
Extending fractional precolorings ∗
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Abstract

For every d ≥ 3 and k ∈ {2} ∪ [3,∞), we determine the smallest ε such
that every fractional (k + ε)-precoloring of vertices at mutual distance at
least d of a graph G with fractional chromatic number equal to k can be
extended to a proper fractional (k + ε)-coloring of G. Our work comple-
ments the analogous results of Albertson for ordinary colorings and those
of Albertson and West for circular colorings.

1 Introduction

One of the most major results in graph theory is the Four Color Theorem which
asserts that every planar graph is 4-colorable. In [13], Thomassen posed the
following problem.

Problem 1. Suppose that G is a plane graph and W a subset of its vertices such
that the distance between any two vertices of W is at least 100. Can a 5-coloring
of W be extended to a 5-coloring of G?

Shortly after that, the problem was answered in affirmative by Albertson [1]
who established the following theorem.

∗This research was performed in the framework of the Czech-Slovenian bilateral grant
MEB091037 (the Czech side) and BI-CZ/08-09-005 (the Slovenian side).

†Department of Applied Mathematics and Institute for Theoretical Computer Science (ITI),
Faculty of Mathematics and Physics, Charles University, Malostranské náměst́ı 25, 118 00
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Theorem 2. Let G be an r-colorable graph and W a subset of its vertices such
that the distance between any two vertices of W is at least four. Every (r + 1)-
coloring of W can be extended to an (r + 1)-coloring of G.

It is possible to show that the constraint on the mutual distance between the
vertices of W to be at least four in Theorem 2 is the best possible even if the
graph G is planar, see [1] for further details.

Theorem 2 initiated a line of research [2–6, 9] where necessary and sufficient
conditions for the existence of an extension of a coloring of various types of
subgraphs have been considered. Inspired by this line of research, Albertson and
West [7] considered the coloring extension problem in the circular coloring setting.
The notion of circular colorings is a well-known relaxation of classical colorings
introduced in [14]; a wide list of results on circular colorings can be found in
two surveys on this notion by Zhu [15,16]. Another well-established relaxation of
classical colorings is the notion of fractional colorings, see [12], which we address
in this paper.

Before we state our results, let us introduce the related notation. A fractional
k-coloring of a graph G is an assignment of measurable subsets of the interval
[0, k) to the vertices of G such that each vertex receives a subset of measure one
and adjacent vertices receive disjoint subsets. The fractional chromatic number
of G is the smallest k such that G admits a fractional k-coloring; it can be
shown that such k exists (the minimum is attained) and the value of k is always
a rational (if G is finite). There is another (more discrete) definition of the
fractional chromatic number: the fractional chromatic number of a graph G is
the minimum of p/q such that there exists a coloring of the vertices of G with
p colors such that every vertex of G is assigned q colors and adjacent vertices
are assigned disjoint sets of colors. Another definition of the fractional chromatic
number can be given through a linear program assigning weights to independent
sets of G.

In this paper, we study conditions under which a fractional coloring of a part
of a graph can be completed to a fractional coloring of the whole graph. To be
precise, call a fractional k-precoloring an assignment of measurable subsets of
the interval [0, k) of unit measure to some vertices of a graph. If the precolored
vertices can be at distance at most two, then there is no k such that any fractional
k-precoloring can be extended to a fractional k-coloring of G even if we assume
that G is a tree. Hence, we restrict our attention to precolorings of vertices at
distance d ≥ 3.

Analogously to Albertson and West [7], we study what is the minimum value
of ε such that any fractional (k + ε)-precoloring of vertices at mutual distance d
of a fractionally k-colorable graph can be extended to a fractional (k+ε)-coloring
of the whole graph. Since the fractional chromatic number and the fractional list
chromatic number of a graph are always equal [8] (also see [12, Theorem 3.8.1]),
it follows that any such precoloring can be extended for ε ≥ 1 if d ≥ 3; thus, the
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minimum value is always at most one.
In general, the sought minimum value of ε depends on k and d. For k ∈

{2} ∪ [3,∞) and any d ≥ 3 (see our previous discussion for d ≤ 2), we have been
able to determine the optimal minimum value. For k ∈ (2, 3), upper bounds are
given. Our findings are summarized in the next theorem.

Theorem 3. Let G be a graph with fractional chromatic number k ∈ [2,∞) and
W a subset of its vertices at mutual distance at least d ≥ 3. For every real ε > 0
satisfying

k − 1 ≤ d′ε2 + (d′k − 1)ε if d = 0 mod 4,
k − 1 ≤ d′kε if d = 1 mod 4,
k − 1 ≤ d′ε2 + d′kε if d = 2 mod 4, and
k − 1 ≤ (d′k + k − 1)ε otherwise,

(1)

where d′ = ⌊d/4⌋, every fractional (k + ε)-precoloring of the vertices of W can be
extended to a fractional (k + ε)-coloring of G.

