
Non-three-olorable ommon graphs exist ∗Hamed Hatami † Jan Hladký ‡ Daniel Král' § Serguei Norine ¶Alexander Razborov ‖June 3, 2011AbstratA graph H is alled ommon if the total number of opies of H in every graph and its omplementasymptotially minimizes for random graphs. A former onjeture of Burr and Rosta, extending aonjeture of Erd®s asserted that every graph is ommon. Thomason disproved both onjetures byshowing that K4 is not ommon. It is now known that in fat the ommon graphs are very rare.Answering a question of Sidorenko and of Jagger, �´oví£ek and Thomason from 1996 we show that the
5-wheel is ommon. This provides the �rst example of a ommon graph that is not three-olorable.1 IntrodutionA natural question in extremal graph theory is how many monohromati subgraphs isomorphi to a graph

H must be ontained in any two-oloring of the edges of the omplete graph Kn. Equivalently, how manysubgraphs isomorphi to a graph H must be ontained in a graph and its omplement?Goodman [Goo59℄ showed that for H = K3, the optimum solution is essentially obtained by a typialrandom graph. The graphs H that satisfy this property are alled ommon. Erd®s [Erd62℄ onjetured thatall omplete graphs are ommon. Later, this onjeture was extended to all graphs by Burr and Rosta [BR80℄.Sidorenko [Sid89℄ disproved Burr and Rosta's onjeture by showing that a triangle with a pendant edgeis not ommon. Later Thomason [Tho89℄ disproved Erd®s's onjeture by showing that for p ≥ 4, theomplete graphs Kp are not ommon. It is now known that in fat the ommon graphs are very rare. Forexample, Jagger, �´oví£ek and Thomason [J�T96℄ showed that every graph that ontains K4 as a subgraphis not ommon. If we work with k-edge-olorings of Kn rather than 2-edge-olorings we get the notion of a
k-ommon graph. Cummings and Young [CY℄ reently proved that no graph ontaining the triangle K3 is3-ommon, a ounterpart of the result of Jagger, �´oví£ek and Thomason above.There are some lasses of graphs that are known to be ommon.Sidorenko [Sid89℄ showed that yles are ommon. A onjeture due to Erd®s and Simonovits [ES84℄ andSidorenko [Sid91, Sid93℄ asserts that for every bipartite graph H , among graphs of given density randomgraphs essentially ontain the least number of subgraphs isomorphi to H . It is not hard to see that
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every graph H with the latter property is ommon, therefore this onjeture would imply that all bipar-tite graphs are ommon. The Erd®s-Simonovits-Sidorenko onjeture has been veri�ed for a handful ofgraphs [Sid93, Sid96, Hat10, CFS10℄, and hene there are various lasses of bipartite graphs that are knownto be ommon. In [J�T96℄ and [Sid96℄ some graph operations are introdued that an be used to �glue�ommon graphs in order to onstrut new ommon graphs. However none of these operations an inreasethe hromati number to a number larger than three, and as a result, all of the known ommon graphs areof hromati number at most 3. With these onsiderations Jagger, �´oví£ek and Thomason [J�T96℄ state�We regard the determination of the ommonality of W5 [the wheel with 5 spokes℄ as the most interestingopen problem in the area.�We will prove in Theorem 3.1 that W5 (see Figure 1) is ommon. This will also answer a question of
W5Figure 1: The 5-wheel.Sidorenko [Sid96℄. He showed [Sid96, Theorem 8℄ that every graph that is obtained by adding a vertex of fulldegree to a bipartite graph of average degree at least one satisfying the Erd®s-Simonovits-Sidorenko onje-ture is ommon. Sidorenko further askedwhether in this theorem both onditions of being bipartite and having average degree at least one areessential in order to obtain a ommon graph. Our result answers his question in the negative, as W5 isobtained by adding a vertex of full degree to a non-bipartite graph.The proof of Theorem 3.1 is a rather standard Cauhy-Shwarz alulation in �ag algebras [Raz07℄, and isgenerated with the aid of a omputer using semi-de�nite programming. A similar approah was suessfullyapplied for example in [Raz10, HKN09, BT11, Grz11, HHK+11℄.2 PreliminariesWe write vetors with bold font, e.g. a = (a(1),a(2),a(3)) is a vetor with three oordinates. For everypositive integer k, [k] denotes the set {1, . . . , k}.All graphs in this paper are �nite and simple (that is, loops and multiple edges are not allowed). Forevery natural number n, let Mn denote the set of all simple graphs on n verties up to an isomorphism.For a graph G, let V (G) and E(G), respetively denote the set of the verties and the edges of G. Theomplement of G is denoted by G∗.The homomorphism density of a graph H in a graph G, denoted by t(H ; G), is the probability that arandom map from the verties of H to the verties of G is a graph homomorphism, that is it maps everyedge of H to an edge of G. If H ∈ Mℓ, G ∈ Mn, and ℓ ≤ n, then t0(H ; G) denotes the probability that arandom injetive map from V (H) to V (G) is a graph homomorphism, and p(H, G) denotes the probabilitythat a random set of ℓ verties of G indues a graph isomorphi to H .We have the following hain rule (f. [Raz07, Lemma 2.2℄):

