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Preface

This volume contains abstracts of talks presented at the 10th Workshop on Models and
Algorithms for Planning and Scheduling Problems (MAPSP 2011), held from June 19
to June 24, 2011, in Nymburk, Czech Republic.

MAPSP is a biennial workshop dedicated to all theoretical and practical aspects
of scheduling, planning, and timetabling. Previous MAPSP meetings have been held in
Menaggio, Italy (1993), Wernigerode, Germany (1995), Cambridge, UK (1997), Renesse,
Netherlands (1999), Aussois, France (2001), Aussois, France (2003), Siena, Italy (2005),
Istanbul, Turkey (2007), and Kerkrade, Netherlands (2009).

The abstracts in this volume are: 5 invited talks by Yossi Azar, Bert Zwart, Roman
Barták, David Shmoys, and Ralf Borndörfer plus 81 contributed talks chosen out of 88
submissions. Of these 81 contributed talks, 10 were chosen as plenary talks and the
remaining 71 were split into three parallel tracks. Each submission was reviewed by at
least three program committee members.

We thank to all sponsors of MAPSP 2011. Sponsors include the company
Gurobi Optimization (http://www.gurobi.com), the research center DIMATIA Charles
University (http://dimatia.mff.cuni.cz), and Czech research grants MSM0021620838,
IAA100190902 and ITI-1M0545 (http://iti.mff.cuni.cz).

We are very grateful to the members of the program committee, external referees, and
the members of the organizing committee. Special thanks go to Ondřej Pangrác for de-
signing and maintaining the website, to Marek Krčál and Dušan Knop for preparing this
booklet, to Jan Kratochv́ıl Jr. for designing the poster, and to Sebastian Stiller for de-
signing the MAPSP logo. Most of all, we thank Conforg, s.r.o. (http://www.conforg.cz)
– Anna Kotěšovcová and Jana Kratochv́ılová – for running all the local arrangements
and registration.

June 2011

Rolf Möhring
Jǐŕı Sgall
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ǐŕ
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Č
a
p

e
k

,
P

ře
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rä
d
el

,
U

lr
ic

h
M

.
S
ch

w
ar

z
an

d
O

la
S

ve
n

ss
on

G
u
ru

li
n
g
e
sh

R
a
ra

v
i,

B
jö
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Sadia Azem, Riad Aggoune, Stéphane Dauzère-Pérès . . . . . . . . . . . . . . 137

A Column Generation Approach for the Job-Shop Scheduling Problem with Availability
Constraints
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Fast approximation algorithms for submodular optimization

problems

Yossi Azar ∗

1 Submodular functions and optimization problems

We consider three submodular optimization problems. For each of these problems we
provide a different fast, combinatorial approximation algorithm. For the first prob-
lem, ranking with rubmodular valuations, our algorithm provides the best possible ap-
proximation. For the second problem, maximization submodular function under linear
packing constraints, we match the best approximation provided by non-combinatorial
algorithm. For the third problem, submodular Max-SAT, we get a non-trivial approx-
imation in linear time. We first define submodular function. Then in the each section
we describe one problem.

Let f : 2[m] → R be a set function, where [m] = {1, 2, . . . ,m}. The function f is
submodular iff f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ) , for all S, T ⊆ [m]. An alternative
definition of submodularity is through the property of decreasing marginal values. Given
a function f : 2[m] → R and a set S ⊆ [m], the function fS is defined by fS(j) =
f(S ∪ {j})− f(S). The value fS(j) is called the incremental marginal value of element
j to the set S. The decreasing marginal values property requires that fS(j) is non-
increasing function of S for every fixed j. Formally, it requires that fS(j) ≥ fT (j), for
all S ⊆ T and j ∈ [m] \ T . Since the amount of information necessary to convey an
arbitrary submodular function may be exponential, we assume a value oracle access to
the function. A value oracle for f allows us to query about the value of f(S) for any set
S. Throughout this abstract, whenever we refer to submodular functions, we shall also
imply normalized and monotone functions. Specifically, we assume that a submodular
function f also satisfies f(∅) = 0 and f(S) ≤ f(T ) whenever S ⊆ T .

2 Ranking with Submodular Valuations

An instance of this problem consists of a ground set [m], and a collection of n mono-
tone submodular set functions f1, . . . , fn, where each f i : 2[m] → R+ and a weight
vector w ∈ Rn+. The objective is to find a linear ordering of the ground set elements
that minimizes the weighted cover time of the functions. The cover time of a func-
tion is the minimal number of elements in the prefix of the linear ordering that form a
set whose corresponding function value is greater than some predetermined threshold.
More precisely, the objective is to find a linear ordering π : [m] → [m] that minimizes

∗azar@tau.ac.il. Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Is-
rael.
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∑n
i=1wici, where ci is the cover time of function f i, defined as the minimal index for

which f i({π(1), . . . , π(ci)}) ≥ 1. Here, π(t) stands for the element scheduled at time t
according to the linear ordering π. The unit threshold is chosen without loss of gener-
ality. The motivation for the problem comes from web search ranking. Each user type
has a Submodular relevance function and the The goal is to order the result items in a
way that minimizes the average effort of the user types to see a critical mass.

We design (see [2]) anO(ln(1/ε))-approximation algorithm where ε = min{f iS(j) > 0}
is the smallest non-zero marginal value that any function may gain from some element.
We note that elements can have a marginal value of zero. Our algorithm orders the
ground set elements using an adaptive residual updates scheme, which iteratively selects
an element that has a maximal marginal contribution with respect to an appropriately
defined residual cover of the functions.

Theorem 1. The adaptive residual updates algorithm constructs a linear ordering for
the ranking with submodular valuations problem whose induced cost is no more than
O(ln(1/ε)) times the optimal one.

Some related work can be found in [4, 5, 8].

3 Maximization Submodular Function under Linear Pack-
ing Constraints

The input of this problem consists of a matrix A ∈ [0, 1]m×n, a vector b ∈ [1,∞)m, and
a monotone submodular set function f : 2[n] → R+. The objective is to find a set S that
maximizes f(S) subject to AxS ≤ b. Here, xS stands for the characteristic vector of the
set S. We note that the restrictions on the entries of A and b are without loss of generality
since arbitrary non-negative packing constraints can be reduced to the above form by
first eliminating any element j for which there is some constraint i such that Aij > bi, and
then scaling the input. A well-studied special setting of our problem is when the objective
function f is linear, namely, there is a weight vector c ∈ Rn+ such that f(S) =

∑
j∈S cj .

This special setting captures the class of packing integer programs, which models several
fundamental combinatorial optimization problems, including maximum independent set,
hypergraph matching, and disjoint paths.

Our main result (see [1])is a multiplicative updates algorithm for maximizing a mono-
tone submodular function subject to any number of linear packing constraints. The ap-
proximation ratio matches the best known performance guarantee even for the special
case where the function is linear. More precisely, let W = min{bi/Aij : Aij > 0} be the
width of the packing constraints, we attain the following result.

Theorem 2. There is a deterministic polynomial-time algorithm that attains an ap-
proximation ratio of Ω(1/m1/W ) for maximizing a monotone submodular function under
linear packing constraints.

Some related work can be found in [6, 7, 9–12].

4 Submodular Max-SAT

An input instance of submodular Max-SAT consists of a set V = {v1, . . . , vn} of boolean
variables, and a collection C = {c1, . . . , cm} of clauses, where each clause is a disjunction
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of literals over the variables in V . Let f : C → R+ be a monotone submodular function
over the clauses. Given an assignment η : V → {True,False}, we denote by C(η) ⊆ C the
subset of clauses satisfied by η. The objective is to find an assignment η that maximizes
f(C(η)) over all possible assignments. We note that the classical Max-SAT problem is
obtained as a special case when f is an additive function. An additive function can be
represented as a sum of weights. We design a proportional select algorithm (see [3]),
which processes the variables in an arbitrary order (online), and assign them a value
randomly proportion to the marginal contribution assignment.

Theorem 3. Algorithm proportional select achieves an expected competitive ratio of 2/3
for the online submodular Max-SAT problem.
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Scheduling and queueuing:

Optimality under rare events and heavy loads

Bert Zwart ∗

1 Queues and scheduling disciplines

We review scheduling policies for the GI/GI/1 queue, i.e., the single server queue with
renewal arrivals and i.i.d. service times, and use Vπ to denote the stationary sojourn
time under policy π. We focus on policies π that satisfy the following three conditions:

1. π is work-conserving : the scheduling policy always has the server working at
speed 1 whenever work is present in the system.

2. π is non-anticipative : a scheduling decision at time t does not depend on infor-
mation about customers that arrive beyond time t. (We do allow the scheduler to
use the sizes of jobs on and after arrival.)

3. π is non-learning : the scheduling decisions cannot depend on information about
previous busy periods. That is, a scheduling decision on a sample path cannot
change when the history before the current busy period is changed.

The first two assumptions are standard and allow a policy to exploit detailed infor-
mation, such as past and/or remaining service requirements of individual jobs. The third
condition is formulated in such a way that a scheduling discipline cannot be driven by
data from the (distant) past. It is non-standard, but is satisfied by all common policies.
The third condition is important, because it creates a setting in which the scheduler is
not aware of the job size distribution.

We additionally introduce some notation: denote a generic job size by B and its mean
by β, a generic interarrival time by A, the arrival rate by λ, and the load by ρ = λβ < 1.
Importantly, under these conditions, Vπ is a.s. finite.

2 Tail optimality

The major focus of the paper is how to choose π such that the sojourn time tail P (Vπ > t)
converges to 0 as fast as possible as t → ∞. That is, we are interested in scheduling
disciplines that avoid long sojourn times in an optimal way. Motivated by this, we define
a notion of optimality of scheduling policies with respect to the sojourn time tail.

∗CWI Amsterdam, bertz@cwi.nl
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Definition 1. A scheduling discipline π0 is weakly tail-competitive for a class P of
interarrival time distributions and job size distributions, if

lim sup
t→∞

P (Vπ0 > t)1+τ

P (Vπ > t)
<∞ (1)

holds for every τ > 0, every P ∈ P and every work-conserving, non-anticipative, non-
learning scheduling policy π. π0 is called tail-competitive if the same property holds
for τ = 0, and strongly tail-competitive if additionally the lim sup is bounded by 1
for τ = 0.

Insight into the optimality of scheduling disciplines can be obtained from the following
two simple lower bounds, which are independent of the scheduling discipline:

P (Vπ > t) ≥ P (B > t), (2)

P (Vπ > t) ≥ 1

E[N ]
P (Cmax > t). (3)

Here Cmax is the maximum amount of work in the system during a busy cycle and N
the number of jobs arriving during a busy cycle. An approach for proving optimality of
π0 is to analyze the tail behavior of Vπ0 , and then to compare with the tail behavior of
Cmax or B. We now review existing results on the tail behavior of P (Vπ0 > t) for several
choices of π0.

3 Review of results for specific scheduling disciplines

We focus on two specific classes of job size distributions: light-tailed and heavy-tailed.
We say that a job size B is light-tailed if Φ(θ) = E[exp{θB}] < ∞ for some θ > 0. For
heavy-tailed job sizes, we consider the class of regularly varying distributions, which
have P (B > t) = L(t)t−α where L is a slowly varying function (i.e., L(ax)/L(x) → 1
as x → ∞ for every a > 0) and α > 1 is a constant. The Pareto distribution is an
important special case.

Light tails
We focus on FCFS and (preemptive) LCFS. For FCFS, we write Vπ = VF and for LCFS
we set Vπ = VL. Let ΦA be the MGF of A and set Ψ(θ) = −Φ−1

A (1/Φ(θ)). (Note that
Ψ(θ) = λ(Φ(θ)−1) if the interarrival time distribution is exponential with rate λ). Ψ(θ)
is strictly convex if either A or B is non-deterministic. Now, we can state the large
deviations results for FCFS and LCFS:

lim
t→∞

− logP (VF > t)

t
= γF := sup{θ : Ψ(θ)− θ ≤ 0}, (4)

lim
t→∞

− logP (VL > t)

t
= γL := sup

θ≥0
{θ −Ψ(θ)}. (5)

From the strict convexity of Ψ(θ)− θ, and the fact that Ψ′(0) = ρ, it follows that

γL < (1− ρ)γF . (6)

This inequality shows that, for light tails, FCFS is better at preventing large sojourn
times than LCFS. Indeed, FCFS is known to maximize the decay rate. In our setting,
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this implies weak optimality. Optimality of FCFS can be guaranteed under the condition
that Cramérs condition holds, i.e., if ΦA(−γF )Φ(γF ) = 1 and Φ′(γF ) <∞. In this case,
it is known that P (Cmax > t) ∼ KP (VF > t) for a constant K. Combining this with (3)
it follows that, if Cramérs condition is satisfied, then

lim sup
t→∞

P (VF > t)

P (Vπ > t)
<∞ (7)

for any scheduling discipline π.
In contrast to the optimality of γF , the decay rate γL is the smallest possible decay

rate. To see this, note that Vπ is by definition stochastically smaller than the total time
to emptiness when starting from steady state, just after an arrival (i.e., a residual busy
period). The decay rate of this random variable equals γL.

Interestingly, many other common policies (including PS and SRPT under some
additional assumptions) have been shown to have decay rate equal to γL. The intuition
behind all these policies is that a large sojourn time is caused by a large service
requirement. In addition, the corresponding customer will leave the system after a long
busy period of small customers.

Heavy tails
Under regularly varying job sizes and general interarrival times, the following results
hold:

P (VF > x) ∼ ρ

1− ρ
1

α− 1
tP (B > t), (8)

P (VL > t) ∼ E[N ]P (B > t(1− ρ)), (9)

P (VPS > t) ∼ P (VSRPT > t) ∼ P (B > t(1− ρ)), (10)

where f(x) ∼ g(x) denotes limx→∞ f(x)/g(x) = 1.
There are two important observations about these results that we would like to

highlight. First, since P (B > t(1−ρ)) ∼ (1−ρ)−αP (B > t), PS, SRPT and PLCFS are
within a constant of optimal. Second, notice that FCFS has a sojourn time tail that is
one degree heavier than optimal. In fact, the sojourn time tail of FCFS is as heavy as
possible, up to a constant factor. The same holds for all other non-preemptive policies.
The reason is that, under any non-preemptive policy, a job of size x will cause of the
order x other customers to wait for a long time. This leads to a lower bound of the order
xP (B > x).

4 Impossibility

The previous section reveals a clear dichotomy between the scheduling policies that
perform well under light-tailed and heavy-tailed job size distributions. FCFS is weakly
tail-competitive under light-tailed job sizes, but is far from optimal under heavy-tailed
job sizes; whereas the opposite is true for LCFS, SRPT and PS. This motivates the
question: does there exist a scheduling policy that is weakly tail-competitive across all
job size distributions? It turns out that the answer is negative:

Theorem 2. There does not exist a work conserving, non-anticipative, and non-learning
scheduling policy π that is weakly tail-competitive for any P that contains all P having
a job size distribution that is either light-tailed or regularly varying with α > 2.
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Intuition behind the theorem will be provided during the talk. We will also show
that it is possible to exploit information about the first two moments of the job size
distribution to develop tail-robust scheduling disciplines.

5 Queues under heavy load

The single server queue is stable if and only if ρ < 1. A key question is on the behavior of
Vπ for fixed π as ρ→ 1. For many service disciplines, in particular, for all non-preemptive
disciplines,

E[Vπ] = O(1/(1− ρ)), ρ→ 1.

Time permitting, we will review these results as well, and also give a more detailed
account on the behavior of the expected sojourn time under SRPT, where typically

E[VSRPT ] = o(1/(1− ρ)), ρ→ 1.

It turns out that the exact rate of growth depends in a detailed fashion on the tail of
the service time distribution.
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Modelling and Solving Scheduling Problems using

Constraint Programming

Roman Barták ∗

1 Introduction

Constraint programming [11] is a technology for solving combinatorial optimisation
problems using solving approach that combines search and inference. The idea is that
users formulate the problem to be solved as a so called constraint satisfaction problem
and a generic constraint solver produces a solution to this constraint satisfaction prob-
lem. Constraint satisfaction problem consists of a finite set of variables, each variable
is annotated by a set of possible values called a domain, and finally there is a set of
constraints that specify allowed combinations of values to be assigned to the variables.
As constraint can be any relation of logical, arithmetical, or combinatorial nature, CP
gives a big flexibility in formulating the problems as constraint satisfaction problems.
However, as we will explain later, different formulations lead to different levels of in-
ference which may dramatically influence efficiency of problem solving. Hence problem
modelling is critical in using constraint satisfaction techniques.

In this paper we focus on constraint models for scheduling problems. Scheduling is a
prominent application area for constraint satisfaction thanks to natural formulation of
scheduling problems as constraint satisfaction problems [2] including side constraints that
frequently appear in real-life problems. Moreover, there exist many inference techniques
for various scheduling constraints that can be naturally exploited by constraint solvers.
Last but not least, the search strategy of constraint solvers can be influenced by users
so it is easy to include existing scheduling heuristics. Probably the main advantage of
constraint-based scheduling is its modularity and flexibility. Rather than focusing on a
single algorithm solving efficiently a particular class of problems, CP provides a universal
solving approach where many existing solving techniques can naturally be combined.

To understand the differences between models one requires knowledge of how con-
straint satisfaction works. Hence, we will start with some background on constraint
satisfaction in general. Then we will look at some specific constraints for modelling
scheduling problems, such as resource constraints. We will conclude with practical notes
on using constraint satisfaction techniques in scheduling based on experience from real-
life projects realised for Visopt and ManOPT companies.

∗bartak@ktiml.mff.cuni.cz. Charles University in Prague, Faculty of Mathematics and Physics,
Malostranské náměst́ı 2/25, 118 00 Praha 1, Czech Republic.
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2 Constraint satisfaction at glance

Constraint satisfaction problem (CSP) is a triple (X,D, S), where X is a finite set of
variables xi, D is a set of domains for the variables, for each xi we have a finite set
of possible values Di ∈ D, and C is a set of constraints. Constraint cj is a relation
over a subset of variables Yj ⊆ X (Yj is called a scope of the constraint) which defines
allowed tuples of values for variables in Yj . We say that an instantiation σ of variables
satisfies the constraint c if restriction of σ to the variables in the scope of c gives an
allowed tuple. A feasible solution to a CSP is an instantiation of all variables satisfying
all the constraints. Sometimes, a CSP is accompanied by an objective function that
maps instantiations of variables to numbers. Then we may look for a feasible solution to
a CSP that minimizes or maximizes the value of the objective function. Such a problem
is called a Constraint Optimisation Problem (COP).

Constraint satisfaction problems can be solved by search, namely by backtracking
algorithm that takes a not-yet-instantiated variable and tries to assign a value from
variable’s domain. If the obtained partial instantiation of variables does not violate any
constraint, the algorithm goes to a next variable, otherwise it backtracks (tries a different
value and if no value remains in the domain then returns to the previously instantiated
variable). The algorithm stops when all variables are instantiated, then we obtained a
feasible solution, or when no other option remains, then the problem has no solution. The
search algorithm can be guided by variable and value ordering heuristics recommending
which variable should be instantiated first and in which order the values should be tried.
Obviously in the worst case this algorithm has exponential time complexity which is not
surprising as CSPs belong among NP-hard problems.

Though search is a general mechanism to solve any CSP, the real power horse behind
the efficiency of constraint solvers is using inference that prunes the search tree. Some-
times pruning is so strong that search is not necessary or it is very ”shallow” and the
problem can be solved merely by inference. To demonstrate the type of inference used
in constraint solvers let us assume constraint A < B and DA = {2, 3, 4}, DB = {1, 2, 3}.
Obviously, values 3 and 4 can never be assigned to A to satisfy the constraint as there
is no compatible value in DB. Similarly values 1 and 2 cannot be used for B as they
have no support - a compatible value - in DA. These values can be filtered out from
domains of variables A and B without loss of any solution. In general, inference in most
constraint solvers is realised using a technique known as arc consistency that works as
follows. Each constraint has a filtering procedure that removes values from the domains
of variables in the constraint’s scope that violate the constraint. This can be realised for
any constraint c and current domains of variables Di using the following rule:

∀j ∈ scope(c) : D′j ← ((×i∈scope(c)Di) ∩ c) ↓ Dj .

Briefly speaking we select the tuples from c that contain only values from the current
domains of variables and we project these tuples back to the domains to obtain the values
supported by the constraint. If we know the semantics of the constraint, it is possible
to implement the filtering procedure in a more efficient way. For example, for constraint
A < B we can filter out from DA all values x such that x ≥ max(DB) rather than blindly
checking pairs (x, y) for compatibility with the constraint. This is the way how a special
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solving algorithm can be integrated into a constraint solver - it is ”enough” to convert the
algorithm into a filtering procedure. When the filtering procedures are defined, they are
applied to domains of variables repeatedly until a fix point is reached. By the fix point
we mean that no procedure deletes a value from any domain so we reached a state where
each constraint is locally consistent. For e binary constraints where the size of domains
is d the optimal time complexity to make the problem arc consistent is O(ed2) [14].
Note that the overall consistency algorithm can be implemented in incremental way so
when a domain of a variable is changed, for example by the search algorithm, then only
the filtering algorithms for constraints affected by this change are waked up. This way,
the change is propagated through the network of constraints hence the technique is also
called constraint propagation.

As we just outlined when solving a CSP search interleaves with constraint propagation
by first making the problem arc consistent and then after each search decision propagat-
ing the decision to all variables by making the constraints consistent again. This way, it is
possible to exploit efficiency of inference and generality of search. Naturally, as inference
is realised via local propagation of constraints, the overall efficiency is strongly influ-
enced by the constraint model - a formulation of the problem as a constraint satisfaction
problem.

3 Constraints in scheduling

Constraint-based scheduling is an approach to solve scheduling problems by convert-
ing them to a CSP and then solving that CSP using general constraint satisfaction
techniques. Basically it means deciding the variables describing possible options and
connecting the variables via constraints. Note that variables and their domains define
the search space to be explored by the search algorithm while the constraints define not
only the relations between the variables that must hold but also determine the level of in-
ference. Constraints together with the search heuristics are two major assets influencing
efficiency of problem solving.

Scheduling deals with the allocation of activities to scarce resources and to limited
time. Hence the main decision variable is the start time Sa of each activity a. The
domain of this variable consists of time points when the activity can start. Frequently
the domain is represented as an interval and filtering algorithms shrink this interval
(see below). Sometimes, processing time Pa of activity and its end time Ea may be
defined as variables too, for example, if processing time depends on resource to which
the activity is allocated. For interruptible or elastic activities an orthogonal approach
might be more appropriate - each activity a is represented by a set of Boolean variables
Xa,t such that variable Xa,t describes whether activity a runs at time t or not. If resource
allocation is part of the problem, then a resource variable Ra for each activity describes
to which resource the activity is allocated. In problems where planning is integrated with
scheduling and the system should also decide about which activities will be included in
the final schedule [3,4], a Boolean validity variable may be used to describe whether the
activity is included or not. Note finally that it is possible to combine several types of
variables within a single model to simplify description of constraints. Also, not all the
variables must be the decision variables whose values are decided by the search algorithm.

10



Some auxiliary variables may be used just to simplify specification of constraints and
the values of these variables will be set purely be inference. For example the end time
of the activity can be inferred from the start time, if the processing time is constant.

Naturally, the choice of variables influences how the constraints can be expressed.
There could be simple arithmetic constraints describing the temporal relations. For
example Sa + Pa = Ea describes the relation between the start time, the processing
time, and the end time of activity a. Temporal inference is usually efficient as simple
temporal problems are tractable [10]. More complex inference techniques are behind the
resource constraints. We can describe the unary resource simply as a set of disjunctive
constraints specifying that no two activities allocated to the same resource overlap in
time. These constraints can also be easily extended if resource allocation is part of the
problem as the following constraint shows:

Sa + Pa ≤ Sb ∨ Sb + Pb ≤ Sa ∨Ra 6= Rb.

However, the above disjunctive constraints do not infer a lot and a more global view is
necessary. As scheduling is a premium application area of constraint programming, many
special constraints (filtering algorithms) were proposed for modeling resources [1,2,9,16].
We will sketch here only the main idea of one of the most frequently used inference
techniques for unary resource constraints - edge finding [1]. Assume a situation from
the following figure which shows three activities A,B,C with their processing times and
time windows:

The disjunctive unary resource constraints as presented above are consistent and
do not shrink the time window. However, assume the situation that activity A is not
processed first. Then the processing of activities can start earliest at time 6 (the earliest
start time of activity B), but as the activities need 11 (2+5+4) time units for processing,
obviously they cannot all finish before time 16 which is the latest completion of all three
activities. The conclusion is that activity A must be processed first which means that
activities B and C must be processed after A. As their latest completion time is 16 and
they need 9 time units for processing, we can shrink the time window of A to interval
〈4, 7〉. The above deduction can be described by the following inference rule:

est(Ω) +
∑

X∈Ω∪{A}

PX > lct(Ω ∪ {A})⇒ EA ≤ min{lct(Ω′)−
∑
X∈Ω′

PX | Ω′ ⊆ Ω}

where Ω is a set of activities that does not contain activity A, est(Ω) is the earliest start
time of activities in set Ω (the minimal time in the domains of start time variables)
and similarly lct(Ω) is the latest completion time. It may seem that to achieve strongest
inference one needs to explore all possible sets Ω, but this can be done in time O(n.log n),
where n is the number of activities [9, 16].
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So far we focused on one aspect of constraint-based scheduling, which was the design
of constraint models and integration of special inference rules into the model. The second
important aspect is flexibility of search procedure that makes it easy to use specific search
strategies such as well known EDD rule [12]. Note that during search, it is not necessary
to explicitly instantiate the variables but it is possible to do search by splitting the
search space via adding new constraints. For example precedence constraint posting [8]
is a search method that branches on the ordering constraints between activities that
cannot overlap in time such as activities allocated to a unary resource. For example if
activities a and b are allocated to the same unary resource and their order is not yet
decided then we can split the search space by posting constraint Sa + Pa ≤ Sb in one
search branch and constraint Sb + Pb ≤ Sa in the other search branch. To select which
activities should be ordered first and which order should be tried first the heuristics
based on slack [15] can be used.

In summary, constraint-based scheduling is a flexible approach for modelling and solv-
ing scheduling problems. It naturally treats any type of constraints that appear in
real-life problems and it allows integration of special solving algorithms via the inference
procedures behind the constraints as well as using scheduling strategies within the search
algorithm.

4 Practical experiences

From the previous text, it should be clear that constraint-based scheduling is more about
modelling and less about algorithms. In fact, when solving the real-life problems the role
of formal scheduling model is even higher than it may seem from the academic perspec-
tive. The scheduling concepts such as activities, temporal and resource constraints are
not directly present in business environments. For example, enterprise systems oper-
ate with concepts such as bill of material, workflow, and demand so before solving the
scheduling problem it is necessary to formulate the problem itself. In other words, it is
necessary to translate the concepts used in business practice to scheduling concepts that
can be used to formulate the scheduling problem [6]. Moreover, the type of underlying
scheduling problem [7] is not always obvious from the original concepts, so it is danger-
ous to rely on a specific scheduling algorithm. The reason is that a change in data may
change dramatically the scheduling problem to be solved. This is where constraint-based
scheduling can help because it is based on a ”universal” model of the scheduling problem.

We have applied constraint-based scheduling techniques in two real-life projects: Vi-
sopt ShopFloor system and MAKe tool. Though both projects shared the same vision -
providing an easy-to-use tool where the user models the enterprise and the system auto-
matically optimizes production - they were applied to different production environments
and they also differ dramatically in the used scheduling model.

Visopt ShopFloor [3] addressed large complex enterprises such as food and chemical
companies. Though applied to process industries the scheduling system used discrete
scheduling using batches. The scheduling engine was designed around the concept of a
dynamic CSP where variables and constraints were added during the problem solving.
The reason was that the system was actually doing integrated planning and scheduling
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and based on the description of enterprise, the system generated activities to satisfy
the demands and allocated the activities to available resources. Briefly speaking the
scheduling model was relatively close to the description of enterprise and it directly
included many special constraints appearing in practice. The system used a very detailed
universal scheduling model with many features, but such a model is hard to maintain.
Moreover, some practical features still needed to be translated to the concepts used in the
scheduling model. This experience together with the observation that many concepts
implemented in the Visopt ShopFloor scheduling engine were actually never used in
practice brought us to the idea of developing a ”light” scheduling model covering only
the core concepts and ”compiling” other concepts to the core concepts. This idea was
materialized in the scheduling engine for MAKe tool.

MAKe is a performance prediction and optimisation tool for small and medium enter-
prises marketed by ManOPT Systems. Similarly to Visopt ShopFloor it uses Enterprise
Modeller to describe the production environment and from obtained data it automat-
ically generates a scheduling model [6]. As mentioned above, the scheduling engine in
MAKe is based on a completely different concept. Though it still solves integrated
planning and scheduling problems where it is necessary to select the activities to satisfy
the demands, it uses a classical CSP. All possible activities are modelled in the system
and connected using the temporal network with alternatives (TNA) [4] which is the core
concept to describe optional process routes. To select the activities for the final schedule
we use the validity variables as described in the previous section. We developed spe-
cial inference techniques to work with optional activities in TNA [5] and actually this
project initiated a new area of research on inference techniques for resource constraints
with optional activities [16]. These novel techniques are used in recent versions of ILOG
CP Optimizer [13].

To summarize our experience, we believe that formal problem modelling and (re-)
formulation techniques are critical to bring the scheduling technology to the fingers of
regular users. These techniques form a bridge between advanced scheduling techniques
on one side and real-life problems on the other side. Constraint-based scheduling seems
to be a good integration platform in this endeavour as it is flexible enough to model
various constraints and to absorb specific solving algorithms.
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Strong LP Formulations

and

Primal-Dual Approximation Algorithms

David B. Shmoys ∗

The state of the art of the design and analysis of approximation algorithms for
NP-hard discrete optimization has advanced significantly over the past two decades; fur-
thermore, the most prevalent approach has been to rely on the strength of natural linear
programming relaxations. Work in computational integer programming over the same
time period has shown the power of adding combinatorially-motivated valid inequalities,
but this has not been employed often in the design of approximation algorithms. We
will show how this approach can be applied in the design and analysis of primal-dual
approximation algorithms. We will present several recent approximation results along
these lines.

Carr, Fleischer, Leung, and Phillips [3] initiated a very interesting line of research by
introducing a class of knapsack-cover inequalties for a simple minimum-cost knapsack
problem: in this problem, we are given a set of items, each with a given cost and a given
size, along with a demand that needs to be satisfied; the objective is to select a subset of
items of total size that is at least the demand, of minimum total cost. The natural 0-1
integer program has an unbounded integrality gap. The knapsack-cover inequalities of
Carr et al. strengthen the LP relaxation in the following way: for each subset of items
A, one considers the residual demand assuming that all of the items in A have been
selected for inclusion in the knapsack; then each other item has an effective size that is
the minimum of its true size and the residual demand, and the new constraint states
that the total effective size that we select from the remaining items must be sufficient
to meet the residual demand. Carr et al. gave a rounding approach that yielded a 2-
approximation algorithm (via a clever application of the ellipsoid method). Carnes and
Shmoys [2] give a (surprisingly simple) primal-dual analogue of this LP-rounding result,
and we shall explain this result in detail.

In fact, the minimum-cost knapsack problem is equivalent to the scheduling problem
(in the notation of Graham, Lawler, Lenstra, and Rinnooy Kan [5]) 1|dj = D|∑wjUj ,
that is, the problem of minimizing the total weight of late jobs on a single machine,
where all jobs have a common due date. Recently, Bansal and Pruhs [1] gave the first
constant approximation algorithm for a vast generalization of this: 1||∑ fj , provided
the cost functions are nonnegative (in addition to the standard assumption that they
be nondecreasing). The algorithm of Bansal and Pruhs finds a feasible solution of cost
within a factor of 16 of the optimum. Cheung and Shmoys [4] have recently generalized
the construction of Carnes and Shmoys to give a direct primal-dual approximation al-
gorithm for 1||∑ fj that, for any ε > 0, can find in polynomial time, a solution of cost
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within a factor of 2 + ε of optimal. One surprising aspect of this result is that it is easy
to further generalize it to allow a machine that can run at variable speed according to a
prespecified speed function s(t). We shall outline the main ideas behind these results.
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Scheduling problems and algorithms in traffic and transport

Ralf Borndörfer ∗

1 Introduction

Traffic and transport is one of the classical application areas of scheduling models and
algorithms. Important problems, in particular, about vehicle and crew scheduling, are
nowadays well understood, and powerful mathematical optimization methods are avail-
able, which have already become an industry standard in public and air transport. Such
successes motivate research to extend optimization approaches to further applications.
I will discuss four areas with potential in this respect, namely,

• railway scheduling,

• robust scheduling,

• service design.

Each of them features challenging, important scheduling problems, which are currently
under investigation in the research community. The discussion is in terms of examples;
for a general overview and pointers to the literature see the survey article [2].

2 Traffic and transport scheduling

Traffic and transport scheduling is about guiding flows of vehicles, crews, passengers,
and goods through a network of some sort. Problems involving only local dependencies
between successive trips can be dealt with using network flows, problems involving con-
straints on individual paths or rotations using set partitioning approaches. Including
further requirements calls for an extension of these methods.

2.1 Railway scheduling

Railway systems differ from public and air transport networks in two main points,
namely, in train composition, i.e., the combination of different vehicles, and in the ca-
pacity restrictions imposed by the movement of the trains on a track system. Because of
these two characteristics, railway scheduling problems have a special, “railway combina-
torics” flavor. A major problem is that decomposition or simplification approaches often
fail, because railways systems lack sufficient degrees of freedom in order to recombine
solutions of individual problems. On the other hand, integrated models on a detailed
level become quickly intractable for scenarios of practically relevant sizes.
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Figure 1: Optimized railway timetable (left) and line plan (right).

One way to approach this problem is to develop micro-macro transformation meth-
ods, that dynamically adjust a model’s level of detail as needed, namely, to a high
accuracy at the bottlenecks, and to a low precision where it can be afforded, similar to
adaptive mesh-generation in finite element methods. I will illustrate such an approach
at the example of the track allocation or railway timetabling problem, see also [5, 6].

Investigating the combinatorics of railways also leads to new types of models. I
will discuss how the coordinated planning of trips that repeat over a week in order
to maximize the regularity of the schedule can be expressed in terms of a hypergraph
assignment model.

2.2 Robust scheduling

The best plan is worth little if it can’t be implemented in practice, and this is even more
true for highly optimized plans, which leave little safety margins. Safeguarding against
disruptions is therefore major topic in railway and airline scheduling. The main goal is
to come up with robust schedules, i.e., schedules that can absorb a certain amount of
operational fluctuations. By placing buffers at appropriate places, delays are supposed
to diminish, instead of building up.

