p2)) such that c1 = c2 or c1 6∈ L(z1) or c2 6∈ L(z1).
LetG′ be the graph obtained fromG−{pi+1, . . . , p2, v1, z1, z2, w2, w3, w4}
by identifying w1 with v2 to a new vertex v. By (5), v is not incident
with a (≤ 4)-cycle, thus t(G′) ≥ B and d(p0 . . . piv) ≥ B − 4 > r(3).
Let c be a new color that does not appear in any of the lists and L′ the
list assignment such that L′(v) = {c}, L′(v3) = (L(v3) \ {c2}) ∪ {c},
L′(x) = (L(x) \ {c1}) ∪ {c} if x is a neighbor of w1 and L

′(x) = L(x)
otherwise. Observe that G′ is a counterexample to Theorem 2 smaller
than G, which is a contradiction.

Therefore, (B4) is false.
Suppose that (A4) holds. Note that w1 6= v1 and w5 6= v5, since v2 and

v4 have list of size three. Suppose first that there exists an L-coloring ψ
of the subgraph induced by V (P ) ∪ {v1, v2, v3, v4, w1, w2} such that ψ(v4) 6∈
L(v5) and |L(w3) \ {ψ(v3), ψ(w2)}| ≥ 2. Then, let G′ = G − {v3, v4, w3}
with the list assignment L′ such that L′(x) = {ψ(x)} for x ∈ {v1, v2, w1},
L′(w2) = {ψ(w1), ψ(w2)}, L

′(x) = L(x) \ {ψ(v4)} if x is a neighbor of v4 and
L′(x) = L(x) otherwise. Note that G′ is not L-colorable, and the choice of
ψ ensures that (S3) holds. By (5), no neighbor of w2 is adjacent to v4, as
otherwise w5 would have degree two; thus, (18) implies that (I) holds. As w1
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has degree at least three, (5) implies that w2 is not adjacent to a vertex of P
and (Q) holds. Therefore, G′ violates (OBSTb) and contains a subgraph H
isomorphic to one of the graphs drawn in Figure 2. No neighbor of v2 has list
of size two, thus w1 belongs to H . If v1 or v2 had degree greater than two in
H , then G would contain a (≤ 3)-chord contradicting (9) or (18); hence, H
is OBSTb1a, OBSTb1b or OBSTb4. Since w1 has degree at least three, H
is not OBSTb1a. If H were OBSTb1b, then G would contain a (≤3)-chord
starting in v2 contradicting (18). Finally, if H is OBSTb4, then let w2yz be
the path in the boundary of the outer face of H with |L′(z)| = 2. If z is a
neighbor of v4, then by (5) we have y = w4 and z = w5; however, then there
exists a path v4w5y

′z′ in the boundary of the outer face of H with |L(z′)| = 2,
contradicting (18). Otherwise, we have |L(z)| = 2. Consider the subgraph
split off by v3w3w4w2yz. Since both v3 and z have list of size two and w3

and y have no common neighbor, this subgraph satisfies the assumptions of
Theorem 2, contradicting the minimality of G.
Suppose now that such a coloring ψ does not exist. (5) and (18) show that

can only happen if w1 is adjacent to p1. Since w5 has degree at least three,
(11) implies that w4 has no neighbor in P . Let ψ

′ be an L-coloring of the
subgraph induced by V (P )∪{v1, v2, v3, v4, w1, w2, w3, w4} such that ψ

′(v4) 6∈
L(v5), G

′ = G − {p2, v1, v2, v3, w3}, L
′(x) = {ψ′(x)} for x ∈ {w1, w2, w4},

L′(x) = L(x) \ {ψ′(v4)} if x is a neighbor of v4 and L
′(x) = L(x) otherwise.

By (5) and (18), w2 is not adjacent to any vertex with list of size two and w5 is
the only neighbor of w4 with list of size two. Furthermore, w5 is not adjacent
to p0 by (18), and it is not adjacent to p1, since (similarly to (11)) we would
have that the path p0p1w5v4 splits off a 5-face, implying that v5 is adjacent
to p0 and contradicting (8). It follows that G

′ satisfies (Q). Furthermore,
G′ satisfies (OBSTb), since by (18) it does not contain a path v4w5xy with
|L(y)| = 2. Therefore, G′ a counterexample to Theorem 2 smaller than G,
which is a contradiction. Therefore, (A4) is false.
Suppose now that (B3) holds. Let ψ be an L-coloring of the subgraph G0

of G induced by V (P ) ∪ {v1, v2, . . . , v6, w2} such that ψ(v6) 6∈ L(v7) (w2 has
no neighbor in P by (5), thus such a coloring exists). Let L′ be the list assign-
ment such that L′(x) = {ψ(x)} for x ∈ {v1, v2, v3}, L