t0(H ; G) =
∑

F∈Mℓ

t0(H ; F )p(F, G), (2.1)where |V (H)| ≤ ℓ ≤ |V (G)|.De�nition 2.1. A graph H is alled ommon if
lim inf
n→∞

min
G∈Mn

(t(H ; G) + t(H ; G∗)) ≥ 21−|E(H)|. (2.2)2



σ0 σ1 σ2

σ3 σ4

1 23 41 23 41 23 4 1 23 4
1 23 41 23 4

Figure 2: Types.It is easy to see that as n → ∞, for a random graph G on n verties, we have, with high probability,
t(H ; G)+ t(H ; G∗) = 21−|E(H)|± o(1). Thus, H is ommon if the total number of opies of H in every graphand its omplement asymptotially minimizes for random graphs. Note also that sine t(H ; G) and t0(H ; G)are asymptotially equal (again, as n → ∞), one ould use t0(H ; G) in plae of t(H ; G) in (2.2), and this iswhat we will do in our proof.2.1 Flag algebrasWe assume ertain familiarity with the theory of �ag algebras from [Raz07℄. However, for the proof of theentral Theorem 3.1 only the most basi notions are required. Thus, instead of trying to dupliate de�nitions,we oasionally give pointers to relevant plaes in [Raz07℄.In our appliation of the �ag algebras alulus we work exlusively with the theory of simple graphs(f. [Raz07, �2℄). As in [Raz07℄, �ags of type σ and size k are denoted by Fσ

k . The �ag algebra generated byall �ags of type σ is denoted by Aσ (f. [Raz07, �2℄). Apart from already de�ned model W5 ∈ M6 we needto introdue the following models, types, and �ags.We shall work with �ve types σ0, σ1, . . . , σ4 of size four whih are illustrated in Figure 2. For a type σ ofsize k and a set of verties V ⊆ [k] in σ, let F σ
V denote the �ag (G, θ) ∈ Fσ

k+1 in whih the only unlabeledvertex v is onneted to the set {θ(i) : i ∈ V }. We further de�ne fσ
V ∈ Aσ by

fσ
V

def
= F σ

∅ −
1

|Aut(σ)|
·
∑

η∈Aut(σ)

F σ
η(V ).These elements form a basis (for V 6= ∅ and with repetitions) in the spae spanned by those f ∈ Aσ

k+1that are both Aut(σ)-invariant and asymptotially vanish on random graphs; other than that, our partiularhoie of elements with this property is more or less arbitrary.Reall that in [Raz07, �2.2℄ a ertain �averaging operator� J·K was introdued. This operator plays aentral role in the �ag algebra alulus.Let ∗ ∈ Aut(A0) be the involution that orresponds to taking the omplementary graph. That is, weextend ∗ linearly from ⋃
n Mn to A0.3 Main resultWe an now state the main result of the paper. 3



