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Abstract

A graph G is k-choosable if G can be properly colored whenever
every vertex has a list of at least k available colors. Thomassen’s
theorem states that every planar graph is 5-choosable. We extend
the result by showing that every graph with at most two crossings is
5-choosable.

1 Introduction

All graphs considered in this paper are simple, i.e., without loops or parallel
edges. We denote the set of vertices of a graph G by V (G) and the set of
edges by E(G). The crossing number of G, denoted by cr(G), is the minimum
possible number of crossings in a drawing of G in the plane.

Let G be a graph and C a set of colors. A list assignment is a function
L : V (G) → 2C . We say that G is L-colorable if there exists a coloring
ϕ : V (G) → C such that ϕ(v) ∈ L(v) for every vertex v ∈ V (G) and
adjacent vertices are assigned different colors. We say that a graph G is
k-choosable if G is L-colorable whenever L assigns at least k colors to each
vertex.

The concept of list colorings and choosability was introduced by Vizing [8]
and independently by Erdős et al. [3]. Clearly, if a graph is k-choosable, then
it is also k-colorable. However, the opposite implication does not hold. For
instance, there exist planar graphs that are not 4-choosable, see Voigt [9]. On
the other hand, Thomassen [7] gave a strikingly beautiful proof that every
planar graph is 5-choosable.
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A general bound for choosability of graphs on surfaces, an analogue of
Dirac’s Map-Color Theorem, is known due to Böhme et al. [1]. However,
only very few graphs have choosability close to this bound. DeVoss et
al. [2] obtained more general result claiming that locally planar graphs are
5-choosable, which extended the result of Thomassen to non-planar graphs.
Furthermore, Kawarabayashi and Mohar [5] proved that there are only finitely
many minimal graphs that are not 5-choosable on any fixed surface.

Note that the genus of any graph is bounded by its crossing number, thus
it might be possible to obtain more refined results by considering graphs with
bounded crossing number. For example, for ordinary chromatic number it is
easy to see that all graphs with crossing number at most two are 5-colorable.
Oporowski and Zhao [6] improved this result by showing that K6 is the only
6-critical graph with crossing number three, and conjectured that it is the
only 6-critical graph with crossing number at most 5. This was eventually
settled by Erman et al. [4], who proved that K6 is the only 6-critical graph
with crossing number at most 4 and gave an example of a 6-critical graph
K6-free graph with crossing number 5.

Similarly, the result of Thomassen can be easily used to derive that every
graph with at most one crossing is 5-choosable. Erman et al. [4] posed a
question if this is also true for graphs with two crossings. The main result of
this paper is the positive answer to this question:

Theorem 1. Every graph G with cr(G) ≤ 2 is 5-choosable.

Inspired by the result of Erman et al. [4], we pose the following open
problem:

Problem 1. Is it true that every K6-free graph G with cr(G) ≤ 4 is
5-choosable?

Note that the Four Color Theorem is used heavily in the coloring case,
thus it is not obvious that the results should generalize to the choosability
case.

2 5-choosability of graphs with two crossings

In order to show 5-choosability of planar graphs, Thomassen [7] proved the
following more general statement.

Theorem 2. Let G be a plane graph, F a face of G and xy an edge incident
with F . Then G is L-colorable for any list assignment L such that

• |L(v)| ≥ 5 for v ∈ V (G) \ V (F ),
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• |L(v)| ≥ 3 for v ∈ V (F ) \ {x, y},

• |L(x)|, |L(y)| ≥ 1, and

• if |L(x)| = |L(y)| = 1, then L(x) 6= L(y).

We frequently use the following observation:

Observation 3. Let G be a connected graph with a list assignment L. Sup-
pose that the subgraph G[S] of G induced by a set S ⊂ V (G) has an L-coloring
ψ. Let G′ = G − S and for every v ∈ V (G′) let L′(v) = L(v) \ {ψ(u) : u ∈
N(v)∩S}. If G′ and L′ satisfy the assumptions of Theorem 2 then ψ can be
extended to a coloring of G.