The two main approaches are to use stochastic optimization in order to minimize
expected delays, based on input disruption probabilities derived from historical data,
and to control the worst-case over some set of input scenarios in a robust optimization
approach. Of course, they can also be combined.

I will discuss an optimization approach to robust tail assignment that minimizes the
expected propagated delay along aircraft rotations. The method is based on a numerical
approximation of propagated convolution integrals. It is computationally efficient and
combines with standard column generation methods, see [1] for more details.

2.3 Service design

Vehicle and crew scheduling have important optimization potentials, but after all, they
can only operate within the limits of a given infrastructure. Much larger effects could
be expected from optimizing the system itself. With the notable exception of air traffic,
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mathematics does not yet play much of a role here. This is remarkable, because un-
derstanding and controlling the correlation between supply and demand is the key to
increasing a systems attractivity (or minimize its loss, if costs have to be saved). Service
design must balance costs and utilities, i.e., it is naturally multi-criterial, and it must
match the use of resources with the passenger response, i.e., it is highly integrated, or
even behavioral, such that, ultimately, bi-level and game-theoretical methods must be
used.

I will discuss an example in line planning in public transport, integrating line and
passenger routing, see also [3,4] and an application dealing with fare evader controls on
the German highway system; here, of course, the goal is to minimize the “usage”.
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Feasibility Analysis of Sporadic Real-Time

Multiprocessor Task Systems∗

Vincenzo Bonifaci (Speaker) † Alberto Marchetti-Spaccamela ‡

The sporadic task model is a model of recurrent processes in hard real-time systems
that has received great attention in the last years (see for example [1, 3] and references
therein). A sporadic task τi = (Ci, Di, Pi) is characterized by a worst-case execution time
Ci, a relative deadline Di, and a minimum interarrival separation Pi. Such a sporadic
task generates a potentially infinite sequence of jobs: each job arrives at an unpredictable
time, after the minimum separation Pi from the last job of the same task has elapsed;
it has an execution requirement less than or equal to Ci and a deadline that occurs
Di time units after its arrival time. A sporadic task system T is a collection of such
sporadic tasks. Since the actual interarrival times can vary, there are infinitely many job
sequences that may be generated by T .

We are interested in designing algorithms that tell us when a given sporadic task
system can be feasibly scheduled on a set of m ≥ 1 identical processors, where we allow
any job to be interrupted and resumed later on another processor at no penalty. The
problem can be formulated in several ways:

• Feasibility : is it possible to feasibly schedule on m processors any job sequence
that can be generated by T ?

• Online feasibility : is there an online algorithm that can feasibly schedule on m
processors any job sequence that can be generated by T ?

• Schedulability : does the given online algorithm Alg feasibly schedule on m proces-
sors any job sequence that can be generated by T ?

It is useful to remark that, despite their apparent similarity, the feasibility problem
and the online feasibility problem are in fact distinct, as shown recently by [7].

We study the three above problems in the context of sporadic multiprocessor task
systems, and we provide new results for each of them.

For the feasibility problem, we give the first correct test, thus answering [3, Open
Problem 3]. The test has high complexity, but it has the interesting consequence that
a job sequence that witnesses the infeasibility of a task system T has without loss of
generality length at most doubly exponential in the bitsize of T .

We then give the first correct test for the online feasibility problem. The test has
exponential time complexity and is constructive: if a system is deemed online feasible,
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then an optimal online scheduling algorithm can also be constructed, in the same time
bound. Moreover, this optimal algorithm is without loss of generality memoryless: its
decisions depend only on the current (finite) state and not on the entire history up to
the decision point.

For the schedulability problem, we provide a general schedulability test showing that
the schedulability of a system by any memoryless algorithm can be tested in polynomial
space. This improves a result of Baker and Cirinei [2], that provided an exponential
space test for essentially the same class of algorithms.

All the above results, that are derived for constrained-deadline systems whereDi ≤ Pi
for all i, can be extended to the arbitrary-deadline case in which deadlines may exceed
periods, at the expense of increasing some of the complexity bounds.

We finally consider the issue of discrete time schedules versus continuous time sched-
ules. The above results are derived with the assumption that the time line is divided
into indivisible time slots and preemptions can occur only at integral points, that is, the
schedule has to be discrete. In a continuous schedule, time is not divided into discrete
quanta and preemptions may occur at any time instant. We show that in a sporadic
task system (with integer input parameters and integer arrival times) a discrete schedule
exists whenever a continuous schedule does, thus showing that the discrete time assump-
tion is without loss of generality. Such an equivalence was known for the single processor
setting [4]; however, the proof relied on the optimality of the EDF algorithm and thus
did not extend to multiprocessor systems. In fact, this equivalence was also listed among
the relevant open problems in real-time scheduling [3, Open Problem 5].

Our main conceptual contribution is to show how the feasibility problem, the online
feasibility problem and the schedulability problem can be cast as the problem of deciding
the winner in certain games of infinite duration played on a finite graph. We then use
tools from the theory of games to decide who has a winning strategy. In particular, in
the case of the feasibility problem we have a game of imperfect information where one
of the players does not see the moves of the opponent, a so-called blindfold game [8].
This can be reformulated as a one-player (i.e., solitaire) game on an exponentially larger
graph and then solved via a reachability algorithm. However, a technical complication
is that in our model a job sequence and a schedule can both have infinite length, which
when the system is feasible makes the construction of a feasible schedule challenging.
We solve this complication by an application of König’s Infinity Lemma from graph
theory [6, p. 200]. This is the technical ingredient that, roughly speaking, allows us to
reduce the job sequences from infinite length to finite length and ultimately to obtain
the equivalence between continuous and discrete schedules.

The power of our new approach is its generality: it can be applied to all three
problems, and at the same time it yields proofs that are not technically too complicated.
We hope that this approach might be useful to answer similar questions for other real-
time scheduling problems.
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Challenges in Scheduling when Planning

the Ship Traffic on the Kiel Canal

Elisabeth Günther (Speaker) ∗ Marco E. Lübbecke † Rolf H. Möhring ‡

1 Introduction

The Kiel Canal connects the North and Baltic seas and is ranked among the world’s three
major canals. In fact, in terms of traffic, it is the busiest artificial waterway worldwide.
In a billion Euro project, the German Federal Waterways and Shipping Administration
plans to enlarge the canal during the coming years. This project is about contributing
to well-founded advises on how the enlargement can be optimally done. In order to
evaluate various construction possibilities and enlargement strategies it is indispensable
to first provide an accurate model for the ship traffic and designing an algorithm which
(ideally optimally) controls it.

The problem very roughly is as follows. There is bi-directional ship traffic on the
canal; there are several locks at both ends. Ships are classified in different size categories.
Passing and overtaking is allowed only if the sizes of the two ships do not exceed a given
threshold which depends on the meeting point. If otherwise a conflict occurs, ships have
to wait at designated, capacitated places, the sidings. The objective is to minimize the
total passage time, including lock and siding waiting times. The overall scheduling is
currently done by teams of experienced planners, for the locks and for the sidings. In
this abstract we concentrate on the latter problem, but both are treated in an integrated
way during the project.

2 Ship Traffic Control

We are given an interval C ⊂ R as canal partitioned into a set of intervals E = (ei)i=1,...,m

with ∪̇mi=1ei = C as segments where some special segments T ⊂ E are called sidings.
Furthermore, a set of requests R = {(vi, ri, si, ti, wi, `i, bi, Bi) | i ∈ S} is given that
corresponds to ships S = {1, . . . , n} with maximum velocity vi, release date ri, start
and target positions si 6= ti ∈ C somewhere in the canal, ship dimensions like width wi
and length `i and finally waiting bounds per siding bi and in total Bi. Ship i ∈ S is
called updirected when ti > si and downdirected otherwise. The specified velocity of
a ship i ∈ S and the given length of a segment e ∈ E define the transit time τie of
ship i along segment e assuming constant full speed along each segment like the manual
planners do.

∗eguenth@math.tu-berlin.de. Technische Universität Berlin, Institut für Mathematik, Germany.
†marco.luebbecke@rwth-aachen.de. RWTH Aachen University, Chair of Operations Research, Ger-

many.
‡rolf.moehring@tu-berlin.de. Technische Universität Berlin, Institut für Mathematik, Germany.

23



For each segment e ∈ E we are given a set Ce ⊆ S × S of ship pairs having a conflict
on segment e. These are at the one hand side those ships with opposite travel directions
that are not allowed to pass each other on that segment. Therefore, a decision on who
is passing this segment first must be made. But also for all ships traveling in the same
directions an order must be decided. Thus, all same directed ships have a conflict.

To define a solution we need to determine feasible departure times die specifying
when each ship i ∈ S is leaving a segment e ∈ E . Due to space limitations feasibility will
be defined exactly only for a relaxed problem by the following conditions:

di,e−s + τ,e = di,e ∀i ∈ S, e ∈ E \ T (1)

di,t−i + τi,t + wi,t = di,t ∀i ∈ S, t ∈ T (2)

zi,j,e = 1 ⇒ di,e + ∆(i, j, e) ≤ dj,e ∀e ∈ E \ T , (i, j) ∈ Ce (3)

zi,j,e = 0 ⇒ dj,e + ∆(j, i, e) ≤ di,e ∀e ∈ E \ T , (i, j) ∈ Ce (4)

di,e ≤ di,e ≤ di,e ∀i ∈ S, e ∈ E (5)

wi,t ≥ 0 ∀i ∈ S, t ∈ T (6)

zi,j,e ∈ {0, 1} ∀e ∈ E \ T , (i, j) ∈ Ce (7)

All conditions concerning passing of and waiting in sidings are missing here. Equa-
tions (1) and (2) guarantee that departure times can be traveled with the given velocities
and that waiting, represented by non negative variables wi,t in (6), only occurs in sidings.
Segment e−i is the segment that must be passed before e when traveling in direction
of ship i ∈ S. Each departure time variable is bounded from below by di,e and from

above by di,e that are defined by the release dates, the waiting bounds and the travel
times (5). The binary variables zi,j,e of (7) decide how to deal with two conflicting ships
on a segment. Depending on this decisions one of the two conditions (3) and (4) must be
respected. The used delta ∆(i, j, e) depends on the ship dimensions, the maximum al-
lowed speed, the travel directions and the start and target positions of the two conflicting
ships as well as the special safety distance regulations. It is not necessarily symmetric
and can be a negative value.

The goal is to minimize the total waiting time
∑

i∈S,t∈T wi,t. This problem is shown
to be NP-hard. Solutions are visualized in exactly the same way the planners are used
to see them, in a distance-time diagram of the canal, see Figure 1.

Figure 1: Example of a distance-time diagram showing one of our solutions.
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3 Challenges in Scheduling

The mentioned binary variables of the above model define a“sequence” for the conflicting
ships on each segment. In this sense, we are talking here about scheduling decisions that
must be made for each segment and form the hard part of this model (forgetting about
the difficulties arising within the sidings). There are two main differences to classical
scheduling which cause problems for the known standard techniques. First, the relation
of having a conflict is not transitive and hence, the resulting “sequence” is no total order.
Second, there is no designated “processing time.” The time period, for which a segment
is blocked by a ship for another one really depends on the properties of both and even
is not symmetric.

Even when restricting to special cases where these difficulties do not occur we get
interesting scheduling problems. Consider the case of one segment surrounded by to sid-
ings where all ships have a conflict on that segment and same velocity. Then the main
task is to decide when to change the currently active travel direction on this segment,
because every switch of travel direction induces lots of waiting time. The ships must be
grouped into batches with setup costs. Hence, this problem can be interpreted as a two
family batch scheduling problem with release dates, [1] and [3]. Under further restric-
tions inducing identical “processing times” this can be solved by dynamic programming
in polynomial time. Considering more than one segment yields problems of job shop
scheduling character.

It is also worth mentioning that there are certain similarities to train scheduling on
a single track line [2], but also here the big problem of non conflicting ships occurs.

4 An Algorithm

The main goal of the project was to develop a software that can do simulations in lots of
distinct settings to answer questions arising in the enlargement process. Therefore, our
algorithm must cover all important real world conditions. This is implemented by an
elaborate procedure for dynamic routing with time windows extending the techniques
of [4]. Once these feasible and realistic solutions can be produced, it was embedded in a
local search procedure that considers the scheduling decisions on the segments to improve
solutions. To respect the online character this is done in a rolling horizon manner. Since
the officers in charge of the enlargement were satisfied and impressed by the produced
solutions, our software is a perfect tool for simulations.
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How To Schedule When You Have To Buy Your Energy

Kirk Pruhs ∗ Cliff Stein (Speaker) †

As the price of server hardware has remained relatively stable, energy cost becomes
one of the primary components in the total cost of ownership for computer server systems
in data centers [2]. A commonly used power management technique is speed scaling,
changing the speed of the processor. As the dynamic power used by a processor is
approximately the cube of the speed of the processor (this is called the cube-root rule for
CMOS based processors [3, 5]), even a modest reduction in speed can have a dramatic
impact on power. Researchers at Google reported an approximately twenty percent
energy savings from implementing the following reactive strategy: When the workload
of a processor was light, the speed was scaled down, and when most processors were at
maximum speed, some less time critical tasks were suspended, to be restarted when the
system was not so heavily loaded [4].

Scheduling problems related to speed scaling and power management naturally have
competing dual objectives: some quality of service (QoS) objective, and some power
related objective. By now there are many tens of papers on speed scaling in the algo-
rithmic literature (and many more in the general computer science literature). Roughly
speaking, all of the formal problems considered in the algorithmic speed scaling litera-
ture fall into one of two categories. The first type of problem turns one of the QoS or
power objectives into a constraint, and optimizes the other objective. An example is
minimizing the total flow time subject to the constraint that the energy used doesn’t
exceed an energy bound representing the energy stored in a battery. The second type of
problem optimizes the sum of the QoS and power objectives. An example of this type
of problem is minimizing the sum of energy used and total flow time.

In this paper, we introduce a new class of speed scaling problems, which makes the
monetary cost of energy more explicit, and we provide algorithmic results for a particular
problem in this class. We assume that the scheduler is aware of the income obtainable
from finishing particular jobs by particular times, and is aware of the cost of energy.
We then naturally assume that the scheduler’s goal is to maximize profit, which is the
aggregate income minus the aggregate energy cost. One can easily formulate many
natural problems within this framework, depending on how one formalizes income and
energy costs (and also, of course, depending on the processor and job environments).
Here we consider a rather general model for the income of jobs: We assume that there
is an non-negative non-increasing income function Ii(t) associated with each job i that
specifies the income that is obtained if the job is finished at time t. And we consider
the most natural and simple model for energy costs: We assume a fixed cost per unit of
energy.

We now explain the job and machine environments that we consider in this paper.
Jobs arrive over time at the data center consisting of m identical speed-scalable proces-
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sors. There is an arbitrary power function P (s) that specifies the power when a processor
is run at speed s. Job i arrives at time ri, with known work/size wi, and known income
function Ii(t). The online scheduler must decide, at each time, which job to run on each
processor, and at what speed to run each processor. We allow preemption and migration,
that is, jobs can be suspended at any time, and restarted from the point of suspension
at a later time, possibly on a different machine. Recall that our objective is to maximize
the income from the scheduled jobs minus the total energy costs.

The standard measure of goodness for an online algorithm is competitiveness, which
in this setting is, roughly speaking, the worst-case, over all possible inputs, of the rel-
ative error between the optimal profit and the profit achieved by the online algorithm.
One generally seeks algorithms that are competitive, that is, where this relative error is
bounded. The motivation for seeking competitive algorithms is that if the online algo-
rithm achieves very little profit, then it must be because great profit was not achievable,
and not because the algorithm was at fault.

Our Results

The most obvious first concern that arises when seeking a competitive algorithm for
this problem is that one can imagine a situation where the online algorithm does not
achieve a positive profit, even though a positive profit is achievable, immediately killing
any hope of a competitive algorithm. We start by observing, that this situation cannot
occur, that is, that there is a simple online algorithm that achieves a positive profit if it
is possible to do so. Unfortunately, we show that, in some sense, this result is the best
positive result possible for the competitive ratio by showing that the competitive ratio
can not be bounded by any function of the number of jobs. In contrast, we show that,
if the online algorithm has (1 + ε)-speed augmentation, which in this setting means that
if a processor can run at power P and speed s, then the online algorithm can run the
processor at power P and speed (1 + ε)s. We then give an online scheduling algorithm
that we show is O( 1

ε3
)-competitive in terms of profit. Using standard terminology one

could say that this algorithm is a scalable scheduling algorithm, that is, it is (1+ε)-speed
O(1)-competitive. Intuitively, scalable algorithms can handle almost the same load as
optimal.

We now give an overview of the development of our scalable algorithm. The first key
idea is that of a critical speed function ŝi(t), which, for job i, specifies the fastest speed
that the adversary can run job i and still obtain a non-negative profit if the job completes
at time t. When a job i is released, the online algorithm determines whether to admit
the job, and if the job is admitted, determines a deadline di for the job. Whenever an
admitted job i is run by the online algorithm, it will be run at speed slightly faster than
the critical speed for its deadline, ŝi(di). Fixing the speed for a job defines a density for
the job, which is roughly the profit that will be obtained by the job if it is completed at
its deadline divided by the time that the job must be run to be completed. Intuitively,
the online algorithm always picks the highest density jobs to run. Also intuitively, when
a job is released, the online algorithm sets the deadline to be the time where it will
obtain maximum profit from this job, assuming that in the future no more jobs arrive
and that the highest density jobs will be run at their critical speeds.

To show that the online algorithm is scalable, we show that the profit obtained by the
online algorithm is a constant fraction of the profit of the jobs that the online algorithms
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admits, and that the profit of these admitted jobs is a constant fraction of the optimal
profit. In order to accomplish the latter goal, we show that there is a near optimal
schedule OPT ′, that, with modest speed augmentation, is O(1)-competitive in terms of
profit with the optimal schedule, and OPT ′ has the property that it runs each job i
at speed approximately equal to the critical speed of the job for the completion time
ŝi(C

O
i ). of that job in the optimal schedule OPT . Thus OPT ′ is still nearly optimal,

but is structurally similar to the online schedule in that jobs are run at their critical
speeds. A priori, it is not clear that such a schedule OPT ′ exists since a job i may be
run at very different speeds in OPT ′ and in the online schedule. In other words, ŝi(C

O
i )

and ŝi(di) may be very different, since there is no reason that the completion time in the
optimal schedule, COi , and the deadline set by the online algorithm, di, need be similar.

The income model in our paper was considered in [1], a scalable algorithm for max-
imizing income on a single fixed speed processor was given. Our algorithm and analysis
necessarily generalize the results in [1] as we have multiple processors instead of a single
processor, our processors are speed scalable instead of fixed speed, and we have profit as
the objective instead of income. The fact that the processors are speed scalable creates
complications because the algorithm and analysis in [1] use the fact that the processing
time for a job is fixed. The objective of profit also creates complications because the
algorithm and analysis in [1] use the fact that income is monotonic in time, which isn’t
true for profit.
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Inner Product Spaces for MinSum Coordination

Mechanisms ∗

Richard Cole † José R. Correa (Speaker) ‡ Vasilis Gkatzelis §

Vahab Mirrokni ¶ Neil Olver ‖

Traditionally, work in operations research has focused on finding globally optimal
solutions for optimization problems. In tandem, computer scientists have long studied
the effects of a lack of different kinds of resources, mainly the lack of computational
resources in optimization. In designing massive decentralized systems, the lack of coor-
dination among different participating agents has become an important consideration.
This issue is typically addressed through distributed algorithms in which a central au-
thority designs mechanisms (protocols) specifying the rules of the game, with the goal
that the independent and selfish choices of the users result in a socially desirable out-
come. To measure the performance of these algorithms, the global objective function
(social cost) is evaluated at equilibrium points for selfish users. For games, probably
the most accepted such measure is the price of anarchy [10], the worst case ratio of the
social cost at a Nash equilibrium to that at a social optimum; the same measure can be
used for coordination mechanisms; sometimes we call this their approximation factor to
highlight that this is a distinct measure.

The by now standard approach to bound the price of anarchy (PoA) when social cost
is taken to be the sum of individual costs works as follows [11]. First, the social cost
is bounded by using the equilibrium conditions, noting that an individual is better off
at equilibrium than she would be if she unilaterally changed her strategy to the one she
would use in a centralized optimum. Second, the actual (weighted) sum of player costs
is also upper bounded, using an appropriately chosen inequality, by a linear combination
of the social cost of the equilibrium and the social cost of an optimal solution.

In this paper we establish a methodology to deal with the second step of this proof
scheme. Our method interprets the sum in the second step as an inner product on
a suitable space. Then, we apply the Cauchy-Schwartz inequality in the chosen inner
product space, and go back to the original space by applying a minimum norm distortion
inequality. Many of the existing results employ a special case of this approach in which
the costs can be expressed in terms of quadratic polynomials to which the Cauchy-
Schwartz inequality can be applied directly without the need for an intermediate inner
product space. We apply our new method in the context of scheduling jobs on unrelated
machines. Our method elucidates the hidden structure in the games we consider. Once
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the framework has been set up, our proofs become short and elegant, thus we anticipate
that this method may prove useful elsewhere too.

Specifically, we consider the classic problem of scheduling n jobs on m unrelated
machines from a game theoretic perspective. In this situation, job j takes time pij if
processed on machine i, and also has an associated weight wj . Although the goal is to
minimize the weighted sum of completion times of jobs, we consider the scheduling game
in which each job is a fully informed player wanting to minimize its individual completion
time, while each machine announces a policy which it will follow in processing the jobs
it is assigned. Our goal is to choose the policy so as to minimize the approximation ratio
of the actual costs under this policy to the optimal costs obtainable under any policy.
To this end, several approaches imposing incentives on self-interested agents have been
proposed, including some using monetary transfers [2,5,8], and others enforcing strategies
on a fraction of users as a Stackelberg strategy [16]. Ultimately one could also apply a
VCG mechanism to achieve social efficiency. The main drawback of these methods is
the need for global knowledge of the system. A different approach, and the focus of our
paper, uses coordination mechanisms, which only require local computations.

More formally, a coordination mechanism [3] is a set of local policies, one per machine,
specifying how the jobs assigned to that machine are scheduled. Here, local means that a
machine’s schedule must be a function only of the jobs it is assigned (and their processing
times on all machines), allowing the policy to be implemented in a distributed fashion.
We actually study strongly local policies, meaning that the schedule of any machine i is
a function only of the processing times pij , weights wj and IDs of jobs assigned to it. It
will also be useful to restrict attention to policies that always use the full capacity of a
machine, and release jobs immediately upon completion. We call such policies prompt.

Employing our new technique, we develop the first constant-factor approximate coor-
dination mechanisms for the selfish machine scheduling problem for unrelated machines.
We start by studying Smith’s Rule [15], in which machines process jobs in increasing
order of their processing time to weight ratio. Here the space that appropriately fits our
method is L2 and a norm distortion inequality is in fact not needed. We prove that the
approximation factor for this policy is exactly 4, improving upon a result by Correa and
Queyranne [6]. We also show that this is the best possible among all deterministic and
non-preemptive strongly local coordination mechanisms, assuming the prompt property.

The constant approximation ratio for the weighted sum of completion times is in
sharp contrast to the known super-constant inapproximability results for coordination
mechanisms for the makespan function [1,9] (e.g., an Ω(m) lower bound for the shortest-
first coordination mechanism). In fact, it is still open whether there is a coordination
mechanism with a constant approximation ratio for the makespan function.

Next, we go beyond the approximation ratio of 4 using preemptive1 and random-
ized mechanisms. First, we consider a preemptive policy, generalizing that of Dürr and
Thang [7], in which each machine splits its processing capacity among its assigned jobs
in proportion to their weights. We uncover a connection of this policy to Smith’s Rule,
allowing us to apply a similar proof strategy, but yielding a significantly improved ap-
proximation factor of 2.618. On the other hand, we prove that with anonymous jobs, no
set of deterministic prompt policies, be they preemptive or not, can achieve a factor bet-
ter than 2.5. To break this new barrier we consider a policy in which jobs are randomly,
but non-uniformly, ordered, based on their processing time to weight ratio. Under this

1By preemption we mean that the computation of a job is suspended and, implicitly, resumed later.
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policy the appropriate space has to be carefully chosen and uses a rather nonstandard
inner product, induced by a Hilbert matrix, whose i, j entry equals 1/(i+j−1). A norm
distortion inequality is then needed to relate the norm in this space to the original cost
of an optimal schedule, leading to yet another improvement in the approximation factor
to 2.134. Moreover, we show a lower bound of 5/3 for this policy.

Finally, inspired by our preemptive mechanism we design a new combinatorial (2 +
ε)-approximation algorithm for optimizing the weighted sum of completion times on
unrelated machines. This improves on the approximation factor of our mechanisms and
complements the known non-combinatorial constant-factor approximation algorithms: a
linear programming based 3

2 + ε-approximation algorithm [12], and the best currently
known factor of 3

2 based on a convex quadratic relaxation [13,14].
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Balanced Interval Coloring

Antonios Antoniadis Falk Hüffner Pascal Lenzner
Carsten Moldenhauer Alexander Souza (Speaker) ∗

We consider the following load balancing problem: We are given a set I = {I1, . . . , In}
of tasks, where each task is represented by an interval I = [`, r] ∈ I with starttime `
and endtime r. Furthermore, we are given k servers and have to assign the tasks to the
servers as evenly as possible. That is, we want to minimize the maximal difference of
the numbers of tasks processed by any two servers over all times.

We formalize this in terms of an interval coloring problem: We are given a set
I = {I1, . . . , In} of n intervals on the real line and a set K = {1, . . . , k} of k colors. A
k-coloring is a mapping χ : I → K. For a fixed k-coloring χ and a point x ∈ R, let ci(x)
denote the number of intervals containing x that have color i in χ. Define the imbalance
of χ at x by

imb(x) = max
i,j∈K

|ci(x)− cj(x)|. (1)

In words, this is the maximum difference in the size of color classes at point x. The
imbalance of χ is given by imb(χ) = maxx∈R imb(x).

These definitions yield the following minimization problem:

Minimum Imbalance Interval k-Coloring
Instance: A set of intervals I.
Task: Find a k-coloring χ with minimal imb(χ).

We call a k-coloring with imbalance at most one balanced. Observe that if the number
of intervals intersecting at some point is not divisible by k, then imbalance at least one
is unavoidable. On the other hand, if the number of intersecting intervals is divisible
by k, then no coloring having imbalance one exists. Thus, if a balanced coloring exists,
its imbalance is minimal.

The questions considered in this paper are outlined as follows:

(i) Is there always a balanced k-coloring?

(ii) If so, is it possible to construct a balanced k-coloring in polynomial time?

(iii) If we consider arcs of a circle (instead of intervals), do balanced k-colorings always
exist?

(iv) How is the situation if intervals arrive online?
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(v) If d-dimensional boxes (instead of intervals) are considered, can the existence of a
balanced k-coloring be decided in polynomial time?

The problem has close connections to discrepancy theory; see Doerr [4] and Ma-
toušek [6] for introductions to the field. Let H = (X,U) be a hypergraph consisting of a
set X of vertices and a set U ⊆ 2X of hyperedges. Analogous to the previous definitions,
a k-coloring is a mapping χ : X → K, and the imbalance imb(χ) is the largest difference
in size between two color classes over all hyperedges. The discrepancy problem is to
determine the smallest possible imbalance, i. e., disc(H) = minχ:X→K imb(χ).

Hence our problem is to find the discrepancy of the hypergraph H = (I, U), where U
is the family of all maximal subsets of intervals intersecting at some point. It turns out
that this hypergraph has totally unimodular incidence matrix, which is useful because de
Werra [9] proved that balanced k-colorings exist for hypergraphs with totally unimodular
incidence matrix. However, the proof in [9] is only partially constructive: A balanced
k-coloring is constructed by iteratively solving the problem of balanced 2-coloring on
hypergraphs with totally unimodular incidence matrix, for which no algorithm was given
in [9].

Further related work in discrepancy theory mostly considers hypergraph coloring
with two colors and often from existential, rather than algorithmic perspective. For
an arbitrary hypergraph H with n vertices and m hyperedges, the bound disc(H) ≤√

2n ln(2m) for 2-coloring follows with the probabilistic method; see also [4]. For m ≥ n,
Spencer [7] proved the stronger result disc(H) = O(

√
n log(m/n)), which is in particular

interesting for m = O(n). If each vertex is contained in at most t edges, the 2-coloring
bound disc(H) = O(

√
t log n) was shown by Srinivasan [8] and the bound disc(H) ≤ 2t−1

by Beck and Fiala [2]. Biedl et al. [3] improved the bound to disc(H) ≤ max{2t−3, 2} for
2-colorings and established disc(H) ≤ 4t − 3 for general k-colorings. They also showed
that it is NP-complete to decide the existence of balanced k-colorings for hypergraphs
with t ≥ max{3, k − 1} and k ≥ 2.

Bansal [1] recently gave efficient algorithms that achieve 2-color imbalances sim-
ilar to [7, 8] up to constant factors. In particular, an algorithm yields disc(H) =
O(
√
n log(2m/n)) matching the result of Spencer [7] if m = O(n). Furthermore,

disc(H) = O(
√
t log n) complies with the non-constructive result of Srinivasan [8]. For

general k > 2, Doerr and Srivastav [5] gave a recursive method constructing k-colorings
from (approximative) 2-colorings.

Our Contributions. We contribute the following answers to the above questions:

(i) Balanced k-colorings exist for any set I of intervals, i. e., question (i) can always be
answered in the affirmative. We establish this by showing that our hypergraph H
has totally unimodular incidence matrix and then applying a result of de Werra [9].
This also follows independently from our algorithmic results below.

(ii) We present an O(n log n) time algorithm for finding a balanced 2-coloring, thereby
establishing a constructive result for intervals. Furthermore, we give an O(n log n+
kn log k) algorithm for finding a balanced k-coloring. This is an improvement in
time complexity, since the construction of de Werra [9] combined with our algorithm
for 2-coloring only yields O(n log n+ k2n). We also note that our algorithm works
for any hypergraph with incidence matrix having the consecutive-ones property.
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(iii) If we consider arcs of a circle instead of intervals, balanced k-colorings do not exist
in general. However, we give an algorithm achieving imbalance at most two with
the same time complexity as in the interval case.

(iv) In an online scenario, in which we learn intervals over time, the imbalance of any
online algorithm can be made arbitrarily high.

(v) For d-dimensional boxes, it is NP-complete to decide if a balanced k-coloring exists
for any d ≥ 2 and any k ≥ 2. Our reduction is from Not-All-Equal 3SAT. This
result clearly implies NP-hardness of the respective minimization problem.
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[6] J. Matoušek. Geometric Discrepancy: An Illustrated Guide, volume 18 of Algorithms
and Combinatorics. Springer, 1999.

[7] J. Spencer. Six standard deviations suffice. Transactions of the American Mathe-
matical Society, 289(2):679–706, 1985.

[8] A. Srinivasan. Improving the discrepancy bound for sparse matrices: Better ap-
proximations for sparse lattice approximation problems. In Proc. 8th SODA, pages
692–701. ACM-SIAM, 1997.

[9] D. de Werra. Equitable colorations of graphs. Revue FranÃğaise d’Informatique et
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Clique Clustering yields a PTAS for max-Coloring Interval

Graphs

Tim Nonner (Speaker) ∗

Coloring a given graph G = (V,E) is a classical NP-hard problem in combinatorial
optimization. One reason why graph coloring has been studied so extensively is the fact
that many practical problems in scheduling and planning can be formulated in such a
way. The arguably simplest example is that the nodes V represent tasks which need
to be partitioned into color classes of pairwise non-conflicting tasks, where a conflict
between two tasks is indicated by an edge in E connecting them. All tasks in one color
class may share a common resource, and hence minimizing the number of color classes
also minimizes the number of needed resources. It is natural to assume that each task
requires a resource during a given time interval, and hence two task conflict if their time
intervals intersect. This results in an interval graph and we may think of the nodes in
V as intervals in this case. It is folklore that an optimal coloring of a given interval
graph can be found in polynomial time using the first-fit strategy : sort the intervals
according to their left endpoints, and then iteratively assign colors according to this
ordering. This drastically differs from general graphs, where finding an optimal coloring
is hard to approximate even within n1−ε for any ε > 0, unless NP ⊆ ZPP [5].

However, coloring interval graphs fails to express non-uniform resource requirements.
For instance, a resource might be a buffer and the tasks memory requests of different
size that need to be buffered during a given time interval [12]. In this case, a buffer used
by different non-conflicting requests needs to be large enough to hold any such request.
We can model this extension by assigning a weight wI ∈ R+ to each interval I ∈ V
that represents the size of the corresponding request, and hence the buffer assigned to
a color class C of requests needs to have at least size maxI∈C wI . Thus, finding an
optimal coloring in this context is called max-coloring interval graphs: partition a given
interval graph G = (V,E) into color classes C1, C2, . . . , Ck such that

∑k
i=1 maxI∈Ci wI

is minimized. The classical problem of coloring interval graphs is contained as a special
case by using uniform weights.

1 Previous work

Unfortunately, the first-fit strategy does not work for max-coloring interval graphs, but
it has been shown by Pemmaraju, Raman, and Varadarajan [12] that this problem is
NP-hard. A simplified proof was given by the same authors in [11] with a reduction
from coloring circular arc graphs, a superclass of interval graphs. They also conjectured
APX-hardness, but this conjecture is no longer valid [13]. Finally, they presented an
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2-approximation algorithm for max-coloring interval graphs [12], and Pemmaraju and
Raman [10] later on showed that any graph class that admits an α-approximation algo-
rithm for coloring also admits an 4α-approximation algorithm for max-coloring. Recall
here than an α-approximation algorithm yields a solution in polynomial whose cost is at
most α times the cost of an optimal solution. Hence, since it is a well-known fact that
perfect graphs, a superclass of interval graphs, can be colored in polynomial time [6],
this yields a 4-approximation algorithm for max-coloring perfect graphs. Epstein and
Levin [3] improved this factor from 4 to e. On the other hand, after a line of improve-
ments [4,7,8], Kavintha and Mestre [9] presented an algorithm for max-coloring paths, a
subclass of interval graphs, which requires only time O(n+S(n)), where S(n) is the time
to sort the node weights. A polynomial-time approximation scheme (PTAS) for trees is
known [1], i.e., there is a (1+ε)-approximation algorithm for any ε > 0, but max-coloring
bipartite graphs is APX-hard [2], i.e., there is no PTAS unless P = NP. However, in the
context of the original formulation of this problem in buffer management, interval graphs
remain the most relevant graph class, since they are easy to describe, but yet powerful
enough to model temporal conflicts.