Theorem 3.1. The 5-wheel W5 is ommon.Proof. Let Ŵ5 ∈ A0 be the element that ounts the injetive homomorphism density of the 5-wheel, that is
Ŵ5

def
=

∑

F∈M6

t0(W5, F )F.We shall prove that
Ŵ5 + Ŵ ∗

5 ≥ 2−9 , (3.1)where the inequality ≤ in the algebra A0 is de�ned in [Raz07, De�nition 6℄. An alternate interpretation ofthis inequality [Raz07, Corollary 3.4℄ is that
lim inf
n→∞

min
G∈Mn

(p(Ŵ5, G) + p(Ŵ ∗
5 , G)) ≥ 2−9.Sine p(Ŵ5, G) =

∑
F∈M6

t0(Ŵ5; F )p(F ; G) = t0(Ŵ5; G) by (2.1), and, likewise, p(Ŵ ∗
5 , G) = p(Ŵ5, G

∗) =

t0(Ŵ5; G
∗), (3.1) implies Theorem 3.1.We now give a proof of (3.1). To this end we work with suitable quadrati forms Q

+/−
σi

de�ned bysymmetri matries M
+/−
σi

and vetors g
+/−
i in the algebras Aσi . The numerial values of the matries

M
+/−
σi

and vetors g
+/−
i are given in the appendix. It is essential that all the matries M

+/−
σi

are positivede�nite whih an be veri�ed using any general mathematial software. Next we de�ne
R :=

(
4∑

i=0

JQ+
σi

(g+
i )Kσi

)
+ JQ−

σ1
(g−

1 )Kσ1
+ JQ−

σ4
(g−

4 )Kσ4
.We laim that

Ŵ5 + Ŵ ∗
5 = 2−9 + R + R∗. (3.2)All the terms in (3.2) an be expressed as linear ombinations of graphs from M6 and thus heking (3.2)amounts to heking the oe�ients of the 156 �ags from M6. We o�er a C-ode available athttp://kam.mff.uni.z/∼kral/wheel that veri�es the equality (3.2).By [Raz07, Theorem 3.14℄, we have

(
4∑

i=0

JQ+
σi

(g+
i )Kσi

)
+ JQ−

σ1
(g−

1 )Kσ1
+ JQ−

σ4
(g−

4 )Kσ4
≥ 0 .Therefore, (3.2) implies (3.1).Theorem 3.1 shows that a typial random graph G = Gn, 1

2

asymptotially minimizes the quantity
t(W5; G) + t(W5; G

∗). Extending our method, we onvined ourselves that Gn, 1

2

is essentially the only mini-mizer of
t(W5; G) + t(W5; G

∗). In terms of �ag algebras this means that the homomorphism φ ∈ Hom+(A0, R)(see [Raz07, De�nition 5℄) satisfying φ(Ŵ5 + Ŵ ∗
5 ) = 2−9 is unique.The outline of the argument is as follows. Let ρ ∈ M2 denote a graph onsisting of a single edge, let

C4 ∈ M4 denote the yle of length 4, and, as before, let
Ĉ4

def
=

∑

F∈M4

t0(C4; F )F.The Erd®s-Simonovits-Sidorenko onjeture is known for C4 [Sid91℄, and it implies that Ĉ4 ≥ ρ4 and Ĉ∗
4 ≥

(1 − ρ)4 in A0. Therefore, C4 + C∗
4 ≥ 1/8 (i.e., C4 is ommon), and, moreover, every φ ∈ Hom+(A0, R)attaining equality must satisfy φ(ρ) = 1/2 and φ(Ĉ4) = 1/16.4



On the other hand, is is shown in [CGW89℄ that the density of edges and the density yles of length
4 haraterize quasi-random graphs, implying that the homomorphism φ satisfying φ(Ĉ4 + Ĉ∗

4 ) = 1/8 isunique (and orresponds to quasi-random graphs). Therefore, to verify the uniqueness of the homomorphism
φ satisfying φ(Ŵ5 + Ŵ ∗

5 ) = 2−9 it su�es to show that
Ŵ5 + Ŵ ∗

5 ≥ 2−9 +
1

100

(
Ĉ4 + Ĉ∗

4 − 1/8
)