′(v4) = {ψ(v3), ψ(v4)},
L′(x) = L(x) \ {ψ(y)} if x has a neighbor y ∈ {w2, v6} and L

′(x) = L(x)
otherwise. The graph G′ = G − {v5, v6, w2} is not L

′-colorable, and by (5)
and (9), it satisfies (I) and (Q). Furthermore, note that there exists another
L-coloring ψ′ of G0 such that ψ

′(v6) = ψ(v6), ψ
′(w2) = ψ(w2), ψ

′(v4) 6= ψ(v4)
and ψ′(v2) 6= ψ(v2), thus we can choose ψ so that (OBSTb) holds, unless G

′

contains OBSTb3. By (5) and (18), we then have that z1 is adjacent to p1

and w1 is adjacent to p0, and by (11) applied to v6w2w1p0, v7 is adjacent to
p0. Nevertheless, such a graph is L-colorable. Therefore, G

′ contradicts the
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minimality of G. It follows that (B3) is false as well, hence

G satisfies (A2), (A5) or (B1).
(22)

Suppose that there exists a vertex t ∈ V (T ) ∩ (V (P ) ∪ {v1}). Let G
′ be

the graph obtained from G by splitting t to two vertices t′ and t′′ and adding
a new vertex v adjacent to t′ and t′′, so that T becomes a 5-face. Let ψ be an
L-coloring of the subgraph of G induced by V (P ) ∪ {t}, c a color that does
not appear in any of the lists, and let L′ be the list assignment such that
L′(t′) = L′(t′′) = {ψ(t)}, L(v) = {c} and L′(x) = L(x) otherwise. Note that
G′ is not L′-colorable, thus it must violate (OBSTb); let H be the subgraph
of G′ isomorphic to one of the graphs in Figure 2. In H , v has degree two and
is incident with a 5-face. If t ∈ V (P ), then H is OBSTb1 or OBSTb2; but
then G contains OBSTx1c or OBSTa6. Therefore, t = v1. If H is OBSTb1,
then G contains OBSTx1; if H is OBSTb1a, then G contains OBSTx1a; if H
is OBSTb1b, then G contains OBSTx1b; if H is OBSTb2b, then G contains
OBSTx4; and if H is OBSTb5, then G contains OBSTx2b. It follows that H
is OBSTb4 or OBSTb6. By (5) and (9), we conclude that G is equal to the
graph obtained from H by removing v and identifying t′ with t′′. However,
then G is L-colorable. Therefore,

V (T ) ∩ (V (P ) ∪ {v1}) = ∅.
(23)

Let X ′ be the subset of {vs, vs−1, vs−2, vs−3} defined symmetrically to X
on the other side of P . By symmetry and the assumption that t(G) ≥ B, we
conclude that T is also incident with a vertex of X ′ (the case (A2)) or one
of the vertices z′1 or z

′

2 incident with the 5-face vs−1vs−2vs−3z
′

2z
′

1 (the cases
(B1) and (A5)). Let b be the first vertex in the sequence v2, v3, z1, z2 and v4

that is incident with T , and let b′ be the first such vertex among vs−1, vs−2,
z′1, z

′

2 and vs−3. Note that either b = b′ or b and b′ are adjacent.
Suppose now that V (T ) ⊆ V (C). In this case (A5) does not hold. By

(15), we have b ∈ {v3, v4} and b
′ ∈ {vs−2, vs−3}. If b

′ = vs−3, then vs−3 ∈ X ′

and by the choice of X ′, we have |L(vs−2)| = 2. This contradicts (15). Thus
b′ = vs−2 and symmetrically, b = v3. By (15), we have |L(v2)| = |L(vs−1)| =
3, and by (16), |L(v1)| = 2. However, then X = {v1} and b 6∈ X, which is a
contradiction. It follows that

T shares at most two vertices with C.
(24)