2 Contributions

Closing a gap which has been open for years, we settle the approximation complexity
of max-coloring interval graphs by presenting a PTAS. Our main building block, which
we call clique clustering, is to group intervals in clusters in order to trade the overlap
structure for accuracy such that only a logarithmic number of clusters intersect at each
point. We think that this exponential drop is of general interest and likely to find
application in other interval based problems.
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Smoothed performance guarantees of local optima for

multiprocessor scheduling

Tobias Brunsch∗ Heiko Röglin† Cyriel Rutten (Speaker) ‡

Tjark Vredeveld §

1 Introduction

In this talk, we consider smoothed performance guarantees of local optima for the follow-
ing scheduling problem. Given is a set J of n jobs, each of which needs to be processed
without preemption on one of m machines. A machine can process at most one job at a
time and all jobs and machines are available at time 0. The goal is to schedule the jobs
in such a way that the makespan is minimized, i.e., we want the last job to complete as
early as possible. The time pij it takes for a job j (j ∈ J) to be fully processed on a
machine i depends on the machine environment. In this talk, we consider two machine
environments. The first one is the one of uniform parallel machines, also known as re-
lated machines: each job j has a given processing requirement pj ≥ 0 and each machine
has a speed si > 0. We assume machines to be indexed according to their speeds where
machine 1 is the machine having maximum speed. The processing time for job j on
machine i is pij = pj/si. The second machine environment that we consider is the one
of restricted identical machines: a job j is only allowed to be processed on a subset
Mj ⊆ {1, . . . ,m} of the machines and when processed on one of its elegible machines,
the processing time of job j is pj . That is, pij = pj if i ∈ Mj and pij = ∞ for i 6∈ Mj .
Both versions are known to be strongly NP-hard [3].

One way to find approximate solutions is local search. Local search methods iter-
atively search through the set of feasible solutions. Starting from an initial solution,
a local search procedure moves from a feasible solution to a neighboring solution until
some stopping criteria are met. A neighborhood function defines for each feasible solution
a set of solutions which are in some sense close to it. This set is called a neighborhood.
The choice of a suitable neighborhood function has an important influence on the per-
formance of local search. The simplest form of local search is iterative improvement,
also called local improvement. This method iteratively chooses a better solution in the
neighborhood of the current solution and terminates when no better solution is found.
The final solution is called a local optimum.

An algorithm is called a ρ-approximation algorithm if it is guaranteed to deliver a
solution that has value at most ρ times the optimal solution value; the value ρ is called

∗brunsch@cs.uni-bonn.de. Department of Computer Science, University of Bonn, Germany
†heiko@roeglin.org. Department of Computer Science, University of Bonn, Germany
‡c.rutten@maastrichtuniversity.nl. Maastricht University, The Netherlands
§t.vredeveld@maastrichtuniversity.nl. Maastricht University, The Netherlands
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the performance guarantee. The goal of worst-case analysis of local search is to determine
the performance guarantee local optima with respect to a neighborhood. Also the time
to find such a local optimum by an iterative improvement procedure is of interest.

Smoothed analysis was introduced by Spielman and Teng [6] as a hybrid between
average-case and worst-case analysis to explain the success of algorithms that are known
to work well in practice while presenting poor worst-case performance. The basic idea
is to randomly perturb the initial input instances and to analyze the performance of the
algorithm on the perturbed instances. Given an input instance Ǐ, we denote by N(Ǐ)
the set of instances that are obtainable by smoothing the instance according to some
probability distribution f . The smoothed performance guarantee is defined as

ρ = sup
Ǐ

E
I
f←N(Ǐ)

[
alg(I)

opt(I)

]
.

Smoothing model. In our smoothing model, only the processing requirements are
smoothed. W.l.o.g. we assume that these processing requirements are between 0 and 1.
To smooth the processing requirements, we use an additive smoothing model. Let p̌j
denote the original processing requirement. Then given a smoothing parameter φ ≥ 1,
the smoothed processing requirements are defined by

pj =


1

2φ + εj if pj <
1

2φ ,

p̌j + εj if 1
2φ ≤ p̌j ≤ 1− 1

2φ ,

1− 1
2φ + εj if p̌j > 1− 1

2φ ,

where εj is drawn uniformly at random from the interval [−1
2φ ,

1
2φ ].

2 Neighborhood

Before discussing the neighborhoods, we first describe our representation of a schedule.
As the sequence in which the jobs are processed does not influence the makespan of a
schedule for a given assignment of the jobs to the machines, we represent a schedule
by such an assignment. This is equivalent to a partitioning of the set of jobs into m
disjoint subsets M1, . . . ,Mm, where Mi is the set of jobs scheduled on machine i. Given
a schedule σ = (M1, . . . ,Mm) the load of machine i is the total processing time of its
jobs: Li(σ) =

∑
j∈Mi

pij .

In this talk, we consider jump and lex-jump optimal solutions. Given a solution σ =
(M1, . . . ,Mm), we obtain a jump neighbor by selecting a job j, scheduled on a machine
i, and a machine h 6= i on which J is not scheduled. The neighbor, σ′ = (M ′1, . . . ,M

′
m)

is obtained by moving job j to machine h, i.e., M ′i = Mi \ {j}, M ′h = Mh ∪ {j}, and
M ′` = M` for ` 6= i, h. We say that a schedule σ is jump optimal if no jump decreases
the makespan or the number of critical machines without increasing the makespan.

The lex-jump neighborhood has the same neighborhood function as the jump neigh-
borhood. The only difference is in what is considered a better solution. From the defini-
tion of jump optimal solutions, it is clear that a jump neighbor can be improving only if
a job from one of the critical machines is moved. For the lex-jump neighborhood, we say
that a neighbor σ′ of schedule σ, in which job j is moved from machine i to machine h,
is an improving neighbor if Lh(σ′) < Li(σ), or equivalently Lh(σ) + phj < Lh(σ). That
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is, the vector of non-increasingly sorted machine loads of σ′ is lexicographically smaller
than that of schedule σ. Hence, we call a local optimum a lex-jump optimal solution.
Note that by considering jobs as selfish agents that want to minimize the load of the
machine on which it is scheduled, a lex-jump optimal schedule can be seen as a Nash
equilibrium.

The tight (worst-case) performance guarantee for jump optimal schedules is (1 +√
4m− 3)/2 on related machines [2,5] and also on restricted identical machines [4], and

1/2 +
√

1/4 + (m− 1)s1/sm for restricted related machines [4]. The tight (worst-case)
performance guarantee for jump optimal schedules is Θ(logm/ log logm) [1,7] on related
machines as well as on restricted identical machines [4] and is Θ(logS/ log logS) [4] on
restricted related machines, where S =

∑
i∈M si.

3 Our results

For the related machines environment, we show that, when smoothing according to
the model described in the introduction with parameter φ, the smoothed performance
guarantee for jump-optimal solutions is 2 + 3.7φ and we also give a lower bound of
Ω(φ) on the smoothed performance guarantee, showing that our analysis is tight up to
a constant factor. For the lex-jump neighborhood we have an upper and lower bound
on the smoothed performance guarantee of Θ(φ).

Finally, for the restricted machines environment, we show that smoothing does not
help. For any setting having restricted machines, and for reasonably small values of φ,
we can construct (smoothed) instances reaching the worst-case performance guarantees
(without smoothing) up to a constant factor.
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Divisible Load Scheduling to Minimize the Computation

Time and Cost

Natalia V. Shakhlevich (Speaker)∗

Parallel computer systems have given rise to new scheduling models that go beyond
the classical scheduling theory. While in a traditional scheduling model a task can be
processed by one machine at a time, a new feature of multiprocessor computations is the
ability to split tasks into several parts and to process them simultaneously by different
processors, see, e.g., [2, 6]. An additional feature of modern Grid computing and cloud
computing systems is the introduction of the cost factor, see, e.g. [1, 4, 7]. This study is
motivated by the lack of theoretical research in the area and some inaccuracies which
can be found in the earlier research.

We consider the network model described in [5]. There is a set P = {P1, P2, . . . , Pm}
of m processors connected via a bus type communication medium. One processor of the
set P is selected as a master processor to receive a divisible load of size τ and to divide
it into portions of size α1τ , α2τ ,. . . , αmτ ,

∑m
k=1 αk = 1, which are then transmitted to

other processors from P to perform required computations.
The processors have different computation speeds and for each processor Pk ∈ P

the inverse of the speed wk is given. This implies that the load of size αkτ allocated to
processor Pk requires computation time αkwkτ .

If P1 is selected as a master processor and the transmission sequence is P2, P3, . . .,
Pm, then P1 can start processing its own load of size α1τ at time 0 and at the same time
it can start transmitting the relevant portions of the load first to P2, then to P3, etc.,
until the last portion is transmitted to Pm, see Fig. 1. If z is the time needed to transmit
the whole load of size τ , then the communication time for transmitting the portion αkτ
to processor Pk is αkz.

With the selected transmission order, processor P1 completes its portion of compu-
tation at time

T1 = α1w1τ. (1)

Processor Pk, 2 ≤ k ≤ m, receives its portion of the load at time
∑k

i=2 αiz and immedi-
ately after that it can start computation, which takes αkwkτ time. Thus processor Pk
completes its portion of the load at time

Tk =

k∑
i=2

αiz + αkwkτ.

The finish time T of the load is defined as the maximum completion time among all
processors,

T = max
1≤k≤m

{Tk} .
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Figure 1: An example of a schedule with master processor P1 and transmission sequence
P2, . . . , Pm

It is assumed in the described scenario that the master processor can perform data
transmission and computation simultaneously. This usually happens if the processor is
equipped with an additional front-end co-processor which takes care of all data transfer
so that the master processor can perform computation as any other processor of the
network. In the absence of a front-end co-processor, the master processor performs data
transmission first and only after that it can start computing its portion of the load. In
the latter scenario, Fig. 1 should be modified so that for processor P1 the box “α1w1τ”
is moved immediately after “αmz”, and formula (1) should be replaced by

T1 =
m∑
i=2

αiz + α1w1τ. (2)

Processing the load in accordance with the load distribution α1, α2,. . . , αm incurs
computation cost which depends on processors’ costs. Following the notation from [5],
we denote the cost of using processor Pk ∈ P during one time unit by ck so that the cost
of performing the portion of the load αkwkτ by processor Pk is ckαkwkτ . The overall
cost of using all processors P is therefore

K =

m∑
k=1

ckαkwkτ.

Thus a schedule S is given by

- the transmission sequence with the first processor of the sequence selected as a master
processor

and

- the load distribution α1, α2,. . . , αm with
∑m

k=1 αk = 1.
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The quality of a scheduled is measured in terms of the two characteristics: maximum
completion time T and computation cost K. As a solution of a bicriteria problem we
accept the set of Pareto optimal points defined by the break-points of the so-called
efficiency frontier. In a pair of the associated single criterion problems, one of the
objectives is bounded while the other one is to be minimized.

We perform a systematic analysis of the model with a fixed number of processors
and develop an algorithm for solving the bicriteria problem together with its two single-
criterion counterparts. This study leads to formulating some important properties of the
general case with an arbitrary number of processors. We demonstrate that the earlier
research [5] has a number of limitations and leads to open questions. Some assumptions
result in incorrect major conclusions. In particular, it is generally assumed in [5] that the
load should be distributed so that all processors complete their portions simultaneously,
while as we demonstrate, there often exists a dominating schedule with non-simultaneous
finishing times of the processors. Moreover, fixing the processor sequence in the non-
decreasing order of the cost/speed characteristic,

c1w1 ≤ c2w2 ≤ · · · ≤ cmwm,

may be appropriate only for Pareto-optimal solutions with relatively large deadlines;
optimal schedules for tight deadlines may have a different order of processors.
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Efficient algorithms for average completion time scheduling

René Sitters (Speaker)∗

1 Introduction

We analyze the competitive ratio of algorithms for minimizing (weighted) average com-
pletion time on identical parallel machines and prove that the well-known shortest re-
maining processing time algorithm (SRPT) is 5/4-competitive w.r.t. the average com-
pletion time objective. For weighted completion times we give a deterministic algorithm
with competitive ratio 1.791 +o(1). This ratio holds for preemptive and non-preemptive
scheduling. These results were presented earlier in [7]

The shortest remaining processing time (SRPT) algorithm is a well-known and simple
online procedure for preemptive scheduling of jobs. It produces an optimal schedule on
a single machine with respect to the average completion time objective [6].This is not
true when SRPT is applied to parallel machines. The best known upper bound on its
competitive ratio was 2 [5] until recently (SODA2010), Chung et al. [2] showed that the
ratio is at most 1.86. Moreover, they show that the ratio is not better than 21/19 > 1.105.

The SRPT algorithm has a natural generalization to the case where jobs have given
weights. Unfortunately, our proof does not carry over to this case. No algorithm is
known to have a competitive ratio less than 2. Remarkably, even for the offline problem,
the only ratio less than 2 results from the approximation scheme given by Afrati et
al. [1]. A deterministic online algorithm for the preemptive case is given by Megow
and Schulz [4] and for the non-preemptive case by Correa and Wagner [3].On the single
machine, no non-preemptive online algorithm can be better than 2 competitive [8] but it
was unknown if the same is true for parallel machines. We give a simple online algorithm
that runs in O(n log n) time and has competitive ratio 1.791 + o(1), i.e., it drops down
to 1.791 for m→∞.

The SRPT algorithm:

Let t = 1. Repeat:
If there are more than m jobs available for slot t, then process m jobs in slot t that have
the shortest remaining processing times among all available jobs. Otherwise, process all
available jobs. Let t = t+ 1.

Theorem 1. SRPT is 5/4-competitive for minimizing total completion time on identical
machines.

∗ rsitters@feweb.vu.nl. Department of Econometrics and Operations Research, Free University,
Amsterdam.
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Algorithm Online(ε):

Input: Instance I = {(pj , wj , rj) | j = 1 . . . n}.

(i) Let I ′ = {(p′j , w′j , r′j) | j = 1 . . . n} with p′j = pj , w
′
j = wj and r′j = rj + εpj .

(ii) Apply non-preemptive WSPT to I ′ on a fast single machine (a machine that runs
m times faster). Let sj be the start time of job j.

(iii) Each job j is placed at time sj on one of the parallel machines as early as possible
(but not before sj).

Theorem 2. With ε = 1/
√
m, algorithm Online(ε) is δm-competitive for minimizing

total weighted completion time, where δm = (1 + 1/
√
m)2(3e − 2)/(2e − 2). The ratio

holds for preemptive and non-preemptive scheduling on m identical parallel machines.
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The Geometry of Scheduling

Nikhil Bansal ∗ Kirk Pruhs (Speaker) †

We consider the following general offline scheduling problem:

General Scheduling Problem (GSP): The input consists of a collection of n jobs, and for
each job j a positive integer release time rj , a positive integer size pj , and a cost or
weight function wj(t) ≥ 0 for each t > rj (we are purposely not precise about how these
weight functions are represented in the input). Jobs are to be scheduled preemptively
on one processor after their release times. If job j completes at time t, then a cost
of
∑t

s=rj+1wj(t) is incurred. The scheduling objective is to minimize the total cost,∑n
j=1

∑Cj
s=rj+1wj(t), where Cj is the completion time of job j.

This general problem generalizes several natural scheduling problems, for example:

Weighted Flow Time: If wj(t) = wj , where wj is some fixed weight associated with job
j, then the objective is weighted flow time.

Flow Time Squared: If wj(t) = 2(t− rj)−1, then the objective is the sum of the squares
of the flow times.

Weighted Tardiness: If wj(t) = 0 for t not greater than some deadline dj , and wj(t) = wj
for t greater than dj , then the objective is weighted tardiness.

In general, this problem formulation can model any cost objective function that is
the sum of arbitrary cost functions for individual jobs, provided these cost functions are
non-decreasing, i.e. it cannot hurt to finish a job earlier. Despite much interest, large
gaps remain in our understanding for even basic flow time based scheduling objectives.
For example, for weighted flow time, the best known approximation ratios achievable
by polynomial-time algorithms are essentially no better than the poly-logarithmic com-
petitive ratios achievable by online algorithms. For weighted tardiness, and flow time
squared, no nontrivial approximation ratios were previously known to be achievable.
While in contrast, for all of these three problems, even the possibility of a polynomial
time approximation scheme (PTAS) has not been ruled out.

The main contribution of the paper of the paper [2] that we discuss here is the
design and analysis of a randomized O(log log nP )-approximation algorithm for GSP,
where P is the maximum job size. In the special case when all the release times are 0,
we obtain an O(1)-approximation algorithm. Let W = maxj,twj(t) be the maximum
value attained by any weight function. The running time of our algorithm is polynomial
in n, logP and logW , provided that we can in polynomial time determine the times
when a weight function doubles. This is polynomial in the input size if the input must
contain an explicit representation of the largest possible weight.
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The primary insight to obtain these results is to view the scheduling problem geo-
metrically. The initial step is to show that GSP can be reduced (with only a constant
factor loss in the approximation ratio) to the following geometric set-cover problem that
we call R2C:

Definition of the R2C Problem: The input consists of a collection of P points in two
dimensional space, and for each point p ∈ P an associated positive integer demand dp.
Each point p ∈ P is specified by its coordinates (xp, yp). Further the input contains a
collection R of axis-parallel rectangles, each of them abutting the y-axis. That is, each
rectangle r ∈ R has the form (0, xr) × (y1

r , y
2
r ). In addition, each rectangle r ∈ R has

an associated positive integer capacity cr and positive integer weight wr. The goal is to
find a minimum weight subset S ⊂ R of rectangles, such that for each point p ∈ P, the
total capacity of rectangles covering p is at least dp, that is,

∑
r∈R:p∈R cr ≥ dp.

Job sizes will be mapped to rectangle capacities in our reduction, so we will also use
P to denote the largest capacity of any rectangle. Our algorithm for R2C starts with
the natural linear programming (LP) relaxation of the problem, strengthened by adding
the so-called knapsack cover inequalities. To round this LP solution, our algorithm then
proceeds in a way that is by now standard (see for example [1]) in the applications
of knapsack cover inequalities. In the terminology of [1], we reduce the problem to
rounding an LP solution for the so-called priority set cover version of the problem and
in addition several set multi-cover problems. These resulting problems are simpler as
they are uncapacitated.

In particular we proceed as follows. The algorithm first picks rectangles that are
selected by the LP solution to a significant extent (i.e. xr ≥ β, for some fixed constant
β), and then considers the residual solution. The knapsack cover inequalities guarantee
that remaining LP variables for a feasible solution to the residual instance. Since all
variables xr ≤ β in this solution, the capacities and demands can be rounded to powers
of 2, and the variables can be scaled by a constant factor, so that each point’s demand
is covered several times over.

Points are then classified as heavy or light depending on whether or not the optimal
LP solution extensively covers the point with rectangles whose capacity is larger than the
demand of the point. We reduce the problem of covering the heavy points by rectangles
with higher capacity to the geometric cover problem R3U defined below. We show that
the instances of R3U that we obtain have boundaries with low union complexity. In
particular, the boundary of the union of any k objects has a complexity of O(k logP ).
Using Varadarajan’s quasi-uniform sampling technique [3] for approximating weighted
set cover on geometric instances with low union complexity, one can obtain a covering
that is an O(log logP )-approximation to fractional cover specified by the LP solution.

Definition of the R3U Problem: The input consists of a collection of P points in three
dimensional space. Each point p ∈ P is specified by its coordinates (xp, yp, zp). Further
the input contains a collection R of axis-parallel right cuboids each of them abutting the
xy and yz coordinate planes. That is, each right cuboid r ∈ R has the form (0, xr) ×
(y1
r , y

2
r )× (0, zr). In addition, each right cuboid r ∈ R has an associated positive integer

weight wr. The goal is to find a minimum weight subset S ⊂ R of cuboids such that
each point p ∈ P is covered by at least one cuboid.

We reduce the problem of covering the light points to logP different instances, one

47



for each possible job size, of the weighted geometric multi-cover problem R2M defined
below. We then show how to use the local ratio technique to obtain a solution for
each instance of R2M that is O(log log nP )-approximate with the cost in the optimal
LP solution for jobs of this size. Combining these solutions for various sizes implies a
solution for covering all light points with cost O(log log nP ) times the LP cost.

Definition of the R2M Problem: The input consists of a collection of P points in two
dimensional space, and for each point p ∈ P an associated positive integer demand dp.
Each point p ∈ P is specified by its coordinates (xp, yp). Further the input contains a
collection R of axis-parallel rectangles, each of them abutting the y-axis. That is, each
rectangle r ∈ R has the form (0, xr) × (y1

r , y
2
r ). In addition, each rectangle r ∈ R has

an associated positive integer weight wr. The goal is to find a minimum weight subset
S ⊂ R of rectangles, such that for each point p ∈ P, the number of rectangles covering
p is at least dp.

References

[1] Deeparnab Chakrabarty, Elyot Grant and Jochen Könemann. On Column-
Restricted and Priority Covering Integer Programs. IPCO, 2010.

[2] Nikhil Bansal and Kirk Pruhs. The Geometry of Scheduling. FOCS, 2010.

[3] K. R. Varadarajan. Weighted geometric set cover via quasi-uniform sampling.
STOC, 2010.

48



Vertex Cover in Graphs with Locally Few Colors and

Precedence Constrained Scheduling with Few Predecessors

Fabian Kuhn ∗ Monaldo Mastrolilli (Speaker) †

Vertex Cover is one of the most studied problems in combinatorial optimization:
Given a graph G = (V,E) with weights wi on the vertices, find a subset V ′ ⊆ V ,
minimizing the objective function

∑
i∈V ′ wi, such that for each edge (u, v) ∈ E, at

least one of u and v belongs to V ′. Vertex cover cannot be approximated within a
factor of 1.3606 [5], unless P=NP. Moreover, if the Unique Game Conjecture holds,
Khot and Regev [13] show that vertex cover is hard to approximate within any constant
factor better than 2. On the other side several simple 2-approximation algorithms are
known. Hochbaum [11] uses the natural linear program relaxation and a threshold
rounding approach to obtain better than 2 approximation algorithms when a k-coloring
of the graph is given as input. This yields a (2− 2/k)-approximation for the minimum
weighted vertex cover problem. For graphs with degree bounded by d, this directly leads
to a (2 − 2/d)-approximation. This basic approach has been considerably improved
(for sufficiently large d) by Halperin [9]. The improvement is obtained by replacing the
linear program relaxation with a stronger semidefinite program relaxation, and using a
fundamental result by Karger, Motwani and Sudan [12]. The algorithm in [9] achieves
a performance ratio of 2 − (1 − o(1))2 ln ln d

ln d , which improves the previously known [8]

ratio of 2− ln d+O(1)
d . Under the Unique Game Conjecture, Austrin, Khot and Safra [3]

have recently proved that it is NP-hard to approximate vertex cover in bounded degree
graphs to within a factor 2 − (1 + o(1))2 ln ln d

ln d . This exactly matches the algorithmic
result of Halperin [9] up to the o(1) term.

Problem 1|prec|∑wjCj is a classical scheduling problem and it is defined as the
problem of scheduling a set N = {1, . . . , n} of n jobs on a single machine, which can
process at most one job at a time. Each job j has a processing time pj and a weight
wj , where pj and wj are nonnegative integers. Jobs also have precedence constraints be-
tween them that are specified in the form of a partially ordered set (poset) P = (N,P ),
consisting of the set of jobs N and a partial order i.e. a reflexive, antisymmetric, and
transitive binary relation P on N , where (i, j) ∈ P , whenever i 6= j, implies that job i
must be completed before job j can be started. The goal is to find a non-preemptive
schedule which minimizes

∑n
j=1wjCj , where Cj is the time at which job j completes in

the given schedule. Problem 1|prec |∑wjCj is a classical and fundamental problem in
scheduling theory with precedence constraints [14]. Its complexity certainly depends on
the poset complexity: indeed, it can be efficiently solved when there are no precedence
constraints or when the precedence constraints are not “very complicated”, namely when
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the dimension of the poset (see [16]) is at most two [1,4]. More generally, the dimension
of the input poset has been established to be an important parameter for the approx-
imability of the problem [1, 2], with the lower the (fractional) dimension the better is
the approximation ratio. Unfortunately, in the general case, recognizing the (fractional)
dimension of a poset is hard even to approximate [10]. Another natural parameter of
partial orders is given by the poset in- or out-degree [7], namely the job maximum num-
ber of predecessors or successors, respectively. One of the first NP-complete proofs [15]
for 1|prec |∑wjCj shows that the problem remains strongly NP-hard even if every job
has at most two predecessors (or successors) in the poset. In [2], the authors present
a (2 − 2/max{∆, 2})-approximation algorithm, where ∆ − 1 is the minimum between
the in- and the out-degree of the input poset. The latter gives a “good” approximation
algorithm when the poset has a “small” ∆.

Overview of the Results In 1986 Erdős et. al. [6] defined the local chromatic number
of a graph as the minimum number of colors that must appear within distance 1 of a
vertex. For any fixed ∆ ≥ 2, they presented graphs with arbitrarily large chromatic
number that can be colored so that: (i) no vertex neighborhood contains more than
∆ different colors, and (ii) adjacent vertices from two color classes form an induced
subgraph that is complete and bipartite, i.e. a biclique.

We investigate the weighted vertex cover problem in graphs when a locally bounded
coloring is given as input. This generalizes in a very natural vein the vertex cover
problem in bounded degree graphs to a class of graphs with arbitrarily large chromatic
number. Assuming the Unique Game Conjecture, we provide a tight characterization.
More precisely, we prove that it is UG-hard to improve the approximation ratio of
2− 2/(∆ + 1) if only condition (i), but not (ii), holds for the given coloring. A matching
upper bound is also provided. Vice versa, when both the above two properties (i) and
(ii) hold, we present a randomized approximation algorithm with performance ratio of
2 − Ω(1) ln ln ∆

ln ∆ . This matches (up to the constant factor in the lower order term) the
known inapproximability result [3] for the special case of bounded degree graphs. The
provided approximation algorithm builds on the approximation algorithm for vertex
cover in bounded degree graphs provided in [9], which first solves an SDP-relaxation of
the problem to obtain a ”vector coloring” that is then turned into a vertex cover via
a randomized geometric rounding procedure by using a fundamental result by Karger,
Motwani and Sudan [12]. However, the rounding approach in [12] does not generalize to
the class of graphs considered here (actually, the rounding procedure and analysis in [12]
are strongly based on the assumption that the graph has “few”, i.e. O(n) edges). To
prove the claimed result we provide a novel and more general rounding scheme.

Moreover, we show that when both the above two properties (i) and (ii) hold, the
obtained result finds a natural application in the classical scheduling problem known
as 1|prec |∑wjCj . In a series of recent papers [1, 2, 4] it was established that this
scheduling problem is a special case of the minimum weighted vertex cover in graphs GP

of incomparable pairs defined in the dimension theory of partial orders. We show that
GP satisfies properties (i) and (ii) where ∆− 1 is the maximum number of predecessors
(or successors) of each job in the poset P that defines the precedence constraints set.
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Timing Predictability for Resource Sharing Multicore

Systems - Challenges and Open Problems

Andreas Schranzhofer Jian-Jia Chen (Speaker) ∗ Lothar Thiele †

1 Introduction

In modern computer systems, multiprocessor systems on chip (MPSoCs) and multicore
platforms have been widely applied. These commercial off-the-shelf (COTS) products
possess significantly increased computational performance in the average case and re-
duced cost and time-to-market properties that are increasingly appealing for applica-
tions in the avionic and automotive industry. Demand for computational resources is
growing with the ascend of concepts such as fly-by-wire and assisted driving. However,
such concepts rely on guarantees on the worst-case response time (WCRT). In addition,
MPSoCs employ shared resources, such as memory or I/O peripherals, for performing
communication and data exchange between cores. Multiple processing elements com-
peting for access to a shared resource yields contention and as a result, significantly
increased WCRT.

MPSoCs with shared resources have been studied by Schliecker et al. [3] using event
models and an iterative approach to estimate the worst-case execution time (WCET).
Pellizzoni et al. [1] have studied systems with shared resources and proposed methods
to analyze the worst-case delay. In [1], we propose sequentially executing superblocks
to constitute tasks. Superblocks are specified by their upper bound on access requests
to a shared memory and their maximum required computation time. Superblocks are
constructed by execution blocks either by static analysis of a program or by the design-
ers efforts to manually arrange memory accesses at the beginning and the end of the
execution blocks. Different arbitration policies on a shared memory (FP, FCFS, RR)
are analyzed and the worst-case delay suffered by a task due to the interference on the
shared memory is computed, using a dynamic programming approach.

Other works focus on arbitration policies, that eliminate interference. Rosen et al. [2]
use Time Division Multiple Access (TDMA) for accessing a bus. A task is modeled as
dedicated communication phase at its beginning and end, and an execution phase in
between. Static analysis is used to derive all feasible execution traces of a task and to
derive the WCET thereof. We propose a task model in [4], where the number of ac-
cesses to a shared resource is only known as an upper bound for different time windows.
The analysis of the WCRT is based on maximizing the cumulative time a task waits
for time slots. Besides the task model with dedicated phases for communication and
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execution, our algorithm in [4] is also applicable to tasks modeled as a single general
phase, without dedicated communication. Following that, we introduce different models
of accessing shared resources and models of execution in [5]. As a conclusion, separation
of communication and execution is crucial for designing multicore resource sharing sys-
tems, but excessive time-triggering increases their WCRT. Moreover, for systems with
an adaptive arbiter on the shared resource, i.e., an arbiter that is composed of a static
and a dynamic arbitration segment, we show how to derive a WCRT bound by using
dynamic programming in [6].

2 Challenges and Open Problems

The problem of deriving the WCRT is hard and as shown in our previous work, so
far tight results can only be derived for very restrictive task models, see [4–6]. In this
section, we would like to provide the challenges we have faced for analyzing the worst-case
response time and some possible solutions. Deriving the worst-case trace is not trivial
when a pending access to the shared resource blocks the execution on the processing
element. Consider a multicore platform with multiple tasks competing for a shared
resource, and no synchronization among those tasks. Furthermore, consider another
task, whose WCRT shall be computed. Then it is not clear, which interference pattern
by other tasks results in the WCRT of the task under analysis. Even though the results
we have derived in [4–6] are safe for bounding the worst-case response time, the tightness
of the analysis is still questionable.

In the case of static arbitration, when interference is eliminated, this problem is
avoided and the worst-case response time is derived by maximizing the stall time in
between time slots. In the other case, when arbitration on the shared resource follows
a dynamic scheme, deriving the worst-case interference is a major issue. Our work
in [1] and the work by Schliecker et al. in [3], approximate the interference as the
sum of possible resource accesses by other tasks in a particular time window. This
is pessimistic, since these tasks can also be interfered with and therefore the actual
interference might be much smaller. So far, a tight algorithm would require to produce
all possible interfering traces, which is of exponential complexity. Limiting the number
of interfering traces is one potential direction of research to compute tight WCRTs for
systems with shared resources and dynamic arbitration policies thereon. This is achieved
by assuming not only an upper bound on resource accesses for a task or superblock, but
also a lower bound. This way, the number of feasible traces is reduced significantly, since
the freedom to postpone resource accesses is restricted. A major issue for this approach
is the derivation of an aggregated interference for the task under analysis, which has to
be derived from the access patterns of all the other tasks.

Another line of research follows a similar approach as our work in [4, 5], namely
the elimination of interference by isolating the accesses by multiple tasks to the shared
resource from each other. This can be achieved by using servers to arbitrate the shared
resource. Constant Bandwidth Server (CBS) and Total Bandwidth Server (TBS) can be
reduced to a TDMA arbitration, in case interference can be assumed to be present at all
times. Otherwise, these arbitration policies result in lower WCRTs. Besides applying
these server arbitration policies, it is unclear how an optimal server would look like.
How a server should be constructed, such that a minimized (optimal) WCRT can be
achieved, is an open question. Another issues is the combined optimality criterion for
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multiple servers, serving multiple tasks. Satisfying real-time guarantees is a condition
that has to be satisfied for feasibility, and therefore cannot serve as optimality criterion.
This criterion has to consider properties such as WCRT or a combination of the WCRTs
for multiple tasks in relation to their respective deadline.

All these approaches consider a given task to processing element allocation. However,
taking interference between tasks into consideration during the mapping process, opens
another possible direction of research for designing predictable resource sharing multicore
systems. As an example, consider a set of tasks that communicate over a shared memory.
Distributing these tasks over a large amount of processing elements results in a lot of
communication requests over the shared memory. Concentrating these tasks on as few
processing elements as possible, on the other hand, reduces the amount of communication
over the shared resource. Conclusively the amount of potential interferences is reduced
as well.

3 Conclusion

Contention on shared resources results in significantly increased worst-case response time
(WCRT) guarantees, which are required for automotive and avionic applications. We
show in our work that for general models of execution and general arbitration policies,
this problem is hard and upper bounds on the WCRT are not tight. Using more restric-
tive models of execution, along with a static arbitration on the shared resource, we derive
an efficient algorithm to compute a tight bound on the WCRT. We propose new analysis
approaches to determine the worst-case interference by enriching the description of tasks
with a lower bound on resource access requests. Then we propose the usage of servers
to eliminate interference among tasks. Considering interference in the design process,
when deciding on the mapping, is a viable way to limit interference and to eventually
obtain a predictable resource sharing MPSoC.
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Machine scheduling by column-and-row generation on the

time-indexed formulation

Ruslan Sadykov (Speaker) ∗ François Vanderbeck †

1 Introduction

We consider the minimum cost scheduling of jobs j ∈ J = {1, . . . , n} with processing
times pj ∈ IN , on a single machine, a single job at a time, with no preemption. Let
T ≥ ∑

j pj be the length of the planning horizon. Period t represents time interval
[t − 1, t) for t = 1, . . . T . We assume a generic cost function: the inputs allow us to
compute values cjt representing the cost of processing job j starts at the ouset of period t.

One of the approaches to solve this problem uses the following time-indexed Integer
Programming formulation. Let a binary variable zjt, j ∈ J , t = 1, . . . , T , equals to one
if job j starts at the outset of period t. Let also job 0 with processing time 1 model the
machine idle time. The computationally most efficient such time-indexed formulation is
the so-called “flow” reformulation [1]:

[R] ≡ min
{∑

jt

cjt zjt :

T−pj+1∑
t=1

zjt = 1 ∀j ∈ J,
n∑
j=0

zj1 = 1,

n∑
j=0

(zjt − zj,t−pj ) = 0 ∀t ∈ {2, . . . , T}, zjt ∈ {0, 1} ∀j, t
}

where the first group of constraints models the assignment of each job to a time period,
while the others enforce the “one-job-at-a-time” restriction. The formulation has nT
variables and (n+ T ) constraints (note that T is pseudo-polynomial in the input size).