Moreover, for every rational k ∈ {2} ∪ [3,∞) and every ε > 0 not satisfying
(1), there exists a graph G with fractional chromatic k, a subset W of its vertices
at mutual distance at least d and a fractional (k + ε)-precoloring of the vertices
of W that cannot be extended to a fractional (k + ε)-coloring of G.

Theorem 3 follows from Theorems 9 and 12 which we establish in Sections 3
and 4. We have managed to give a construction that the condition (1) is the best
possible for k ∈ {2} ∪ [3,∞). The case k ∈ (2, 3) seems to be significantly more
difficult as we discuss in Section 5.

2 Universal graphs

The definition of fractional colorings allows defining a class of universal graphs,
i.e., a class such that every graph with fractional chromatic number k has a
homomorphism to one of the graphs in this class. Recall that a homomorphism
from a graph G to a graph H is a mapping f : V (G) → V (H) such that if u and
v are two adjacent vertices of G, then the vertices f(u) and f(v) are adjacent in
H . If such a mapping exists, we say that G is homomorphic to H .

Universal graphs for fractional colorings are Kneser graphs Kp,q; a graph
Kp,q for integers 1 ≤ q ≤ p has a vertex set formed by all q-element subsets

of [p] = {1, . . . , p}, i.e., V (Kp,q) =
(

[p]
q

)

. Two vertices A and A′ are adjacent

if A ∩ A′ = ∅. The fractional chromatic number of Kp,q is clearly at most p/q,
and it is not hard to show that it is actually equal to p/q. The definition of the
fractional chromatic number yields the following proposition which can also be
found, e.g., in [11]. We include a short proof for the sake of completeness.

Proposition 4. Let G be a graph with fractional chromatic number k. There
exist integers p and q such that k = p/q and G is homomorphic to the graph Kp,q.
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Figure 1: The ray S5,2,3.

Proof. By the definition of the fractional chromatic number, there exist integers
p and q, k = p/q, and a mapping f : V (G) →

(

[p]
q

)

such that f(u) ∩ f(v) = ∅

for any two adjacent vertices u and v of G (consider a coloring with p colors
assigning adjacent vertices disjoint sets of q colors). Observe that the mapping
f is a homomorphism from G to Kp,q.

Our proofs are based on defining and analysing graphs that are universal for
graphs (of a given fractional chromatic) with some vertices precolored. Graphs
we now define are sketched in Figures 1–3.

For integers p, q and ℓ, 1 ≤ q ≤ p/2 and 1 ≤ ℓ, and a subset X ∈
(

[p]
q

)

, the

ray SX
p,q,ℓ is the graph with vertex set formed by all pairs (A, i) where A ∈

(

[p]
q

)

and 1 ≤ i ≤ ℓ and the pair (X, 0). Two vertices (A, i) and (A′, i′) are adjacent if

A∩A′ = ∅ and |i− i′| ≤ 1. For brevity, Sp,q,ℓ will stand for S
[q]
p,q,ℓ in what follows.

The vertex (X, 0) of SX
p,q,ℓ is called the special vertex of SX

p,q,ℓ.
Observe that the graph SX

p,q,ℓ is homomorphic to Kp,q: map a vertex (A, i) of
SX

p,q,ℓ to the vertex A of Kp,q. In addition, the distance of the vertex (X, 0) from

any vertex (A, ℓ), A ∈
(

[p]
q

)

, is at least ℓ and the subgraph of SX
p,q,ℓ induced by

vertices (A, i), A ∈
(

[p]
q

)

, for a fixed integer i, 1 ≤ i ≤ ℓ, is isomorphic to Kp,q.

The subgraph of Sp,q,ℓ formed by vertices (A, ℓ), A ∈
(

[p]
q

)

, is called the base of
Sp,q,ℓ.

The graph P n
p,q,d, which we now define, is a universal graph for graphs with

fractional chromatic number p/q with precolored vertices at distance d. Fix
integers 1 ≤ q ≤ p/2, 3 ≤ d and 1 ≤ n. If d is even, the graph P n

p,q,d is obtained

by taking n copies of each of the rays SX
p,q,d/2 for every choice of X ∈

(

[p]
q

)

and

identifying the vertices (A, d/2) in all the copies to a single vertex. The n
(

p
q

)

special vertices of the rays used in the construction are referred to as special
vertices of P n

p,q,d.
If d is odd, the graph P n

p,q,d is obtained by taking n copies of each of the rays

SX
p,q,(d−1)/2 for every choice of X ∈

(

[p]
q

)

and joining any two vertices (A, (d−1)/2)

and (A′, (d − 1)/2) (of different copies) by an edge if A ∩ A′ = ∅. Again, the
special vertices of the rays are referred to as special vertices of P n

p,q,d.

