
Non-three-
olorable 
ommon graphs exist ∗Hamed Hatami † Jan Hladký ‡ Daniel Král' § Serguei Norine ¶Alexander Razborov ‖June 3, 2011Abstra
tA graph H is 
alled 
ommon if the total number of 
opies of H in every graph and its 
omplementasymptoti
ally minimizes for random graphs. A former 
onje
ture of Burr and Rosta, extending a
onje
ture of Erd®s asserted that every graph is 
ommon. Thomason disproved both 
onje
tures byshowing that K4 is not 
ommon. It is now known that in fa
t the 
ommon graphs are very rare.Answering a question of Sidorenko and of Jagger, �´oví£ek and Thomason from 1996 we show that the
5-wheel is 
ommon. This provides the �rst example of a 
ommon graph that is not three-
olorable.1 Introdu
tionA natural question in extremal graph theory is how many mono
hromati
 subgraphs isomorphi
 to a graph

H must be 
ontained in any two-
oloring of the edges of the 
omplete graph Kn. Equivalently, how manysubgraphs isomorphi
 to a graph H must be 
ontained in a graph and its 
omplement?Goodman [Goo59℄ showed that for H = K3, the optimum solution is essentially obtained by a typi
alrandom graph. The graphs H that satisfy this property are 
alled 
ommon. Erd®s [Erd62℄ 
onje
tured thatall 
omplete graphs are 
ommon. Later, this 
onje
ture was extended to all graphs by Burr and Rosta [BR80℄.Sidorenko [Sid89℄ disproved Burr and Rosta's 
onje
ture by showing that a triangle with a pendant edgeis not 
ommon. Later Thomason [Tho89℄ disproved Erd®s's 
onje
ture by showing that for p ≥ 4, the
omplete graphs Kp are not 
ommon. It is now known that in fa
t the 
ommon graphs are very rare. Forexample, Jagger, �´oví£ek and Thomason [J�T96℄ showed that every graph that 
ontains K4 as a subgraphis not 
ommon. If we work with k-edge-
olorings of Kn rather than 2-edge-
olorings we get the notion of a
k-
ommon graph. Cummings and Young [CY℄ re
ently proved that no graph 
ontaining the triangle K3 is3-
ommon, a 
ounterpart of the result of Jagger, �´oví£ek and Thomason above.There are some 
lasses of graphs that are known to be 
ommon.Sidorenko [Sid89℄ showed that 
y
les are 
ommon. A 
onje
ture due to Erd®s and Simonovits [ES84℄ andSidorenko [Sid91, Sid93℄ asserts that for every bipartite graph H , among graphs of given density randomgraphs essentially 
ontain the least number of subgraphs isomorphi
 to H . It is not hard to see that
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every graph H with the latter property is 
ommon, therefore this 
onje
ture would imply that all bipar-tite graphs are 
ommon. The Erd®s-Simonovits-Sidorenko 
onje
ture has been veri�ed for a handful ofgraphs [Sid93, Sid96, Hat10, CFS10℄, and hen
e there are various 
lasses of bipartite graphs that are knownto be 
ommon. In [J�T96℄ and [Sid96℄ some graph operations are introdu
ed that 
an be used to �glue�
ommon graphs in order to 
onstru
t new 
ommon graphs. However none of these operations 
an in
reasethe 
hromati
 number to a number larger than three, and as a result, all of the known 
ommon graphs areof 
hromati
 number at most 3. With these 
onsiderations Jagger, �´oví£ek and Thomason [J�T96℄ state�We regard the determination of the 
ommonality of W5 [the wheel with 5 spokes℄ as the most interestingopen problem in the area.�We will prove in Theorem 3.1 that W5 (see Figure 1) is 
ommon. This will also answer a question of
W5Figure 1: The 5-wheel.Sidorenko [Sid96℄. He showed [Sid96, Theorem 8℄ that every graph that is obtained by adding a vertex of fulldegree to a bipartite graph of average degree at least one satisfying the Erd®s-Simonovits-Sidorenko 
onje
-ture is 
ommon. Sidorenko further askedwhether in this theorem both 
onditions of being bipartite and having average degree at least one areessential in order to obtain a 
ommon graph. Our result answers his question in the negative, as W5 isobtained by adding a vertex of full degree to a non-bipartite graph.The proof of Theorem 3.1 is a rather standard Cau
hy-S
hwarz 
al
ulation in �ag algebras [Raz07℄, and isgenerated with the aid of a 
omputer using semi-de�nite programming. A similar approa
h was su