The linear programming (LP) relaxation of this formulation is known to produce very
tight lower bounds. However, its size becomes impractical for instances with a large time
horizon. One of the methods to overcome this difficulty is to apply the column generation
approach based on the totally uni-modular subsystem formed by the one-job-at-a-time
constraints, as done by [5]. This method consists in defining a reformulation:

[M ] ≡ min
{∑
g∈G

cg λg :
∑
g∈G

T−pj+1∑
t=1

zgjt λg = 1 ∀j ∈ J,
∑
g∈G

λg = 1, λg ∈ {0, 1} ∀g ∈ G
}

where G is the set of “pseudo-schedules” (in which each job does not necessarily appears
exactly once), vector zg, scalar cg define the associated solution and cost for a solution
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g ∈ G. The LP relaxation of [M] is solved by column generation. The pricing subproblem
can be modeled as the search for a shortest path: z∗ = arg min{∑jt(cjt − πj) zjt :∑n

j=0 zj1 = 1,
∑n

j=0(zjt − zj,t−pj ) = 0 ∀t > 1, zjt ∈ {0, 1} ∀j, t} , where πj is a dual
solution to the linear relaxation of [M]. Thus, each pseudo-schedule defines a path in a
graph whose nodes represent periods and where a job j is represented by arcs (t, t+ pj),
and idle times by arcs (t, t+ 1).

2 Column-and-row generation approach

An alternative approach is a column-and-row generation for the LP relaxation of [R].
The method is reviewed in [4]. Variables z are generated dynamically, not one at the
time, but by lots. To do it, we solve the above pricing subproblem (where π is the
dual solution of the assignment constraints of [R]), and add to [R] the components of
its solution z∗ with a negative reduced cost in the LP relaxation of [R] along with the
flow conservation constraints that are binding for that solution. The components of z∗

with a non-negative reduced cost are stored in the column pool and added to [R] on one
of the subsequent iterations if their reduced cost becomes negative. In [4], we indeed
showed that either the current LP value of [R] is optimal, or some components of z∗ must
have a negative reduced cost in the LP relaxation of [R]. Therefore, this column-and-row
generation approach solves the LP relaxation of [R] after a finite number of iterations.

Compare to a standard column generation approach for [M], the interest of this
alternative approach is to allow for the recombination of previously generated pricing
problem solutions, and thus to accelerate the convergence. To illustrate what is meant
by recombination, we picture below two pseudo-schedules (dashed) and a new pricing
problem solution z∗ (bold) that can be obtained by recombining these two without the
need to explictly generate it through pricing.

1 2 3 4 5 6 7 8

Note that such recombination is not feasible in [M] where the only feasible solutions
are those defined by the convex combinations of previously generated columns. Such
column-and-row generation approach applies to any problem admitting a decomposition
in which the subproblem is solved by the shortest path problem or, more generally, by
the min-cost flow problem or by dynamic programming.

3 Computational results

We performed a computational comparison of three approaches on the same computer:
solving the LP relaxation of [R] directly using Cplex 12.1 ; solving the LP relaxation of
[M] by standard column generation; and solving the LP relaxation of [R] by column-
and-row generation. Column[-and-row] generation algorithms were implemented using
BaPCod — a generic Branch-and-Price code developed by the INRIA RealOpt team in
Bordeaux. A problem-specific implementation is likely to produce better results.

The three approaches were tested on instances with 25, 50, and 100 jobs and the
total weighted tardiness objective function. The test instances were generated using

56



the procedure from [3] which is the most used in the literature. The objective is to
minimize the total weighted tardiness. Processing times of jobs are uniformly distributed
in interval [1, 100]. For each n, we generated 25 instances, each for different pairs of two
parameters, varying the relative range of due dates and the average tardiness factor.

The results are presented in Table 1. “cpu” is the solution time (in seconds), “it” is the
number of iterations in the column[-and-row] generation procedure, “sp” is the number of
calls to the pricing subproblem solver, and “%z”is the percentage of z variables generated
in the column-and-row generation approach (from the total number of z variables in
[R]). The column-and-row generation approach outperforms the other two. Moreover,
its advantage increases with the increase of n.

Cplex for [R] Column generation for [M] Column-and-row generation for [R]
n cpu it sp cpu it sp %z cpu

25 11.2 343 343 2.1 208 69 5.8% 1.5
50 153.0 1270 1270 39.4 339 106 4.5% 16.9

100 2233.0 8784 8784 2891.5 466 139 4.5% 169.1

Table 1: Computational results

4 Perspectives

Our further research agenda is (i) to combine the column-and-row generation with an
enumeration algorithm to solve the scheduling problem to optimality; (ii) to check
whether the combination of the column-and-row generation approach with a cutting
plane method is computationally advantageous; and (iii) to speed-up the column-and-
row generation using standard stabilization techniques for column generation and vari-
able fixing based on reduced cost (as in [2]). We also plan to experiment this column-
and-row generation approach on the arc-time indexed formulation in which each binary
variable zijt determines whether job i immediately precedes job j at time moment t. LP
relaxation of this formulation generates even better lower bounds [2].
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Online Scheduling of Linear Deteriorating Jobs

on Parallel Machines

Sheng Yu∗ Prudence W. H. Wong (Speaker)† Yinfeng Xu‡

1 Introduction

Scheduling a set of jobs with fixed processing times is a classical problem [13]. Yet, there
are numerous situations that the processing time increases (deteriorates) as the start
time increases, e.g., maintenance or cleaning schedule, fire fighting, steel production and
financial management [10, 11]. The study of minimizing makespan of deteriorating jobs
first focused on a single machine, with linear deterioration [2] and non-linear deteriora-
tion [7]. Since then, the problem has attracted a lot of attention (see e.g., [1, 4, 6]).

A job Jj with linear deterioration has a processing time pj = aj + bjsj , where aj ≥ 0
is the “normal” processing time, bj > 0 is the deteriorating rate, and sj is the start time.
Linear deterioration is said to be simple if aj = 0, i.e., pj = bjsj . In this case, to avoid
trivial solution, it is natural to assume that the start time of the first job is t0 > 0 since
a start time of zero implies that the processing time of all jobs is zero.

It is observed in [7] that, when all jobs are available at time 0, 1 | pj = aj+bjsj |Cmax

can be solved optimally by scheduling in ascending order of aj/bj . For 1 | pj = bjsj |Cmax,
the makespan is independent of the job processing order [11]. The problem becomes NP-
hard and strongly NP-hard on two machines and m machines, respectively (c.f. the com-
plexity when pj = aj [5]). The problem P2 | pj = bjsj |Cmax is NP-hard [9, 12]. FPTAS
have been proposed for Pm | pj = aj + bjsj |Cmax [8] and Pm | pj = bjsj |Cmax [14].

Online algorithms have only been studied for Pm | pj = bjsj , online-list |Cmax [3], in
which a job has to be scheduled before the next job can be seen. They showed that the

competitive ratio of List Scheduling (LS) is (1 + bmax)
m−1
m and this is the best possible.

Our contributions. We first consider Pm | pj = aj + bsj , online-list |Cmax and show
that Round Robin (RR) is α-competitive and no on-line algorithm is better than (2− 1

α)-
competitive, where α = amax

amin
. Furthermore, when jobs have release times, we study a

class of “reasonable” algorithms including LS that do not idle when there are available
jobs. For Pm | pj = bjsj , rj , online |Cmax, we show that these algorithms achieve a

competitive ratio of (1 + bmax)2(1− 1
m

) and no online algorithm is better than (1 + bmax)
1
2 .

We also show that the competitive ratio of Round Robin (RR) can be unbounded.
Notations and problem definition. We are to schedule non-preemptively a set of

jobs J = {J1, J2, . . . , Jn} onto machines M1,M2, . . . ,Mm. For Jj , we denote by rj and
pj the release and processing time, respectively,. where pj = aj + bjsj and sj is the start
time of Jj . Let bmax = max1≤j≤n{bj} , amax = max1≤j≤n{aj}, amin = min1≤j≤n{aj},
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and α = amax
amin

. Consider a schedule S. For 1 ≤ j ≤ n, the completion time of job Jj
in S is denoted by cj(S). For any 1 ≤ k ≤ m, the number of jobs and the set of jobs
dispatched to Mk by S is denoted by nk(S) and J k(S). The makespan of machine Mk

and schedule S are denoted by Ckmax(S) and Cmax(S), respectively. The objective of the
problem is to minimize the makespan of the schedule produced.

2 Varying deteriorating rates pj = bjsj

We consider the problem Pm | pj = bjsj , rj , online |Cmax, i.e., aj = 0. In this setting, for
any job Jj , cj = sj + bjsj = sj(1 + bj). We first show some lower bounds (Theorem 1)
(note that (ii) still holds even under the condition without release times). Then we study
the performance of “reasonable” online algorithms (RA) that do not idle when there are
available jobs. LS is reasonable but RR is not. We observe that if a RA schedule does
not idle at all, its makespan is bounded (Lemma 2) and then we extend the idea and

show that RA is (1 + bmax)2(1− 1
m

)-competitive (Theorem 3).

Theorem 1. For Pm | pj = bjsj , rj , online |Cmax, (i) no deterministic online algorithm

is better than (1 + bmax)
1
2 -competitive; (ii) the competitive ratio of RR is unbounded.

Lemma 2. If in the RA schedule, every machine is not idle at all, then Cmax(RA)
Cmax(OPT) ≤

(1 + bmax)1− 1
m .

Proof. (Sketch.) For simplicity, we assume the first m jobs have rj = 1. Let J k(OPT)
be the set of jobs dispatched to Mk by the optimal schedule OPT. Then, Ckmax(OPT) ≥∏
j:Jj∈J k(OPT)(1 + bj), and thus, Cmax(OPT) ≥ (

∏
j:Jj∈J (1 + bj))

1
m . Let ` be the index

of a job with completion time equals to Cmax(RA) and p be the machine Mp to which RA

dispatches J`. As there is no idle time in RA schedule s`(RA) ≤ (
∏
j:Jj∈J−{J`}(1+bj))

1
m .

As a result, Cmax(RA) = s`(RA)(1 + b`) ≤ Cmax(OPT)(1 + bmax)1− 1
m .

Theorem 3. For Pm | pj = bjsj , rj , online |Cmax, RA is (1 + bmax)2(1− 1
m

)-competitive.

3 Fixed deteriorating rate pj = aj + b sj

In the online-list model, when a job is given, the online algorithm has to dispatch the
job to a machine and specify the period of time to process the job before the next job is
given. Suppose J k(S) = {Jk,1, Jk,2, · · · , Jk,nk}. The completion time of the job Jk,j is
ck,j =

∑
1≤i≤j ak,i(1 + b)j−i. Therefore, on a particular machine, the optimal schedule

is to schedule jobs in increasing order of normal processing time aj . We give some lower
bounds (Theorem 4) and an upper bound of RR (Theorem 5).

Theorem 4. Consider Pm | pj = aj + bsj , online-list |Cmax. (i) No online algorithm is
no better than (2− 1

α)-competitive. (ii) Both LS and RR are no better than α-competitive.

Proof. (Sketch.) (i) The adversary releases m jobs with the same normal processing time
a. If an algorithm dispatches any two of these jobs to the same machine, the adversary
stops releasing jobs. Otherwise, the adversary releases the (m + 1)-th job with normal
processing time being a(2 + b). In either case, the ratio is no better than (2− 1

α).
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(ii) We release 2qm jobs for some positive integer q. The job list contains qm jobs
with amax followed by those qm jobs with amin. Both LS and RR assign for each machine
q jobs with amax followed by q jobs with amin while the optimal algorithm schedules the
jobs with amin first. The ratio is arbitrarily close to α by setting q as a large integer.

Theorem 5. RR is at most α-competitive for Pm | pj = aj + bsj , online-list |Cmax.

Proof. (Sketch.) On a single machine, no matter what order the jobs are scheduled, the
makespan is no more than α times the optimal as long as the machine is not idle. We
further observe that in any schedule, the maximum number of jobs on a machine is at
least d nme while in RR, the maximum number is at most d nme. Then we can show that
RR is α-competitive.
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A Statistical Approach for Taxi Time Estimation

at London Heathrow Airport

Jason A. D. Atkin ∗ Edmund K. Burke ∗ Stefan Ravizza (Speaker) ∗

1 Introduction and Problem Description

With a predicted year on year increase in the number of flights [5], increasing attention
will need to be paid to the environmental effects of air transportation, in addition to an
increasing focus upon maintaining and improving on-time performance at airports [3].
These challenges will face both airlines and airports in the near future and improved taxi
time predictions (which is the aim of the model discussed here) will be an important
tool for handling them.

The purpose of the ground movement problem is to guide aircraft around the surface
of the airport to arrive at their destinations in a timely (and potentially more environ-
mentally friendly) manner. From an optimisation point of view, the ground movement
problem can be considered to be one of the most important airside operations at an
airport [2], since it links together several other important problems, such as runway
sequencing (for arrivals and/or departures) and gate assignment. The aims of this com-
bined routing and scheduling problem are usually to reduce the overall taxi time, reduce
the fuel burn, arrive at the destination by a target time, and/or to absorb any necessary
waiting time or delays in preferred positions (e.g. before the engines are started). It has
to guarantee conflict-free routes for each aircraft throughout the movement and, there-
fore, usually has to coordinate the movement of multiple aircraft around the surface at
once. A comprehensive review of the problem can be found in [2].

In previous research, it has been difficult to quantify the benefits of new ground
movement approaches compared with the status quo at airports, since it can be hard
to distinguish between the effects of the variability in taxi times and the benefits of the
improved routing and sequencing. Research is badly needed to understand and quantify
the variability in taxi times, and moreover, to develop models which accurately predict
taxi times from more measurable but influential factors. In particular, if predicted taxi
times are to be used in a decision support tool for the ground movement problem, which
itself incorporates the effects of re-routing and queuing delays, the predicted taxi times
must not already include the effects of these. The production of a model to quantify and
eliminate these delays has not, however, been simple.

London Heathrow Airport is one of the busiest international airports in the world,
despite the fact that it operates with only two runways and (for noise control reasons)
is restricted to using only a single runway at a time for departures. There has been
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considerable research and innovation of late into automated support for the various
operations at the airport, in terms of both information sharing and advisory tools.

The aim of this research is to consider the variability in taxi times, both including
and excluding the runway queue times, to determine the degree to which they can be pre-
dicted and to develop functions to predict them, where possible, by utilising information
which will be available in advance.

2 Ground Movement Model and Statistical Analysis

Our research consists of an innovative combination of a ground movement model and
a statistical multiple linear regression approach, to improve the predictability of taxi
times. Advance predictions for departure taxi times have long been known to be useful
and Idris et al. [4] performed a statistical analysis of departing aircraft at a North
American airport. More recent research by Atkin et al. [1] used the model which we will
present to show the benefits from considering both departures and arrivals at the same
time, due to their interactions, and of including more accurate models of the airport
layout and current mode of operations. The work analysed the effects of a number
of potential taxi-time-influencing factors at two European hub airports: Stockholm-
Arlanda Airport in Sweden and Zurich Airport in Switzerland. We now extend this
research to consider the applicability to London Heathrow, where departure queue delays
are relatively unpredictable for individual aircraft. We compare and contrast both the
generated models and the accuracy of the predictions at the different airports.

We will discuss the model which has been developed for this work, explaining both
the ground movement model which has been used and the statistical analysis which uses
it. We will then present and discuss the potential influencing factors for taxi speeds and
the importance which was determined for each, utilising real recorded data from London
Heathrow Airport, supplied by NATS Ltd. The goal has been to present a model which
is as practical (requiring the least information) and easy to interpret (so that the effects
of influencing factors can be understood and validated by the problem domain experts)
as possible, while maintaining a high level of accuracy.

We will not only discuss and highlight the significant factors and the way in which
they have been identified, but will also consider the ways in which the model has been
verified, such as the results from leave-one-out cross validation, which shows not only the
quality of the model as a whole, but also the variability in predicting new observations.

3 Applicability and Importance

Advance taxi time predictions are important for a number of reasons. Better taxi time
predictions can be used to improve take-off time predictions (by considering the push
back times plus taxi times) or on-stand time predictions (for arrivals, where the landing
time has already been predicted), both of which are of increasing importance at airports,
[3]. They can also be used to enable engine start-up to be delayed (moving waiting time
back from the runway queues, with engines running, to the stands, before they are
started) to reduce fuel burn and pollution.

Moreover, the developed model links the ground movement paths which are taken, to
the ground movement speeds. This enables the results to be fed into any ground move-
ment decision support tool to improve the reliability of the taxi speed/time predictions.
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Such decision support tools, which aim to optimise the ground movement problem, need
taxi time predictions for isolated aircraft (since the algorithms usually explicitly consider
the interactions of aircraft, introducing delays or re-routing as appropriate) along specific
routes, and sufficient examples are not usually directly available in historic data. The
utilised statistical approach provides the opportunity to disregard the effects of other
aircraft on the airport surface, meeting this objective.

Of course, improved predictions mean that less slack will be needed to allow for taxi
time uncertainty, allowing more efficient movement prediction or planning.
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Parameter learning in online scheduling algorithms

Csanád Imreh (Speaker) ∗ Tamás Németh †

1 Introduction

In on-line computation an algorithm must make its decisions based only on past events
without secure information on future. Such algorithms are called on-line algorithms.
On-line algorithms have many applications in different areas such as computer science,
economics and operations research. Typically, the quality of an online algorithm is
assessed via competitive analysis. An online minimization algorithm is C-competitive if
the algorithm cost is never more than C times the optimal cost. Detailed information
about competitive analysis can be found in [3].

On the other hand in some cases the algorithm which has the best competitive ratio
does not work well in average cases or on real data sets. In [1] the problem of online
scheduling algorithms to minimize makespan on identical machines is considered on real
data sets, and it is shown, that some algorithms with good competitive ratio have a poor
average performance.

In this talk we present a technique which might be used to improve the performance
of online algorithms in the average case and/or real data. Several online algorithms
can be considered as a member of a parametrized class of algorithms, with choosing
the parameter which minimizes the competitive ratio. In these cases one can define an
algorithm which works in phases and tries to learn the best value of the parameter. At
each phase the algorithm investigates the known part of the input and determines the
value of the parameter which gives the best result on this part. Then this value is used
in the next phase. In average case such learning algorithms can often give better results.

2 The investigated models

2.1 Scheduling with rejection

The problem of scheduling with rejection is defined in [2]. In this model, it is possible
to reject the jobs. The jobs are characterized by a processing time pj and a penalty wj .
The goal is to minimize the makespan of the schedule for the accepted jobs plus the sum
of the penalties of the rejected jobs. In the online case a 2.618-competitive algorithm is
given for arbitrary number of machines. This algorithm is called Reject Total Penalty
(RTP). One basic idea in scheduling with rejection is to compare the penalty and the
load (processing time divided by the number of machines) of the job, and reject the job
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in the case when the penalty is smaller. This greedy algorithm can make a bad decision
when the number of machines is large and this makes possible to accept large jobs with
small loads. RTP handles these jobs more carefully as follows:

Algorithm RTP(α)

• 1. Initialization. Let R := ∅.

• 2. When job j arrives

– (i) If wj ≤ pj
m , then reject.

– (ii) Let r =
∑

i∈R wi+wj . If r ≤ α ·pj , then reject job j, and set R = R∪{j}.
– (iii) Otherwise, accept j and schedule it by LIST

Considering the competitive ratio the problem of scheduling with rejection on iden-
tical machines is completely solved in the general case, where no further restrictions are
given on the jobs, algorithm RTP is an optimal online algorithm in the sense that it
achieves the smallest possible competitive ratio. On the other hand algorithm RTP is a
parametrized algorithm depending on the parameter α, its parameter learning extension
is defined in [7]. The basic idea of this algorithm can be described as follows:

Algorithm PAROLE (PHASE i)

• At the beginning of phase i, use algorithm CHOOSE to find a new parameter αi.

• Perform RTP (αi) on the arrived part of the input. Change set R.

• Use RTP (αi) for the jobs arriving during the phase.

Here CHOOSE is a subrutin which looks for the value αi where the cost RTP (αi)(I)
is minimal for the known part of input.

2.2 Scheduling on two sets of identical machines

In [5] the scheduling problem on the following machine environment is investigated. In
the problem there are two sets P and S containing k and m identical machines. Each
job j has two different processing times pj and sj , depending on which set of machines
to schedule it. This machine environment models the situation where we have two types
of machines. For the jobs we have to choose the set where we want to schedule it, and
then we have to schedule it on one of the machines of the set. Let CP and CS denote the
makespans (maximal completion time) achieved at the sets of machines. Two different
objective functions are considered .

If the goal is to minimize the maximum completion time, then the objective function
is the maximum of the makespans (maxCP ,CS). This problem is called Maximum Two
Sets Scheduling. On the other hand if the sets are independent (the resources used by
them are not common) and each set of machines has a cost proportional to the makespan,
then we have to minimize the sum (CP + CS) of the makespans.

In [5] a generalization of the RTP algorithm is presented for the solution of the
problem, here we present a generalization of the parameter learning algorithm from [7].
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2.3 Other applications

We also note that the idea of learning parameter in online algorithms can be used in
other areas as well. In the dynamic data acknowledgment problem (see [4]) the idea of
parameter learning is very effective it decreases the average cost by 20 % (see [6]).

Acknowledgment

This study was partially supported by the TÁMOP-4.2.1/B-09/1/KONV-2010-0005 pro-
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Explanation Algorithms for Cumulative Scheduling ∗

Stefan Heinz † Jens Schulz (Speaker) ‡

1 Introduction

In cumulative scheduling, conflict analysis is one of the key ingredients to solve these
problems efficiently, see [2, 5, 7]. Thereby, the computational complexity of explanation
algorithms that ‘explain’ infeasibilities or bound changes (see definition below) plays an
important role. Their role is even more substantial when we are faced with a backtracking
system where explanations need to be constructed on the fly.

In this talk we present complexity results for computing minimum-size explanations
for the propagation algorithms time-tabling, edge-finding, and energetic reasoning. Due
to the hardness results, we present optimal and heuristic approaches to deliver expla-
nations. Our computational results show that minimum-size explanations drastically
decrease the number of nodes in a branch-and-bound tree search and reduce the compu-
tation times by one-half.

2 Problem Description

In cumulative scheduling we are given a set of jobs that require a certain amount of
resources. In our case, the resources are renewable with a constant capacity and each
job is non-interruptible with a fixed processing time and demand request for one or
several resources. A resource can be, for example, a group of workers with the same
specialization, a set of machines, or entities like power supply. Additionally, each job
has an earliest start time and a latest completion time. The goal is to find a feasible
start time for each job such that the available capacities of the resources are respected
at any point in time.

Cumulative scheduling problems have been tackled with techniques from constraint
programming (CP), integer programming, or satisfiability testing (SAT). Hybrid ap-
proaches have been developed which combine methods from these areas. Currently, the
best results are reported by a hybrid solver which uses CP and SAT techniques [7]. How-
ever, there are still instances with 60 jobs and four cumulative constraints published in
the PSPLib [6] that resist to be solved to proven optimality.
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3 Conflict Analysis

Various exact approaches use a branch-and-bound approach to solve these NP-hard
problems. Among them are SAT solvers that make explicit use of infeasible subproblems.
They perform non-chronological backtracking or derive no-goods to speed up the search.
As can be seen in recent publications, this conflict analysis plays an important role to
solve cumulative scheduling problems efficiently [2, 5, 7].

Conflict analysis takes place under the following circumstances. During branch-and-
bound search the lower and upper bounds of variables are updated by various propagation
algorithms or simply by branching decisions. A subproblem becomes infeasible, e.g.,
because the lower bound of the start time variable of some job can be updated to a
value larger than the current upper bound, because the resource demand of all jobs for
some interval is larger than the available capacity, or because a relaxation, such as the
linear programming relaxation, becomes infeasible. Analyzing such infeasibilities means
to explain them and learn from them. An explanation of an infeasibility or of a bound
update is a set of lower and/or upper bounds of variables that, whenever they occur in
that combination, lead to an infeasible state or to that bound update. During conflict
analysis the goal is to learn further constraints to detect similar infeasible subproblems
earlier. To this end, cuts in a so-called conflict graph are computed. This graph consists
of the initial explanation, which states a reason for the infeasibility. During the process
of the conflict analysis this graph is extended by explanations for bound changes which
are part of previous bound explanations. In the end each variable bound in that graph
is connected via edges to the elements of its explanation. For a detailed description of
the conflict analysis we refer to [1].

When considering propagation algorithms in cumulative scheduling, these explana-
tions are in general not unique and bear a huge potential to optimize the solvers behavior.

The task of an explanation algorithm is to explain bound changes or infeasible states,
i.e., state a set of variable bounds that lead to the deduction, under certain objective
criteria. Minimum-size explanations are such a well-suited objective function [4]. Since
for each variable multiple bound changes may have been discovered, not only the current
bounds can be part of the explanation, but also earlier bound changes. This technique
is called bound-widening and leads to multiple alternatives per variable that can be
reported. Here, theoretical questions about the complexity of computing optimal expla-
nations arise.

4 Results

We show that it is possible to compute in polynomial time minimum-size explanations for
bound changes which result from energetic reasoning and edge-finding. In case of time-
tabling, we prove that an important special case is already weaklyNP-hard. To this end,
we establish a relation to unsplittable flow problems on the path [3]. We evaluate different
heuristic approaches and an exact mixed integer programming approach to explain bound
changes derived by that algorithm. Using these minimum-size explanations pays off in
total compared to using faster but weaker explanation algorithms. In the context of
bound-widening, the problems all become NP-hard.

Overall we experience a huge reduction in the number of nodes and in the compu-
tation times when using conflict analysis. Figure 1 visualizes the results of [4]. These
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Figure 1: Comparison of the average number of nodes and average running times for
60 non-trivial and solvable instances from PSPLib J60 are shown. More sophisticated
methods (variants V1 to V3) decrease the number of nodes and the average running
times. More detailed results and the different variants can be found in [4].

computational results also reveal the strength of bound-widening techniques, where a
widening of minimum-size explanations decreases the running time and the number of
nodes additionally.
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A Genetic Algorithm for A Nurse Rerostering Problem

Zdeněk Bäumelt (Speaker) ∗ Přemysl Š̊ucha ∗ Zdeněk Hanzálek ∗

1 Introduction

This paper is focused on a Nurse Rerostering Problem (NRRP) that is tackled every day
in hospitals in case of some unpredicted circumstances (e.g. sick leaves of the nurses).
Consequently, it is necessary to move the shift of the absent nurse to someone else in the
roster. However, NRRP cannot be usually solved by the same methods used for another
well known Nurse Rostering Problem (NRP), since each change of the original roster may
lead to collisions with the nurses’ already planned free-time activities. Therefore, the
main objective is to solve NRRP respecting the minimum changes in the original roster.
Moreover, the roster has to satisfy a given set of constraints to preserve the structure of
the original roster.

2 Problem Statement

The NRRP discussed in this paper is defined as follows. Let E be a set of the nurses, D
be a set of the days and S be a set of the shifts. Subsequently, let R0 be a binary matrix
standing for an original roster (the NRP output) of a size E × D × S, i.e. Rijs = 1
denotes that shift s is assigned to nurse i on day j. Similarly, a modified roster is defined
by R. Afterwards, let A be a binary matrix of absence of a size E ×D× S, i.e. the fact
that nurse i is not able to work shift s on day j is expressed by Aijs = 1. Furthermore,
let ∆R

max be a maximum number of modifications in R according to R0. Consequently,
the NRRP is given by a triplet {R0, A,∆R

max}.
We consider the NRRP containing the shifts {early, late, night, free (day-off), holi-

day (fixed day-off)}. In order to determine whether shift s1 can be followed by shift s2

or not, we define a binary matrix SP of a size S × S. Furthermore, requested shifts are
stated by a binary matrix RS of a size S × D, i.e. RSsj represents the count of the
requested shifts of type s on day j. Finally, one has to distinguish which parts of the
roster are fixed and which can be modified. For this purpose, let F be a binary matrix
of the fixation having a size E ×D. We take into account the following assumptions of
NRRP: a) all shifts have the same length equal to 8 hours; b) all nurses have the same
grades, i.e. all shifts can be assigned to them; c) all nurses have the same workloads.

The objective of the NRRP is to modify R0 in order to find R that satisfies following
hard constraints. The constraint (hc1) assumes that nurse i is assigned to exactly one
shift per day j, i.e.

∑
sRijs = 1 must hold for ∀i ∈ E,∀j ∈ D. Let ∆R be a number
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of modifications in R. Thereafter, the constraint (hc2) guarantees that ∆R = 1/2 ·∑
i,j,s

∣∣R0−R
∣∣ ≤ ∆R

max. The constraint (hc3) ensures that all fixed shifts in R cannot be

changed, i.e. ∀Fij = 1 ⇒ Rijs = R0
ijs,∀i ∈ E,∀j ∈ D,∀s ∈ S. Moreover, the available

nurses have to be taken into account only (hc4), i.e. ∀Aijs = 1⇒ Rijs = 0, ∀i ∈ E,∀j ∈
D,∀s ∈ S. The constraint (hc5) avoids the forbidden shift precedences, i.e. ∀SPs1s2 =
0 ⇒ Rijs1 ∧ Ri,j+1,s2 = 0, ∀i ∈ E,∀j < |D|, ∀s1, s2 ∈ S. The last hard constraint (hc6)
expresses that the coverage of shifts has to be met, i.e. RSsj =

∑
iRijs,∀j ∈ D,∀s ∈ S.

Naturally, NRRP contains the same soft constraints as NRP to keep the original
roster. Let Z∆ be a multiobjective function, given by a linear combination of the weighted
penalizations of the particular soft constraints, that is minimized. The total workload

balancing among nurses (sc1) is incorporated in Z∆ by
∑

i

∣∣∣∑j,sRijs − W
∣∣∣, where W is

an average workload equal to 1/|E| ·∑s,j RSsj . The constraint (sc2) takes into account

the maximum number of consecutive days-on. Finally, the count of modifications ∆R is
minimized by (sc3) in order to keep R as close to R0 as possible.

Most of the approaches dealing with NRP are summarized in [1]. Unfortunately,
NRRP receives a much less attention than NRP, though NRRP has to be solved as
often as NRP. Several approaches are presented in papers by Moz and Pato. The first
paper [2] models NRRP by an integer multicommodity flow represented by a multi-
level acyclic network. Another approach based on a genetic algorithm was described in
more variations in papers [4] and [3] (contains the proof that NRRP is NP-complete
based on the polynomial-time reduction to another well-known NP-complete problem,
the three-dimensional matching problem). Different strategies of evolutionary algorithms
were discussed in [6] where the results of Moz and Pato were outperformed. Another
approach for NRRP based on a recursive search algorithm is presented in [5].

We have observed from our preliminary results that the time complexity of the NRRP
approach is crucial. We implemented a recursive search algorithm with the bounded
depth of the recursion (∼ ∆R

max) on the CPU. The computational time for instances
with |E| = 50,∆R

max = 4 reached dozens of seconds, while for instances with the same
parameters and ∆R

max = 8 it increased to hundreds of seconds, which was the great-
est disadvantage of the approach. Moreover, this approach was memory consuming,
too. Therefore, our intention is to propose an approach for NRRP eliminating these
drawbacks.

3 Basic Concept of Solution

We have decided to solve NRRP by a genetic algorithm (GA) based on an island model
of the population (see in [8]). The outline of the GA is following. An initial population
P0 containing individuals I is generated. Subsequently, an evaluation of the current
population, a selection and a recombination process are performed repeatedly. The stop
condition is met when the total count of iterations is reached or the value of Z∆ is
decreased to 0.

Each individual I of a population P is defined by I =
{
MR, TR

}
as follows.

Let MR = {(i1, j1, sn1), (i2, j2, sn2), . . .} be a list of modifications in R of a length
∆R
max. Each element of MR corresponds to one modification in R with respect to

R0, i.e. a new shift sn 6= s is assigned to nurse i on day j. Furthermore, let
TR = {(i1, i′1, j1), (i2, i

′
2, j2), . . .} be a list of exchanges in R of a length d1/2 ·∆R

maxe. In
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this case, each triplet of TR represents one exchange of shifts in R between nurses i and
i′ on day j. This representation is redundant from the data point of view, but its benefit
lies in the efficient performance of GA described in the next paragraph.

The TR representation is more appropriate for the generation of the initial population
P0. Each individual can be created by filling of the TR randomly under the policy of
some relations in TR, e.g. for each 2 following exchanges t and t + 1 in TR holds that
it = it+1∨it = i′t+1∨i′t = it+1∨i′t = i′t+1. Similarly, the TR representation is more efficient
for the selection and the recombination process. On the contrary, the MR representation
is more effective for the evaluation of all I in P and therefore, TR has to be mirrored
to MR to evaluate the current population. The evaluation is performed over the nurses
and days with the modifications only.

4 Contribution

We have introduced one of the NRRP representation, that, to the best of our knowledge,
was not presented yet. We want to open a discussion about an efficient representation
of the NRRP suitable for a genetic algorithm. We will present the performance of the
proposed approach with the described representation of the problem. Furthermore, the
achieved results will be compared with our already implemented CPU solution.
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Path planning in games

Marjan van den Akker ∗ Roland Geraerts † Han Hoogeveen (Speaker) ‡

Corien Prins §

1 Introduction

Path planning is one of the fundamental problems in games. The path planning problem
can be defined as finding a collision-free path, traversed by a unit, between a start and
goal position in an environment with obstacles.

The variant we study is the problem of finding paths for one or more groups of units,
such as soldiers or tanks in a real-time strategy game, all traversing the same (static)
environment. Each group has its own start and goal position (or area), and each unit
will traverse its own path. The objective is to find the paths that minimize the average
arrival times of all units.

Our main contribution is that we propose an efficient solution based on techniques
from integer linear programming for the path planning problem with groups. Here we
do not care about possible interference of paths; this will be taken care of by a collision-
avoidance algorithm. Our solution can be used to handle difficult situations which typ-
ically occur near bottlenecks (e.g. narrow passages) in the environment. Initially, we
restrict ourselves to the situation in which each unit has the same width and speed; we
will address the consequences of relaxing this assumption later. Moreover, we will also
discuss how we can use our approach in a game environment.

2 Basic algorithm

To solve the problem, we first construct a directed graph that resembles the free space
in the environment; we will discuss the issue of undirected edges later. There are several
ways to create such a graph. One possibility is to use tiles, as is done in earlier games, but
this is considered to lead to unnatural paths. A better alternative is to use a waypoint
graph [1] in combination with a navigation mesh [2]. No matter how the graph has been
constructed, we determine for each arc in the graph the traversal time as the time it
takes to traverse the arc. We further determine its capacity as the number of units that
can traverse the arc while walking next to each other.
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Given this graph, the problem of finding a set of optimal paths boils down to a multi-
commodity flow problem; see the overview paper by Skutella [3]. If there is only one
group of units, then this problem can be solved efficiently by the dynamic flow algorithm
by Ford and Fulkerson [4]. Baumann and Skutella [5] have proposed an efficient algorithm
to solve the variant in which all units are identical and we have only one origin and several
destinations. For the general case, no efficient algorithm is known. We want to present
a heuristic that is based on techniques from (integer) linear programming. The basic
idea is that we formulate the problem as an integer linear program (ILP), after which we
solve the LP-relaxation and convert this to an integral solution. In this way, we make
the problem tractable, without loosing too much on quality.