4



Figure 2: A sketch of the graph P 1
5,2,8 (some rays are omitted).

Figure 3: A sketch of the graph P 1
5,2,9 (some rays are omitted).
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In the next two propositions, we summarize the properties of the graphs P n
p,q,d

needed further. The proof of the first one is straightforward and we leave it to
the reader.

Proposition 5. The graph P n
p,q,d for 1 ≤ q ≤ p/2 and 3 ≤ d is homomorphic to

Kp,q and its special vertices are at mutual distance at least d.

Proposition 6. Let G be a graph with fractional chromatic number k and W a
subset of its vertices at mutual distance at least d ≥ 3. There exist integers p and
q, 1 ≤ q ≤ p/2, and k = p/q, such that the graph G has a homomorphism to

P
|W |
p,q,d that maps the vertices of W to the mutually distinct special vertices.

Proof. Let n = |W | and W = {w1, . . . , wn}. By the definition of a fractional
coloring, there exist integers p and q and a mapping f : V (G) →

(

[p]
q

)

such that

f(u)∩ f(v) = ∅ for any two adjacent vertices u and v of G. We show that G has
a homomorphism to P n

p,q,d as described in the statement of the proposition.

Let SX,i
p,q,ℓ, X ∈

(

[p]
q

)

, ℓ = ⌊d/2⌋ and 1 ≤ i ≤ n, be the i-th copy of SX
p,q,ℓ used

in the construction of P n
p,q,d. The homomorphism from G to P n

p,q,d is defined as
follows. A vertex v of G at distance at most ⌊(d − 1)/2⌋ from a vertex wi of W

is mapped to the vertex (f(v), d′) of the copy S
f(wi),i
p,q,ℓ where d′ is the distance of

v from wi. In particular, if v = wi, then v is mapped to the special vertex of
S

f(wi),i
p,q,ℓ . Hence, all vertices of W are mapped to distinct special vertices of P n

p,q,d.
Since no vertex v can be at distance at most ⌊(d − 1)/2⌋ from two different

vertices of W (the mutual distance between vertices of W is d), the mapping is
well-defined for vertices of G at distance at most ⌊(d − 1)/2⌋ from a vertex of
W . If v is a vertex at distance at least ⌈d/2⌉ from all vertices of W , then v is

mapped to the vertex f(v), ℓ) of an arbitrary ray, e.g., to that of S
[q],1
p,q,ℓ.

It is straightforward to verify that the just defined mapping is a homomor-
phism from G to the graph P n

p,q,d.

3 Upper bounds

In this section, we focus on proving that every precoloring satisfying the assump-
tions of Theorem 3 can be extended. Before we proceed with detailed presentation
of our arguments, let us explain the main ideas we apply. By Proposition 6, it is
enough to consider universal graphs P n

p,q,d. For a given precoloring of the special
vertices, we first color the vertices of the base in such a way that their coloring
is pseudorandom with respect to the special vertices. This means that if d is
even, then the measure of the intersection of the set assigned to any vertex in the
base and the set of any special vertex is 1/(k + ε) (which would be the expected
intersection if we drew a random unit interval). If d is odd, we require that the
measure of the intersection of the set of any special vertex and the union of the
sets assigned to the copies of the same vertex in the bases of the rays is 1/k.
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The pseudorandomness of the coloring of the base guarantees that the coloring
behaves uniformly with respect to all the rays forming P n

p,q,d. This coloring of the
base and the special vertices is eventually extended inside the rays.

We start our exposition with two lemmas on extending fractional precolorings
of the special vertex and the base inside a ray. The first one will be applied if
⌊d/2⌋ is even and the second one if ⌊d/2⌋ is odd. To state the lemmas we need
additional notation. For a set A ⊆ [0,∞), 2A stands for the set of all measurable
subsets of A and ||A|| denotes the measure of A. We write f : [p] →֒ 2A for
mappings from [p] to 2A such that f(i) ∩ f(j) = ∅ for any two distinct integers
i, j ∈ [p]. If B is a subset of [p], then f(B) is the union of f(b) with b ∈ B.

We can now state the first of the two lemmas.