essfullyapplied for example in [Raz10, HKN09, BT11, Grz11, HHK+11℄.2 PreliminariesWe write ve
tors with bold font, e.g. a = (a(1),a(2),a(3)) is a ve
tor with three 
oordinates. For everypositive integer k, [k] denotes the set {1, . . . , k}.All graphs in this paper are �nite and simple (that is, loops and multiple edges are not allowed). Forevery natural number n, let Mn denote the set of all simple graphs on n verti
es up to an isomorphism.For a graph G, let V (G) and E(G), respe
tively denote the set of the verti
es and the edges of G. The
omplement of G is denoted by G∗.The homomorphism density of a graph H in a graph G, denoted by t(H ; G), is the probability that arandom map from the verti
es of H to the verti
es of G is a graph homomorphism, that is it maps everyedge of H to an edge of G. If H ∈ Mℓ, G ∈ Mn, and ℓ ≤ n, then t0(H ; G) denotes the probability that arandom inje
tive map from V (H) to V (G) is a graph homomorphism, and p(H, G) denotes the probabilitythat a random set of ℓ verti
es of G indu
es a graph isomorphi
 to H .We have the following 
hain rule (
f. [Raz07, Lemma 2.2℄):

t0(H ; G) =
∑

F∈Mℓ

t0(H ; F )p(F, G), (2.1)where |V (H)| ≤ ℓ ≤ |V (G)|.De�nition 2.1. A graph H is 
alled 
ommon if
lim inf
n→∞

min
G∈Mn

(t(H ; G) + t(H ; G∗)) ≥ 21−|E(H)|. (2.2)2



σ0 σ1 σ2

σ3 σ4

1 23 41 23 41 23 4 1 23 4
1 23 41 23 4

Figure 2: Types.It is easy to see that as n → ∞, for a random graph G on n verti
es, we have, with high probability,
t(H ; G)+ t(H ; G∗) = 21−|E(H)|± o(1). Thus, H is 
ommon if the total number of 
opies of H in every graphand its 
omplement asymptoti
ally minimizes for random graphs. Note also that sin
e t(H ; G) and t0(H ; G)are asymptoti
ally equal (again, as n → ∞), one 
ould use t0(H ; G) in pla
e of t(H ; G) in (2.2), and this iswhat we will do in our proof.2.1 Flag algebrasWe assume 
ertain familiarity with the theory of �ag algebras from [Raz07℄. However, for the proof of the
entral Theorem 3.1 only the most basi
 notions are required. Thus, instead of trying to dupli
ate de�nitions,we o

asionally give pointers to relevant pla
es in [Raz07℄.In our appli
ation of the �ag algebras 
al
ulus we work ex
lusively with the theory of simple graphs(
f. [Raz07, �2℄). As in [Raz07℄, �ags of type σ and size k are denoted by Fσ

k . The �ag algebra generated byall �ags of type σ is denoted by Aσ (
f. [Raz07, �2℄). Apart from already de�ned model W5 ∈ M6 we needto introdu
e the following models, types, and �ags.We shall work with �ve types σ0, σ1, . . . , σ4 of size four whi
h are illustrated in Figure 2. For a type σ ofsize k and a set of verti
es V ⊆ [k] in σ, let F σ
V denote the �ag (G, θ) ∈ Fσ

k+1 in whi
h the only unlabeledvertex v is 
onne
ted to the set {θ(i) : i ∈ V }. We further de�ne fσ
V ∈ Aσ by

fσ
V

def
= F σ

∅ −
1

|Aut(σ)|
·
∑

η∈Aut(σ)