Instead of proving Theorem 1 directly, we prove a slightly stronger theo-
rem.

Theorem 4. Let G be a graph and L a list assignment such that either

• cr(G) ≤ 2 and |L(v)| ≥ 5 for every v ∈ V (G), or

• cr(G) ≤ 1, G contains a triangle T , L(v) = 1 for all v ∈ V (T ),
L(u) 6= L(v) if u and v are two distinct vertices of T and |L(v)| ≥ 5
for all v ∈ V (G) \ V (T ).

Then G is L-choosable.

Proof of Theorem 4. Let G and L be a counterexample with the smallest
crossing number, subject to that the smallest number of vertices, and sub-
ject to that the largest number of edges. Observe that G is connected, as
otherwise we can color each connected component of G separately. Further-
more, the minimum degree of v ∈ V (G) \ V (T ) is 5, as if v had degree at
most 4, then an L-coloring of G − v (which exists by the minimality of G)
can be extended to an L-coloring of G. Moreover, we assume that |L(v)| = 5
for all v ∈ V (G) \ V (T ) as removing colors from lists does not turn G into
an L-colorable graph.

Claim 1. cr(G) ≥ 1.

Proof. Suppose for contradiction that G is planar. By Theorem 2, it contains
a precolored triangle T = t1t2t3. Let S = {t1} and let ψ be a coloring of S
such that ψ(t1) ∈ L(t1). By applying Observation 3 we get an L-coloring of
G.
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We call crossings and T dangerous configurations. Since all graphs with
crossing number one are 5-choosable by [4], we can assume that G has two
dangerous configurations: either cr(G) = 2 or cr(G) = 1 and G contains T .
Let us fix a drawing of G with the minimum number of crossings.

Claim 2. If T exists, then no edge of T is crossed.

Proof. Let T = uvw, and assume for contradiction that the edge uv is crossed
by an edge xy. Let G1 be the subgraph of G induced by the vertices drawn
in the closed disk bounded by T , and let G2 = G − (V (G1) \ V (T )). By
symmetry, assume that x 6= w and x ∈ V (G1). There exists an L-coloring
of G2, and by Observation 3 applied with S = V (G2) \ {v, w}, this coloring
extends to an L-coloring of G. This is a contradiction.

Let C be a cycle in G. Let G1 be the subgraph of G consisting of vertices
and edges drawn in the closed disk bounded by C and G2 the subgraph
of G consisting of the vertices and edges drawn outside of the open disk
bounded by C. Note that G1 ∩ G2 = C. If no edge of C is crossed and
V (G1) 6= V (C) 6= V (G2), then we say that C is a separating cycle. We call
G1 and G2 the C-components.

Claim 3. G does not contain a separating triangle.

Proof. Suppose for a contradiction that there is a separating triangle C =
x1x2x3, and let G1 and G2 be the C-components. If both dangerous configu-
rations are in G1, we first color G1 by induction and then extend coloring of
C to G2 by Claim 1. Otherwise, without loss of generality, we assume that
if cr(G) = 1, then T ⊂ G1. We first color G1 and then extend the coloring
of C to G2, where C plays the role of the precolored triangle in G2.

Similarly (by adding vertices to extend the cut to a triangle if necessary)
one can prove the following.

Claim 4. G is 2-connected and if {u, v} is a cut in G, then uv is not a
non-crossed edge.

Furthermore, we can restrict separating 4-cycles.

Claim 5. G does not contain a separating cycle C of length four with both
dangerous configurations draw on the same side of C.

Proof. Suppose for a contradiction that there is a separating cycle C =
x1x2x3x4 with C-components G1 and G2, where both dangerous configu-
rations are in G1. By Claim 3, we can assume that C is an induced cycle in
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G2. By the minimality of G, there exists an L-coloring ψ of G1. Observa-
tion 3 used with S = V (G1) \ {x1, x2} implies that ψ can be extended to an
L-coloring of G, which is a contradiction.