Lemma 7. Let p, q and ℓ be integers, 1 ≤ q ≤ p/2, ℓ = 0 mod 2 and ℓ ≥ 2,
and ε > 0. Let f : [p] →֒ 2[0,p/q+ε) be a mapping such that ||f(i)|| = 1/q for
every i ∈ [p] and let C be a subset of [0, p/q + ε) with ||C|| = 1. The fractional
(p/q + ε)-precoloring of Sp,q,ℓ given by assigning the special vertex the set C and
each vertex (A, ℓ) of the base the set f(A) can be extended to a proper fractional
(p/q + ε)-coloring of Sp,q,ℓ if

1 ≤ ||C ∩ f([q])|| +
ℓε

2
. (2)

Proof. The proof proceeds by induction on ℓ. Suppose that ℓ = 2. Since it
holds that ||C ∩ f([p] \ [q])|| ≤ ε, there exists a measure preserving mapping
m : [0, p/q + ε) → [0, p/q + ε) such that

• m is an identity on f([q]),

• m is an identity on f([p] \ [q]) \ C and

• m(f([p] \ [q]) ∩ C) ∩ C = ∅.

Assigning each vertex (A, 1), A ∈
(

[p]
q

)

, the set m(f(A)) yields a proper fractional

(p/q + ε)-coloring of Sp,q,2.
We now assume that ℓ ≥ 4. Let C0 be a subset of C ∩ f([p] \ [q]) with

||C0|| = max{ε, ||C ∩ f([p] \ [q])||}. Consider now a measure preserving mapping
m1 : [0, p/q + ε) → [0, p/q + ε), which exists since ||C0|| ≤ ε, such that

• m1 is an identity on f([q]),

• m1 is an identity on f([p] \ [q]) \ C0, and

• m1(C0) ∩ C = ∅.

Further, let m2 : [0, p/q + ε) → [0, p/q + ε) be a measure preserving mapping
(again, its existence follows from the fact that ||C0|| ≤ ε) such that
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• (f([q]) ∩ C) ∪ C0 ⊆ m2(f([q])) and

• m1 and m2 coincide on f([p]) \ m−1
2 (C0) ⊇ f([p] \ [q]).

We now extend the precoloring to the vertices (A, ℓ− 2) and (A, ℓ− 1), A ∈
(

[p]
q

)

.

The vertex (A, ℓ−2) is assigned the set m2(f(A)) and the vertex (A, ℓ−1) the set
m1(f(A)). It is straightforward to verify that the obtained fractional precoloring
assigns adjacent vertices disjoint subsets of [0, p/q+ε). Moreover, the set assigned
to ([q], ℓ−2) now contains (f([q])∩C)∪C0, i.e., it intersects C on a set of measure
at least 1− (ℓ− 2)ε/2. By induction, the precoloring can be extended to the rest
of the ray.

Lemma 8. Let p, q and ℓ be integers, 1 ≤ q ≤ p/2, ℓ = 1 mod 2 and ℓ ≥ 1,
and ε > 0. Let f : [p] →֒ 2[0,p/q+ε) be a mapping such that ||f(i)|| = 1/q for
every i ∈ [p] and let C be a subset of [0, p/q + ε) with ||C|| = 1. The fractional
(p/q + ε)-precoloring of Sp,q,ℓ given by assigning the special vertex the set C and
each vertex (A, ℓ) of the base the set f(A) can be extended to a proper fractional
(p/q + ε)-coloring of Sp,q,ℓ if

||C ∩ f([p] \ [q])|| ≤
(ℓ − 1)ε

2
. (3)

If ℓ = 1, we further require that f([p] \ [q]) ∩ C = ∅.

Proof. If ℓ = 1, then the statement holds since the precoloring is a proper coloring
of all the vertices of Sp,q,ℓ. Hence, assume ℓ ≥ 3. Let C0 = C \ f([p]) and
let m : f([q]) ∪ C0 → f([q]) ∪ C0 be a measure preserving mapping such that
m−1(C0) ⊆ f([q])\C and m is an identity on f([q])\m−1(C0). Define a mapping
f ′ : [p] →֒ 2[0,p/q+ε) by setting f ′(i) = m(f(i)) for i ≤ q and f ′(i) = f(i) for i > q;
then color a vertex (A, ℓ − 1) of Sp,q,ℓ by f ′(A).

By the choice of f ′, the sets assigned to adjacent vertices are disjoint. Observe
that f ′([q])∩C = (f([q])∩C)∪C0 and thus ||f ′([q])∩C|| = 1−||C ∩f([p]\ [q])||.
Since 1 ≤ ||C ∩ f ′([q])||+(ℓ− 1)ε/2, the precoloring of the vertices (A, ℓ− 1) can
be extended to a proper coloring by Lemma 7.

We are now ready to prove that the conditions given in Theorem 3 guarantee
the existence of an extension of a precoloring.

Theorem 9. Let G be a graph with fractional chromatic number k ∈ [2,∞) and
W a subset of its vertices at mutual distance at least d ≥ 3. For ε > 0 satisfying
(1), every fractional (k + ε)-precoloring of the vertices of W can be extended to a
fractional (k + ε)-coloring of G.