Suppose that vs−3 ∈ X ′∩V (T ) and vs−2 6∈ V (T ). The choice ofX ′ implies
that |L(vs−3)| = 3 and |L(vs−2)| = |L(vs−4)| = 2. If {v2, v3, v4} ∩ V (T ) = ∅,
then b ∈ {z1, z2}; let v ∈ {v2, v4} be the neighbor of b. By (18) applied
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to vbvs−3, we conclude that T = vbvs−3, contrary to the assumption that
v 6∈ V (T ). It follows that a vertex of {v2, v3, v4} ∩ V (T ) is equal to either
vs−3 or vs−4. By (8), we have 6 ≤ s ≤ 8. If s = 8, then v4 = vs−4, which
is only possible if both X and X ′ satisfy (A5). Let z1z2z3 be the path such
that T = z2v4v5, z1 is adjacent to v2 and z3 is adjacent to v7. Let ψ be an
L-coloring of the subgraph of G induced by V (P )∪{v1, v2, v3, v6, v7, v8} such
that ψ(v3) 6∈ L(v4) or ψ(v6) 6∈ L(v5) or L(v4) \ {ψ(v3)} 6= L(v5) \ {ψ(v6)}.
Let G′ = G − {v3, v4, v5, v6} with the list assignment L

′ such that L′(x) =
{ψ(x)} for x ∈ {v1, v8}, L

′(v2) = {ψ(v1), ψ(v2)}, L
′(v7) = {ψ(v7), ψ(v8)} and

L′(x) = L(x) otherwise. Note that G′ is not L′-colorable, and since v2 and
v7 are the only vertices with list of size two, it is easy to see that it satisfies
the assumptions of Theorem 2. This contradicts the minimality of G.
Therefore, s ≤ 7. By (7) and (24), C has no chords. If t ∈ V (T ) \ V (C)

has a neighbor v ∈ V (C), then vt is an edge of T , as otherwise (5) would
imply that vs−1 or vs−5 (which have lists of size three) has degree two. Note
that there exists at most one vertex with two neighbors in the path p0p1p2v1v2

and another neighbor in T . If such a vertex v exists, then vs−4 has degree two
by (5), hence V (T )∩V (C) = {vs−3}. Therefore, there exists an L-coloring ψ
of the subgraph of G induced by V (P )∪V (T )∪{v1, v2, . . . , vs−4, v} such that
ψ(vs−3) 6∈ L(vs−2). Let G

′ = G−V (T ) and let L′ be the list assignment given
by L′(x) = {ψ(x)} for x ∈ {v1, v2, . . . , vs−5}, L

′(vs−4) = {ψ(vs−5), ψ(vs−4)},
L′(x) = L(x) \ {ψ(y)} if x has a neighbor y ∈ V (T ), and L′(x) = L(x)
otherwise. Note that G′ is not L′-colorable, and by (5) and (18), it satisfies
(I). The choice of ψ ensures that (Q) holds as well. Thus, G′ must violate
(OBSTb), and in particular s = 7 and v3 6∈ V (T ). Let H be the subgraph of
G′ isomorphic to OBSTb1 or OBSTb2. By (5), vs is the only vertex with list
of size two adjacent to p0, thus vs ∈ V (H). Let vsxy be the path in the outer
face of H such that |L′(y)| = 2. By (5), we have x = vs−1 and y = vs−2.
hence H is OBSTb2. But then there exists a path of length three joining
v2 with vs−2 and contradicting (18). Therefore, if vs−3 ∈ X ′ ∩ V (T ), then
vs−2 ∈ V (T ), and in particular, b′ 6= vs−3. Symmetrically,

if v4 ∈ X ∩ V (T ), then v3 ∈ V (T ),
(25)

and b 6= v4.
If b 6∈ {z1, z2} and b

′ 6∈ {z′1, z
′

2}, then since ℓ(C) > 8, we have b = v3

and b′ = vs−2 = v4. By symmetry, we may assume that |L(v4)| = 3, and
since v4 ∈ X ′, the choice of X ′ implies that |L(v5)| = 2, |L(v6)| = 3 and
|L(v3)| = 2. Consequently, |L(v2)| = 3 and |L(v1)| = 2. Let ψ be a coloring of
the subgraph of G induced by V (P )∪V (T )∪{v1, v2} such that ψ(v4) 6∈ L(v5);
note that (5) implies that the vertex of V (T )\V (C) is not adjacent to a vertex
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of P , ensuring that such a coloring exists. Let G′ = G − V (T ) and let L′

be the list assignment such that L′(v1) = {ψ(v1)}, L
′(v2) = {ψ(v1), ψ(v2)},

L′(x) = L(x) \ {ψ(y)} if x has a neighbor y ∈ V (T ), and L′(x) = L(x)
otherwise. The graph G′ is not L′-colorable, and by (5) and (18), it satisfies
(I) and (Q). This contradicts the minimality of G. Thus, we may assume
that say b ∈ {z1, z2}.
If b = z1, then (18) implies that b 6= b′ and b′ ∈ {z′1, z