F σ
η(V ).These elements form a basis (for V 6= ∅ and with repetitions) in the spa
e spanned by those f ∈ Aσ

k+1that are both Aut(σ)-invariant and asymptoti
ally vanish on random graphs; other than that, our parti
ular
hoi
e of elements with this property is more or less arbitrary.Re
all that in [Raz07, �2.2℄ a 
ertain �averaging operator� J·K was introdu
ed. This operator plays a
entral role in the �ag algebra 
al
ulus.Let ∗ ∈ Aut(A0) be the involution that 
orresponds to taking the 
omplementary graph. That is, weextend ∗ linearly from ⋃
n Mn to A0.3 Main resultWe 
an now state the main result of the paper. 3



Theorem 3.1. The 5-wheel W5 is 
ommon.Proof. Let Ŵ5 ∈ A0 be the element that 
ounts the inje
tive homomorphism density of the 5-wheel, that is
Ŵ5

def
=

∑

F∈M6

t0(W5, F )F.We shall prove that
Ŵ5 + Ŵ ∗

5 ≥ 2−9 , (3.1)where the inequality ≤ in the algebra A0 is de�ned in [Raz07, De�nition 6℄. An alternate interpretation ofthis inequality [Raz07, Corollary 3.4℄ is that
lim inf
n→∞

min
G∈Mn

(p(Ŵ5, G) + p(Ŵ ∗
5 , G)) ≥ 2−9.Sin
e p(Ŵ5, G) =

∑
F∈M6

t0(Ŵ5; F )p(F ; G) = t0(Ŵ5; G) by (2.1), and, likewise, p(Ŵ ∗
5 , G) = p(Ŵ5, G

∗) =

t0(Ŵ5; G
∗), (3.1) implies Theorem 3.1.We now give a proof of (3.1). To this end we work with suitable quadrati
 forms Q

+/−
σi

de�ned bysymmetri
 matri
es M
+/−
σi

and ve
tors g
+/−
i in the algebras Aσi . The numeri
al values of the matri
es

M
+/−
σi

and ve
tors g
+/−
i are given in the appendix. It is essential that all the matri
es M

+/−
σi

are positivede�nite whi
h 
an be veri�ed using any general mathemati
al software. Next we de�ne
R :=

(
4∑

i=0

JQ+
σi

(g+
i )Kσi

)
+ JQ−

σ1
(g−

1 )Kσ1
+ JQ−

σ4
(g−

4 )Kσ4
.We 
laim that

Ŵ5 + Ŵ ∗
5 = 2−9 + R + R∗. (3.2)All the terms in (3.2) 
an be expressed as linear 
ombinations of graphs from M6 and thus 
he
king (3.2)amounts to 
he
king the 
oe�
ients of the 156 �ags from M6. We o�er a C-
ode available athttp://kam.mff.
uni.
z/∼kral/wheel that veri�es the equality (3.2).By [Raz07, Theorem 3.14℄, we have

(
4∑

i=0

JQ+
σi

(g+
i )Kσi

)
+ JQ−

σ1
(g−

1 )Kσ1
+ JQ−

σ4
(g−

4 )Kσ4
≥ 0 .Therefore, (3.2) implies (3.1).Theorem 3.1 shows that a typi
al random graph G = Gn, 1

2

asymptoti
ally minimizes the quantity
t(W5; G) + t(W5; G

∗). Extending our method, we 
onvin
ed ourselves that Gn, 1

2

is essentially the only mini-mizer of
t(W5; G) + t(W5; G

∗). In terms of �ag algebras this means that the homomorphism φ ∈ Hom+(A0, R)(see [Raz07, De�nition 5℄) satisfying φ(Ŵ5 + Ŵ ∗
5 ) = 2−9 is unique.The outline of the argument is as follows. Let ρ ∈ M2 denote a graph 
onsisting of a single edge, let