Proof. By Proposition 6, it is enough to prove the theorem for graphs P n
p,q,d

with special vertices precolored. Let C1, . . . , Cn(p

q)
, be the subsets of [0, p/q + ε)

assigned by the precoloring to the special vertices of P n
p,q,d. Define an equivalence
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relation on the points of [0, p/q+ε) such that two points x and y are equivalent if
|{x, y}∩Ci| ∈ {0, 2} for every i = 1, . . . , n

(

p
q

)

. Let D1, . . . , Dm be the equivalence

classes of this relation. Observe that m ≤ 2n(p

q) and every set Di, i ∈ [m], is
measurable.

The proof now proceeds differently depending on the parity of d. Suppose first
that d is even. Partition each set Di, 1 ≤ i ≤ m, into p + 1 subsets D0

i , . . . , D
p
i

such that ||D0
i || = ε||Di||

k+ε
and ||D1

i || = · · · = ||Dp
i || = ||Di||

q(k+ε)
and define a mapping

f : [p] →֒ 2[0,p/q+ε) by setting f(j) =
⋃m

i=1 Dj
i , j ∈ [p]. Observe that the sets

f(1), . . . , f(p) are disjoint and each has measure 1/q. The construction of the
sets D1, . . . , Dm implies that ||Ci ∩ f(j)|| = 1/(p + qε) for every i ∈ [n

(

p
q

)

] and

j ∈ [p].
We now color the vertices of the bases of the rays used in the construction

of P n
p,q,d; the vertex (A, d/2) of P n

p,q,d, A ∈
(

[p]
q

)

, is assigned the set f(A). Since

the sets f(1), . . . , f(p) are disjoint and ||f(1)|| = · · · = ||f(p)|| = 1/q, we have
obtained a proper precoloring of the base and the special vertex in each ray.
Consider one of the rays, say SX

p,q,d, and let Ci be the subset assigned to its
special vertex. Since ||Ci ∩ f(j)|| = 1/(p + qε) for every j ∈ [p], it holds that

||Ci ∩ f(X)|| =
1

k + ε
and ||Ci ∩ f([p] \ X)|| =

k − 1

k + ε
.

If d/2 is even, the coloring can be extended to the ray by Lemma 7, and if d/2 is
odd, it can be extended by Lemma 8. This finishes the analysis of the case when
d is even.

In the remainder of the proof, we assume that d is odd. In this case, we split
each Di, 1 ≤ i ≤ m, into p subsets D1

i , . . . , D
p
i such that ||D1

i || = · · · = ||Dp
i || =

||Di||/p. Next define a mapping f : [p] →֒ 2[0,p/q+ε) by setting f(j) =
⋃m

i=1 Dj
i ,

j ∈ [p]. Observe that the sets f(1), . . . , f(p) are disjoint and each has measure
k+ε
qk

> 1/q. The construction of the sets D1, . . . , Dm implies that ||Ci ∩ f(j)|| =

1/p for every i ∈ [n
(

p
q

)

] and j ∈ [p].
The base of each of the rays forming the graph P n

p,q,d will be colored individ-
ually obeying that the set assigned to a vertex (A, (d− 1)/2) is a subset of f(A).
This guarantees that the fractional coloring of the subgraph of P n

p,q,d induced by
the vertices of the bases is proper (recall that f(j) ∩ f(j′) = ∅ for j 6= j′).

Consider one of the rays SX
p,q,(d−1)/2 forming the graph P n

p,q,d and let Ci be
the set assigned to its special vertex; we modify the mapping f to a mapping
f ′ : [p] →֒ 2[0,p/q+ε) such that f ′(j) ⊆ f(j) and ||f ′(j)|| = 1/q for every j ∈ [p]. For
j ∈ X, choose f ′(j) to be any subset of f(j) such that f ′(j)∩Ci = f(j)∩Ci and
||f ′(j)|| = 1/q, i.e., ||f ′(j) ∩ Ci|| = 1/p. Observe that ||f(X) ∩ Ci|| = q/p = 1/k.
For j 6∈ X, choose f ′(j) to be any subset of f(j) such that ||f ′(j) ∩ Ci|| =
max{0, (1 − ε)/p} and ||f ′(j)|| = 1/q. The vertex (A, (d − 1)/2) of the base of
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SX
p,q,(d−1)/2 is now assigned the set f ′(A). It follows that

||f ′(X) ∩ Ci|| =
1

k
and ||f ′([p] \ X) ∩ Ci|| = max

{

0,
(k − 1)(1 − ε)

k

}

.

If (d − 1)/2 is even, the coloring can be extended to the ray by Lemma 7, and if
(d−1)/2 is odd, it can be extended by Lemma 8. The proof is now completed.