′

2}. Let V (T ) =
{b, b′, t}, let v′ ∈ {vs−1, vs−3} be the neighbor of b

′ and let G2 be the subgraph
split off by v2z1b

′v′. If T 6⊂ G2, then (11) implies that v2 and v
′ have a

common neighbor with list of size two, hence v′ = v4 = vs−3 and b
′ = z′2. By

(5), we have z′2 = z2. Note that t 6= z′1, since b
′ 6= z′1. If t has a neighbor in

P , then since z′1 has degree at least three, (5) implies that tp0, z
′

1p1 ∈ E(G).
However, such a graph is L-colorable. It follows that t has no neighbor
in P . Similarly, z1 and z2 have no neighbors in C other than v2 and v4

and no neighbor of v7 is adjacent to a vertex of T . There exists an L-
coloring of the subgraph of G induced by V (P ) ∪ V (T ) ∪ {v1, v2, v3} such
that |L(v4) \ {ψ(v3), ψ(z2)}| ≥ 2. Let G′ = G − (V (T ) ∪ {v3, v4, v5}) with
the list assignment L′ such that L′(v1) = {ψ(v1)}, L

′(v2) = {ψ(v1), ψ(v2)},
L′(x) = L(x) \ {ψ(y)} if x has a neighbor y ∈ V (T ), and L′(x) = L(x)
otherwise. Observe that G′ satisfies the assumptions of Theorem 2 and is
not L′-colorable, contradicting the minimality of G.
Let us now consider the case that T ⊆ G2. Since t has degree at least

three, we conclude that the subgraph of G split off by the path v2z1tb
′v′ is

OBSTb1, t = z2 and either z
′

2 = z2, b
′ = z′1 and s = 7, or b′ = z′2 and s = 9.

Suppose that b or b′ has a neighbor in P . If s = 7, then the resulting graph
would be L-colorable. If s = 9, then (5) implies that z′1 has degree two. This
is a contradiction, hence neither b nor b′ has a neighbor in P . Let ψ be an
L-coloring of the subgraph of G induced by V (P ) ∪ V (T ) ∪ {v1, v2, v3} such
that |L(v4) \ {ψ(v3), ψ(t)}| ≥ 2. Let G′ = G − {v3, v4, v5, t} if s = 7 and
G′ = G − {v3, v4, v5, v6, v7, t} if s = 7, with the list assignment L′ such that
L′(x) = {ψ(x)} if x ∈ {v1, v2, z1}, L

′(b′) = {ψ(b′), ψ(z1)} and L
′(x) = L(x)

otherwise. Note that G′ is not L′-colorable, thus it violates (OBSTb). Since
b′ and vs are the only vertices with list of size two, G

′ contains OBSTb1a,
OBSTb1b or OBSTb3 as a subgraph; and if s = 9, (5) implies that z′1 belongs
to this subgraph. However, in all the cases the resulting graph is L-colorable,
which is a contradiction.
Therefore, we have b = z2. Suppose that b

′ ∈ V (C). If b′ = v4, then (25)
implies that v4 6∈ X, thus (A5) holds and v5 ∈ V (T ). This is a contradiction,
as we would choose b = v5. Therefore, b

′ 6= v4, and (18) implies that the
2-chord v4bb

′ splits off T , thus b′ = v5. Since v3 6∈ V (T ), we have v4 6∈ X and
(A5) holds by (25). However, since |L(v4)| = |L(v5)| = 3, we have v5 6∈ X ′,
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and since b′ ∈ X ′, this is a contradiction.
Finally, consider the case that b′ 6∈ V (C). Note that b′ 6= z′1, since we

already excluded the symmetric case b = z1, hence b
′ = z′2. Suppose first

that b = b′. By (18), we have vs−3 ∈ {v4, v5}. If vs−3 = v4, then let
V (T ) = {b, t, t′}, and note that {t, t′} ∩ {z1, z

′

1} = ∅, by the choice of b and
b′. Since z1 and z

′

1 have degree at least three, (5) implies that the vertices
of T have no neighbors in P , and that the distance between T and {v1, v7}
is at least three. There exists an L-coloring ψ of the subgraph of G induced
by V (P )∪V (T )∪{v1, v2, v3} such that |L(v4) \ {ψ(v3), ψ(b)}| ≥ 2. Let G′ =
G−{v3, v4, v5, b, t, t