C4 ∈ M4 denote the 
y
le of length 4, and, as before, let
Ĉ4

def
=

∑

F∈M4

t0(C4; F )F.The Erd®s-Simonovits-Sidorenko 
onje
ture is known for C4 [Sid91℄, and it implies that Ĉ4 ≥ ρ4 and Ĉ∗
4 ≥

(1 − ρ)4 in A0. Therefore, C4 + C∗
4 ≥ 1/8 (i.e., C4 is 
ommon), and, moreover, every φ ∈ Hom+(A0, R)attaining equality must satisfy φ(ρ) = 1/2 and φ(Ĉ4) = 1/16.4



On the other hand, is is shown in [CGW89℄ that the density of edges and the density 
y
les of length
4 
hara
terize quasi-random graphs, implying that the homomorphism φ satisfying φ(Ĉ4 + Ĉ∗

4 ) = 1/8 isunique (and 
orresponds to quasi-random graphs). Therefore, to verify the uniqueness of the homomorphism
φ satisfying φ(Ŵ5 + Ŵ ∗

5 ) = 2−9 it su�
es to show that
Ŵ5 + Ŵ ∗

5 ≥ 2−9 +
1

100

(
Ĉ4 + Ĉ∗

4 − 1/8
)

. (3.3)We have used a 
omputer program to verify (3.3), and it is telling us that this inequality holds with quitea 
onvin
ing level of a

ura
y 10−10. But we have not 
onverted the �oating point 
omputations into arigorous proof.4 Con
lusionIn this paper we have exhibited the �rst example of a 
ommon graph that is not three-
olorable. Thisnaturally gives rise to the following interesting question: do there exist 
ommon graphs with arbitrarilylarge 
hromati
 number?Referen
es[BR80℄ Stefan A. Burr and Vera Rosta. On the Ramsey multipli
ities of graphs�problems and re
entresults. J. Graph Theory, 4(4):347�361, 1980.[BT11℄ Rahil Baber and John Talbot. Hypergraphs do jump. Combin. Probab. Comput., 20(2):161�171,2011.[CFS10℄ David Conlon, Ja
ob Fox, and Benny Sudakov. An approximate version of Sidorenko's 
onje
ture.Geom. Fun
t. Anal., 20(6):1354�1366, 2010.[CGW89℄ Fan-Rong K. Chung, Ronald L. Graham, and Ri
hard M. Wilson. Quasi-random graphs. Com-binatori
a, 9(4):345�362, 1989.[CY℄ James Cummings andMi
hael Young. Graphs 
ontaining triangles are not 3-
ommon. J. Combin.,to appear.[Erd62℄ Paul Erd®s. On the number of 
omplete subgraphs 
ontained in 
ertain graphs. Magyar Tud.Akad. Mat. Kutató Int. Közl., 7:459�464, 1962.[ES84℄ Paul Erd®s and Miklós Simonovits. Cube-supersaturated graphs and related problems. InProgress in graph theory (Waterloo, Ont., 1982), pages 203�218. A
ademi
 Press, Toronto, ON,1984.[Goo59℄ Al W. Goodman. On sets of a
quaintan
es and strangers at any party. Amer. Math. Monthly,66:778�783, 1959.[Grz11℄ Andrzej Grzesik. On the maximum number of C5's in a triangle-free graph. arXiv:1102.0962,2011.[Hat10℄ Hamed Hatami. Graph norms and Sidorenko's 
onje
ture. Israel J. Math., 175(1):125�150, 2010.[HHK+11℄ Hamed Hatami, Jan Hladký, Daniel Král', Serguei Norine, and Alexander Razborov. On thenumber of pentagons in triangle-free graphs. arXiv:1102.1634, 2011.[HKN09℄ Jan Hladký, Daniel Král', and Serguei Norine. Counting �ags in triangle-free digraphs.arXiv:0908.2791, 2009. 5