. (3.3)We have used a omputer program to verify (3.3), and it is telling us that this inequality holds with quitea onvining level of auray 10−10. But we have not onverted the �oating point omputations into arigorous proof.4 ConlusionIn this paper we have exhibited the �rst example of a ommon graph that is not three-olorable. Thisnaturally gives rise to the following interesting question: do there exist ommon graphs with arbitrarilylarge hromati number?Referenes[BR80℄ Stefan A. Burr and Vera Rosta. On the Ramsey multipliities of graphs�problems and reentresults. J. Graph Theory, 4(4):347�361, 1980.[BT11℄ Rahil Baber and John Talbot. Hypergraphs do jump. Combin. Probab. Comput., 20(2):161�171,2011.[CFS10℄ David Conlon, Jaob Fox, and Benny Sudakov. An approximate version of Sidorenko's onjeture.Geom. Funt. Anal., 20(6):1354�1366, 2010.[CGW89℄ Fan-Rong K. Chung, Ronald L. Graham, and Rihard M. Wilson. Quasi-random graphs. Com-binatoria, 9(4):345�362, 1989.[CY℄ James Cummings andMihael Young. Graphs ontaining triangles are not 3-ommon. J. Combin.,to appear.[Erd62℄ Paul Erd®s. On the number of omplete subgraphs ontained in ertain graphs. Magyar Tud.Akad. Mat. Kutató Int. Közl., 7:459�464, 1962.[ES84℄ Paul Erd®s and Miklós Simonovits. Cube-supersaturated graphs and related problems. InProgress in graph theory (Waterloo, Ont., 1982), pages 203�218. Aademi Press, Toronto, ON,1984.[Goo59℄ Al W. Goodman. On sets of aquaintanes and strangers at any party. Amer. Math. Monthly,66:778�783, 1959.[Grz11℄ Andrzej Grzesik. On the maximum number of C5's in a triangle-free graph. arXiv:1102.0962,2011.[Hat10℄ Hamed Hatami. Graph norms and Sidorenko's onjeture. Israel J. Math., 175(1):125�150, 2010.[HHK+11℄ Hamed Hatami, Jan Hladký, Daniel Král', Serguei Norine, and Alexander Razborov. On thenumber of pentagons in triangle-free graphs. arXiv:1102.1634, 2011.[HKN09℄ Jan Hladký, Daniel Král', and Serguei Norine. Counting �ags in triangle-free digraphs.arXiv:0908.2791, 2009. 5
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+/−
i and the vetors g

+/−
iHere, we list the numerial values of the matries M

+/−
i and the vetors g

+/−
i .The vetors g

+
i are given by the tuples

g
+
0

def
= (fσ0

{1}, f
σ0

{1,2}, f
σ0

{1,2,3}, f
σ0

{1,2,3,4})

g
+
1

def
= (fσ1

{1}, f
σ1

{3}, f
σ1

{1,2}, f
σ1

{1,3}, f
σ1

{3,4}, f
σ1

{1,2,3}, f
σ1

{1,3,4}, f
σ1

{1,2,3,4})

g
+
2

def
= (fσ2

{1}, f
σ2

{2}, f
σ2

{4}, f
σ2

{1,2}, f
σ2

{1,4}, f
σ2

{2,3}, f
σ2

{2,4}, f
σ2

{1,2,3},

fσ2

{1,2,4}, f
σ2

{2,3,4}, f
σ2

{1,2,3,4})

g
+
3

def
= (fσ3

{1}, f
σ3

{2}, f
σ3

{1,2}, f
σ3

{2,3}, f
σ3

{1,2,3}, f
σ3

{2,3,4}, f
σ3

{1,2,3,4})

g
+
4

def
= (fσ4

{1}, f
σ4

{1,2}, f
σ4

{1,3}, f
σ4

{1,2,3}, f
σ4

{1,2,3,4}),and the vetors g
−
i are given by
g
−
1

def
= (F σ1

{3} − F σ1

{4}, F
σ1

{1,3,4} − F σ1

{2,3,4}, F
σ1

{1,3} − F σ1

{2,3}, F
σ1

{1,3} − F σ1

{2,4},

F σ1

{1,3} − F σ1

{3,4})

g
−
4

def
= (F σ4

{1,2} − F σ4

{3,4}, F
σ4

{1,3} − F σ4

{2,3}, F
σ4

{1,3} − F σ4

{2,4}, F
σ4

{1,3} − F σ4

{3,4}).The matries M
+/−
i are listed on the next three pages.