′} and L′ the list assignment such that L′(v1) = {ψ(v1)},
L′(v2) = {ψ(v2)}, L

′(x) = L(x) \ {ψ(y)} if x has a neighbor y ∈ V (T ) and
L′(x) = L(x) otherwise. Observe that G′ is not L′-colorable and satisfies (I).
Since z1 has degree at least three, (5) implies that G

′ satisfies (Q). It follows
that G′ contains a subgraph H isomorphic to OBSTb1 or OBSTb2. By (5),
we have z1, v7 ∈ V (H). If H is OBSTb1, then C has a 3-chord v2z1xv7

contradicting (18). If H is OBSTb2, then G contains a path v2z1xyzv7,
where y has a neighbor in T . However, then t or t′ has degree two by (5),
which is a contradiction.
If vs−3 = v5, then both X and X

′ satisfy (A5). By (18), we have z1 6= z′1.
Since both z1 and z

′

1 have degree at least three, (5) implies that b has no
neighbor in P and is in distance at least three from {v1, v7}. Let ψ be an
L-coloring of the subgraph of G induced by V (P ) ∪ V (T ) ∪ {v1, v2, v3} such
that ψ(v5) 6∈ L(v6). Let G

′ = G−{v3, v4, v5, v6, b} and L
′ the list assignment

such that L′(v1) = {ψ(v1)}, L
′(v2) = {ψ(v2)}, L

′(x) = L(x) \ {ψ(y)} if x has
a neighbor y ∈ V (T ) and L′(x) = L(x) otherwise. Observe that G′ is not
L′-colorable and satisfies (I) and (Q). By the minimality of G, G′ contains a
subgraph H isomorphic to OBSTb1 or OBSTb2. The distance between the
neighbors of b is at least three, thus at most one of them belongs to H and
has list of size two. It follows that H is OBSTb1 and v7 ∈ V (H). However,
then z1 or z

′

1 has degree two by (5), which is a contradiction.
We conclude that b 6= b′. Since T has two vertices that do not belong to C,

neither X nor X ′ satisfies (A5). Since v3 6∈ V (T ), by (25) we have v4 6∈ V (T ),
and symmetrically, vs−3 6∈ V (T ); thus, vs−3 6= v4. Let {t} = V (T ) \ {b, b′}.
Consider the 3-chord Q = v4bb

′vs−3 and the subgraph G2 split off by it. If
T 6⊂ G2, then (11) implies that v4 and vs−3 have a common neighbor, and
thus s = 9. If T ⊂ G2, then we similarly conclude that v4btb

′vs−3 splits off
OBSTb1, i.e., s = 11 and t is adjacent to v6.
Let S1 = L(v2)\(L(v1)\L(p2)) and S2 = L(vs−1)\(L(vs)\L(p0)). By the

minimality ofG, we have |S1| = |S2| = 2, as otherwise we can remove the edge
v1v2 or vs−1vs. Suppose now that there exists an L-coloring ψ of T such that
for every c1 ∈ S1 and c2 ∈ S2, there exists an L-coloring ϕ of the subgraph
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of G induced by V (T )∪ {v2, v3, . . . , vs−1} such that ϕ(v2) = c1, ϕ(vs−1) = c2
and ϕ(x) = ψ(x) for x ∈ V (T ). Let G′ = G − (V (T ) ∪ {v3, v4, . . . , vs−2})
and let L′ be the list assignment such that L′(x) = L(x) \ {ψ(y)} if x has
a neighbor y in V (T ) and L′(x) = L(x) otherwise. The choice of ψ implies
that every L′-coloring of G′ corresponds to an L-coloring of G, thus G′ is
not L′-colorable. Note that no vertex of T is adjacent to a vertex of P and
that the distance between T and {v1, vs} is at least three, since otherwise (5)
would imply that z1 or z

′

1 has degree two. Thus, G
′ satisfies (S3) and (I).