Instead of using variables that indicate for each arc at each time the number of units
of group k that traverse this arc (an arc formulation), we use a formulation that is based
on paths for each origin-destination pair. A path is described by the arcs that it uses and
the times at which it enters these arcs. Here we require that the difference in the entering
times of two consecutive arcs (i, j) and (j, k) on the path is no less than the traversal
time l(i, j) of the arc (i, j); if this difference is larger than l(i, j), then this implies that
there is a waiting time at j. Initially, we assume that there is infinite waiting capacity
at all vertices. The cost coefficient of a path is equal to the time at which the end-point
is reached.

Given the set of possible paths with their characteristics, we introduce for each path
s a decision variable xs corresponding to the number of characters that will follow this
path. The goal is to minimize the total cost (total arrival time) subject to

• the constraint that for each origin-destination pair at least the desired number of
characters are sent;

• the capacity constraints of the arcs at each time point.

To find out which paths are useful, we solve the LP-relaxation (which we obtain by
allowing fractional values of xs) using column generation. Here the pricing problem boils
down to finding a shortest path for each origin-destination pair in the time expanded
graph. This graph is created from the original graph as follows: we create a set of
vertices (v, t) for each original vertex v and each timepoint t = 0, . . . , T , where T is the
time-horizon; we put an arc between vertices (v, t1) and (w, t2) if t2 − t1 is equal to the
traversal time of the arc (v, w) in the original graph. The length of each arc is equal to
the time-difference of the vertices with a correction for the dual multipliers. If we find
an improving path, then we add it, together with the set of paths that are obtained from
it by shifting the time. Eventually, we solve the LP-relaxation this way.

3 Extensions and applicability in a game

Games (and especially strategy and shooter games) are highly dynamic. This yields a
number of game-specific challenges that we have to overcome before our approach can
be applied in a game. These challenges are

• It must run in real-time;

• We do not want to use paths that lead to isolated units in a war game;

• The environment may change;
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• There can be different types of units (different speed, width);

• It must be integrated with a local rule for collision avoidance.

The real-time aspect makes it impossible to solve the ILP, even if we have restricted
the number of variables dramatically. But fortunately there is no need for finding the
optimal solution. After we have solved the solution to the LP-relaxation, we can just
round it down. Moreover, we do not even have to solve the LP-relaxation to optimality:
we can use column generation to improve the current solution, until we run out of time.
To avoid that not enough characters reach their target after rounding down, we increase
the number of characters that have to be sent. This yields a very beneficial side-effect:
we end up with a set of compatible paths, from which we can select the right number
in a preprocessing step, in which we can take other criteria into account, like the ‘no
isolated units’ constraint. Since a change in the LP can be solved starting with the former
solution our method is well suited to deal with imminent changes of the environment
affecting the capacities of the arcs (for example because of a bridge that gets destroyed).

Next to these challenges, there are some extensions to the model that we should
incorporate. Release dates and deadlines for the arrival at a given destination are easily
incorporated by putting constraints on the time-expanded graph. It is more difficult
to model undirected edges in the graph. Enforcing the total capacity without any side-
constraints is possible, but this leads to an enormous number of additional constraints,
especially when the traversal time is big. Therefore, we replace an edge by two arcs with
total capacity equal to the capacity of the edge. Currently, we use a constant division
of the total capacity, where the capacity division is left to the LP; it is also possible to
make this division time-dependent.
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Exponential-time algorithms for scheduling problems
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1 Introduction

This communication deals with scheduling theory and exponential-time algorithms.
Most of the scheduling problems dealt with in the literature are intractable problems, i.e.
NP-hard problems according to complexity theory. Consequently, an optimal solution
of such problems can only (unless P = NP) be achieved by superpolynomial-time
algorithms, the design of which has been the matter of a complete part of the literature
over the last decades. Usually, the evaluation of the efficiency of such algorithms is
conducted using extensive computational experiments and the challenge is to solve
instances of size as high as possible. But, theoretically speaking, several fundamental
questions remain open: for exponential-time algorithms can we establish stronger
conclusions than their non polynomiality in time on the worst case? For instance,
is it possible to derive upper bounds on their average complexity or their worst-case
complexity? This is one task which is usually performed for optimal algorithm solving
polynomially solvable problems, since when we provide an optimal polynomial time
algorithm we usually also provide information about the number of steps it requires to
compute an optimal solution. Why not for NP-hard problems and exponential time
algorithms? This would have the advantage to enable comparisons of such algorithms
for a given problem.
But the interest in studying the worst-case time complexity of such algorithms, or even
their average complexity, is beyond the simple interest of counting a number of steps.
It is related to establishing properties of NP-hard problems. To illustrate this, assume
we deal with a NP-hard optimisation problem for which a brute enumeration algorithm
would calculate an optimal solution requiring n! steps, with n the size of the input. The
question is: can this problem admit an exponential-time algorithm with a worst-case
time complexity lower than that of this enumeration algorithm? Can we solve it using,
for instance, at most 2n steps? Having such a property would not only give a property
on the expected difficulty of a problem, but also challenge the design of efficient optimal
algorithms: their efficiency should be still evaluated via computational experiments,
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but they would have also to not exceed the upper bound on the worst-case complexity
established on the problem.

The problem of designing exponential-time algorithms with bounds on their worst-
case complexity has been the matter of growing interest in combinatorial optimization
over the last years ( [1, 2]). To the best of our knowledge, no such exponential-time
algorithm for scheduling problems can be found in the literature, except one provided
in [1] on a single machine problem referred to as 1|prec|∑Ci according to the
well-known three-field notation of scheduling problems ( [3]). In the literature on
exponential-time algorithms, several technics can be used to derive worst-case bounds
( [4]): Dynamic Programming, Sort & Search, Branch-and-Reduce, Inclusion-Exclusion,
Iterative Compression, ...

2 Worst-case complexities for basic scheduling problems

We consider a bunch of basic scheduling problems for which worst-case time complexities
have been established by providing exponential-time algorithms. The obtained results
are summarized in table 1. For each problem, we provide its notation, the worst-case
time complexity of the “trivial brute enumeration” algorithm and the best worst-case
time complexity proposed. By “brute force enumeration” algorithm, we mean an algo-
rithm which enumerates all the solutions to find the optimal one. The symbol dec in
the notation indicates that the corresponding problems satisfy a particular property of
decomposability.

Problem Enumeration Proposed complexity

1|di|
∑

i wiUi O∗(2n) O∗(
√

2
n
)

1|dec|fmax O∗(n!) O∗(2n)
1|dec|∑ fi O∗(n!) O∗(2n)

P2||Cmax O∗(2n) O∗(
√

2
n
)

P2|di|
∑

i wiUi O∗(3n) O∗(
√

3
n
)

P3||Cmax O∗(3n) O∗( 3
√

9
n
)

P |dec|fmax O∗((nm)n) O∗(3n)
P |dec|∑ fi O∗((nm)n) O∗(3n)

F2|di = d, d unknown,
∑

i Ui = ε|d O∗(2n) O∗(
√

2
n
)

Table 1: Bounds on the worst-case time complexity for some NP-hard scheduling prob-
lems

Most of the results presented in table 1 are obtained by application of dynamic
programming, the Sort & Search method or dedicated decomposition schemes. During
the presentation we will show some of the obtained results and demonstrate the utility
of this new research topic in scheduling theory.
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Enchanced models of single machine scheduling with a

deterioration effect and maintenance activities

Vitaly A. Strusevich (Speaker)∗ Kabir Rustogi†

1 Introduction

We consider single machine scheduling models in which the processing conditions of the
machine are subject to deterioration and can be restored, at least partly, by running
machine maintenance. At time zero, the machine is in a perfect processing state, and
its processing conditions deteriorate as the number of the completed jobs increases.
During each maintenance period (MP) no job processing takes place. Each job j ∈
N = {1, 2, . . . , n} is associated with its normal processing time pj , which represents its
duration, provided that job j is the first to be processed on the machine under perfect
conditions. The maintenance durations are known, but the number of the MPs is decided
by the decision-maker. In a particular schedule, the jobs are partitioned into k groups,
1 ≤ k ≤ n, one before the first MP and one after each of the k − 1 MPs. The actual
processing time of job j may depend on both the group it has been placed into and the
position of the job in the processing sequence in that group.

While there are numerous papers that study scheduling problems with deteriorating
effects and scheduling problems with machine maintenance, the enhanced models that
integrate both phenomena have not been addressed until very recently; see [1] and [2].

In problems that we consider, the objective is to minimize the makespan that is equal
to the total processing time of all jobs plus the total duration of all MPs. In the most
general model, the actual processing time of job j that is sequenced in the position r ≥ 1
in group x is given by

p
[x]
j (r) = pjg

[x]
j (r), j ∈ N, 1 ≤ r ≤ n, 1 ≤ x ≤ n.

We refer to g
[x]
j (r) as a deterioration factor. We assume a certain order between the

values of the factors g
[x]
j (r), so that

1 = g
[1]
j (1) ≤ g[1]

j (2) ≤ · · · ≤ g[1]
j (n− k + 1);

g
[x−1]
j (1) ≤ g

[x]
j (1) ≤ g[x]

j (2) ≤ · · · ≤ g[x]
j (n− k + 1) for each x, 2 ≤ x ≤ k,

for each job j and for a fixed number of groups k. These inequalities reflect the fact
that the starting conditions of the machine do not get better after the next MP, and
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this holds across all jobs. We denote the general problem to minimize the makespan

by 1
∣∣∣pjg[x]

j (r),MP
∣∣∣Cmax, provided that the number of the MPs is not known and

should be determined by the decision-maker together with an optimal schedule. Problem

1
∣∣∣pjg[x]

j (r),MP
∣∣∣Cmax essentially captures a trade-off between the fast processing of the

jobs on a well-maintained machine and the time that is required to guarantee that the
machine is in an acceptable condition.

2 Results

If the number of MPs is fixed to be k − 1, then for an optimal schedule S∗(k) with k
groups the makespan is equal to C(k) = P (k) + T (k), where P (k) is the total duration
of processing the jobs, and T (k) is the total duration of all MPs.

Job-independent, Group-Independent factors.

In this case, it is assumed that

g
[x]
j (r) = g(r)

for all jobs j ∈ N and all groups x, 1 ≤ x ≤ n. The function g is given in the form of an
ordered array of numbers such that

g(1) = 1 ≤ g(2) ≤ · · · ≤ g(n).

For this model, each MP brings the machine back to the perfect condition, the same as
in the beginning of processing.

We give an algorithm for computing C(k) by a direct assignment of each job to a
group and to a position in the group. This solves problem 1 |pjg(r),MP |Cmax in O(n2)
time.

Recall that a sequence A(k), 1 ≤ k ≤ n, is called convex if

A(k) ≤ 1

2
(A(k − 1) +A(k + 1)) , 2 ≤ k ≤ n− 1,

and is called V−shaped if there exists a k0, 1 ≤ k0 ≤ n, such that

A(1) ≥ · · · ≥ A(k0 − 1) ≥ A(k0) ≤ A(k0 + 1) ≤ · · · ≤ A(n).

We prove that the sequence P (k), 1 ≤ k ≤ n, is convex. If the sequence T (k),
1 ≤ k ≤ n, is also convex (which happens, e.g., when the maintenance times are mono-
tone) then the sequence C(k), 1 ≤ k ≤ n, appears to be V−shaped, and problem
1 |pjg(r),MP |Cmax can be solved in O(n log n) time.

Notice that a special case with g(r) = ra (job-independent, group-independent poly-
nomial positional deterioration) and equal durations of all MPs has been solved in O(n2)
time by using a so-called group balance principle; see [1].

Job-independent, Group-dependent factors.

In this case, it is assumed that

g
[x]
j (r) = g[x](r), 1 ≤ x ≤ n,
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for all jobs j ∈ N . The function g is given in the form of a collection of n ordered array
of numbers such that

1 = g[1](1) ≤ g[1](2) ≤ · · · ≤ g[1](n);

g[1](1) ≤ g[2](1) ≤ g[2](2) ≤ · · · ≤ g[2](n− 1);

· · ·
g[x−1](1) ≤ g[x](1) ≤ g[x](2) ≤ · · · ≤ g[x](n− x+ 1) for some x, 2 < x < n;

· · ·
g[n−1](1) ≤ g[n](1).

For this model it is assumed that after an MP the machine is brought to a condition
that is not necessarily perfect, and no better then after the previous MP.

For the resulting problem 1
∣∣pjg[x](r),MP

∣∣Cmax we give a dynamic programming
algorithm that requires O(n3) time, as well as an improved algorithm that runs in O(n2)
time and is based on an efficient manipulation with the deterioration factors.

Job-dependent, Group-dependent factors. We solve the resulting general

problem 1
∣∣∣pjg[x]

j (r),MP
∣∣∣Cmax in O(n4) time by reducing it to O(n) dynamically gen-

erated rectangular linear assignment problems, each with a cost matrix that contains n
row related to the jobs and O(n) columns related to the pairs “group-position”. This is a

generalization and an improvement of [2], where a special case with g
[x]
j (r) = gj(r) = raj

(job-dependent, group-independent polynomial positional deterioration) has been solved
in O(n5) time by a rather straightforward use of the linear assignment problem.

We also address the models in which the duration of an MP depends on its start
time and derive polynomial-time algorithms.
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A lower bound on deterministic online algorithms for

scheduling on related machines without preemption.∗

Tomáš Ebenlendr (Speaker) † Jǐŕı Sgall ‡

1 Introduction

We prove a new lower bound of 2.564 on deterministic online algorithms for makespan
scheduling on related machines without preemptions. The previous lower bound was
2.438 by Berman et al [2]. They use combinatorial approach with computer based search
through the graph of possible states of an algorithm. In contrast, we use an analytical
bound on maximal frequency of scheduling jobs.

The currently best algorithms are 3 +
√

8 ≈ 5.828 competitive deterministic and
4.311 competitive randomized one [2]. For an alternative very nice presentation see [1].
The lower bound for randomized algorithms is 2, see [3]. Thus, both in the deterministic
and randomized cases, significant gaps remain.

We consider one-by-one online scheduling on uniformly related machines. The speed
of machine Mi is denoted si. Each job is characterized by its processing time pj takes
pj/si time to process on Mi. No preemptions are allowed, i.e., once the job is started it
cannot be interrupted and the machine is busy with this job until the job is processed.
The objective is to minimize the makespan (also called the length of the schedule, or the
maximal completion time). The online algorithm sees only the next job from the input
sequence and it has to schedule this job before it is given the following job. Note that in
this model it is not necessary to specify the starting times of jobs, as any schedule can
be trivially converted to the schedule without idle time (gaps), while not increasing the
makespan. (Accordingly, this model is often considered as a variant of load balancing.)

Our lower bound is based on an instance where both the machine speeds and the
processing times are a geometric sequence of machines, with both sequences having the
same common ratio, similarly as in [2, 3]. First, we consider how the algorithm behaves
on one of the machines and we upper bound the frequency of scheduling a job on this
machine. This bound is a function of the competitive ratio, the common ratio of the
geometric sequence, and the speed of the machine. Then we take the sum of these
bounds on frequencies over all machines. Any online algorithm has to schedule one job
in one step, thus this sum has to be at least 1. Finally, we let the common ratio of the
geometric sequence to approach to 1, and obtain our lower bound.

We number the machines as well as the jobs from 0 (to obtain simpler formulas).
Thus we have machines M0,M1, . . . ,Mm−1 and jobs J = (J0, J1, . . . , Jn−1). We use
J [j] = (J0, J1, . . . , Jj) to denote the input sequence of jobs cut off after Jj .

∗The research was supported by project GAUK 166610
†ebik@math.cas.cz. Institute of Mathematics, AS CR, Žitná 25, CZ-11567 Praha 1, Czech Republic.
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Let Ji be the set of jobs scheduled on machine Mi. The completion time of the
machine is then simply the sum of processing times of the jobs scheduled to the machine
divided by its speed: Ci = 1

si

∑
j:Jj∈Ji pj .

2 Lower bound

Our lower bound is proved by an instance with a the geometric sequence of machines,
si = α−i, and a geometric sequence of jobs, pi = αi, for some α > 1. Both sequences
have the same length, i.e., n = m. The optimal schedule after step t is to schedule the
jobs on the machines in the reverse order, i.e., the Jj on machine Mt−j . The optimal
makespan is C∗max(J [t]) = pt = αt.

The following main lemma gives the bound on the frequency. A technical difficulty is
that the bound holds only in a cerain amortized way, so we have to formulate it carefully
in terms of the number of jobs completed. The number ti can be interpreted as the
highest possible amortized frequency of scheduling a job to machine Mi with respect to
the claimed competitive ratio R.

Lemma 1. Let A be an R-competitive algorithm. Consider the instance described above.
Let

ti = logα
R

R− αi for si = α−i > R−1 (1)

Then, for any fixed α > 1 and n, the algorithm A schedules at most n
ti

+Rsi+1 jobs from
the input sequence on machine Mi. Moreover the algorithm schedules at most one job
on the machine with speed equal to R−1 (if there is any) and no job any slower machine.

Proof. If si < R−1, then no job can be scheduled the machine Mi, since if the sequence
would end now, the optimal makespan is equal to the size of the last job on input, i.e,
C∗max(J [t]) = pt. Moreover if si = R−1 then there can be only one job scheduled on Mi:
The same argument now shows that no job is scheduled on Mi before scheduling any
job. Thus we assume si > R−1 from now on.

Let p′1, p
′
2, . . . , p

′
ni be (the processing times of) the jobs in Ji (i.e., those scheduled

on the machine Mi). We can bound p′j by
∑j

k=1 p
′
j ≤ Rsip

′
j because the algorithm is

R-competitive and the optimal makespan is p′j after scheduling this job as the last one.
This yields:

p′j ≥ max

{∑j−1
k=1 p

′
k

Rsi − 1
, 1

}
for j = 1, 2, . . . , ni .

We define a sequence (qj)
ni
j=1 of lower bounds on the processing times from Ji recursively:

qj = max

{∑j−1
k=1 qk

Rsi − 1
, 1

}
for j = 1, 2, . . . , ni .

We can see that qj ≤ p′j , as q1 = 1 ≤ p′1 and
∑j−1

k=1 qj ≤
∑j−1

k=1 p
′
j using induction on j.

If qj > 1 then by the definition of qj we have

qj+1 = qj +
qj

Rsi − 1
= qj

Rsi
Rsi − 1

and thus logα
qj+1

qj
= logα

Rsi
Rsi − 1

= ti . (2)
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Now we bound ni. We know that qni ≤ p′ni ≤ pn = αn. Using (2) we have at most

n/ti + 1 numbers of size qj > 1 in q1, . . . , qni . We also have that
∑bRsic

j=1 qj ≥ bRsic, thus
qj > 1 for any j > Rsi. This gives that there are no more than n/ti + 1 + Rsi jobs
scheduled to the machine Mi by an R-competitive algorithm.

Theorem 2. For any R-competitive deterministic algorithm for nonpreemptive schedul-
ing on related machines, the following inequality holds:

1 ≤
∫ 1

0

ln(R)

− ln(1−R−x)
dx . (3)

This gives R > 2.564.

Proof. The algorithm has to schedule all jobs, thus Lemma 1 implies

n =
n−1∑
i=0

ni =

blogαRc∑
i=0

ni ≤ (R+ 1)blogαRc+

blogαRc∑
i=0

n

ti
.

We can set n arbitrarily large, so that the term (R+ 1)blogαRc is negligible. Thus, for
any ε > 0, we get:

1− ε ≤
blogαRc∑
i=0

1

ti
=

b lnR
lnα c∑
i=0

lnα

− ln(1− αiR−1)

≤
∫ lnR

lnα

−1

lnα

− ln(1− αiR−1)
di (4)

=

∫ 1

− lnα
lnR

lnR

− ln(1−Ry−1)
dy (5)

α→1−−−→
∫ 1

0

lnR

− ln(1−Ry−1)
dy . (6)

In (4) we simply bound the sum by the appropriate integral. We use the fact that the
function in the sum can be viewed as a continuous and decreasing function of i. We
substitute i = y lnR

lnα to get (5). Now we get the desired bound (3) by taking the limits
ε → 0, α → 1, and by substituting x = 1 − y in the integral. The inner function of
the integral in (3) is a bounded monotone function of R and x. So we can solve the
integration numerically and get the threshold of R ≈ 2.5649877.
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One to Rule Them All: a General Randomized Algorithm

for Buffer Management with Bounded Delay

 Lukasz Jeż (Speaker) ∗

1 Introduction

In this paper, we consider the problem of buffer management with bounded delay, intro-
duced by Kesselman et al. [6]. This problem models the behavior of a single network
switch responsible for scheduling packet transmissions along an outgoing link as follows.
We assume that time is divided into unit-length steps. At the beginning of a time step,
any number of packets may arrive at a switch and be stored in its buffer. Each packet has
a positive weight, corresponding to the packets priority, and a deadline, which specifies
the latest time when the packet can be transmitted. Only one packet from the buffer can
be transmitted in a single step. A packet is removed from the buffer upon transmission
or expiration, i.e., reaching its deadline. The goal is to maximize the gain, defined as
the total weight of the packets transmitted.

We note that buffer management with bounded delay is equivalent to a scheduling
problem in which packets are represented as jobs of unit length, with given release times,
deadlines and weights; former two restricted to integer values. In this setting, the goal
is to maximize the total weight of jobs completed before their respective deadlines.

As the process of managing packet queue is inherently a real-time task, we model
it as an online problem. This means that the algorithm, when deciding which packets
to transmit, has to base its decision solely on the packets which have already arrived
at a switch, without the knowledge of the future. To measure the performance of such
an algorithm, we use the standard notion of competitive analysis [3], which, roughly
speaking, compares the gain of the algorithm to the gain of the optimal solution on
the same instance. We say that a deterministic algorithm is R-competitive if on any
instance I its gain is at least 1/R of the optimum (offline) gain on I. Defining compet-
itive ratio for randomized algorithms (considered by us) requires some care [3], and we
omit it to due to space constraints. We remark though that two adversary models are
considered: oblivious and adaptive. Our results, which are all upper bounds, hold in the
adaptive adversary model unless otherwise stated; this implies that they also hold in the
other model. We also remark that in the adaptive adversary model one cannot assume
that the optimum/adversary’s schedule obeys an earliest deadline first order, while such
assumption is usually made in analyses for the other model.

∗lje@cs.uni.wroc.pl. Institute of Compurer Science, University of Wroc law, ul. Joliot-Curie 15,
PL-50-383 Wroc law, Poland.
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2 Our results

The main contribution of this paper is a simple memoryless scale-invariant algorithm
Mix-R, which may be viewed as RMix, proposed by Chin et al. [4], with a different
probability distribution over pending packets. The competitive ratio of Mix-R is at
most e/(e − 1) on the one hand, but on the other it is provably better than that for
many restricted variants of the problem. Specifically,

Theorem 1. Mix-R is 1/
(
1− (1− 1

N )N
)
-competitive, where N is the maximum, over

steps, number of packets that are assigned positive probability in a step.

Note that 1/
(
1− (1− 1

N )N
)

tends to e/(e− 1) from below. The number N can be
bounded a priori in certain restricted variants of the problem, thus giving better bounds
for them. The key observation allowing to bound N in certain cases is that some packets
are dominated by others in the following sense.

We denote a packet of weight w and deadline d by (w, d). We say that a packet
a = (wa, da) is dominated by a packet b = (wb, db) at time t if at time t both a and b
are pending, wa ≤ wb and da ≥ db. If one of these inequalities is strict, we say that a
is strictly dominated by b. We say that packet a is (strictly) dominated whenever there
exists a packet b that (strictly) dominates it. By a standard exchange argument one
can prove that, wlog, no algorithm (including the optimum/adversary) ever transmits
a strictly dominated packet.

It is then easy to see that for instances with span (difference between deadline
and release time) of any packet bounded by s, or instances with at most s different
packet weights, N ≤ s. Thus for either kind of instances Mix-R is 1/

(
1− (1− 1

s )s
)
-

competitive. In particular, on 2-bounded instances Mix-R coincides with the previously
known optimal 4/3-competitive algorithm Rand [2] for the adaptive adversary model.
The number N can also be bounded by 2 in case of similarly ordered instances (aka in-
stances with agreeable deadlines) and oblivious adversary [5, Lemma 2.7].

In our analysis, we follow the paradigm of modifying the adversary’s buffer, intro-
duced by Li et al., cf. [5]. Namely, we assume that in each step precisely the same packets
are pending the algorithm and the adversary. Once they both transmit a packet, we mod-
ify the adversary’s buffer to make it identical with that of the algorithm. This amortized
analysis technique leads to a streamlined and intuitive proof.

In both the algorithm and its analysis it is the respective order of packets’ deadlines
rather than their exact values that matter. Therefore, our results are also applicable to
a more general problem of Collecting Items [1], in which the algorithm is given precisely
that information on deadlines. In fact, Mix-R is the optimum randomized memoryless
algorithm for Collecting Items, since [1, Theorem 6.3] (stated therein in a weaker, non
parameterized way, with proof left out due to space constraints).

Theorem 2. For every randomized memoryless algorithm for the Collecting Items
problem, there is an adaptive adversary’s strategy using at most N different packet
weights such that the algorithm’s competitive ratio against the strategy is at least
1/
(
1− (1− 1

N )N
)
, and at every step the algorithm has at most N packets in its queue.

We note that while Mix-R is a very simple algorithm, it subsumes all previously
known randomized algorithms for packet scheduling, with the sole exception of the opti-
mum 1.25-competitive algorithm against oblivious adversary for 2-bounded instances [4].
Our analysis also provides new bounds for several restricted variants of the problem.
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Algorithm 1 Mix-R (single step)

1: if there are no pending packets then
2: do nothing and proceed to the next step
3: end if
4: m← 0 . counts packets that are not strictly dominated
5: n← 0 . counts packets with positive probability assigned
6: r ← 1 . unassigned probability
7: H0 ← pending packets
8: h0 = (w0, d0)← heaviest packet from H0

9: while Hm 6= ∅ do
10: m← m+ 1
11: hm = (wm, dm)← heaviest not strictly dominated packet from Hm−1

12: pm−1 ← min{1− wm
wm−1

, r}
13: r ← r − pm−1

14: if r > 0 then
15: n← n+ 1
16: end if
17: Hm ← {x ∈ Hm−1 | x is not dominated by hm}
18: end while
19: pm ← r
20: transmit h chosen from h1, . . . , hn with probability distribution p1, . . . , pn
21: proceed to the next step
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Online algorithms and bounds for the Train Marshalling

Problem

Katharina Beygang ∗ Florian Dahms (Speaker) † Sven O. Krumke ‡

1 Introduction

Marshalling and shunting problems play an important role in railway logistics. The
sorting process usually takes place in a shunting yard, which can be seen as a set of
parallel stacks or queues, that represent the classification tracks. These are connected
with an incoming and one outbound track on which railway cars arrive or a properly
sorted train can leave.

We consider the problem formulation as it was proposed by Dahlhaus et al. [1]. In
the following we will refer to this model as the Train Marshalling Problem (TMP). In the
European railway system the coupling and decoupling steps are mostly done manually,
due to a lack of electronic couplings, and are therefore time consuming so we want to
keep the number of these operations to a minimum. Therefore we will allow only one
coupling and decoupling step per car. Furthermore we assume that the precise order of
the leaving cars is not of relevance and the only restriction is that all cars of the same
destination will appear in one block of the outgoing train. This objective makes sense as
in reality railway cars have certain functions and are interchangeable within their field
of application.

The model will now be as follows. The incoming train is decoupled and the cars are
rolled in to the classification tracks. After the last car was rolled in, the cars from each
classification track are pulled out as a whole and then coupled to form the outbound
train. The objective will be to find an allocation of the cars to the classification tracks,
such that a minimum of tracks is used, while the outbound train is feasible, i.e. the cars
are blocked by their respective destinations. We assume that the ordering of the blocks
in the train is of no relevance. This additional freedom actually makes the problem
difficult, but leads to a possibly huge reduction in used tracks. Fixing the order of
blocks would result in a problem that is easy to solve but might use a lot more tracks. In
the following the optimal number of classification tracks for a certain problem instance
will be denoted by K. See figure 1 for an example of such a sorting process.

Formally TMP can be defined as follows:
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Figure 1: Example of sorting an incoming train with 5 different destinations according
to the TMP model

Definition 1. Let the set In = {1, 2, . . . , n} represent the n cars of the incoming train
and let S = {S1, . . . , St} be a partition of In into t sets that represent the destinations
of the cars. Then TMP can be formulated as finding the smallest number K and a
permutation π(1), . . . , π(t) of the destinations, so that the sequence

(1, . . . , n)K = (1, . . . , n, 1, . . . , n, . . . . . . , 1, . . . , n︸ ︷︷ ︸
K times

)

contains all the elements from Sπ(1) followed by the elements of Sπ(2) and so forth.

Note that each repetition of the sequence 1, . . . , n represents one classification track
and π gives the order of the destinations in the outbound train. In the example in
figure 1, the destinations correspond to the partitions S1 = {1, 5, 11}, S2 = {2, 6}, S3 =
{3, 8}, S4 = {4, 7, 10}, S5 = {9} of I11 and π would be the permutation π = (2, 3, 4, 1, 5)
of the destinations, leading to K = 3 classification tracks.

Another problem that arises within this context is the online version of TMP, where
we want to assign tracks to the railway cars without knowledge about the order of the
cars that will arrive later. Such a model is useful as in practice decisions often need
to be made immediately and under incomplete knowledge or uncertainty. Furthermore
online algorithms provide robustness in the sorting procedure as they are invariant to
interruptions in the schedule and delays which are quite common in railway routine.

2 Bounds on the optimal value

As determining an optimal allocation of the cars to the classification tracks was shown to
be NP-hard [1], it is desirable to get some easily calculable bounds on the optimal number
of tracks. To achieve this we use some concepts from graph theory. First we associate
every problem instance with an interval graph, where every destination corresponds to
one interval that lasts from the arrival time of the first car to the arrival time of the
last car of the respective destination. Now let ω be the size of a maximum clique in this
interval graph, then we have for every incoming train

dω + 1

2
e ≤ K ≤ ω

89



These bounds can easily be calculated as one can compute ω for interval graphs in
linear time.

Furthermore, we introduce the following new lower bound

Theorem 2. If one divides the incoming train into two properly separated trains with
clique numbers ω1 and ω2, we have

K ≥ dω1 + ω2

2
e

Even the optimal choice of properly separated sub-trains can be done in polynomial
time, by exploiting the structure of maximal cliques in interval graphs.

Using random problem instances drawn uniformly from the set of all instances with
a predefined length, this bound turns out to be fairly close to the optimal value.

3 The online problem

In the online version of TMP we assume that the incoming cars are arriving one by one
and we need to push cars to the classification tracks before the destination of the next
car is revealed. The goal will be to determine an optimal deterministic online algorithm
for this model in terms of competitive analysis, i.e. we measure the worst case ratio
between the number of tracks the online algorithm uses and the optimal value K.

We require that for each arriving car it is known if it is the last car of its destination,
as otherwise there could not be any competitive online algorithm - even when using
randomization. This information might be available if we know for example the total
number of cars for each destination.

First we derive the following lower bound

Theorem 3. There is no deterministic online algorithm for TMP that is better than
2-competitive.

Using the bounds from above we now show that a greedy interval coloring scheme
achieves exactly this competitive ratio and is therefore optimal among all deterministic
online algorithms.
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The lockmaster’s problem

Sofie Coene (Speaker) ∗ Frits C.R. Spieksma ∗

1 Introduction

Transportation of goods by ship, over sea as well as over waterways, has become more
and more popular. Here, we focus on transport by inland ships over waterways. The
European Commission promotes the better use of inland waterways in order to relieve
heavy congested transport corridors. Carriage of goods by inland waterways is an en-
vironmentally friendly mode of transport, which can make a significant contribution to
sustainable mobility in Europe [1]. Typically, these waterways are interrupted by locks
such that higher water levels can be maintained. These locks are a bottleneck for trans-
portation over water and have not been studied very broadly in OR literature. We now
continue with the description of a very basic situation that will act as our core problem:
the lockmaster’s problem. Later we will discuss more realistic extensions. Consider a
single lock. Ships coming from upstream, wanting to go downstream, arrive at the lock
at given times ri, i = 1, . . . , n1. Other ships, coming from downstream, wanting to go
upstream, arrive at the lock at given times si, i = 1, . . . , n2. Let n = n1 + n2, and let T
denote the lock-time. We assume that all data are integral. Our goal is to find a feasible
lock-strategy that minimizes total waiting time of all ships. In other words, we need to
determine at which moments in time the lock should start to go up (meaning at which
moment in time ships that are downstream are lifted), and at which moments in time
the lock should start to go down (meaning at which moments in time ships that are up
are being lowered). Clearly, for such a strategy to be feasible, (i) going-up moments
and going-down moments (referred to as moments) should alternate, (ii) consecutive
moments should be at least T time-units apart. It is clear that this particular problem
is not very realistic: capacity restrictions, weights, multiple locks, are ignored. We will,
however, also deal with these issues.

2 A dynamic programming algorithm

The problem described in the introduction is closely related to scheduling a batching
machine. When, in the problem described above, we only have downstream going ships,
the lock can be seen as a batching machine and the jobs are the arriving ships with
release dates and equal processing times (i.e. lock-time T ). Following the notation of
Baptiste [2] this is problem 1|p − batch, b = n, ri, pi = p|∑wiCi. Baptiste shows that
this problem is polynomially solvable. When there are upstream going and downstream
going ships, we are dealing with two families of jobs, and only jobs of the same family can
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be together in a batch. Clearly, this is related to batch scheduling with compatibilities
between jobs, see e.g. Boudhar [3]. Notice however that in our case processing a batch
of one family needs to be alternated by processing a batch containing jobs of the other
family; i.e. it is not possible to process two batches of the same family consecutively.
We will show that the lockmaster’s problem can also be solved in polynomial time by a
dynamic programming algorithm.

When is a lock likely to start going up or down? Either upon arrival of a ship or
immediately upon arrival of the lock. This suggests that the number of moments the lock
starts operating is limited. We introduce a set of moments U at which it is possible to
go up. These upmoments are referred to as ui. Similarly, we introduce a set of moments
at which it is possible to go down, the set D. These downmoments are referred to as
di. Let us define set S = {si}, set R = {ri} and Θ = {0, 2T, 4T, . . . , 4nT}. We use the
Minkowski-sum to sum two sets, i.e. the sum of two sets A = {ai} and B = {bi} as
follows:

A+B = {ai + bj |ai ∈ A, bj ∈ B}.