4 Lower bounds

This section is devoted to proving that the bounds on ε given in Theorem 9 are
the best possible for k ∈ {2} ∪ [3,∞); the remaining case k ∈ (2, 3) seems more
difficult and we briefly discuss this case in Section 5.

Let us summarize the main ideas used in our lower bound arguments. The
graphs that we use are universal graphs P n

p,q,d. For simplicity, we focus on the
case when k + ε = p/q + ε is rational. First, cover the interval [0, k + ε) with n
unit sets in such a way that each point of the interval is contained in the same
number of the sets. Each of the special vertices in the rays of the same type is
then precolored with one of the n sets. By an averaging argument we show that
any coloring of the base of P n

p,q,d behaves with respect to one of the rays at least
as “bad” as the pseudorandom coloring used in the previous section. This will
yield that our upper bounds are optimal.

Our exposition is started with two lemmas that are counterparts of Lemmas 7
and 8.

Lemma 10. Let p, q and ℓ be integers, 1 ≤ q ≤ p, p/q ∈ {2}∪[3,∞), ℓ = 0 mod 2
and ℓ ≥ 2, and ε > 0. Consider a fractional (p/q + ε)-precoloring of the special
vertex and the vertices of the base of the graph Sp,q,ℓ. Let C be the set assigned
to the special vertex ([q], 0) and C ′ the set assigned to the vertex ([q], ℓ). If

||C ∩ C ′|| < 1 −
ℓε

2
, (4)

then the precoloring cannot be extended to a fractional (p/q +ε)-coloring of Sp,q,ℓ.

Proof. The proof proceeds by induction on ℓ; the base case of the induction is
ℓ = 2. Suppose that (4) holds and there exists a fractional (p/q + ε)-coloring of
Sp,q,2. Let C0 be the union of the sets assigned to the neighbors of the special
vertex. Observe that every neighbor of the special vertex ([q], 0) is also a neighbor
of ([q], 2). Hence, C0 is disjoint both with C and C ′.

If k ≥ 3, the subgraph induced by the neighbors of the special vertex is
isomorphic to Kp−q,q; in particular, its fractional chromatic number is p/q − 1.
Consequently, ||C0|| ≥ k − 1. If k = 2, it also holds that ||C0|| ≥ k − 1 = 1 since
the neighborhood of the special vertex is non-empty and each vertex is assigned
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a set of measure at least one. Since the sets C ∪ C ′ and C0 are disjoint, we
obtain that ||C ∪ C ′|| ≤ 1 + ε. The fact that ||C|| = ||C ′|| = 1 implies that
||C ∩ C ′|| ≥ 1 − ε which contradicts (4).

Suppose now that ℓ ≥ 4, (4) holds and there exists a fractional (p/q + ε)-
coloring of the graph Sp,q,ℓ extending the given precoloring. Let C ′′ be the set
assigned to the vertex ([q], ℓ − 2). Since the coloring of Sp,q,ℓ restricted to the

special vertex and the vertices (X, ℓ−2), X ∈
(

[p]
q

)

, can be viewed as a precoloring

of the subgraph of Sp,q,ℓ induced by vertices (X, i) with i ≤ ℓ − 2 and this
precoloring can be extended to the whole graph, we obtain by induction that

||C ∩ C ′′|| ≥ 1 −
(ℓ − 2)ε

2
. (5)

Similarly, the coloring of Sp,q,ℓ restricted to the subgraph induced by the vertex

([q], ℓ− 2) and the vertices (X, i) with X ∈
(

[p]
q

)

and i ∈ {ℓ− 1, ℓ} can be viewed
as a precoloring of a subgraph isomorphic to Sp,q,2 and this precoloring can be
extended to the whole subgraph induced by these vertices, the induction yields
that

||C ′ ∩ C ′′|| ≥ 1 − ε . (6)

Combining (5), (6) and ||C|| = ||C ′|| = ||C ′′|| = 1, we obtain that ||C ∩ C ′|| ≥
1 − ℓε

2
which violates (4).

Lemma 11. Let p, q and ℓ be integers, 1 ≤ q ≤ p, p/q ∈ {2}∪[3,∞), ℓ = 1 mod 2
and ℓ ≥ 1, and ε > 0. Consider a fractional (p/q + ε)-precoloring of the special
vertex and the vertices of the base of the graph Sp,q,ℓ. Let C be the set assigned
to the special vertex ([q], 0) and C ′ the union of the sets assigned to the neighbors
of the vertex ([q], ℓ) in the base of Sp,q,ℓ. If

||C ∩ C ′|| >
(ℓ − 1)ε

2
, (7)

then the precoloring cannot be extended to a fractional (p/q +ε)-coloring of Sp,q,ℓ.