M+
0

def
=

1

2 · 108
×




104133330 −67645847 −126443014 −53041562

−67645847 58559244 68999274 28961030

−126443014 68999274 166581934 69653308

−53041562 28961030 69653308 29368489
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M+
3

def
=

1

24 · 108
×




1770465360 −40788068 770354664 −280179622 −1109635560 −593033461 −1434435065

−40788068 503182008 −377074674 −65682192 −316936632 337167432 −405260664

770354664 −377074674 942288720 −5442408 −584215338 −635915808 −299584920

−280179622 −65682192 −5442408 90869472 187091280 −48623352 356458176

−1109635560 −316936632 −584215338 187091280 1325422128 196268064 1280101992

−593033461 337167432 −635915808 −48623352 196268064 706802676 −31363774

−1434435065 −405260664 −299584920 356458176 1280101992 −31363774 1763018404




M+
4

def
=

1

12 · 108
×




6589068 −137160 60408 −3635796 −5354976

−137160 3975070 −399180 −720636 −1388043

60408 −399180 3506988 −1778640 −3413616

−3635796 −720636 −1778640 5107716 3969708

−5354976 −1388043 −3413616 3969708 12276592




M−
1

def
=

1

48 · 108
×




1871684759 828164352 153135600 2205677647 32494800

828164352 647325323 122226960 1702274830 23569680

153135600 122226960 32894794 317036160 988560

2205677647 1702274830 317036160 4533494520 62236800

32494800 23569680 988560 62236800 7445060




M−
4

def
=

1

24 · 108
×




371929992 −665160 31885344 6896381

−665160 4952616 15347271 −425892

31885344 15347271 420643536 5244336

6896381 −425892 5244336 1704738
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M+
2

def
=

1

24 · 108
×

×




4114457904 −2123660510 578302533 2402100408 1609339896 −4979381511

−2123660510 4697332052 −146727648 −2893487330 −831349224 5132020824

578302533 −146727648 2842930424 −2377739616 2453284752 −1134538157

2402100408 −2893487330 −2377739616 5029589784 −1305679056 −3694198620

1609339896 −831349224 2453284752 −1305679056 2899169976 −3008866416

−4979381511 5132020824 −1134538157 −3694198620 −3008866416 9045922946

−1073916061 1140828192 949692648 −1628657160 227603736 1585531176

−711542544 −2533278088 −2122945241 2987352093 −2158976640 −492543642

−108075291 −3120849612 799767696 −17138568 1272333144 −2720802624

−311854200 586989168 −646840455 174993936 −824389152 1167719184

−1172726832 −2130186959 −1452441435 1346820763 −1468496784 119548200

−1073916061 −711542544 −108075291 −311854200 −1172726832

1140828192 −2533278088 −3120849612 586989168 −2130186959

949692648 −2122945241 799767696 −646840455 −1452441435

−1628657160 2987352093 −17138568 174993936 1346820763

227603736 −2158976640 1272333144 −824389152 −1468496784

1585531176 −492543642 −2720802624 1167719184 119548200

1198933584 −594013398 −787158072 −14360286 −864511462

−594013398 4445640792 1152146526 408353664 3139157376

−787158072 1152146526 4353119928 −778415544 2410765872

−14360286 408353664 −778415544 430490652 217228440

−864511462 3139157376 2410765872 217228440 3407087808
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M+
1

def
=

1

24 · 108
×

×




3376427096 −550659377 1175122309 −274818336 −1951510989 133242698 −2978772360 −1118255328

−550659377 3579306230 −2818779263 254758382 1853810147 −3593215008 1149060744 −2243131164

1175122309 −2818779263 2446135762 −153160723 −1883990616 2571244464 −1644918408 1392930672

−274818336 254758382 −153160723 259013952 207245488 −524428416 59129384 −87439632

−1951510989 1853810147 −1883990616 207245488 2026568566 −1339529064 2075124696 −196178016

133242698 −3593215008 2571244464 −524428416 −1339529064 4383894552 −474279456 2753404296

−2978772360 1149060744 −1644918408 59129384 2075124696 −474279456 2987175794 578705400

−1118255328 −2243131164 1392930672 −87439632 −196178016 2753404296 578705400 2302497768
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