Then, bearing this definition in mind, here is a proposal for U and for D:

U = (S + Θ) ∪ (R+ Θ + {T}),

D = (R+ Θ) ∪ (S + Θ + {T}).

We will come back to the cardinality of U and D.

Lemma 1. There is an optimal lock strategy for the lockmaster’s problem whose upmo-
ments are contained in U , and whose downmoments are contained in D.

Proof. Contradiction. Suppose there is an instance such that each optimal strategy
has either an upmoment not in U or a downmoment not in D (these moments are called
a failure). Consider that optimal strategy for this instance which has an earliest failure,
say at time t. Let us assume for convenience that at time t, the lock went up. Notice
that t cannot be equal to an si. Consider that moment in time t. Let ε > 0 be a very
small quantity. There are two possibilities:

(i) at t− ε the lock was waiting to go up. If, in our optimal strategy, there are ships
transported up at time t, it cannot have been optimal to wait until t, since no
downstream ships arrive at time t (since t is not in S). Hence, there are no ships
transported. But then, we need not have waited, and there is an optimal strategy
that immediately went up after the last time before t we went down.

(ii) at t−ε the lock was going down. Thus, at t−T , the lock started a down-operation.
This moment in time is, by assumption, in D. But then it follows that t is in U .
Contradiction.

tu
Now, let us further analyze U and D.

Lemma 2. When, for a given instance for the lockmaster’s problem, during a time period
equal to 4T no ships arrive at the lock, the instance can be divided into two instances.
The solution can then be found by solving these smaller instances.
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Proof. Due to space limitations we omit the proof here. tu
From now on we assume (without loss of generality, due to lemma 2) that each instance
of the lockmaster’s problem has the property that a ship arrives during any 4T interval.
This allows us to bound the cardinality of U ∪D to O(n2).

We now describe a dynamic programming algorithm DP. Let us define f(ui, dj) (with
ui ≤ dj −T ) as the minimal costs of a locking strategy that takes care of all up-requests
up to ui, all down-requests up to dj , which features an upmoment at time t = ui,
which features a downmoment at time t = dj , and such that there are no other up- or
downmoments in between ui and dj .

Here is a recursion:

f(ui, dj) = mindj′≤ui−T ;ui′≤dj′−T {f(ui′ , dj′) +
∑

`:ui′≤s`≤ui

(ui − s`) +
∑

k:dj′≤rk≤dj

(dj − rk)}.

For this recursion to work we set u1 = min{s1, r1 − T}. The optimal value is given
by min{f(ui, dj)|ui ≥ sn2 , dj ≥ rn1 , ui ∈ U, dj ∈ D}.

To determine the time complexity of DP, we claim the following.

Claim 3. If dj ∈ D \R, then the previous upmoment was dj − T .

Claim 4. If dj ∈ R, then the previous upmoment is either dj−T or the latest si ≤ dj−T .

Theorem 5. DP is a polynomial-time algorithm for the lockmaster’s problem.

Proof. Correctness follows from lemma’s 1 and 2 and the following. Given that U
and D have cardinality O(n2), this algorithm will have O(n2) states, due to the claims
above. Computing each state can be done by evaluating O(n2) states, leading to a total
time complexity for this algorithm equal to O(n4). tu

3 Extensions

For the analysis above we chose as an objective to minimize the sum of the waiting
times, which is a very natural objective function for this problem. We can, however,
deal with other settings using a similar approach. We are able to solve the weighted case
and the case with non-uniform locking times for going up and down. We also studied
the problem with capacity restrictions, i.e a maximum on the number of boats that can
go in the lock together. Finally, we study the problem with multiple locks in series.
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Improved approximation algorithms for routing shop

scheduling

Wei Yu ∗ Guochuan Zhang (Speaker) †

1 Introduction

We are given an undirected edge-weighted graph G = (V,E), where V = {0, 1, 2, . . . , n}
is the vertex set and E is the edge set. There are n jobs, where job j is placed at
vertex j for j = 1, 2, . . . , n. We have m machines M1,M2, . . . ,Mm which originally
stay at vertex 0, Job j consists of m operations O1,j , O2,j , . . . , Om,j , and Oi,j should be
processed by machine Mi for pi,j time units without any interruption. To process these
jobs the machines travel between the vertices at the same speed. Let tj,k be the travel
time between vertices j and k, which defines the edge length. Clearly, the network is
metric.

A feasible schedule is to plan a routing for each machine and schedule the operations
such that at any time each job is processed by at most one machine (the machine must
arrive at the job) and each machine processes at most one job. In such a schedule S
denote si,j(S) to be the starting time of operation Oi,j .

We consider two models. For flow shop the operations O1,j , O2,j , . . . , Om,j of job j
have to be processed in this order, while for open shop the operations of a job may be
processed in an arbitrary order. We aim to minimize the makespan. The two problems
are, respectively, denoted as RO||Cmax and RF ||Cmax. However, there are two slightly
different versions with respect to the makespan. For a schedule S, let Cj(S) be the
completion time of job j (by which all its operations are done). In the path-version
the makespan Cmax(S) = max1≤j≤nCj(S), while in the tour-version the makespan
Cmax(S) = max1≤j≤n{Cj(S) + tj,0}. More precisely, in the path-version we take care of
the largest job completion time. In the tour-version we are concerned about the largest
time when all machines return to their home, i.e., vertex 0, after the completion of all
jobs.

Obviously the well know traveling salesman problem and the flow (shop) scheduling
problem are special cases of our models.

For the tour-version of the m-machine problem RF ||Cmax, Averbakh and Berman [1]
presented a simple max{m+1

2 , ρ}-approximation algorithm, given a ρ-approximation tour
on the underlying graph. Averbakh et al. [2] dealt with the tour-version of the m-machine
problem RO||Cmax, and gave an (m+1

2 + ρ)-approximation algorithm by using the same
algorithm for RF ||Cmax. Chernykh et al. [3] gave a 13/8-approximation algorithm for
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RO2||Cmax. Moreover, they devised an O(
√
m)-approximation algorithm for the m-

machine case RO||Cmax using a job-aggregation idea and the greedy algorithm for the
classical open shop problem.

2 Main results

We significantly improve the previous results by showing the following theorems.

Theorem 1. For any ε > 0, there exists an O(logm(log logm)1+ε)-approximation algo-
rithm for both versions of RO||Cmax .

Theorem 2. There exists an O(m2/3)-approximation algorithm for both versions of
RF ||Cmax.

Both algorithms transfer the original instance into one with a number of jobs poly-
nomially bounded by the number of machines so that the new instance is relatively
easily approximated and there is not much loss by aggregating jobs. For RO||Cmax we
are inspired by the idea on job-aggregation in [3]. Meanwhile we exchange the roles of
the machines and the jobs, and apply an algorithm in [4]. For RF ||Cmax, after prop-
erly aggregating the jobs we will borrow the algorithm by Nagarajan et al. [5] for the
permutation flow shop problem. In the following we give a sketch of the two improved
algorithms.

2.1 Routing open shop

Given an instance I of RO||Cmax, we first construct an instance I ′ of O||Cmax with the
same machines but n′ ≤ 2m+1 jobs. Then we obtain a schedule S′ of I ′ as follows: firstly,
we exchange the roles of machines and jobs and assign a same prescribed sequence to
indicate the processing order of the operations belonging to each new job, which obtain
an instance I ′′ of F ||Cmax. After that we run the algorithm proposed by Czumaj and
Scheideler [4] for a generalized flow shop problem, called an acyclic job shop problem,
on I ′′ to obtain a schedule S′′ and transfer it into a schedule S′ of I ′ of equal makespan.
By the results in [4], the makespan of S′ is at most O(log n′ log log n′ · (L′ + p′max)) ,
where L′ and p′max are the maximum machine load and maximum processing time of
I ′ respectively. By the construction of I ′, we can bound L′ + p′max within a constant
factor of the optimal value of I. Moreover, from the construction of S′ we can see that
schedule S′ satisfies the property that the processing order of jobs on each machine are
the same prescribed sequence. This property, which can not be achieved by a simple
greedy algorithm, allows us to transfer the schedule S′ into a feasible schedule S of I
with a makespan increasing by a constant factor of the optimal value of I.

2.2 Routing flow shop

The same idea used in routing open shop can not be applied to routing flow shop, since
the schedule may violate the constraints for flow shop, i.e., the operations of the same
job should be processed successively by M1,M2, . . . ,Mm. However, we can combine the
idea of job-aggregation and the algorithm for permutation flow shop problem to derive
an O(m2/3)-approximation algorithm, which works as below.
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Given an instance I of RF ||Cmax, we first construct an instance I ′ of F ||Cmax with the
same machine set and n′ ≤ 2m2/3 + 1 jobs. Using the algorithm proposed by Nagarajan
and Sviridenko [5] for permutation flow shop problem we obtain a permutation schedule
S′. The makespan of S′ is at most O(

√
min{m,n′} · (L′ + p′max)), where L′ and p′max

are the maximum machine load and maximum processing time of I ′ respectively. By
the construction of I ′, we can bound L′ + p′max within an O(m1/3) factor of the optimal
value of I. Finally, the property that S′ is a permutation schedule, which can not be
achieved by the algorithm of Czumaj and Scheideler [4], allows us to transfer S′ into a
permutation schedule S of I with the makespan bounded by the claimed ratio.
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The road traffic model for the car factory logistics

Grzegorz Pawlak (Speaker) ∗ Mateusz Cichenski † Mateusz Jarus ‡

Slawomir Walkowski §

1 Introduction

Many aspects of the traffic control system may have influence on production and logistic
system in the factory. In the paper the WHAT IF analysis was considered. The purpose
of the paper was to prepare the simulation model for the traffic in the urban environ-
ment due to the transport organization between the two plants of the car factory. The
motivation for this work was generated by the necessity of changing the transportation
model and checking the influence of renovation one of the main crossroads in the roads
network. The one of the main junction is rebuilding in the shuttle route of internal
lorries traffic in the car factory. The observation was made for the several types of the
vehicles: delivery final product trucks, suppliers chain trucks, JIT lorries and shuttles
between two plants involved in the car factory logistic system. The simulation model
has been constructed for the considered area of the city map. The real data has been
collected either from the road traffic control operators or the car factory logistic control
system. The junction graph model has been proposed and adapted to the traffic model.
The main junctions in the areas were modelled according to the real design. The traf-
fic light control program was incorporated into the simulation models. The real traffic
density data on the observed area were collected. The goal was to prepare the simula-
tion model for the one hypothetical average working day 24h. The distribution of the
traffic was constructed out of the real data set. Also the distribution of the car routing
on the each junction have been designed. For several types of the vehicles the routing
was determined. For example for the buses and shuttles which routing is deterministic
and fixed. The traffic jams were defined and observed during the simulation. Analysis
generates several reports aiding the decision maker of the logistic control. Having the
simulation tool and the traffic model dedicated to the particular circumstances one can
construct the optimization models either to minimize the number of trucks in the shuttle
routes or minimize the negative influence for the production continuity. There is also
possible to study several scenarios and to observe the traffic jams and congestions and
their influence to the trucks circulation.
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2 Traffic modelling and input data analysis

To achieve the results which can be applied in practice we try to construct the traffic
model as close to reality as possible. The whole visualized map consists of multiple
segments connected with special markers of different types to create a precise reflection
of real routes. Their length is diverse and depends only on the distance between certain
characteristic points. Every segment represents a straight section of road which is either
just a part of a longer curve or indicates some crossings. It also allows for one-way
motion only - to create a second lane another list of segments needs to be created. Map
structure is defined in an XML file as a set of tags of different type. The values were
derived from the data we gathered from City Roads Authorities (CRA) and Volkswagen
car factory. We were able to get sufficient data from CRA about the traffic flow in
the area. We also managed to get all the traffic lights programs that were used on the
main junctions in the area. To correctly analyze that data we based on the junctions
blueprints which were provided by CRA. VW introduced information about the routes
of their lorries and the numbers of lorries that cruises between plants. What’s more, due
to the large number of employees, we had to include the data about buses routes and
special buses rented by VW factory for their workers.

There are four main junctions in the area with traffic light system: On those junctions
we had data from magnetic loop counters about the number of cars that passed on certain
lane. Using that data we could calculate the distributions for the lanes - the probability
value that a car will pick that lane when it will have the chance to switch it. We know
how many cars go through particular lane from the data. To get the distribution we
have to sum up all the cars that went through the road and divide the quantities on each
lane by the total number of cars.

3 Software solution

Our goal was to create an extendable tool to simulate and analyze traffic. Moreover, we
wanted to provide a visualization that allows the playback of simulated scenarios. Many
tools does not provide the functionality to replay exactly the same simulation and most
of them also do the simulation and visualization process simultaneously. We decided to
split these processes and create independent tool for simulation and independent tool
for visualization. With this approach it is possible to play the simulation many times
to verify the results. Simulation generates reports with the number of traffic jams, their
duration and the time that certain type of vehicle spent driving on its route.

The applications use the concept of time line with frames. Each frame describes
the current state of simulation. However, the frames contain only information about
the objects that changed their state from previous state. That’s why we introduced key
frames that contain information about the whole state, which makes it possible to restore
the state using key frame i.e. at a given time stamps T1 the car moved forward on the
segment, thus this information will be included in the following time stamps T2. If the
same car had to stop because there was another car in front of it, so it did not change
its state thus providing this information in following time stamps T3 is unnecessary.
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4 Computational experiments and reports

Apart from the file for visualization purposes, simulation process produces also report
with statistics, which sum up the simulation results. It consists of two main parts:
statistics for the factory logistic vehicles and information about traffic jams. In the first
part, vehicles are classified according to their type, route and direction. For each class,
the following characteristics are calculated and outputted:

• start and end point of the route,

• number of vehicles which drove through the whole route (one physical vehicle may
be counted many times if it accomplished many cycles),

• minimum, maximum and average time of driving the route by a single vehicle.

In the second part of the report, each entry of each junction is characterized by
statistics of the traffic jams which occurred on the junctions. These statistics contain:

• total time of the traffic jams,

• number of traffic jams,

• average time of a single traffic jam,

• average length of a traffic jam (expressed as a number of vehicles stuck in a traffic
jam),

• total number of vehicles stuck in the traffic jams,

• average time spent by factory logistic vehicles in the traffic jams.

5 WHAT IF analysis

We have distinguished three periods during the 24h when the traffic picks. Distinguishing
these hours allows us to focus on situations when traffic conditions are really difficult.
The shuttle trucks from Volkswagen are in circulation in the same cycle road for the
whole day, so concentrating on the time spans described above is crucial and enough for
getting the simulation results in worst cases.

We have analyzed seven different pre-defined scenarios of the traffic organization
which contains specified road network and distributions of cars in sources and junctions.
We have analyzed the influence on the necessary truck number to avoid the produc-
tion disturbances. One can observe the crucial points and values of parameters having
direct influence on the production system. In such complex system where multi type
transportation system is connected with the production and with many constrains the
simulation and WHAT IF analysis cloud be the practically useful method.
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Schedulability analysis for a combination of preemptive

strict periodic tasks and sporadic tasks

Mohamed Marouf (Speaker) Laurent George Yves Sorel ∗

1 Introduction

We consider the problem of scheduling tasks with strict periods combined with sporadic
tasks. Both types of task have fixed priorities and are preemptive. For a task with
a strict period, the difference between its starting time and its release time must be
identical for every job. Tasks with strict periods are typically in charge of controlling
the activities of a system (sensor/actuator, feedback control, ect.). The freshness of the
information they use and/or the reactivity of the system are constrained. Indeed, for
control tasks, it might be important to control their jitters (the difference between the
worst case and the minimum response time) to ensure the stability of the control loop.
In this paper, we consider for controlled tasks, the solution satisfying property 1 that
minimizes the jitter of tasks with strict periods.

Property 1. For any task with strict period, (i) the start time of any job of the task
must be equal to its release time and (ii) the Worst Case Response Time (WCRT) of the
task must be equal to its Worst Case Execution Time (WCET).

In this paper, we provide a sufficient schedulability condition for the schedulability
of tasks with strict periods. We show how to define their first release times such that
property 1 is met (based on paper [1]). Tasks with strict periods have the same fixed
priority, the highest one. Sporadic tasks all have a lower priority than any task with
a strict period. We show in this paper how to define the worst case scenario for the
schedulability of sporadic tasks in the presence of tasks with strict periods. Then we
propose a schedulability condition for sporadic tasks based on the worst case response
time computation.

2 Scheduling tasks with strict periods

A task τi(Ci, Ti, Di) with the strict period Ti is characterized by (i) a first start time S1
i ,

(ii) a strict period Ti equal to the deadline Di such as the start time of the kth job of
task τi is given by Ski = S1

i + (k · Ti), and (iii) a WCET Ci ≤ Ti.
It has been proved in [2] that a set of tasks Γ is schedulable (sufficient condition) if

n∑
i=1

Ci ≤ g (1)

where g is the gcd of the periods. The start time of each task is given by
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S1 = 0, Si =

i−1∑
j=1

Cj , i ≥ 2 (2)

In [1] we gave a local schedulability condition when a set of tasks Γ do not satisfy
condition (1). In order to prove that Γ is schedulable, we first schedule a sub-set of tasks
according to condition (1). Then, for each remaining (candidate) task, we apply the
following local schedulability condition iteratively, such that this candidate task, added
to a sub-set of tasks already scheduled, leads to a schedulable set of tasks. A candidate
tasks τc(Cc, Tc, Dc) is thus schedulable if

Cc ≤ Ci · δ [Tcmod(Ti) · (Tcmod(2g) + Timod(2g))] (3)

wheremod is the modulo function and δ is the Kronecker symbol: δ(i) =

{
1 if i = 0
0 otherwise

The start times of a candidate task τc are given by{
If (Tcmod(Ti) = 0) then S1

c = S1
i + kg, 1 ≤ k ≤ Tc

Ti
− 1

If (Timod(2g) = Tcmod(2g) = 0) then S1
c = S1

i + (2k + 1)g, 0 ≤ k ≤ Tc
2g − 1

(4)

Theorem 1. The scheduling of strict periodic tasks in the time interval [kL, (k + 1)L],
k ∈ N∗, with start times satisfying equations (2) or (4), is identical to the scheduling
obtained in the time interval [0, L]. L is the LCM (Least Common Multiple) of all the
tasks periods.

Proof According to the conditions (2, 4), 0 ≤ S1
i < Ti. The kth start time of a task τi

is given by Ski = S1
i + kTi. From the definition of Ski , k ≤ 1, a task released at time Ski

ends at time Ski + Ci. Thus, the scheduling of tasks in the time interval [kL, (k + 1)L],
k ∈ N∗, is identical to the scheduling obtained in the time interval [0, L], . �

We define the set Ψ which contains all the start times of the strict periodic jobs on
a time interval [0, L[. Thus, Ψ = {S1

i + k · Ti, k = 0..( LTi − 1), i = 1..n}.

3 Scheduling sporadic tasks

A sporadic task τi(Ci, Ti, Di) is defined by its WCET Ci, its minimum inter-arrival time
Ti and its relative deadline Di ≤ Ti. In order to study the schedulability of sporadic
tasks when tasks with strict periods have already been scheduled, we have to determine
the critical instants for a sporadic job τ ji . A critical instant is defined as the instant

where a job will have the largest response time if its release time rji is set to it. It has
been proved in [3] that a critical instant occurs when the release time of a sporadic job is
equal to the release time of a highest priority job. For all sporadic tasks, this results in
first releasing all tasks with priority higher than τi at the same time as the first release
time of τi. To consider tasks with strict periods, we have to study all cases of release
times Si ∈ Ψ following the scenario defined in section 2. However, rather than testing
all the start times of Ψ, some start times are useless and will be thus pruned from Ψ
according to the following lemma.

Lemma 2. For a sequence of consecutive executions of strict periodic jobs, only the first
release times in the sequence should be considered.
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Thus, if ∃Ski , Slj ∈ Ψ such that Ski −Slj = Cj , S
k
i is removed from Ψ. Consider Ψ the

release times of tasks with strict periods obtained applying equations (2, 4). Consider
that task τi is first released at time S ∈ Ψ. Wi(t) denotes the sum of the computational
requirements at time t (w.r.t time S) of all the tasks with higher priority, plus one
execution of τi starting from time S. It is given by

Wi(t) = Ci +
∑

τj∈ΓNSP /i

⌈
t

Tj

⌉
Cj +

∑
τj∈ΓS

⌈
t− sj
Tj

⌉
Cj (5)

where sj is the relative start time Skj according to a release time S of τi. sj is given by

sj = S1
j +

⌈
S − S1

j

Tj

⌉
Tj − S (6)

The WCRT of τi is the solution of ri = W (ri) computed by iteration [3].

4 Example
We use the Rate-Monotonic algorithm to schedule the following tasks. Let us consider
three tasks with strict periods: τ1(1, 4, 4), τ2(1, 6, 6) and τ3(1, 12, 12). τ1 and τ2 satisfy
condition (1) and are schedulable with S1

1 = 0, S1
2 = 1. τ3 and τ1 satisfy condition (3),

thus τ1 is schedulable with S1
3 = 6. L = LCM(T1, T2, T3) = 12 thus Ψ = {0, 1, 4, 6, 7, 8}.

After eliminating the successive jobs according to lemma 2, Ψ = {0, 4, 6}.
Let τ4(2, 6, 8), τ5(2, 12, 12) be sporadic tasks to be scheduled.

We have: W4(t) = 2 +
∑3

j=1

⌈
t−sj
Tj

⌉
Cj and W5(t) = C5 +

⌈
t
T4

⌉
C4 +

∑3
j=1

⌈
t−sj
Tj

⌉
Cj .

S s1 s2 s3 r4 r5
0 0 1 6 4 12
4 0 3 2 6 8
6 2 1 0 5 12

As r4 ≤ D4 and r5 ≤ D5, τ4 and τ5 are schedulable, as shown in figure 1.
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Figure 1: Scheduling diagram of strict periodic and sporadic tasks
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Mapping real-time applications over multiprocessors

Enrico Bini (Speaker)∗

1 Motivation

In distributed embedded systems, the execution of an application is often divided in
stages, where each stage consumes the output of the preceding one [5, 6]. Applications
are then executed over more than one processor (a distributed platform).

When more than one application executes over the same platform, an incorrect be-
havior of an application (such as requiring more time than expected) can affect the
others, potentially leading to serious malfunctioning. To avoid this interference the exe-
cution is often confined in resource reservations [4] that provide a view of a processor with
reduced speed. Following this design practice, the effects of a misbehavior are confined to
the erroneous application only, preventing a domino effect over the entire system. Hence
from now on, the computing platform is viewed as a set of m processors with speeds
s1, . . . , sm less than or equal to 1.

It is then necessary to decide how to partition the application over the available
processors and how to assign their speeds.

2 The problem

In short, the problem can be summarized as follows:

given an application,

find a job partitioning and a speed assignment,

such that the cost J is minimized.

An application A is constituted by a set of tasks A = {τ1, . . . , τn}, each one with
execution requirement ei ≥ 0 (since tasks execute on speed-variable processors then the
time needed by τi to complete on a processor with speed sk is ei/sk). Tasks are subject
to precedence constraints that establish a total order among them. Without loss of
generality, we assume a task labeling such that ∀i = 1, . . . , n− 1, τi ≺ τi+1.

As tasks are activated, they release a job that needs to be executed. The j-th job of
task τi is denoted by τi,j . Task τ1 is activated periodically with period p, hence job τ1,j is
released at (j−1)p. Because of the precedence constraint, job τi,j , with i ≥ 2, is released
upon the completion of τi−1,j . Task τn has a deadline d relative to the activation of τ1,
hence the absolute deadline of τnj is at (j−1)p+d. A natural constraint on the deadline
d is

d ≥
n∑
i=1

ei (1)
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The application utilization, defined as

u =

∑n
i=1 ei
p

(2)

represents the fraction of time required by the application.

The jobs generated by the tasks have to be partitioned over m processors. The
number m of processors is a free variable that needs to be assigned. Each processor
πk has speed sk ≤ 1. Without loss of generality the speeds are assumed in decreasing
order. Both the partitioning and the speeds have to be chosen such that the application
deadline is met. A (simple) necessary condition for the feasibility of the speeds, is

m∑
k=1

sk ≥ u (3)

otherwise the m processors do not provide enough computing capacity to the application.

Figure 1 shows an example of a feasible solution (job partitioning on processors and
their speeds) for an application composed by four tasks each one with the same execution
requirement ei = 1, period p = 4, and deadline d = 10.

d = 10

p = 4

p = 4

τ1,1 τ2,1 τ3,1
τ4,1

τ1,2
τ2,2 τ3,2 τ4,2

τ1,3 τ2,3 τ3,3 τ4,3π1 jobs (s1 = 0.5)

π2 jobs (s2 = 1)

Figure 1: Example of job partitioning over two processors.

Among all the feasible solutions we aim at choosing the one that minimizes a cost J
that is a function of the speeds (s1, s2, . . . , sm). J has a property of being non-decreasing
with any sk and J(0, . . . , 0) = 0. A first example is simply

J =

m∑
k=1

sk (4)

that translates the idea of minimizing the “overall computing power”.

In energy minimization problems, the cost J is convex [2]. This property implies that
the optimum has balanced values of speeds (in short, J(s/2, s/2) ≤ J(s, 0)). However, as
speeds are interpreted as fractions of computing power provided by a resource reservation,
as we do in this paper, it is instead more convenient to have unbalanced speeds. For
example, it is more convenient to have one fully dedicated processor (with s1 = 1) rather
than two with half speed (s1 = s2 = 0.5), since in the former case we need to implement
fewer reservation mechanisms. This leads to a concavity requirement for J that can be
formally expressed as follows

sk ≥ s` ⇒ ∀ε ∈ [0, s`] J(. . . , sk, . . . , s`, . . .) ≥ J(. . . , sk + ε, . . . , s` − ε, . . .) (5)
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An explicit example of cost with property (5) is

Jfrag = max
k=1,...,m
sk 6=0

∑m
j=k sj

sk
(6)

This expression of cost has been already adopted in a partitioning problem [1]. It is
indirectly suggested by Funk et al. who showed, in a different context, that the smaller
Jfrag the higher chances a (Liu and Layland) task set has to be scheduled by global EDF
on a platform with speeds (s1, . . . , sm) [3].

We now observe some facts about the problem of minimizing Jfrag. If
∑

i ei ≤ p then

we can partition all jobs on the same processor with speed s1 =
∑
i ei

min{p,d} and achieve the

minimum cost Jfrag of 1; If
∑

i ei > p and d ≤ p, then the problem is infeasible. Hence
we assume

n∑
i=1

ei > p, d > p (7)

Moreover, let S be the set of a feasible speed assignment. If it exists S∗ ⊂ S with∑
sk∈S∗

sk ≤ 1 (8)

then the new set of speeds Ŝ = S \ S∗ ∪
{∑

sk∈S∗ sk

}
is feasible and, thanks to prop-

erty (5), has smaller cost Jfrag. Hence there must exist an optimal solution such that for
any pair of speeds (sk, s`), we have

sk + s` > 1. (9)
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Real-time scheduling analysis for ARINC-based virtualized

systems

Philippe Thierry (Speaker) ∗ Laurent George † Jean-François Hermant ‡

1 Introduction

Motivation In the case of partitioned virtualized architectures like avionics ARINC-
based systems, multiple virtual machines hosting various task sets with different real-
time properties are executed on the same hardware in dedicated time slots. Time slots
repartition is defined by an hypervisor so as to ensure time isolation between virtual
machines.
The scheduling is hierarchical. We refer to global scheduling the scheduling of time slots
by the hypervisor and local scheduling the scheduling of tasks by each virtual machine in
its time slot. We consider in this paper a Time Division Multiplexing (TDM) scheduling
for the global scheduling of time slots and Earliest Deadline First (EDF) scheduling for
local scheduling denoted TDM/EDF. In those architectures, time slots for each virtual
machine must be defined depending on the requirements of the associated virtual machine
and on the overall system needs.
Defining such time slots can be difficult and depends on the system objectives. Such
objectives can be limiting the hypervisor overhead, or reducing the energy consumption
for battery operated systems. We focus on a TDM/EDF scheduling that maximizes the
remaining time in each slot in order to get a better robustness to WCET variations. We
show that the TDM/EDF scheduling problem can be solved by a linear programming
approach that we characterize.

2 Related work

Architectures based on a lightweight hypervisor permit concurrent executions of mul-
tiple operating systems or software modules with a small and measurable overhead at
each virtual machine scheduling. Such architecture problematics are closed to hierarchi-
cal scheduling.
Today, some hypervisors supporting real-time scheduling implement ARINC fixed-time
partitioning, in order to meet avionics requirements. The ARINC (Aeronautical Radio,
Incorporated is a company, which was created in 1929) has defined standards for safety
critical systems. One of them, the ARINC 653 norm, defines requirements that should be
met in order to support highly critical levels in software architecture, like strict temporal
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Slot level variables Task level variables

Considering m slots, we denote:
Ui : the load associated to VMi

SC = {SC1, . . . , SCm} the Slot duration
τ = {τ1, . . . , τm} the Set of task sets in each
slot
STi the ARINC period associated to VMi

SCi the slot duration given to VMi

Considering n tasks, we denote:
τi the task set of the virtual machine
VMi, τi = {τ1

i , . . . , τ
n
i }

dj the deadline of a task τ ji of VMi

cj the WCET of a task τ ji of VMi

tj the period of a task τ ji of VMi

Table 1: Definition of slot level and task level variables

scheduling using TDM slots in order to separate functionalities. Such architectures are
based on a specific hierarchical scheduling based on TDM time slots. Thus, the integra-
tion of virtual machines makes time slots contents opaque and then unaccessible to the
global scheduler.
A lot of work has been done on hierarchical scheduling. In [1], the authors define task
groups depending on task priority classes, with a global knowledge of the local tasks to
schedule from the global scheduler. This permits using multiple scheduling schemes de-
pending on the priority class, also defining inter-classes priorities. Such global scheduling
scheme is based on dynamic behaviour defining inter-classes priorities, as shown in [2].
In this last paper, the authors describe the impact of the VM executions on each others,
describing how the choice of the global scheduling policy impacts the response time of
virtualized tasks. In such hierarchical scheduling, time slots are dynamically defined,
depending on the VMs current needs and on their relative priority. In these two articles,
the time slots duration is not a part of the system configuration, but a consequence of
the system execution. On the other hand, in [3], the authors explain how communicat-
ing real-time functions located in various modules through an AFDX network can be
configured in order to reduce the communication delay. This paper contributes, in the
case of IMA (Integrated Modular Avionics) systems, to a correlated definition of time
slots allocated to the various modules functions, independently of hierarchical scheduling
consideration.
The various works done in IMA TDM-based systems and hierarchical scheduling based
systems have not considered at the same time virtualization problematics and schedula-
bility of TDM-based architectures like those defined in avionics. The aim of this article
is to take into account both TDM and virtualization problematics.

3 Formal constraints of an ARINC-based system schedu-
lability

Some variables are introduced in order to formalize the schedulability of ARINC-based
virtualized systems in Table 1.

In order to guarantee the schedulability of an ARINC-based virtualized system ar-
chitecture, some constraints need to be satisfied at the hypervisor (slot) level. They
define restrictions on the ARINC period and the virtual machines scheduling: Equation
1 guarantees a processor utilization less than or equal to 100%. Equation 2 is a necessary
condition in order to have a periodic time slot for each VM. Equation 3 is a sufficient
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0 STi 2STi 3STi 4STi

STi − SCi
SCi 2STi − SCi

SCi 3STi − SCi
SCi 4STi − SCi

SCi

ST

Figure 1: Sample impact on the scheduling scheme

condition to have non-overlapping time slots, as defined in [4]. Figure 1 describes a
sample time slots definition.
Some constraints should also be satisfied at the virtual machine (task) level: Equation 4
is a necessary condition which guarantees that the deadline of a task should be greater
than the inactivity period of the associated VM. Equation 5 is a necessary and sufficient
condition for the feasibility of the task set with EDF. To show that, let us consider Slot
i and the tasks scheduled with EDF in that slot.

Linear Programming Problem: LP 1.

Considered Table 1, Given the problem: Maximize mini=1...,nSCi(1 − Ui)
under the constraints:

Slot level constraints Tasks level constraints
m∑
i=1

Ui ≤ 1 (1)

∀i ∈ {1, . . . ,m}, ST
STi
∈ N∗ (2)

m∑
i=1

SCi ≤ gcd(ST1, . . . , STm) (3)

∀i ∈ {1, . . . ,m},∀τ ji ∈ Si, dj > STi − SCi

(4)

∀k ∈ N∗,∀t ∈ [kSTi − SCi, kSTi],

h(t) ≤ t− k(STi − SCi) (5)

with h(t) =
∑n

j=1max(0, 1 + b t−dj
tj
c)cj ,

Slot i is periodically processed by the Hypervisor with a period set to STi time units,
and the tasks are scheduled with EDF during SCi time units in that slot. The first thing
to do is to determine the worst-case scenario in terms of feasibility for these tasks. This
is achieved when (i) all the tasks are released simultaneously (at time 0) and (ii) Slot i
has been previously processed (from time −SCi to time 0) so that the tasks are executed
in the next slot, i.e. STi−SCi time units later. This scenario clearly maximizes both the
cumulative workload and the delay experienced by the tasks before their execution. The
second thing to do is to write down the feasibility condition for the tasks scheduled with
EDF in Slot i when considering the worst-case scenario described previously. All the
tasks released in time interval [0, t] with an absolute deadline less than or equal to t are
scheduled with EDF and meet their absolute deadlines if and only if they are processed
in at most t − k(STi − SCi) time units. This translates into: For all integer k, with
k ≥ 1, for all t in time interval [kSTi − SCi, kSTi], the processor demand function at
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time t, h(t), is less than or equal to t− k(STi − SCi).
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Probabilistic analysis of periodic real-time tasks with

random execution times on identical processors

Liliana Cucu-Grosjean (Speaker) ∗

1 Introduction

Context of the study Requests in real-time environment are often of a recurring na-
ture. When different instances of those activities are generated in a predictable manner,
the scheduler deals with periodic activities. The real-time performances of periodic ac-
tivities on uniprocessor, distributed or network systems have been extensively studied
when worst-case execution times are considered. For these activities, the corresponding
response times can be evaluated and such analyses have an increased degree of pessimism.
Such pessimism is not affordable or/and necessary for all real-time applications. Different
approaches can be considered to avoid this problem (probabilistic approaches [1], agent
systems [2], game theory [3], etc) and this paper investigates the use of probabilistic
approaches.

Problem definition In this paper we discuss the problem of evaluating the re-
sponse times of real-time periodic tasks with variable execution times that are scheduled
using preemptive fixed-priority global scheduling. By fixed-priority scheduling we mean
that during the entire scheduling all jobs of a task have the same priority. By global
scheduling we mean that a job might migrate from one processor to other processor.
By identical processors we mean that all processors have the same computing power.
The communication time between processors are considered negligible compared to the
execution times of tasks and included in these latter parameters.