Proof. If ℓ = 1, all the vertices of Sp,q,ℓ are colored and the coloring can be proper
only if the sets C and C ′ are disjoint; hence, ||C ∩ C ′|| must be equal to zero in
this case.

Assume now that ℓ ≥ 3. Suppose that (7) holds and though there exists a
fractional (p/q + ε)-coloring extending the precoloring. Consider this coloring
restricted to the special vertex of Sp,q,ℓ and the vertices (X, ℓ − 1), X ∈

(

[p]
q

)

;

this precoloring clearly extends to a subgraph of Sp,q,ℓ (isomorphic to Sp,q,ℓ−1)
induced by all its vertices except those forming its base. Lemma 10 implies that
||C∩C ′′|| ≥ 1− (ℓ−1)ε

2
where C ′′ is the set assigned to the vertex ([q], ℓ−1). Since

the vertices ([q], ℓ − 1) and ([q], ℓ) have the same neighbors in the base of Sp,q,ℓ,

it follows that ||C ∩ C ′|| ≤ 1 − ||C ∩ C ′′|| ≤ (ℓ−1)ε
2

which contradicts (7).
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We are now ready to prove that the bounds on ε in Theorem 3 are the best
possible if k ∈ {2} ∪ [3,∞).

Theorem 12. For every rational k ∈ {2} ∪ [3,∞), every integer d ≥ 3, and
every ε > 0 not satisfying (1), there exists a graph G with fractional chromatic
number k, a subset W of its vertices at mutual distance at least d and a fractional
(k + ε)-precoloring of the vertices of W that cannot be extended to a fractional
(k + ε)-coloring of G.

Proof. Let q be an integer such that kq is an integer; the exact value of q will be
chosen (as a sufficiently large integer) later in the proof. Let p = kq and let p′ be
the largest integer such that p′/q ≤ k + ε.

Set G to be the graph P n
p,q,d where n =

(

p′

q

)

. Let f : [p′] →֒ 2[0,k+ε) be a function

such that f(i) = [(i − 1)/q, i/q). Consider a precoloring of G assigning the n
special vertices of the copies of SX

p,q,⌊d/2⌋ in P n
p,q,d all the n sets f(X ′), X ′ ∈

(

[p′]
q

)

.

We claim that this fractional (k + ε)-precoloring of G cannot be extended to the
whole graph if q is sufficiently large. Since the precolored vertices are at mutual
distance at least d, the statement of the theorem will then follow.

Suppose the opposite and consider the extension of the initial precoloring
restricted to the special vertices of P n

p,q,d and the vertices in the bases of the rays
forming the graph P n

p,q,d. This new precoloring is what we further refer to as the
precoloring.

Suppose first that d = 0 mod 4. Let C be the set assigned to the vertex
obtained by identifying the vertices ([q], d/2). in the bases of the rays. A double
counting argument yields the following:

||C ∩ [0, p′/q)|| =
1

(

p′−1
q−1

)

∑

X∈(p′

q )

||C ∩ f(X)|| .

Indeed, each point of [0, p′/q) is contained in
(

p′−1
q−1

)

sets f(X) and thus the equal-

ity follows. Since ||C ∩ [0, p′/q)|| ≤ 1, there exists X ∈
(

[p′]
q

)

such that

||C ∩ f(X)|| ≤

(

p′−1
q−1

)

(

p′

q

) =
q

p′
.

As q grows to the infinity, q
p′

tends to 1/(k + ε). Hence, for q sufficiently large,

it follows that q/p′ < 1 − dε/4. Lemma 10 then excludes the existence of an
extension of the precoloring to a fractional (k + ε)-coloring in the copy of Sp,q,d/2

with the special vertex precolored with f(X).
Suppose now that d = 2 mod 4. Let C be the union of the sets assigned to

the vertices obtained by identifying the vertices in the bases of the rays that are
the neighbors of the vertex ([q], d/2). Since the fractional chromatic number of
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the subgraph induced by these neighbors is k−1, we obtain by a double counting
argument the following:

k − 1 − (k + ε − p′/q) ≤ ||C ∩ [0, p′/q)|| =
1

(

p′−1
q−1

)

∑

X∈(p′

q )

||C ∩ f(X)|| .

Hence, there exists X ∈
(

[p′]
q

)

such that

||C ∩ f(X)|| ≥
k − 1 − (k + ε − p′/q)

p′/q
≥

k − 1 − (k + ε − p′/q)

k + ε
.

As q grows to the infinity, k + ε − p′/q tends to 0. Hence, for q sufficiently
large, there exists ε′ > ε such that ε′ does not satisfy (1) and ||C ∩ f(X)|| ≥
(k− 1)/(k + ε′). Since (k− 1)/(k + ε′) > (d− 2)ε′/4 as ε′ violates (1), there is no
extension of the precoloring to a fractional (k + ε′)-coloring by Lemma 11 in the
copy of Sp,q,d/2 with the special vertex precolored with f(X); in particular, there
is no extension to a fractional (k + ε)-coloring.