Claim 6. No edge is crossed twice.

Proof. Suppose for a contradiction that an edge e = uv is crossed by edges
e1 and e2. We distinguish two cases depending on the number of vertices
incident with e1 and e2.

Suppose first that there exists a vertex w incident to both e1 and e2. Let
S = {u,w} and let ψ be an arbitrary L-coloring of S. Observation 3 implies
that ψ can be extended to an L-coloring of G, which is a contradiction.

Therefore, no vertex is incident with both e1 and e2. Let e1 = w1z1 and
e2 = w2z2. As G has the largest possible number of edges, we can assume
that C = uw1w2vz2z1 is a cycle of length 6 with both crossings drawn inside.
By Claim 5, no vertex is drawn inside C. Let S = {u,w1, w2} and let B be
the set of common neighbors of the vertices of S.

Since every vertex of C has degree at least 5, Claims 3, 4 and 5 imply that
B ∩ V (C) = ∅. Suppose there exists x ∈ B. Claim 5 implies that triangles
uw1x and xw1w2 bound faces. Hence w1 has degree four, contradicting that
the minimum degree of G is 5. So, B = ∅. We conclude that we can apply
Observation 3 for an arbitrary L-coloring of G[S] and obtain an L-coloring
of G.

It turns out that we can restrict our attention only to the case that T
exists.

Claim 7. cr(G) = 1.

Proof. For contradiction, assume that cr(G) = 2, and let edges e = xx′ and
f = yy′ cross each other. Let X = {x, x′, y, y′}. Let G′ be the graph obtained
from G−{e, f} by adding a new vertex v adjacent to all vertices of X. Note
that xy is an edge as G has the largest number of edges. Let L′ be the list
assignment such that L′(x) ⊆ L(x) and L′(y) ⊆ L(y) are distinct lists of size
one, L′(v) = {c} for a new color c that does not appear in any of the lists,
L′(x′) = (L(x′) \L′(x))∪{c}, L′(y′) = (L(y′) \L′(y))∪{c} and L′(z) = L(z)
for every z ∈ V (G) \ X. Since cr(G′) < cr(G), the graph G′ (with xyv
playing the role of the precolored triangle) has an L′-coloring ϕ. Note that
ϕ(x) 6= ϕ(x′) 6= c and ϕ(y) 6= ϕ(y′) 6= c, hence ϕ is also an L-coloring of
G.

Let X = {v1, v2, v3, v4}, where e = v1v3 and f = v2v4 cross each other.
Since G has the largest possible number of edges, the following claim holds.
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Claim 8. G[X] is a complete graph.

So, v1v2v3v4 is a cycle of length four enumerated in the clockwise order.
Let the precolored triangle T have vertices t1, t2 and t3 in the clockwise order.

Claim 9. Let h = uv be equal to e or f . If a vertex w is adjacent to both u
and v, then w belongs to X.

Proof. Suppose for a contradiction that w does not belong to X and let
{x, y} = X \ {u, v}. By symmetry between the cycles wuxv and wuyv, we
can assume that both dangerous configurations appear inside the closed disk
bounded by wuxv, and by Claim 5 the cycle wuxv is not separating. We
conclude that x has degree at most four, which is a contradiction.

Claim 10. G does not contain a separating cycle C of length four such that
|V (C) ∩ V (X)| ≥ 2.

Proof. Suppose for a contradiction that C is such a cycle. Note that no edge
of C is crossed as C is separating. Let G1 and G2 be the C-components,
where X ⊆ V (G2), and let u and v be two vertices in V (C) ∩ X. Claim 5
implies that both G1 and G2 contain a dangerous configuration.

By Claim 8, u and v are adjacent in G2. By Claim 9, uv is not a crossed
edge. By Claim 3, we conclude that uv is an edge of C and that C is an
induced cycle in G2. By the minimality of G, there exists an L-coloring ψ
of G1. Observation 3 used with S = (V (G1) \ V (C)) ∪ {u, v} implies that ψ
can be extended to an L-coloring of G, which is a contradiction.