Our contribution We extend the probabilistic response time analysis given in [4]
to the case of several processors by providing a new function calculating the response
time in the case of several identical processors. To the best of our knowledge this is the
first paper providing response time calculations for periodic tasks with execution times
given by independent random variables that are scheduled on identical processors under
a fixed-priority algorithm.

Model and associated notations We consider τ = {τ1, τ2, · · · , τn} a set of n
periodic tasks. The set of tasks is ordered in the decreasing order of their priority. Thus,
all jobs of τi have higher priority than any job of τi+1, ∀1 ≤ i ≤ n.

Each task is characterized by an offset Oi, a period Ti and a relative deadline Di. It
means that the jth job of τi is released at time instant Oi + (j − 1)Ti and must finish its
execution by time instant Oi + (j − 1)Ti +Di. Each task τi has an associated execution
time given by a discrete random variable. We denote1 by Ci the execution time of a

∗liliana.cucu@inria.fr. INRIA Nancy-Grand Est, 615 rue du Jardin Botanique, Villers les Nancy,
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1In this paper we utilise calligraphic letters to denote random variables
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task τi (see Equation (1)). It is assumed that the random variables giving the execution
times are independent.

Ci =

(
ck

P (C = ck)

)
k∈{1,··· ,ki}

(1)

In Equation (1) ck ∈ [cmini , cmaxi ] and ki ∈ N∗ is the number of values that random
variable Ci has. Using the notations presented before, we define completely a task τi by
(Oi, Ci, Ti, Di).

2 Existing results for the case of one processor

In [4] the authors propose a probabilistic uniprocessor analysis of periodic tasks with
execution times given by independent random variables. The response time of a task
is the average of response times of all jobs of the task within a given time interval (see
Equation (2)). The response time Rji of a job released at t = Oi + (j − 1)Ti is obtained
by adding to the existing backlog Bi(t) its own execution time and the execution times
of all higher priority jobs that might arrive after its arrival (see Equation (3)). Ii is the
sum of execution times of all these higher priority tasks arrived after t.

Ri =
1

mi

mi∑
j=1

Rji (2)

Rji = Bi(t)⊗ Cj ⊗ Ii (3)

The backlog at time instant t is obtained as Bi(t) = SHRINK(X , t), where X is the
sum of execution times of jobs arrived from 0 to t. Thus the backlog is defined as what
is left after scheduling during t time units. For a complete definition of SHRINK, see
Equation (4).

SHRINK(X , δ) =

(
shrink(xk, δ)
P (X = xk)

)
(4)

where X =

(
xk

P (X = xk)

)
and shrink(x, δ) =

{
0, if x− δ < 0
x− δ, elsewhere.

,∀x, δ.
To prove the stability of their method, Diaz et al. prove that the sequence of backlogs

at the end of each hyperperiod {B1,B2, · · · ,Bk, · · · } is a Markov chain and a stationary

distribution exists when U =
∑n

i=1
Ci
Ti

.

3 Proposed results for the case of m identical processors

We underline by the mean of an example the impossibility of a direct application of
the uniprocessor analysis given in [4] to the case of several processors. We consider two

identical processors and τ a task system of three periodic tasks with τ1 = (0,

(
1
1

)
, 3, 3),

τ2 = (1,

(
3
1

)
, 6, 6) and τ3 = (2,

(
1 2

0.5 0.5

)
, 6, 6).
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If we apply directly the formulation of the backlog B3(2) by considering that at each
time instant 2 time units are executed, we obtain Bi(2) = SHRINK(C1−3(3), 4) =(

4− 4
1

)
. According to this latter result, at time instant 2 there is nothing left to

schedule. In reality at time instant 2, the first job of τ2 has one time unit left to
schedule. Therefore an extension of the analysis given in [4] must keep a trace of the
tasks that are taken into account. In order to obtain these traces, we build an associated
matrix called Parallel for any random variable C defined as

Parallel(i, j)(C) =

{
(0, 0) if j > xi;
(1, P (C = ci)), elsewhere.

(5)

where the number of lines is equal to the number of possible values of C and the
number of columns is equal to the largest possible value of C. From any matrix A we
extract the corresponding random variable X by an inversion process extract(A) = X .
We define two operations ⊗Parallel and shrinkParallel(., t) that extend the operations of
convolution of random variables, respectively, the shrink function defined in [4].

We modify Equation (3) and we obtain the response time of a job j of task τi released
at time instant t

Rji = extract(B(t)⊗Parallel Parallel(Cj)⊗Parallel Parallel(Ii)) (6)

where B(t) = shrinkParallel(Parallel(C1−i), t).

Theorem 1. A stationary distribution exists for the sequence of backlogs at the end of
each hyperperiod [Si + kPi, Si + (k + 1)Pi), ∀i and k.

Proof. The idea of the proof is similar to the results in [5] based on the periodicity
of a feasible schedule and on the fact that at the end of each hyperperiod there is no
accumulation of backlog.
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Learning in stochastic machine scheduling

Sebastián Marbán (Speaker) ∗ Cyriel Rutten † Tjark Vredeveld ‡

1 Introduction

Over the last few decades a vast amount of research has focused on stochastic scheduling
problems, e. g., [2,4,6]. A full range of articles is concerned with criteria that guarantee
the optimality of simple policies for special scheduling problems or the quality of non-
optimal policies. All these papers have in common that the processing times of the
jobs are random variables for which the parameters of the underlying distributions, like
expected value, are known for certain. In this work, we relax this assumption. That is,
we study a stochastic scheduling problem in which also the parameters of the processing
time distributions are uncertain. We can learn about the value of these parameters by
processing jobs and observing their realized processing times. However, experimenting
with different jobs to learn about the value of the corresponding parameters can be costly
in terms of the waiting times of the still to be processed jobs. Hence, learning should be
conducted carefully in order to optimize the objective.

2 Problem definition

Given is a set of jobs, each of which needs to be scheduled on a single machine. This
machine can process at most one job at a time and once a job has been initiated it
must remain on the machine until completion, i. e., preemption of jobs is not allowed.
Moreover, the machine and all jobs are available for processing from the beginning.
The processing time of a job is a random variable. The goal is to minimize the total
completion time in expectation,

∑
j E [Cj ].

The set of jobs is divided into two classes. Each class Ji consists of ni jobs, with
i ∈ {1, 2}. The processing time of a job in class Ji is a random variable, which is in-
dependently and exponentially distributed with parameter ϑi. We assume that ϑi is
unknown but fixed for each i, thereby distinguishing from traditional stochastic schedul-
ing. The scheduler however, may have certain beliefs about ϑi. By adopting a Bayesian
framework, these beliefs can be represented by a gamma distribution. Depending on the
confidence in his beliefs about ϑi, the scheduler can either choose this distribution to
be very peaked or relatively flat. Furthermore, the scheduler can update his beliefs on
ϑi every time a job of class Ji is processed. In this way, the scheduler gradually learns
about ϑi, thereby enhancing his decision making in the future.
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3 An approximative learning policy

In the scheduling problem under consideration, an optimal policy, OPT, minimizes total
completion time in expectation, thereby taking into account the uncertainty about the
parameters. That is, in its decision making, OPT will anticipate and act upon the addi-
tional information to be revealed when processing a job of a certain class. Burnetas and
Katehakis [1] and Hamada and Glazebrook [3] present an optimal policy using an im-
practical dynamic programming approach. The impracticality arises from the necessity
to recursively solve a vast amount of non-linear equations, causing the computational
complexity to explode with the size of the instance. This calls for the need to develop
policies of low computational effort which yield good qualitative performance. Based on
the traditional Shortest Expected Processing Time policy (SEPT), we propose an exam-
ple of such a policy, the learning policy LSEPT. Whenever the machine is idle, LSEPT
starts processing a job of the class with shortest expected processing time. Here, the
expected processing time is a weighted average of the observed realizations and the ex-
pected processing time prior to seeing any realization. Hence, LSEPT learns by updating
the expected processing time of a class every time a job of this specific class has been
completed.

In terms of decision making, LSEPT and OPT could be interpreted as having a
short-term and long-term view, respectively. LSEPT processes a job from the class with
minimal expected processing time. OPT, however, might choose to process a job from
a class whose expected processing time is not minimal. As a trade-off, OPT benefits
from the additional information which is acquired regarding the uncertain parameter
ϑi. Since LSEPT does not anticipate on the future revelation of processing time real-
izations and how they might contribute to learning about the parameter ϑi, one might
expect LSEPT to perform suboptimal. On the other hand, it is well-known that SEPT
is optimal for stochastic single machine scheduling, see [5]. This raises the question how
effective LSEPT is within a scheduling problem with unknown processing time distribu-
tion parameters.

4 Our results

We show that for two job classes, the performance guarantee, which is the worst-case
ratio of the expected performance of LSEPT over the expected performance of OPT, is
upper bounded by

n2
1 + n2

2 + 2n1n2 + n1 + n2

n2
1 + n2

2 + n1 + 3n2
≤ 2.

We also provide an instance for which this bound is tight. To our knowledge, this
exemplifies one of the first tight performance guarantees in stochastic scheduling, where
the tightness follows from non-degenerate processing time distributions. Finally, we
remark that LSEPT is asymptotically optimal whenever the number of jobs of one class
remains fixed, while the number of jobs of the second class tends to infinity.
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5 Future work

Preliminary results hint that the performance guarantee of LSEPT for m job classes is
upper bounded by m and lower bounded by 1 +

√
m− 1. Proving these bounds still

remains to be done. In general, learning policies in stochastic scheduling provide many
new interesting open problems.
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Energy aware scheduling: minimizing total energy cost and

completion time by α-points and α-speeds

Rodrigo A. Carrasco (Speaker) ∗ Garud Iyengar † Cliff Stein ‡

1 Introduction

Since it was first formulated in the early 50’s, the minimum weighted completion time
problem and its many generalizations have been studied extensively, and many algo-
rithms currently exist that either efficiently solve the polynomially solvable instances or
are able to compute an approximate solution with provable guarantees for the strongly
NP-hard instances. See [6] for a survey of currently known solution approaches. One
specific technique that uses α-completion points for computing schedules has been shown
to result in very good approximation results on many different scheduling problems, both
in theory and in practice [3, 8]. In this paper we use the α-point techniques to compute
approximately optimal solutions for energy aware scheduling problems.

Yao, Demers, and Shenker’s seminal paper in 1995 [9], introduced the problem of the
trade-off between speed and power consumption for scheduling problems. The interest
in this problem was first driven by the need of improving the life of battery powered
gadgets and later partially by environmental issues but also by the need to control
power consumption in the now massive data centres and server clusters some companies
have to maintain (e.g., search engines, cloud-computing clusters, etc.). Since energy
consumption is not linearly dependent on the job’s processing speed, there is a possibility
to gain much by reducing the speed without seriously compromising other scheduling
constraints or the overall scheduling performance. In one of the most studied models
the power consumption is of the form P (s) = vsβ, where s is the speed at which the
machine runs each job, v a job dependent weight, and β ≥ 2 is a constant. Hence,
the total energy consumed by a job will be E(s) = vρsβ−1 where ρ is the processing
cycles requirement of the job. Several dynamic speed scaling algorithms have been
proposed in [5, 9]. Albers [1] surveys many of the currently known results on energy
saving algorithms, including dynamic speed scaling and power down algorithms.

Recently, these two problems have been linked, i.e. one wants to compute both the
schedule and the speeds for each job that minimizes some desired performance metric.
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Some recent results can be found in [2, 4]. In general, current results require some
simplifications to obtain a good approximation, like unit sized jobs or polynomial energy
cost functions.

The main contribution of this paper is that it presents several new algorithms which
extend α-point algorithms to energy aware scheduling problems. The algorithms require
only minor regularity conditions on the energy cost functions, and result in approxima-
tion ratios that are very close to the scheduling counterparts without any associated
energy costs. Furthermore, with a small modification, these algorithms can be used for
the weighted tardiness problem as well.

2 Energy Aware Scheduling

The problem setting is as follows. We are given n jobs. Job j, j = 1, . . . , n, has a
processing requirement of ρj ∈ N+ machine cycles, a release time rj , and an associated
positive finite weight wj . Let sj denote the speed at which job j runs on the machine and
let Cj denote its completion time. Let Π = {π(1), . . . , π(n)} denote the order in which the
jobs are processed, i.e. π(k) = j implies that job j is the k-th job to be processed. Then
the completion time of the j-th job to be processed is Cπ(j) = max{rπ(j), Cπ(j−1)}+

ρπ(j)

sπ(j)
,

with Cπ(0) = 0, i.e., we implicitly assume that preemption is not allowed.

Let Ej(sj) denote the energy cost of running job j at speed sj . Initially we consider

Ej(sj) = vjρjs
β−1
j , where β ≥ 2 and vj are known constants. Later we show that our

algorithm works for more general energy functions Ei(si) that satisfy the following three
regularity conditions: (1) Ej(s) is convex, (2) lims→0Ej(s) > −∞, and (3) ∃ξ <∞ such
that Ej(s) is increasing ∀s ≥ ξ.

The objective is to compute a feasible schedule Π, possibly subject to precedence
and/or release date constraints, and the vector of speeds s = {s1, . . . , sn} ∈ Rn+ that
minimizes the total cost,

f(Π, s) =
n∑
j=1

[
Ej(sj) + wπ(j)Cπ(j)

]
. (1)

To compute an approximate solution we propose the Schedule by α-intervals
and α-speeds (SAIAS) algorithm, with uses an interval-and-speed-indexed LP formu-
lation of the problem, where time is divided into geometrically increasing intervals, with
(1 + ε) denoting the growth factor. The algorithm requires the computation of α-points
similar to the algorithms in [3] to schedule the jobs, but additionally uses the fractional
result to define a probability mass function (pmf) over a set of possible speeds. This
pmf is later used to compute the speeds at which each job runs, which we call α-speeds.

The main results of this paper can be summarized in the following theorems.

Theorem 1. The SAIAS algorithm with α = 1
2 is a 4(1 + ε)-approximation algorithm

for the 1||∑Ej(sj) +
∑
wjCj and the 1|prec|∑Ej(sj) +

∑
wjCj problems, and with

α =
√

2− 1 is a (3 + 2
√

2)(1 + ε)-approximation algorithm for the 1|rj , prec|
∑
Ej(sj) +∑

wjCj problem.

Because the speed of each job is also a decision variable, we can extend the α-point
based algorithms to a weighted tardiness objective. The approximation factors are worse,
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since the tardiness problem is inherently harder, but these results demonstrate the power
of the α-point based algorithms.

The tardiness Tj of job j with due date dj is defined as Tj = (Cj − dj)+. Thus, the
new objective function is

g(Π, s) =
n∑
j=1

Ej(sj) +
n∑
j=1

wπ(j)

(
Cπ(j) − dπ(j)

)+
. (2)

A variant of the SAIAS algorithm (SAIAS-T) is used to compute an approximate
solution for this problem. In this algorithm the α-speeds are later increased by a factor
γ to ensure that the jobs finish within specified intervals, which in turn guarantees that
the tardiness cost in (2) is correctly bounded. We obtain the following result.

Theorem 2. The SAIAS-T algorithm with γ = (1+ε)
α(1−α) and α = 1

2 is a 4β(1 + ε)β−1-

approximation algorithm for the 1||∑Ej(sj) +
∑
wjTj and the 1|prec|∑Ej(sj) +∑

wjTj problems.

Finally, the 1|rj |
∑
Ej(sj)+

∑
wjTj problem requires a new algorithm called Sched-

ule by Rounding and Speeding (SRS), which uses the rounding procedure developed
by Shmoys and Tardos [7] together with a speed up factor to achieve the following result,

Theorem 3. The SRS algorithm is a
(

2
ε

)β−1
(1 + ε)β-approximation algorithm for the

1|rj |
∑
Ej(sj) +

∑
wjTj problem.
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Meeting deadlines: How much speed suffices?∗

S. Anand† Naveen Garg† Nicole Megow (Speaker)‡

We consider the problem of scheduling jobs that arrive online over time at their
release dates with hard deadlines on identical parallel machines. Jobs are allowed to
be preempted and migrated. A scheduling instance is called feasible, if there exists a
schedule for all jobs such that no job misses its deadline. The task is to design an online
algorithm that finds a schedule for any feasible instance. We call such an algorithm
optimal. An optimal offline solution can be found easily by solving a maximum flow
problem [5]. In the online setting, several algorithms are known to be optimal on a
single machine [4]. But on multiple machines, the problem is much more difficult than
its offline counterpart. In fact, for m ≥ 2, there does not exist any optimal online
algorithm [4]. In view of this fact, Phillips, Stein, Torng, and Wein [9] proposed the use
of resource augmentation [6]: Given an online algorithm A we determine the speed s ≥ 1
such that A is optimal on m speed-s processors for any instance that is feasible for m
processors of unit speed. We are interested in the smallest s for which there is an optimal
online algorithm. It is known, that any such algorithm needs a speed of at least 6/5 [9].

An algorithm is deadline ordered if the schedule it yields depends only on the relative
ordering of the deadlines of the jobs and not on the actual deadlines. A well-known
example of a deadline ordered algorithm is Earliest Deadline First (EDF) which at any
time schedules the m jobs with the earliest deadline. EDF is optimal on a single ma-
chine [3], and on m machines, speed s = 2−1/m is necessary and sufficient to guarantee
its optimality [9]. Since its introduction more than a decade ago, this upper bound on
the speed requirement for online algorithms has been improved only slightly. Lam and
To [7] proposed a more complex deadline ordered algorithm with a speed requirement
of 2 − 2/(m + 1). They also showed that any deadline ordered online algorithm for m
machines needs a speed of at least

αm :=
1

1−
(
1− 1

m

)m .

For m = 2 this quantity equals 4/3, matching the currently best known upper bound [7],
and for arbitrary m it is at most e/(e− 1) ≈ 1.58.

Our main result is a new deadline ordered online algorithm which is optimal for
speed αm, and thus, matches the lower bound in [7]. The algorithm and its analysis
build on a yardstick schedule (YS) which was proposed in [7]. This schedule is constructed
online on m speed-1 machines and has the property that all jobs meet their deadlines.
But, it is not a feasible schedule as it may process jobs simultaneously on multiple
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machines. Roughly speaking, we consider jobs in EDF-order, let each of them run on
a single machine until it is underworked (i.e., the total amount of processing done on
it is less than the time period since it was released), and from that moment on we run
the job simultaneously on as many machines as are available until it is not underworked
anymore. Our new algorithm attempts to mimic YS. Every job finishes in our schedule
at the same time as in YS. However, our algorithm does not process jobs simultaneously
on multiple machines, and hence, it requires extra speed to keep up with YS. We will
show how to distribute work load, depending on schedule YS, to the extra time available
in each unit-length time slot in our schedule.

Our new algorithm leads to improved feasibility tests for periodic [1] and sporadic [2]
multi-processor real-time task systems. To see that we prove a relationship between the
optimality of the yardstick schedule and a lower bound on the total workload, which can
be computed by a fully polynomial time approximation scheme [2].

We also consider two well-known non-deadline ordered algorithms and provide lower
bounds on the speed necessary for them to schedule a feasible instance. Algorithm Least
Laxity First (LLF) schedules at any point in time m jobs with minimum laxity (i.e., the
difference between the time remaining until the deadline and the remaining processing
requirement) among the available jobs. LLF is known to be optimal on a single ma-
chine [4], and on m machines when they have speed 2 − 1/m [9]. We provide a lower
bound on the speedup by demonstrating a feasible scheduling instance for which LLF

requires a speedup of at least 1+
√

1+4x2

2x where x = m
m−1 . This quantity is 1+

√
17

4 ≈ 1.281

for m = 2 and tends to 1+
√

5
2 ≈ 1.618 when m goes to infinity. Notice that for m ≥ 7

the lower bound on the speed for LLF exceeds the upper bound on the speed sufficient
for our new algorithm.

An algorithm that tries to combine features of EDF and LLF is the Earliest Deadline
until Least Laxity (EDZL). At any point in time, EDZL gives highest priority to jobs
which cannot be delayed further, i.e, have zero laxity, and other jobs are scheduled in
EDF order. This algorithm dominates EDF [8], and simulations in real-time systems
environments with recurrent jobs show that it performs very well. However, we show
that EDZL is not optimal for speed less than 2− 1/m.
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Mixed-Criticality Scheduling

S. K. Baruah ∗ V. Bonifaci † G. D’Angelo ‡ H. Li ∗

A. Marchetti-Spaccamela § N. Megow † L. Stougie (Speaker) ¶

There is an increasing trend in embedded systems towards implementing multiple
functionalities upon a single shared computing platform. This can force tasks of differ-
ent criticality to share a processor and interfere with each other. These mixed-criticality
(MC) systems are the focus of our research. We consider the scheduling of finite collec-
tions of jobs to be executed on a single machine (processor), allowing preemption.

A job in an MC system with L criticality levels is characterized by a 4-tuple of pa-
rameters: Jj = (rj , dj , χj , cj), where rj is the release time, dj is the deadline (dj ≥ rj),
χj ∈ {1, . . . , L} is the criticality level of the job and cj is an L-tuple (cj(1), . . . , cj(L))
representing the worst-case execution times (WCET) of job Jj at level 1, . . . , L, respec-
tively. Each job Jj in a collection J1, . . . , Jn should receive execution time Cj within
time window [rj , dj ]. The value of Cj is not known but is discovered by executing job
Jj until it signals completion. A collection of realized values (C1, C2, . . . , Cn) is called a
scenario. The criticality level of a scenario (C1, . . . , Cn) is defined as the smallest inte-
ger ` such that Cj ≤ cj(`), ` = 1, . . . , L. (We only consider scenarios where such an `
exists.) A schedule for a scenario (C1, . . . , Cn) of criticality ` is feasible if every job Jj
with χj ≥ ` receives execution time Cj during its time window [rj , dj ]. Notice the crucial
aspect of this model that, in a scenario of level `, it is necessary to guarantee only that
jobs of criticality at least ` are completed before their deadlines. In other words, once a
scenario is known to be of level `, the jobs of criticality 1, . . . , `−1 can safely be dropped.
Throughout we will assume that cj(`) ≥ cj(k) if ` > k and that for all j, cj(`) = cj(χj)
for all ` > χj .

A clairvoyant scheduling policy knows the scenario of I, i.e., (C1, . . . , Cn), prior to
determining a schedule for I. We call an instance I clairvoyantly-schedulable if for each
scenario of I there exists a feasible schedule.

By contrast, an on-line scheduling policy discovers the value of Cj only by execut-
ing Jj until it signals completion. In particular, the criticality level of the scenario
becomes known only by executing jobs. An on-line scheduling policy is correct for in-
stance I if for any scenario of instance I the policy generates a feasible schedule.

An instance I is MC-schedulable if it admits a correct on-line scheduling policy.

The MC-schedulability problem is to determine whether a given instance I is
MC-schedulable or not. It is easy to see that for deciding MC-schedulability one only
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needs to consider scenarios in which for each i, Ci = ci(`) for some `.

Example. Consider an instance I of a dual-criticality system: L = 2. I has 2 jobs:

J1 = (0, 2, 1, (1, 1)), J2 = (0, 3, 2, (1, 3))

Here, any scenario in which C1 and C2 are no larger than 1, has criticality 1; all
other scenarios we consider have criticality 2. It is easy to verify that I is clairvoyantly-
schedulable. The following describes an on-line scheduling policy for instance I:

S0: Execute J2 over [0,1]. If J2 has no remaining execution (i.e., C2 is revealed to be no
greater than 1), then continue with scheduling J1 over (1, 2]; else continue by completing
scheduling J2.

It is easy to see that policy S0 is correct for instance I. However, S0 is not correct if
we modify the deadline of J1 obtaining the following instance I ′:

J1 = (0, 1, 1, (1, 1)), J2 = (0, 3, 2, (1, 3))

It is easy to see that I ′ is clairvoyantly schedulable but not MC-schedulable.

With respect to complexity we prove that MC-schedulability is strongly NP-
hard even if L = 2. We do not know if the problem belongs to NP. It does belong to
PSPACE. For L constant the problem is in NP, hence NP-complete. Certain subcases
are polynomial time solvable, for instance the case that all jobs have equal deadlines.

Since MC-schedulability is intractable we concentrate here on sufficient (rather
than exact) MC-schedulability conditions that can be verified in polynomial time. We
study two widely-used scheduling policies that yield such sufficient conditions and com-
pare their capabilities under the resource augmentation metric: the minimum speed of
the processor needed for the algorithm to schedule all instances that are MC-schedulable
on a unit-speed processor. We show that the second policy we present outperforms the
first one in terms of the resource augmentation metric.

The first, straightforward, approach is to map each MC job Jj into a “traditional”
job with the same arrival time rj and deadline dj and processing time cj = cj(χj) =
max` cj(`) (by monotonicity), and determine whether the resulting collection of tradi-
tional jobs is schedulable using some preemptive single machine scheduling algorithm
such as the Earliest Deadline First (EDF) rule. This test can clearly be done in polyno-
mial time. We will refer to mixed-criticality instances that are MC-schedulable by this
test as worst-case reservations schedulable (WCR-schedulable) instances.

Theorem 1. If an instance is WCR-schedulable on a processor, then it is MC-
schedulable on the same processor. Conversely, if an instance I with L criticality levels
is MC-schedulable on a given processor, then I is WCR-schedulable on a processor that
is L times as fast, and this factor is tight.

The second approach is a fixed priority policy: Off-line, before the actual execution
times are known, a priority list of the jobs is determined and at each moment in time
the available job with the highest priority is scheduled. The priority list is constructed
recursively using the approach commonly referred to in the real-time scheduling literature
as the“Audsley approach” [1,2]; it is also related to a technique introduced by Lawler [6].
First determine the lowest priority job: Job Ji has lowest priority if there is at least ci(χi)
time between rj and dj its release time and its deadline available when every other job Jj
is executed before Ji for cj(χi) time units (the WCET of job Jj according to the criticality
level of job i). The procedure is repeatedly applied to the set of jobs excluding the lowest
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priority job, until all jobs are ordered, or at some iteration a lowest priority job does not
exist.

Because the priority of a job is based only on its own criticality level, the instance I is
called Own Criticality Based Priority (OCBP)-schedulable if we find a complete ordering
of the jobs. If at some recursion in the algorithm no lowest priority job exists, we say the
instance is not OCBP-schedulable. Clearly, if a priority list exists, it can be determined
in polynomial time.

Theorem 2. If an instance is OCBP-schedulable on a processor, then it is MC-
schedulable on the same processor. Conversely, if instance I with L criticality levels
is MC-schedulable on a given processor, then I is OCBP-schedulable on a processor that
is sL times as fast, with sL equal to the root of the equation xL = (1 + x)L−1, and this
factor is tight. Furthermore, it holds that sL = Θ(L/ lnL).

We note that for L = 2 in the above theorem, s2 = (1 +
√

5)/2 is equal to the golden
ratio φ. We show that under fixed priority policies OCBP is in a sense best possible, by
proving that instances with L criticality levels exist, that are clairvoyantly schedulable,
but not Π-schedulable for any fixed priority policy Π on a machine that is less that sL
times as fast, with sL being the root of the equation xL = (1 + x)L−1.
Related work. The mixed-criticality model presented here has first been proposed and
analyzed by Baruah, Li and Stougie [4]. Most of the results presented appear in Baruah
et al. [3]. The mixed-criticality model has been extended to task systems by Li and
Baruah [7] and by Bonifaci et al. [5].
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Using oracles for the design of efficient approximation

algorithms

Marin Bougeret (Speaker) ∗ Pierre-Francois Dutot † Denis Trystram ‡

We are interested here in oracle techniques for the design of approximation algo-
rithms. Following the classical definition, an oracle is a black box capable of answering
correctly and instantaneously any question. Several classical PTAS design techniques
can be expressed using oracle formalism (by allowing the algorithm to “guess” some
values during the computation).

Our objective in this work is to point out the interest of oracle techniques, beyond
the design of PTAS. Indeed, questions to the oracle (i.e. guessed values) leading to non
polynomial algorithms must also be considered, as the complexity may be exponential,
but in a parameter that is supposed to be “small”. Moreover, we aim at showing how it
is possible to “degenerate” questions asked to the oracle to derive fast implementations
of these interactive algorithms. These ideas will be illustrated on the classical makespan
minimization on uniform machines problem (Q||Cmax).

Context : oracle algorithms

Given an instance I of an optimization problem, an oracle algorithm Aor asks the oracle
for a guess, in the form of a string r∗I ∈ RI , that generally provides some information
on the structure of an optimal solution. Then, the algorithm constructs a solution
Aor(I, r

∗
I ) for the initial problem. From such an algorithm, it is possible to derive a

“classical” algorithm A (without oracle), by either re-executing Aor(I, r) for any r ∈
RI , or constructing separately r∗I (using another algorithm). Taking the example of
scheduling problems, a very classical question r∗I is an “optimal configuration” of a well-
chosen small subset of k tasks (among the n of the instance), where k is constant. Such
information may allow arbitrarily good approximation ratios (like 1 + 1

k ) at the price of
subset enumeration, when simulating the oracle.

Hence, it is clear that there exist deep connections between oracle algorithms and
techniques for designing approximation schemes. As shown in [1], an oracle formulation
allows natural alternative definitions of several classical techniques (as those presented
in [9]). Most of such techniques are based on information obtained by exhaustive enu-
meration or by binary search. Replacing them by oracle answers separates difficulties
due to the information determination from the ones due to its utilization.
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Application on the classical Q||Cmax problem

Let us consider the problem of minimizing the makespan when scheduling independent
tasks on uniform machines as a case study. It is shortly denoted by Q||Cmax.

Several approximation algorithms have been proposed for this problem. The 2 ratio
(achieved by the classical Longest Processing Time algorithm [4]) has been improved to
3
2 in [5] (using the dual approximation technique), and to 1.382-approximation in [2].
Among all existing approximation schemes, the most relevant here are the following (we
list below the time complexity to achieve a ratio of (1 + ε)):

• O(mn
10
ε2

+3) in [5]

• O((1
εn

2)m−1) (also applies to R||Cmax) in [6]

• O((n+ 1)
m
ε poly(n,m)) (also applies to R||Cmax) in [8]

• O(n) + ( log(m)
ε )O(m2) (also applies to R|cij |Cmax) in [3]

• O(2O(1/ε2log(1/ε)3)poly(n,m)) in [7]

We propose an oracle algorithm based on [5]. For any a ∈ N∗, our algorithm guar-
antees an 1 + 1

a ratio by asking some information on the “big” tasks scheduled on each
machine (i.e. whose computation requires more than a fraction 1

a of the total computa-
tion time on this machine).

Firstly, notice that the classical guess (i.e. asking the index of the big tasks scheduled
on each machine) would lead to an approximation scheme with the same complexity as
the one in [8]. Thus, we show how to reduce the amount of information asked, and thus
the size of RI , for small values of a (typically a = 3 or 4). We get for instance a 4

3 (resp.
a 5

4)-approximation by only asking the number of big tasks for each machine, leading to
an algorithm in O(2mpoly(n,m)) (resp.O(3mpoly(n,m))). Thus, these approximation
algorithms can be faster than the better approximation schemes applied for ε equal to
1
3 (resp. 1

4), as there is no constant hidden in the exponent.
Secondly, we discuss efficient implementations where the algorithms avoid asking

some sub-parts of the question. The key idea is to check if some additional a priori un-
expected conditions become true during the execution on the particular current instance,
allowing then to make a local optimal decision (without oracle query).

The approach presented in this work leads to the following natural questions for
Q||Cmax.

• Using only one bit of information for each machine, what information should be
asked to obtain a ratio better than 4

3 ?

• How to reduce the amount of information used for larger values of a ?
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On the Configuration-LP for Scheduling on Unrelated

Machines

José Verschae Andreas Wiese (Speaker) ∗

1 Introduction

One of the most prominent open problems in machine scheduling is scheduling jobs on
unrelated machines to minimize the makespan, denoted by R||Cmax in the three-field
notation. We are given n jobs, m machines, and processing times pi,j for each job j on
each machine i. The goal is to assign the jobs to the machines to minimize the overall
makespan, i. e., the time when the last machine finishes.

In a seminal work, Lenstra, Shmoys, and Tardos [7] present a 2-approximation algo-
rithm for the problem. The algorithm is based on a canonical linear program formulation.
In the same paper, they proved that it is NP -hard to approximate the problem with
a factor better than 3/2. The gap between 3/2 and 2 has persisted for more than 20
years, even though the problem is considered to be very important in the scheduling
community.

The best known approximation algorithms for this problem and its special cases are
derived by linear programming techniques [2,6,7]. A special role plays the configuration-
LP. It is the strongest linear program for the problem considered in the literature and
it implicitly contains a vast class of inequalities. In fact, for the most relevant cases of
R||Cmax the best known approximation factors match the best known upper bounds on
the integrality gap of the configuration-LP. For the restricted assignment case, the LP
is even the only known linear program which yields the respective bound [2].

There are two interesting special cases of the problem: the restricted assignment
case and the unrelated graph balancing case. In the restricted assignment case, for each
job j there is a value pj such that for all machines i we have that pi,j ∈ {pj ,∞}. In
the unrelated graph balancing case each job can be assigned to at most two machines
(but with possibly different processing times). These two cases are sort of perpendicular
to each other. One of our main results is the analysis of the configuration-LP for the
general case of R||Cmax and for the unrelated graph balancing case. For both cases, we
show that the configuration-LP has an integrality gap of 2 and hence it cannot help to
obtain a better approximation factor than 2.

A related problem which has drawn a lot of attention recently is the MaxMin-
allocation problem. In that problem we are also given a set of jobs, a set of unrelated
machines and processing times pi,j as before. The load of a machine i, denoted by `i,
is the sum of the processing times assigned to machine i. The objective is to maximize

∗both authors are from TU Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin,
Germany. {verschae,wiese}@math.tu-berlin.de.
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the minimum load of the machines, i.e., to maximize mini `i. The idea behind this ob-
jective function is a fairness property: Consider that jobs represent resources that must
be assigned to machines. Each machine i has a personal valuation of job (resource) j,
namely pi,j . The objective of maximizing the minimum machine load is equivalent to
maximizing the total valuation of the machine that receives the least total valuation.

In contrast to R||Cmax, here the configuration-LP has a super-constant integrality
gap of Ω (

√
m) [8]. This is tight up to logarithmic factors due to a result by Asadpour and

Saberi [9] who constructively show an upper bound of O
(√
m log3m

)
on the integrality

gap. The problem can be subdivided into the same cases as R||Cmax. For the restricted
assignment case, the configuration-LP performs much better. The best known upper
bound on its integrality gap is due to Asadpour, Feige, and Saberi [4] who prove an
upper bound of 4. Unfortunately, this does not yield a polynomial time approximation
algorithm. The best known approximation algorithm achieves a performance ratio of
O(1), see [10,11].