[J�T96℄ Chris Jagger, Pavel �´oví£ek, and Andrew Thomason. Multipli
ities of subgraphs. Combinatori
a,16(1):123�141, 1996.[Raz07℄ Alexander A. Razborov. Flag algebras. J. Symboli
 Logi
, 72(4):1239�1282, 2007.[Raz10℄ Alexander A. Razborov. On 3-hypergraphs with forbidden 4-vertex 
on�gurations. SIAM J.Dis
rete Math., 24(3):946�963, 2010.[Sid89℄ Alexander Sidorenko. Cy
les in graphs and fun
tional inequalities. Mat. Zametki, 46(5):72�79,104, 1989.[Sid91℄ Alexander Sidorenko. Inequalities for fun
tionals generated by bipartite graphs. Diskret. Mat.,3(3):50�65, 1991.[Sid93℄ Alexander Sidorenko. A 
orrelation inequality for bipartite graphs. Graphs Combin., 9(2):201�204, 1993.[Sid96℄ Alexander Sidorenko. Randomness friendly graphs. Random Stru
tures Algorithms, 8(3):229�241,1996.[Tho89℄ Andrew Thomason. A disproof of a 
onje
ture of Erd®s in Ramsey theory. J. London Math. So
.(2), 39(2):246�255, 1989.A The matri
es M
+/−
i and the ve
tors g

+/−
iHere, we list the numeri
al values of the matri
es M

+/−
i and the ve
tors g

+/−
i .The ve
tors g

+
i are given by the tuples

g
+
0

def
= (fσ0

{1}, f
σ0

{1,2}, f
σ0

{1,2,3}, f
σ0

{1,2,3,4})

g
+
1

def
= (fσ1

{1}, f
σ1

{3}, f
σ1

{1,2}, f
σ1

{1,3}, f
σ1

{3,4}, f
σ1

{1,2,3}, f
σ1

{1,3,4}, f
σ1

{1,2,3,4})

g
+
2

def
= (fσ2

{1}, f
σ2

{2}, f
σ2

{4}, f
σ2

{1,2}, f
σ2

{1,4}, f
σ2

{2,3}, f
σ2

{2,4}, f
σ2

{1,2,3},

fσ2

{1,2,4}, f
σ2

{2,3,4}, f
σ2

{1,2,3,4})

g
+
3

def
= (fσ3

{1}, f
σ3

{2}, f
σ3

{1,2}, f
σ3

{2,3}, f
σ3

{1,2,3}, f
σ3

{2,3,4}, f
σ3

{1,2,3,4})

g
+
4

def
= (fσ4

{1}, f
σ4

{1,2}, f
σ4

{1,3}, f
σ4

{1,2,3}, f
σ4

{1,2,3,4}),and the ve
tors g
−
i are given by
g
−
1

def
= (F σ1

{3} − F σ1

{4}, F
σ1

{1,3,4} − F σ1

{2,3,4}, F
σ1

{1,3} − F σ1

{2,3}, F
σ1

{1,3} − F σ1

{2,4},

F σ1

{1,3} − F σ1

{3,4})

g
−
4

def
= (F σ4

{1,2} − F σ4

{3,4}, F
σ4

{1,3} − F σ4

{2,3}, F
σ4

{1,3} − F σ4

{2,4}, F
σ4

{1,3} − F σ4

{3,4}).The matri
es M
+/−
i are listed on the next three pages.