Claim 11. V (T ) and X are disjoint.

Proof. Let uv be a non-crossed edge such that u ∈ V (T )∩X and v ∈ X. Let
S = {u, v} and ψ be an arbitrary L-coloring of G[S∪V (T )]. See Figure 1(a).
Observe that G − S is planar and all neighbors of S are incident with one
face. Hence, we can apply Observation 3 and obtain an L-coloring of G,
which is a contradiction.

Claim 12. There is no edge tv such that t ∈ V (T ) and v ∈ X.

Proof. Suppose without loss of generality that t1v1 is an edge. Let S =
{t1, v1, v2}, see Figure 1(b). By symmetry between v2 and v4 and by Claim 9,
we can assume that t1v4 6∈ E(G).

Let us construct an L-coloring ψ of S. Let ψ(t1) be the unique color in
L(t1) and choose the color of v1 so that ψ(v1) ∈ L(v1)\(L(t1)∪L(t2)∪L(t3)).
Now we need to choose ψ(v2) such that all vertices of G \ S except for t2
and t3 have at least three colors left in their lists. Hence we only need to
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Figure 1: The configurations of Claims 11 and 12.

deal with vertices in V (G) \ V (T ) adjacent to all three of t1, v1 and v2.
We call such vertex y a troublemaker if ψ(t1), ψ(v1) ∈ L(y). If there is no
troublemaker, then we choose ψ(v2) ∈ L(v2) \ ({ψ(v1), ψ(t1)}∪L(t2)∪L(t3))
and use Observation 3 to obtain an L-coloring of G.

Since t1v4 6∈ E(G), v4 is not a troublemaker. Furthermore, if t1v3 ∈
E(G), then v4 or v2 would have degree at most four by Claim 5, which is a
contradiction. Consequently, v3 is not a troublemaker. Suppose that there
is a troublemaker y ∈ V (G) \ (X ∪ V (T )). By Claim 3, t1v1y and v1v2y are
faces (hence, there is no other troublemaker) and t1 is not adjacent to v2.
Claim 10 implies that v2 is adjacent to neither t2 nor t3.

We choose ψ(v2) arbitrarily from L(v2)\(L(y)\{ψ(t1)}). Note that there
is at least one choice for ψ(v2), since ψ(t1) ∈ L(y). Because ψ(v1) ∈ L(y),
the resulting coloring of G[S] is proper. Furthermore,

|L(y) \ {ψ(t1), ψ(v1), ψ(v2)}| = 3,

hence Observation 3 applies.

Let P = p1 . . . pk be a path such that p1 ∈ V (T ) and pk−1, pk ∈ X and no
edge of P is crossed, see Figure 2. Let the score of this path be 2k− b, where

b =

{
1 if pk−2pk ∈ E(G)

0 otherwise.

Let P ⊆ G be such a path with the smallest possible score. By Claim 12,
we have k ≥ 4. Let P = p1p2 . . . pk−1, see Figure 2. The path P is induced, as
otherwise P would contain a shorter subpath with a smaller score. Assume
without loss of generality that p1 = t1.

Claim 13. If pi, pj ∈ V (P ) are neighbors of a vertex v ∈ V (G) \ V (P ), then
|i− j| ≤ 2.
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Figure 2: Paths P and P connecting dangerous configurations.

Proof. Suppose that i ≥ j + 3. Then the path p1 . . . pjvpi . . . pk is shorter
than P , contradicting the choice of P .

Claim 14. Every vertex v ∈ V (G) \ V (P ) has at most three neighbors in P .

Proof. Suppose for contradiction that v has at least four neighbors in P .
Claim 13 implies that v has four neighbors and they are pk−3, pk−2, pk−1 and
pk. Since the path p1 . . . pk−3vpkpk−1 does not have smaller score than P ,
it follows that pk is adjacent to pk−2. But that gives a contradiction with
Claim 3, since either pk−1pkv or pk−2pk−1pk is separating.