In the remainder of the proof, we deal with the case when d is odd. Let CX ,
X ∈

(

[p]
q

)

, be the union of all the sets assigned to the vertices (X, (d − 1)/2)
of the bases of the rays that form the graph P n

p,q,d. Observe that the sets CX

and CX′ are disjoint whenever X ∩ X ′ = ∅. Hence, each point of the interval
[0, k + ε) is contained in at most

(

p−1
q−1

)

of these sets by Erdős-Ko-Rado theorem

(see, e.g., [10]).
We now suppose that d = 1 mod 4. Since each point of the interval [0, k + ε)

is contained in at most
(

p−1
q−1

)

of the sets CX , X ∈
(

[p]
q

)

, we obtain that

∑

X∈([p]
q )

||CX ∩ [0, p′/q)|| ≤

(

p − 1

q − 1

)

p′

q
.

Consequently, there exists X ∈
(

[p]
q

)

such that ||CX ∩ [0, p′/q)|| ≤ p′

kq
. A double

counting argument analogous to that used in the case d = 0 mod 4 yields that
there exists X ′ ∈

(

[p′]
q

)

such that

||CX ∩ f(X ′)|| ≤
p′

kq
·

(

p′−1
q−1

)

(

p′

q

) = 1/k .

Consider now the copy of SX
p,q,(d−1)/2 such that its special vertex is precolored

with f(X ′). The measure of the intersection of the set assigned to the vertex
(X, (d − 1)/2) of the base, which is a subset of CX , and the set f(X ′) is at
most ||CX ∩ f(X ′)|| ≤ 1/k. Since ε does not satisfy (1), it holds that 1/k <
1− (d− 1)ε/4. By Lemma 10, the precoloring of the special vertex and the base
cannot be extended to the whole ray.
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The last case to be considered is d = 3 mod 4. We claim that there exists
Y ∈

(

[p]
q

)

such that

∑

X∈([p]\Y

q )

||CX \ [0, 1)|| ≤ (k + ε − 1) ·

(

p−1
q−1

)(

p−q
q

)

(

p
q

) =
k + ε − 1

k

(

p − q

q

)

.

Indeed, each point of the interval [1, k+ε) is contained in at most
(

p−1
q−1

)

of the sets

CX , X ∈
(

[p]
q

)

, and each set X is contained in the sets
(

[p]\Y
q

)

for
(

p−q
q

)

choices of

Y , so the claim follows. By symmetry, we can (and we will) assume that Y = [q].

Consider now the copy of the ray S
[q]
p,q,(d−1)/2 in Pp,q,d with the special vertex

precolored with f([q]) = [0, 1). Let C0
X be the set assigned to the vertex (X, (d−

1)/2) of this copy. Since C0
X ⊆ CX , we obtain that

∑

X∈([p]\[q]
q )

||C0
X ∩ [0, 1)|| ≥

1 − ε

k

(

p − q

q

)

.

Since each point of [0, 1) can be contained in at most
(

p−q−1
q−1

)

of the sets C0
X ,

X ∈
(

[p]\[q]
q

)

, it follows that

||[0, 1) ∩
⋃

X∈([p]\[q]
q )

C0
X || ≥

1−ε
k

(

p−q
q

)

(

p−q−1
q−1

) = (1 − ε)

(

1 −
q

p

)

. (8)

Since ε violates (1), the last expression in (8) is greater than d−3
4

ε. Consequently,
the precoloring of the special vertex and the base of SX

p,q,(d−1)/2 cannot be extended
to the whole ray by Lemma 11.

5 Conclusion

Theorem 3 gives the best possible condition on ε for k ∈ {2} ∪ [3,∞) and any
d ≥ 3. One would be tempted to conjecture that the condition (1) on ε is also
the best possible for k ∈ (2, 3). However, this is not the case. For d = 4, three
of the authors together with Jan van den Heuvel and Jean-Sébastien Sereni were
able to determine optimal minimum values of ε for k ∈ (2, 3) (see Figure 4): a
fractional (k + ε)-precoloring of vertices at distance at least four of any graph
G with fractional chromatic number k ∈ (2, 3) can be extended to a fractional
(k + ε)-coloring of G if ε2 + (k− 1)ε− 1 ≥ 0. This condition on ε is also the best
possible in the sense of Theorem 3. It has suprised us that ε as a function of k
for d = 4 is not continous. We intend to investigate this phenomenom further.
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Figure 4: The dependence of the minimum value of ε on k for d = 4.
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