M+
0

def
=

1

2 · 108
×




104133330 −67645847 −126443014 −53041562

−67645847 58559244 68999274 28961030

−126443014 68999274 166581934 69653308

−53041562 28961030 69653308 29368489


6



M+
3

def
=

1

24 · 108
×




1770465360 −40788068 770354664 −280179622 −1109635560 −593033461 −1434435065

−40788068 503182008 −377074674 −65682192 −316936632 337167432 −405260664

770354664 −377074674 942288720 −5442408 −584215338 −635915808 −299584920

−280179622 −65682192 −5442408 90869472 187091280 −48623352 356458176

−1109635560 −316936632 −584215338 187091280 1325422128 196268064 1280101992

−593033461 337167432 −635915808 −48623352 196268064 706802676 −31363774

−1434435065 −405260664 −299584920 356458176 1280101992 −31363774 1763018404




M+
4

def
=

1

12 · 108
×




6589068 −137160 60408 −3635796 −5354976

−137160 3975070 −399180 −720636 −1388043

60408 −399180 3506988 −1778640 −3413616

−3635796 −720636 −1778640 5107716 3969708

−5354976 −1388043 −3413616 3969708 12276592




M−
1

def
=

1

48 · 108
×




1871684759 828164352 153135600 2205677647 32494800

828164352 647325323 122226960 1702274830 23569680

153135600 122226960 32894794 317036160 988560

2205677647 1702274830 317036160 4533494520 62236800

32494800 23569680 988560 62236800 7445060




M−
4

def
=

1

24 · 108
×




371929992 −665160 31885344 6896381

−665160 4952616 15347271 −425892

31885344 15347271 420643536 5244336

6896381 −425892 5244336 1704738



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M+
2

def
=

1

24 · 108
×

×




4114457904 −2123660510 578302533 2402100408 1609339896 −4979381511

−2123660510 4697332052 −146727648 −2893487330 −831349224 5132020824

578302533 −146727648 2842930424 −2377739616 2453284752 −1134538157

2402100408 −2893487330 −2377739616 5029589784 −1305679056 −3694198620

1609339896 −831349224 2453284752 −1305679056 2899169976 −3008866416

−4979381511 5132020824 −1134538157 −3694198620 −3008866416 9045922946

−1073916061 1140828192 949692648 −1628657160 227603736 1585531176

−711542544 −2533278088 −2122945241 2987352093 −2158976640 −492543642

−108075291 −3120849612 799767696 −17138568 1272333144 −2720802624

−311854200 586989168 −646840455 174993936 −824389152 1167719184

−1172726832 −2130186959 −1452441435 1346820763 −1468496784 119548200

−1073916061 −711542544 −108075291 −311854200 −1172726832

1140828192 −2533278088 −3120849612 586989168 −2130186959

949692648 −2122945241 799767696 −646840455 −1452441435

−1628657160 2987352093 −17138568 174993936 1346820763

227603736 −2158976640 1272333144 −824389152 −1468496784

1585531176 −492543642 −2720802624 1167719184 119548200

1198933584 −594013398 −787158072 −14360286 −864511462

−594013398 4445640792 1152146526 408353664 3139157376

−787158072 1152146526 4353119928 −778415544 2410765872

−14360286 408353664 −778415544 430490652 217228440

−864511462 3139157376 2410765872 217228440 3407087808



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M+
1

def
=

1

24 · 108
×

×




3376427096 −550659377 1175122309 −274818336 −1951510989 133242698 −2978772360 −1118255328

−550659377 3579306230 −2818779263 254758382 1853810147 −3593215008 1149060744 −2243131164

1175122309 −2818779263 2446135762 −153160723 −1883990616 2571244464 −1644918408 1392930672

−274818336 254758382 −153160723 259013952 207245488 −524428416 59129384 −87439632

−1951510989 1853810147 −1883990616 207245488 2026568566 −1339529064 2075124696 −196178016

133242698 −3593215008 2571244464 −524428416 −1339529064 4383894552 −474279456 2753404296

−2978772360 1149060744 −1644918408 59129384 2075124696 −474279456 2987175794 578705400

−1118255328 −2243131164 1392930672 −87439632 −196178016 2753404296 578705400 2302497768



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