Observe that t2 and t3 have at most two neighbors in P . Furthermore,
consider a vertex u ∈ X; if u has three neighbors in P , then by the choice of
P , these neighbors are pk, pk−1 and pk−2. By Claim 9, pk−2 is not adjacent to
pk. This contradicts the choice of P , since the path p1 . . . pk−1u has smaller
score. Therefore, we have the following.

Claim 15. If v ∈ V (G)\V (P ) has three neighbors in P , then v 6∈ V (T )∪X.

For every vertex v ∈ V (G) \V (P ) with three neighbors in P , let gP (v) =
pi, where pi ∈ V (P ) is the neighbor of v with the largest i. We define
gP (v) = v if v has at most two neighbors in P . We write g(v) instead of
gP (v) for brevity when the path P is clear from the context.

Claim 16. If u and v are distinct vertices of V (G)\V (P ), then g(u) 6= g(v).

Proof. Let pg = g(u) = g(v) for two distinct vertices u and v. If g 6= k, then
both u and v are adjacent to pg−2, pg−1 and pg by Claim 13. However, that
contradicts Claim 3 or 5. Hence, we have g = k.

By the choice of P , all neighbors of u and v in P are contained in
{pk−3, pk−2, pk−1, pk}. By Claim 3, u and v cannot both be adjacent to pk−1,
thus assume that say u is adjacent to pk−3, pk−2 and pk. By Claims 5 and
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pk−2
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pk−3p1
T X

Figure 3: Positions of T , X, y and y′.

10, the cycle pk−2pk−1pku is not separating, hence by Claim 3, v is not ad-
jacent to pk−1. But then v is adjacent to pk−2 and the cycle pk−2pk−1pkv is
separating, which is a contradiction.

Let S = V (P ). We now attempt to construct an L-coloring ψ of G[S] so
that the assumptions of Observation 3 are satisfied.

We will assign the colors to all vertices of P in order. We start with
the unique choice ψ(p1) ∈ L(p1) and color p2 by a color ψ(p2) ∈ L(p2) \
(L(t1) ∪ L(t2) ∪ L(t3)). Note that no other vertex of P has a neighbor in
T . Suppose that we have already colored the vertices p1, . . . , pj−1 and
let Rj = V (G) \ {t2, t3, p1, . . . , pj−1}. For a vertex v ∈ Rj, let Bj(v) =
L(v)\{ψ(pi) : 1 ≤ i ≤ j−1, vpi ∈ E(G)}. We choose the color ψ(pj) ∈ Bj(pj)
in such a way that |Bj+1(v)| ≥ 3 for any v ∈ Rj+1. This coloring of P ensures
that all vertices of G − S other than t2 and t3 have at least three available
colors; and since t2 and t3 are adjacent we can apply Observation 3 and
obtain an L-coloring of G, which is a contradiction.

Let us now describe how ψ(pj) is chosen. Let y be a vertex such that
g(y) = pj if such a vertex exists. Regardless of the choice of ψ(pj), for any
vertex v ∈ Rj+1 other than y we have |Bj+1(v)| ≥ 3, since v has at most two
neighbors in {p1, . . . , pj} or it is not adjacent to pj. The same holds for y if
|Bj(y)| ≥ 4, thus assume that |Bj(y)| = 3. If Bj(pj) 6⊆ Bj(y), then we can
choose ψ(pj) ∈ Bj(pj) \Bj(y). Therefore, since |Bj(pj)| ≥ 3, we can assume
that Bj(pj) = Bj(y). Since |Bj(pj)| = 3, pj has two neighbors pi, pl ∈ V (P )
with i < l < j. Since the path P is induced, this is only possible if j = k
and pk is adjacent to pk−2. By Claim 3, y is not adjacent to pk−1. Since y
has exactly three neighbors in P , y is adjacent to pk−3, pk−2 and pk.