Furthermore, it satisfies (OBSTa), since otherwise a triangle of G′ would be
in distance at most 7 from T , contradicting t(G) ≥ B. Therefore, G′ would
be a smaller counterexample to Theorem 2, which is a contradiction.
We conclude that no such L-coloring ψ exists. In particular, for any

color c ∈ L(b), the list L(v4) \ {c} has size two and intersects L(v3). It
follows that L(v3) ⊆ L(v4) = L(b), and symmetrically, L(vs−2) ⊆ L(vs−3) =
L(b′). Similarly, we conclude that L(v3) = S1, L(vs−2) = S2, L(v5) ⊆ L(v4),
L(vs−4) ⊆ L(vs−3), and if s = 11, then L(v5), L(v7) ⊆ L(v6) = L(t). If
L(v3) = L(v5) = S1, then choose ψ(b) ∈ S1 arbitrarily. Now, regardless of
the values of c1, c2 and the rest of ψ, we can choose the color of v4 to be
the unique color in L(v4) \ S1, and the L-coloring ϕ will exist. Therefore,
L(v5) 6= S1 and L(vs−4) 6= S2. Similarly, if s = 11, then L(v5) 6= L(v7). Let
{c3} = L(v5) ∩ S1. Let ψ(b) be the unique color in S1 \ L(v5). Furthermore,
if s = 11 then let ψ(t) = c3, and if s = 9 then let ψ(b′) = c3. Observe that ψ
(extended to the third vertex of T arbitrarily) has the required property—if
c1 6= ψ(b), then we can color v3 by ψ(b), so that two neighbors of v4 have the
same color. And if c1 = ψ(b), then we can color v3 by c3, v4 by the color in
L(v4) \ S1 and v5 with c3, so that v6 has two neighbors with the same color.
This contradiction finishes the proof of Theorem 2.

3 Concluding remarks

The proof of Theorem 2 follows the lines of the original Thomassen’s proof [11].
However, a basically unavoidable part of the proof—the need to handle 2-
chords, so that we can color and remove a 5-face in (21)—forces us to deal
with a large number of counterexamples to the claim “every precoloring of
a path of length two can be extended.” Especially painful is the obstruction
OBSTx1, which even applies to a path of length one. One could ask whether
we could not avoid this by forbidding vertices with list of size two in tri-
angles completely. This cuts down the number of obstructions significantly,
and indeed, this was our original aim. However, at the final stage of the
proof, we would only end up knowing that there is a triangle whose distance
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is at most two from a vertex on each side of the precolored path P . This
is a quite small amount of structure to work with, making the arising case
analysis extremely difficult. Additionally, one runs into trouble if these two
vertices are in fact identical, which would essentially force extending Corol-
lary 3 to precolored cycles of length at most 10. The number of obstacles for
such cycles then becomes rather large, and it is not quite clear how such an
extension of Corollary 3 could be proved.
Another point where one could hope to save on obstructions is by only

considering the precoloring of a path of length at most 4 in case that (≤4)-
cycles are far enough from it. However, there are many places throughout
the proof where it is useful to extend the coloring of a path of length two
to a coloring of a path of length five, and it is unclear how to handle these
situations using only paths of length four.
Consequently, we end up with a nontrivial number of obstructions, and

the proof becomes rather technical. Despite the length of this paper, still a
large amount of work is hidden in the need to carefully verify all the claims;
in particular, we in general do not give detailed proofs of colorability of the
described graphs. We feel that doubling the length of the paper by spelling
out all these technical details would not make the exposition any clearer or
more believable. Similar remarks apply to other results proved using this
technique (even the original paper of Thomassen [6], although written quite
shortly, becomes rather long when all details are worked out). Given the
rather repetitive nature of the arguments, one wonders whether it would not
be possible to apply computer to obtain such proofs. Let us however note
that many of the reductions appearing in our proof are quite tricky and it is
not immediately obvious how they could be obtained mechanically.
On the positive side, Theorem 2 is somewhat interesting even for graphs

of girth five, since it describes which precolorings of a path of length at most
five can be extended. This might be useful as a technical tool in further study
of 4-critical graphs of girth five. Similarly, Theorem 2 and Corollary 3 give
interesting information regarding graphs with exactly one cycle of length at
most four.
Compared with the solution to Havel’s problem [6], our proof is rather

elementary, not using any deeper results. Would it be possible to apply the
techniques of [6] instead? Possibly, but it would require developing a new
proof of 3-choosability of planar graphs of girth 5 based on reducible con-
figurations and discharging. While our initial inquiry in that direction was
somewhat encouraging, it seems inevitable that the set of reducible configu-
rations needed would be rather large (possibly hundreds as opposed to about
10 needed in [6] for the case of 3-coloring), so the proof would become of
somewhat dubious value.
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Finally, let us remark that we could require a much weaker assumption on
the distance between 4-cycles, since in most of the arguments only triangles
cause problems. However, for obvious reasons we did not want to complicate
the proof any more.
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