Consider now the path P ′ = p1 . . . pk−2pkpk−1 instead of P . Note that P ′

has the same score as P , thus we conclude that there also exists a vertex y′

adjacent to pk−1, pk−2 and pk−3. By Claim 3, ypk−3pk−2, ypk−2pk, y′pk−3pk−2

and y′pk−2pk−1 are faces, see Figure 3.
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Figure 4: Vertices w and w′ and position of T .

Let us fix a coloring ψ of P −{pk−2, pk−1, pk} such that |Bk−2(v)| ≥ 3 for
every v ∈ Rk−2. By the preceding arguments, we can assume the following.

Claim 17. There is no L-coloring of G[V (T )∪V (P−pk)] such that |Bk(v)| ≥
3 for every v ∈ Rk and |Bk(y)| ≥ 4 or Bk(pk) 6= Bk(y).

The only neighbors of pk−2 in V (G) \ V (P ) are y and y′, hence there is
no vertex v ∈ V (G) \ V (P ) with g(v) = pk−2. Since ψ cannot be extended
to a coloring contradicting Claim 17, we will show that:

Claim 18. Bk−2(pk−2) = Bk−2(y) = Bk−2(y
′) and L(pk−1) = L(pk) =

Bk−2(pk−2) ∪ {c} for some color c.

Proof. Since pk−3 is the only neighbor of y, y′ and pk−2 in P−{pk−2, pk−1, pk},
we have |Bk−2(y)|, |Bk−2(y

′)|, |Bk−2(pk−2)| ≥ 4. If

|Bk−2(y)| = 5 or Bk−2(pk−2) 6⊆ Bk−2(y),

we can choose ψ(pk−2) ∈ Bk−2(pk−2) so that |Bk−1(y)| ≥ 4, and further
extend ψ to a coloring of P − pk contradicting Claim 17. It follows that
|Bk−2(y)| = 4 and Bk−2(pk−2) = Bk−2(y). Symmetrically, we obtain
Bk−2(pk−2) = Bk−2(y

′) by considering P ′.
Consider colors c1 ∈ L(pk−1) \Bk−2(pk−2) and c2 ∈ L(pk) \Bk−2(pk−2). If

c1 6= c2, then choose ψ(pk−2) ∈ Bk−2(pk−2) arbitrarily and set ψ(pk−1) = c2.
Since c2 ∈ Bk(pk) \ Bk(y), this coloring contradicts Claim 17. Therefore,
c1 = c2, which implies that L(pk−1) = L(pk) = Bk−2(pk−2) ∪ {c1}.

Let us now choose ψ(pk−2) ∈ Bk−2(pk−2) arbitrarily and set ψ(pk−1) = c.
Note that Bk(y) = Bk(y′) = Bk(pk).
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Let X \ {pk−1, pk} = {z, z′}, where z is joined to pk by a non-crossed
edge. By planarity, z′ is not adjacent to pk−2, thus Bk(z′) ≥ 4. Let
Q = p1 . . . pk−1z

′. If no vertex w′ 6∈ {y, y′, pk} satisfies gQ(w′) = z′, then we
can choose ψ(z′) ∈ Bk(z′) \Bk(y′) and apply Observation 3 with S = V (Q),
obtaining an L-coloring of G. Therefore, we may assume that there exists
such a vertex w′. Since w′ has at least three neighbors in Q and it is not
adjacent to pk−2 by planarity, the choice of P implies that w′ is adjacent to
pk−1 and pk−3. Symmetrically, by considering the path Q′ = p1 . . . pk−2pkz,
we conclude that there exists a vertex w 6∈ {y, y′, pk−1} adjacent to z, pk and
pk−3. However, by planarity either pk−3pk−2pk−1w

′ or pk−3pk−2pkw contra-
dicts Claim 5, see Figure 4 showing the possible positions of T with respect
to these cycles.
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