For the special case that every job can be assigned to at most two machines (but still
with possibly different execution times on them) Chakrabarty et al. [5] show that the
configuration-LP has an integrality gap of 2, yielding a (2+ε)-approximation algorithm.
Moreover, it is NP -hard to approximate even this special case with a better ratio than
2 [5]. In fact, the proof uses only jobs which have the same processing time on their two
respective machines.

2 Our Contribution

As mentioned before, our main result for the minimum makespan problem is that the
configuration-LP has an integrality gap of 2, even in the case of unrelated graph bal-
ancing. This implies that any set of cuts that involves only one machine per inequality
cannot help to improve the integrality gap of the LP-relaxation of Lenstra et al. [7].
Recall that for the restricted assignment case the configuration-LP has an integrality
gap of 33/17 < 2 [2]. Hence, our result gives an indication that the core complexity of
R||Cmax lies in the unrelated graph balancing case rather than in the restricted assign-
ment case. In particular, our instances use processing times from the set {ε, 1,∞}. For
this case, Svennson [2] proves even an upper bound of 5/3 + ε for the integrality gap of
the configuration-LP for the restricted assignment problem.

Additionally, we study special cases for which we obtain better approximation factors
than 2. In particular, we obtain a 1+5/6 approximation guarantee for the special case of
R||Cmax where the processing times belong to the set [γ, 3γ]∪{∞} for some γ > 0. Note
that the strongest known NP -hardness reductions create instances with this property.
Moreover, we show that there exists a (2 − g/pmax)-approximation algorithm, where g
denotes the greatest common divisor of the processing times, and pmax the largest finite
processing time.

We also consider restricted cases of the MaxMin-allocation problem. Our main result
for this problem is in the unrelated graph balancing setting, for which we present a simple
purely combinatorial algorithm with quadratic running time which has a performance
guarantee of 2. This improves on the LP-based (2 + ε)-approximation algorithm by
Chakrabarty et al. [5]. Their algorithm resorts to the ellipsoid method to approximately
solve a linear program with exponentially many variables where the separation problem
of the dual is the Knapsack problem which is solved only approximately. Our algorithm
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is significantly simpler to implement and moreover best possible, unless P = NP .
We refer to our technical report [3] for all details of our results.
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Scheduling Jobs in Parallel for Energy Savings

Jessica Chang∗ Harold Gabow † Samir Khuller (Speaker)‡

1 Introduction

We study the following pre-emptive scheduling problem. We are given a collection of
n jobs, each job Ji has an integer length `i and a set Ti of time intervals with integer
boundaries in which it can be feasibly scheduled. (When Ti is one interval, this is
equivalent to having a release time and deadline.) It is assumed that the sum of the
lengths of intervals in Ti is at least `i. For ease of notation, we may sometimes refer
to job Ji as job i. Additionally, time is slotted and for a given parallelism parameter
P , the system (or machine) can schedule up to P jobs at a time slot. One can think of
P as the number of processors. If the machine satisfies any jobs at time slot t, we say
that the machine is “active at time t”. The goal is to pre-emptively schedule all jobs,
i.e. satisfy them completely within their feasible regions, while minimizing the number
of slots during which the machine is active. The machine consumes a fixed amount of
energy per active slot. In other words, subject to each job Ji being scheduled within
its feasible region Ti, and subject to at most P jobs being scheduled at any time, we
would like to minimize the total time spent satisfying the jobs. Note that there may be
instances when there is no feasible schedule for all the jobs (however this case is easy to
check).

Motivation: Power management strategies have been widely studied in the schedul-
ing literature. Many of the models are motivated by the energy consumption of the pro-
cessor. Consider, alternatively, the energy consumed by the operation of large storage
systems. Data is stored in memory which may turned on and off, and each task or job
needs to access a subset of data items to run. At each time step, the scheduler can
satisfy at most one unit of work from each of at most P jobs. The only requirement is
that the data required by the satisfied jobs should be contained in the memory banks
that are on. Note that for a time slot significantly large (e.g. on the order of hours),
the overhead cost for starting a memory bank is negligible compared to the energy spent
being “on” for that unit of time. The problem studied in this paper is the special case
where all the data is in one memory bank.

More broadly, consider the following operational problem. Suppose that a ship can
carry up to P cargo containers from one port to another. Jobs have delivery requirements
leading to release times and deadlines. Finding an optimal schedule corresponds to the
minimum number of times we need to send the ship to deliver all the packages on time.

∗Dept. of Computer Science and Engineering, University of Washington, Seattle WA 98195,
jschang@cs.washington.edu. Research supported by an NSF Graduate Research Fellowship.

†University of Colorado, Boulder CO 80309, Harold.Gabow@colorado.edu.
‡Dept. of Computer Science, University of Maryland, College Park MD 20742, samir@cs.umd.edu.

Research supported by NSF CCF-0728839, NSF CCF-0937865 and a Google Research Award.
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The motivating assumption is that it costs roughly the same to send the ship, regardless
of load and that there is an upper bound on the load capacity.

In the scheduling literature, often problems with unit processing times are trivial
since they can be solved using matching techniques when time is slotted. When time is
not slotted, but jobs have to be scheduled non-preemptively, then several papers have
considered the feasibility question [3, 5]. However, in different models which allow for
overlap in job satisfaction, e.g. broadcast scheduling, the problems often turn out to
be NP -complete; in fact, several variants of broadcast scheduling have been shown to
be NP -complete. The problem considered in this paper also contains an element of
“overlap” since we can schedule up to P jobs in a slot at unit cost and wish to minimize
the number of activated slots.

A related problem one might consider is the bipartite matching problem in which
each node on the left needs to be matched with a node on the right. Each node on the
right has a capacity of P , and we are interested in minimizing the number of nodes on
the right that have at least one node from the left assigned to it. This problem can easily
be shown to be NP -hard.

When we have unit length jobs and each Ti has a single interval, then the problem
can be viewed as as the problem of stabbing the intervals with the least number of
vertical lines. When the stabbers have a capacity, then dynamic programming can be
used to develop a polynomial time algorithm [1], albeit with high complexity. Hence it
is slightly surprising that for unit length jobs and single interval Ti, we can develop a
fast (greedy) algorithm to obtain an optimal solution to the scheduling problem defined
above. Our algorithm is a greedy scheme, which intuitively abides by a lazy activation
principle: schedule jobs in batches of size up to P delaying the batch as long as possible.
At each step, we select “filler” jobs (with later deadlines) to fill slots which otherwise
would have at least one and less than P jobs, based on an Earliest Deadline First (EDF)
strategy. The algorithm as described does not quite work, since we may schedule some
jobs using the lazy activation principle and later discover that these jobs should have
been scheduled earlier to make space for other jobs with later deadlines. One way to
address this problem is to dynamically re-assign jobs to time slots. Our first attempt
was based on this idea, but it resulted in a slower algorithm with a more complicated
analysis. However, we are able to address this issue by pre-processing the jobs to create
a new instance with “adjusted” deadlines, so that at most P jobs have the same deadline.
Then, no re-assignment of jobs is required.

This work proposes a simple model for measuring energy usage on a parallel machine.
We could also consider this as a basic form of “batch” processing. Two papers consider
the closely related problem of minimizing “busy time” [2, 4].

It would be interesting to consider the online model where along with a given set of
(offline) jobs, new jobs arrive over time.

Main Results: For the case where jobs are unit length and Ti forms a single
interval, we develop an optimal algorithm for this problem whose running time is
O(n log n). For notational convenience, we specify Ti by the pair (ri, di), where ri and
dj are Ji’s integer release time and deadline, respectively. Our algorithm takes n jobs as
input with release times and deadlines and outputs a schedule with the smallest number
of active slots.

In addition, we consider the generalization to arbitrary Ti. In this case, the complex-
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ity of the problem depends on the value of P , since for any fixed P ≥ 3, the problem is
NP -hard. When P = 2 this problem can be solved optimally in O(m

√
n) time where m

is the total number of time slots which are feasible for some job.
Our algorithm can be extended to other versions of the power minimization problem.

For example the following result models a situation where power is limited and we wish
to schedule the maximum number of jobs that can be done in α active slots. For any
given integer α, a schedule for the greatest possible number of jobs using at most α
active slots can be found in time O(

√
nm).

In addition we consider preemptive scheduling for P = 2. Now each job j has an
arbitrary integral length `(j), and a set Tj of ≥ `(j) time slots in which one unit of its
length can be executed. We wish to assign each job j to exactly `(j) of these time slots.
again minimizing the number of active time slots. We develop several results for this
model.

If a schedule executing every job to completion exists, such a schedule minimizing
the number of active time slots can be found in time O(

√
Lm) for L =

∑
j `(j).

Now suppose we cannot schedule all the jobs to completion. Then it is NP-complete
to even schedule the greatest possible number of jobs (for any fixed number of processors).
We show the proof for P = 1; the extension for higher P is trivial. The reduction is is
as follows: create a time slot for each element in X. We create a collection of m jobs
(one corresponding to each set) of length 3 each. Each job can be scheduled in the time
slots that correspond to the elements in the corresponding subset. We can schedule n

3
jobs if and only if there is a solution to the 3 Exact Cover problem.

We also note that the problem with unit jobs and P = 2, where each job has an
arbitrary collection of time slots that are feasible for it, is at least as hard as computing
a perfect matching. We create a job for each vertex and a common time slot for adjacent
vertices – a schedule in which all jobs are paired up corresponds to a perfect matching.
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Vehicle refueling with limited resources∗

Murat Fırat †‡ Cor Hurkens (Speaker) ‡ Gerhard J. Woeginger ‡

1 Introduction

In our vehicle refueling problem, there is a fixed route on which a series of fuel stations
are located. Various amounts of fuel are needed between successive stations. At the
stations, limited amounts of fuel can be bought with varying prices. The capacity of the
fuel tank may also vary between adjacent fuel stations. The main goal is to reach the
final destination with cheapest cost of fuel. The vehicle refueling problem corresponds to
an inventory-capacitated lot-sizing problem with zero setup costs, zero inventory holding
costs, linear cost functions for production, and non-stationery inventory capacity. The
movements of the vehicle between adjacent stations correspond to stages in time and
the fuel is the commodity in demand for each stage. The fuel available at stations
corresponds to production capacities and the fuel carried in the tank corresponds to
keeping some commodity stock for later demands.

In this study, we show that vehicle refueling problem can be solved in
O(n2 logD log nP ) for some constants D,P due to its equivalence to minimum cost
transportation problem. In the last section we propose an O(n log n) time algorithm.

2 Problem Description and Notation

In our problem, a vehicle makes a route visiting several cities in a fixed order, from city
1 to city n. In each city, there is a fuel station. We are given the set S = {1, . . . , n}
including the fuel stations of all cities. It is assumed that the vehicle starts its travel
with an initial fuel u0 in city 1. The distances between cities, or stations, are specified
in terms of the necessary fuel amounts. We are given di and Ti denoting respectively the
distance and the vehicle tank capacity between stations i and i+ 1 for i = 1, . . . , n− 1.
At the station i, the fuel price is pi ≥ 0 and the upper bound for fuel amount is Ui.
In our analysis, without loss of generality, all ties in fuel prices are broken by station
indices in the way that the earlier station has the lower price. Let us call this convention
tie-free fuel prices.

To avoid dealing with initial fuel, we add city 0 to vehicle’s route with any distance
to city 1, without loss of generality assume d0 = d1, fuel price p0 = 0, U0 = d0 + u0, and
T0 = U0. Moreover, no fuel is purchased at station n, hence the set of stations changes
to S = {0, . . . , n− 1}. Finally, without loss of generality, we let Tn−1 = dn−1.

Objective. Let xi denote the refueling amount at station i. The value of a solution is
defined as

∑n−1
i=0 pixi. The objective of the vehicle refueling problem is to find a solution

with smallest solution value.
∗This research is supported by France Telecom/TUE Research agreement No.4̇6145963.
†Corresponding author: m.firat@tue.nl.
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Figure 1: The equivalent minimum cost transportation network

3 Optimal vehicle refueling

3.1 A special case

Theorem 1. ( [4]) The vehicle refueling problem with fixed tank capacity and unlimited
fuel availability such that Ui ≥ Ti = T, ∀i ∈ S, can be solved in linear time.

In the proposed algorithm in [4], the tank is filled at a station if the fuel price is
cheapest in its neighborhood, otherwise refueling is done in necessary amounts to reach
cheaper stations. The authors of [2] propose O(n log n) time algorithm for this special
case and they studied some extensions of the vehicle refueling problem.

3.2 An equivalent minimum cost transportation problem

We define a specific network, shown in Figure 1, on which any solution to the minimum-
cost transportation problem can be converted into the solution of the vehicle refueling
problem.

Proposition 2. The minimum cost transportation problem on the network shown in
Figure 1 is equivalent to the vehicle refueling problem.

Theorem 3. The vehicle refueling problem can be solved in O(n2 logD log(nP )) with
minimum cost transportation algorithm. Here D =

∑
i∈S di and P = maxi∈S{pi}.

The above theorem is proven using the equivalence of vehicle refueling problem and
minimum cost transportation network in in Figure 1. Double scaling algorithm solves
the minimum cost transportation problem optimally in mentioned time [3].
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3.3 Vehicle refueling algorithm

We propose a greedy algorithm in which the fuel amounts from different stations are
handled separately and can be used partially whenever needed. At a station, if the total
amount of fuel exceeds tank capacity, then the excess fuel is removed starting from the
most expensive fuel. Moreover, at every station, the cheapest fuel is purchased in an
amount just enough to go to the next station. Hence the algorithm makes decisions of
removals and purchases at every station. Note that fuel from a certain station may be
partially removed and/or partially purchased. At station n − 1, the algorithm allows
dn−1 amount of fuel in tank, to arrive at the destination with an empty tank. The
refueling amount from a station is determined by dropping the total fuel removal from
the available amount at that station.

Algorithm 1. Vehicle refueling algorithm

1: i← 0; // initialize i..
2: L← ∅; // initialize L..
3: for i < n do
4: L← L ∪ {i};
5: RemoveExcess(L, Ti); // remove the most expensive fuel..
6: Purchase(L, di); // purchase the cheapest fuel..
7: i← i+ 1;
8: end

In Algorithm 1, if the subset of stations in list L is stored in binary heaps, then
inserting a station by respecting price order can be done in O(log n). The running time
of the algorithm is O(n log n), since the fuel amount insertion is done in all stations. The
following is our main result in this study.

Theorem 4. Algorithm 1 solves the vehicle refueling problem optimally.

In the proof of Theorem 4, we consider a solution of Algorithm 1 with refueling
amounts xi for i = 0, . . . , n − 1 and its corresponding flow on the network in Figure 1.
By Proposition 2, we know that this flow is feasible. Next, we show that there is no
negative cost cycle in the residual network of this flow. This will imply the optimality
of the flow, see [1], and hence optimality of the vehicle refueling solution.
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A Column Generation Approach for the Job-Shop

Scheduling Problem with Availability Constraints

Sadia Azem ∗ Riad Aggoune † Stéphane Dauzère-Pérès (Speaker) ‡

1 Introduction

We propose a mathematical model to solve the job-shop scheduling problem with resource
availability constraints, in which each variable corresponds to a possible time-indexed
schedule of a given job. This schedule specifies, in each period of the scheduling horizon,
whether an operation of the job is processed or not on its machine. Because the number
of variables is huge, a column generation approach is developed to select the optimal set
of schedules. The model and the approach can naturally consider resource unavailability
periods, but also release dates and due dates of jobs. It is also easy to extend this work
to the flexible job-shop scheduling problem.

We assume that the unavailability periods of the machines are fixed and known in
advance. Although the approach can be generalized to any criterion that depends on
the jobs, we consider in this abstract the minimization of the sum of the job completion
times. We assume that preemption is not allowed (an operation cannot be interrupted by
another operation or an unavailability period). However, we will explain in the workshop
how the approach can be extended to consider the preemption of an operation by an
unavailability period and the flexibility of the starting dates of the unavailability periods.

The job-shop scheduling problem with resource availability constraints can be defined
as a set of n jobs J = {J1, J2, . . . , Jn} to be processed on a set of m machines M =
{M1,M2, . . . ,Mm}. Each job Ji is composed of a fixed linear sequence (routing) of ni
operations {Oi1, Oi2, . . . , Oij , . . . , Oini}. Each machine can process only one operation
at a time, and each operation Oij needs only one machine during pij time units. There
are mr unavailability periods {hr1, hr2, . . . , hrk, . . . , hrmr} on each machine Mr. The
starting date Srk of unavailability period hrk of duration p′rk is known in advance. The
machine on which operation Oij is processed is denoted mrij . The goal is to determine
the starting date tij and the completion time Cij of each operation Oij in order to
minimize the sum of job completion times

∑n
i=1Cini . As mentioned above, the column

generation approach is well-suited for any additive criterion. The job-shop scheduling
problem with resource availability constraints is NP-hard since the problem without
unavailability periods is already NP-hard.
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2 A Column Generation Approach

Previous research works on the resolution of time-indexed formulations by column gen-
eration can be found in [5] [3], [6] and [2]. However, these papers study single-machine
or parallel machine scheduling problems. To our knowledge, only the paper of Lancia et
al. [4] aims at solving the classical job-shop scheduling problem. However, no indications
are given on how the column generation approach is developed and implemented and
what are the difficulties and properties. Our approach is similar to the one of Lancia et
al. [4], although we consider unavailability periods.

Let us denote by T the schedule length. A solution of the problem can be described
by the n schedules of the jobs on the machines. S(Ji) denotes the set of possible schedules
for job Ji, i.e. S(Ji) includes all the feasible schedules of Ji. A schedule is feasible if it
satisfies the routing constraints for job Ji and the unavailability periods for the machines.
Note that the larger T , the larger |S(Ji)|, the (exponential) number of schedules for Ji.
To determine a globally feasible solution, it is necessary to select one schedule in S(Ji)
for each job Ji in J , so that the set of selected schedules satisfies the machine constraints
(two operations cannot overlap on the same machine).

In order to introduce our formulation, we need the additional parameters below:
S: Set of all schedules, i.e. S =

⋃n
i=1 S(Ji),

Ji(s): Job associated to a given schedule s, i.e. s ∈ S(Ji(s)),
astj = 1 if the jth operation of job Ji(s) is processed at period t on its associated

machine and 0 otherwise,
Cs: Cost associated to schedule s (for instance the completion time of job Ji(s)).

The following binary variable is used: xs = 1 if the sth feasible schedule is selected
for job Ji(s) and 0 otherwise. The integer programming formulation (MP ) is:

f∗ = min f =
∑
s∈S

Csxs (1)∑
s∈S(Ji)

xs = 1 i = 1, . . . , n (2)

∑
s∈S

nJi(s)∑
j=1;mrJi(s)j=r

astjxs ≤ 1 t = 1, . . . , T ; r = 1, . . . ,m (3)

xs ∈ {0, 1} ∀s ∈ S (4)

Constraint (2) ensures that one and only one schedule is selected for each job. Constraint
(3) guarantees that there is never more than one operation on each machine and at each
period. The number of variables is |S|, which can quickly become very large, even for
small values of n and m. Note that the scheduling criterion, considered in the objective
function (1), can be very general as long as it only depends on each job: Sum of the
(weighted) completion times

∑
sCsxs (

∑
swJi(s)Csxs), sum of the (weighted) tardiness∑

s Tsxs (
∑

swJi(s)Tsxs) and/or earliness
∑

sEsxs (
∑

iwJi(s)Esxs), etc. Where wJi(s)
is the weight of job Ji(s), dJi(s) is the due date of Ji(s), Ts = max(Cs − dJi(s), 0) and
Es = max(dJi(s) − Cs, 0). The criterion for each job Ji could actually be non regular or
non linear.

The column generation approach (see for example [1]) that we developed, together
with numerical experiments, will be presented in the workshop. The pricing problem is
solved using a dynamic programming algorithm that aims at minimizing, for each job

138



Ji, the total cost of the schedule where a cost wtij (computed with dual variables of the
linear relaxation of (MP )) is associated to the completion of operation Oij at period t.
We will show that the model and the approach can rather easily be adapted to consider
the preemption and the flexibility of unavailability periods. The numerical experiments
illustrate that, as expected, the time horizon T has a strong impact on the ability to solve
instances efficiently. Moreover, a Branch-and-Price approach still needs to be developed
to obtain optimal solutions.
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A two-machine flow shop problem consisting of a discrete

processor and a batch processor under uncertainty

Bastian Bludau (Speaker) ∗ Karl-Heinz Küfer †

1 Introduction

Manufacturing systems often involve a combination of both discrete processors and batch
processors. A discrete processor is a machine which can process only one job at a time,
whereas a batch processor can process a batch of jobs simultaneously.

We consider a two-machine flow shop problem consisting of a discrete processor δ
followed by a batch processor β. A finite number of n jobs

J = {Ji = (pi, vi, di) | i = 1, . . . , n}
has to be processed on these two machines, where pi denotes the processing time of
job Ji on δ, vi > 0 denotes the volume (capacity) required for processing this job on β,
and di denotes its due date. The batch processor β can simultaneously process a subset
J ′ ⊆ J of the n jobs as long as the constraint

∑
Ji∈J ′ vi ≤ V is fulfilled. Here, V > 0

represents the maximum possible volume of a batch on β (We assume that vi ≤ V for
all i = 1, . . . , n.). The processing time of a batch on β is assumed to be a constant
T > 0, independent of the jobs contained in it. The completion time of a job in a batch
is defined as the completion time of the batch containing it. Let Ci be the completion
time of job Ji. The tardiness Ti of job Ji is then defined as Ti = max (Ci − di, 0), and
the corresponding unit penalty Ui is 1 if Ci > di, and 0 otherwise. We focus on three
well-known due date based performance measures, namely maximum tardiness Tmax,
total tardiness

∑n
i=1 Ti, and the number of tardy jobs

∑n
i=1 Ui.

Each job first has to be processed on the discrete processor δ and afterwards on the
batch processor β. This flow shop configuration will be denoted by δ → β. Combining
this notation with the well-known triplet notation from standard scheduling theory, our
problem can be written as δ → β | vi |Tmax, δ → β | vi |

∑
Ti, and δ → β | vi |

∑
Ui,

respectively, where vi represents the fact that the job sizes do not have to be identical.
A solution for this problem requires three distinct decisions to be made about

• job scheduling (that is, the sequencing of jobs on δ),

• batch composition (that is, the assignment of jobs to batches), and

• batch scheduling (that is, the sequencing of batches on β).

The complexity of the problem stems from the interaction of these three subproblems.
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2 NP-hardness

The deterministic problem described in Section 1 has been introduced in 1992 by Ah-
madi et al. [1] for the special case of identically sized jobs, that is vi = 1, i = 1, . . . , n.
In particular, Ahmadi et al. showed that both problems δ → β | vi = 1 |Cmax and
δ → β | vi = 1 | ∑Ci can be solved in polynomial time. These results are due to the fact
that in this case the optimal job sequence on the discrete processor δ can be determined
without considering the subsequent batch composition and batch sequencing on β. This
transforms the two-machine problem into a single batching machine problem with dy-
namic job arrivals. Unfortunately, in our case of non-identically sized jobs under due
date based objective functions, this property does not hold any longer. Concerning the
complexity class of our problems, Uzsoy [3] showed that already for the makespan objec-
tive, the single batching machine problem with non-identical job sizes is equivalent to the
standard BIN PACKING problem. Since BIN PACKING is strongly NP-hard (Garey
and Johnson [2]), this particularly shows that all our three problems δ → β | vi |Tmax,
δ → β | vi |

∑
Ti, and δ → β | vi |

∑
Ui are NP-hard in the strong sense as well.

3 Heuristics

As a consequence of the NP-hardness, efficient algorithms that obtain optimal solutions
are unlikely to exist. We will therefore concentrate on different classes of heuristics to
get reasonably good solutions in a short time. To this end, we use a simple pairwise
interchange argument to show that permutation schedules dominate other schedules.
It follows that the knowledge about the ordered batch composition is sufficient to com-
pute the whole corresponding permutation schedule. Alternatively, we can also tackle
the problem from another point of view: We develop a dynamic program which com-
putes the best possible permutation schedule for a given input job sequence in O(n4)
operations. This algorithm generalizes the dynamic program originally obtained for the
special case of identically sized jobs without due dates by Ahmadi et al. [1].

Both approaches can be used to create different classes of heuristics as follows:

• Heuristics of Class 1: We first sort the n jobs according to some given sorting
criterion. We then use standard heuristics from bin packing theory to compute the
ordered batch composition, which is in turn sufficient to compute the corresponding
schedule.

• Heuristics of Class 2: As before, we first sort the n jobs according to some given
sorting criterion. Afterwards, the optimal permutation schedule for the corre-
sponding job sequence is determined with the help of dynamic programming.

Heuristics of Class 1 can be computed in O(n log n), while heuristics of Class 2 need
O(n4) operations. Since bin packing heuristics usually rearrange the job sequence, both
classes of heuristics can also be combined to a third class, which then dominates Class 1
(at the expense of computational speed).

In the talk, we will present a variety of different heuristics of all three classes, where
we use both standard and adapted dispatching rules as initial sorting criterion. We will
present detailed numerical experiments to evaluate the efficiency of these heuristics. For
a better comparison, we will furthermore give numerical results obtained by CPLEX for
the same problem expressed as a mixed integer program (MIP).
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4 Uncertainty of data

The two-machine flow shop problem considered in the talk comes from a practical appli-
cation in the manufacturing process of ceramic substrates. (In this regard, the discrete
processor δ stands for the process of forming raw materials into the desired shape, while
the batch processor β represents the oven for the subsequent firing process.) In view of
practical applicability, however, our model is too simple. Following the vast majority of
scheduling research, we have so far assumed complete information about the problem to
be solved and a static, deterministic environment. Under this assumption, the computed
schedule can be executed without any disruption. In real-life applications, however, ma-
chines break down, activities happen to take longer than expected, and new jobs have
to be inserted while other jobs will be canceled. All these unforeseen events may force a
once computed schedule to be adjusted over and over again, which in turn leads to the
unwanted effect of schedule nervousness.

To be protected against such possible schedule disruptions, we need a proactive
scheduling approach in order to create robust schedules. In this respect, we first have
to model the idea of “robustness” mathematically. While the definition of robustness
as well as corresponding notation and terminology differs widely in the literature, the
basic idea remains the same: We want to find a schedule that is insensitive to uncer-
tainty within a certain range. Altogether, we are faced with the multi-criteria problem of
finding a schedule that is, on the one hand, acceptable with respect to our performance
measure(s), and, on the other hand, robust in the sense mentioned above.

We will address this problem within a stochastic version of the two-machine flow shop
problem described in Section 1, where the processing times pi, i = 1, . . . , n, of the dis-
crete processor δ are not known deterministically any longer. A simple but nevertheless
effective technique to obtain robust schedules is the usage of buffer times. Let Bj ⊆ J
be the set of all jobs that are scheduled to be processed in the j-th batch. Moreover,
let bj denote the corresponding starting point of batch Bj . We call a schedule α-robust
if bj ≥ maxJi∈Bj C

δ
i + α for all j = 1, 2, . . ., where Cδi denotes the completion time of

Job Ji at the discrete processor δ. Focussing on this idea, we transform the heuristics
developed for the deterministic problem into α-robust heuristics to be able to further
investigate and evaluate the impact of α-robustness on the overall schedule quality. Par-
ticular attention will be given to the already mentioned trade-off between the level of
robustness and the price we have to pay for it.
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Accelerating a Flow Shop Scheduling Algorithm on the GPU

Tomáš Zaj́ıček ∗ Přemysl Š̊ucha (Speaker) †

GPGPU (General Purpose computing on Graphics Processing Units) or GPU com-
puting are terms denoting general purpose scientific and engineering computing on GPU
(graphics processing unit). Existing GPU applications are mostly oriented on fields such
as medical imaging and natural resource exploration, and creating breakthrough applica-
tions in areas such as image recognition and real-time HD video playback and encoding.
On the other hand, in the recent time there is a growing attempt to use this specialized
hardware to solve NP-hard combinatorial problems.

Nowadays, majority of scientific GPGPU use CUDA (Compute Unified Device Ar-
chitecture) [6]. It is a parallel computing architecture allowing to write programs for
the CUDA GPU, in the C language, independently on the number of available GPU
computational cores.

Basically, there are two GPGPU computing models on CUDA. In a homogeneous
computing model all computations are performed on GPU. On the contrary, in a het-
erogeneous computing model the sequential part of the application runs on the CPU
and the computationally-intensive part is accelerated by the GPU. The weak point of
the heterogeneous computing model is the communication bandwidth between CPU and
GPU which often constitute a bottleneck in many applications.

In recent years there are several works proposing solutions of NP–hard combinatorial
problems on GPUs. Almost all works use heterogeneous computing model. One of the
earliest works is [4] which proposes a parallel tabu search algorithm for the traveling
salesman problem and for the flow shop problem. This approach is implemented using
shader programming which is less comfortable than using CUDA framework. GPGPU
approach to quadratic 3-dimensional assignment problem is suggested in [5]. Identically
as in the previous paper they use tabu search algorithm which iteratively use GPU for
the neighbour local search. A GPU based parallelization of a metaheuristic algorithm
for the flexible job shop scheduling problem is presented in [1]. The authors propose
two double–level parallel meta-heuristic algorithms based on their method of the neigh-
bourhood determination. Another method using heterogeneous computing model for
the knapsack problem is presented in [2]. The proposed method is based on the dense
dynamic programming. On the other hand, the homogeneous computing model is used
in a genetic algorithm presented in [7]. It is based on island models and the solution is
examined using Griewank’s, Michalewicz’s and Rosenbrock’s artificial benchmark func-
tions. Up to our knowledge, there are not many works using homogeneous computing
model for NP–hard combinatorial problems.
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At the conference, we will present a genetic algorithm (GA) implemented on a GPU
for permutation flow shop scheduling problem [3]. This approach is based on the ho-
mogeneous computing model in order to maximize the algorithm efficiency. The genetic
algorithm is based on work presented in [7]. In addition, we suggest several improve-
ments (e.g. another mechanism for individuals migration, different data storing in global
memory) allowing to apply this algorithm on a wider group of NP-hard combinatorial
problems. According to the preliminary results, we achieved speedup from 60 to 120
with respect to the equivalent sequential CPU version.
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Scheduling malleable tasks with arbitrary processing speed

functions

M.S. Barketau∗ M. Y. Kovalyov ∗ M. Machowiak (Speaker)†

J. Wȩglarz †

1 Introduction

A computing task is called malleable if it can be processed on several processors at the
same time, its processing speed depends on the number of assigned processors, and the
set of processors assigned to the same task can change over time. The following problem
will be studied.

There are n malleable tasks to be scheduled for processing on m identical parallel
processors. Each task j is associated with its amount of work, pj . Let rj(t) denote
the number of processors allotted to task j at time moment t, and let fj(r) denote the
processing speed of task j if it is allotted r processors. All fj(r) are assumed to be
strictly increasing continuous integrable functions with fj(0) = 0. A schedule specifies
an allocation of processors to the tasks over time. We limit ourselves to schedules in
which there is a finite number of time intervals where the same number of processors is
assigned to the same task for all tasks in the same interval. A schedule can be completely
characterized by the number of these time intervals, L, the interval lengths, ∆1, . . . ,∆L,
where the corresponding intervals are [0,∆1], [∆1,∆1 + ∆2], . . ., and the number of

processors r
(l)
j , r

(l)
j ∈ {0, 1, . . . ,m}, assigned to each task j in each interval l, j =

1, . . . , n, l = 1, . . . , L. The makespan of the corresponding schedule is Cmax =
∑L

l=1 ∆l.

A schedule is called feasible if
∑n

i=1 r
(l)
i ≤ m, l = 1, . . . , L, and

∫ Cmax

0 fj(rj(t))dt =∑L
l=1 ∆lfj(r

(l)
j ) = pj , j = 1, . . . , n. The problem is to find a schedule with the minimum

makespan. We denote this problem as P-DSCR and the relaxed problem in which the
numbers of assigned processors are not required to be integer as P-CNTN. For problem P-
CNTN, processors represent a continuously divisible renewable resource, whose amount
is upper bounded by m at each time moment.

Problems P-DSCR and P-CNTN were studied by Wȩglarz et al. [3, 4] for the case
n ≤ m. It was shown that both problems are solvable in O(n) time if all processing
speed functions are convex, and in O(nmax{m,n log2m}) time if they are all concave.
Justification of these results heavily relies on the statements proved for the case n ≤ m
in the earlier works of Wȩglarz [1, 2].
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2 Arbitrary strictly increasing functions

The following theorem characterizes the case of strictly increasing piecewise linear con-

tinuous functions fj(r) such that fj(r) = a
(k)
j r + b

(k)
j , r ∈ [k, k + 1], k = 0, . . . ,m − 1,

j = 1, . . . ,m. Set U is a set of feasible transformed resource allocations and set convU
is a convex hull of set U .

Theorem 1. If fj(r) are strictly increasing piecewise linear continuous functions, then
convU is a bounded polyhedron with vertices from the set U .

Proof. The set D of feasible resource allocations can be represented as a union of
bounded elementary polyhedrons each of which is defined by 2n+ 1 half-spaces rj ≥ kj ,
rj ≤ kj + 1, j = 1, . . . , n, and r1 + r2 + . . .+ rn ≤ m, where kj ∈ {0, 1, . . . ,m− 1}. There
are mn elementary polyhedrons because ki and kj can take different values for different

i and j. Linear continuous functions a
(kj)
j r + b

(kj)
j , j = 1, . . . , n, kj ∈ {0, 1, . . . ,m − 1},

transform corresponding bounded elementary polyhedron into the bounded polyhedron

defined by 2n half-spaces uj ≥ a
(kj)
j kj + b

(kj)
j , uj ≤ a

(kj)
j (kj + 1) + b

(kj)
j and half-space∑n

j=1

uj−b
(kj)

j

a
(kj)

j

≤ m. Thus, U is a union of a finite number of bounded polyhedrons and

convU is a bounded polyhedron with all vertices belonging to U .

Here we assume that fj(r) are piecewise linear strictly increasing continuous functions
with fj(0) = 0. In this case we propose an enumerative algorithm to find an optimal
schedule for problems P-CNTN and P-DSCR.

It is shown in Theorem 1 that D is a union of elementary polyhedrons each being
an intersection of an n-dimensional cube and the half-space r1 + r2 + . . . + rn ≤ m.
Let vector (k1, k2, . . . , kn), kj ∈ Z, 1 ≤ kj ≤ m, 1 ≤ j ≤ n, define the cube given by
kj − 1 ≤ rj ≤ kj , j = 1, . . . , n.

Theorem 2. If cube (k1, k2, . . . , kn) intersects with hyperplane r1 + r2 + . . . + rn = m
and the intersection contains more than one point, then k1 + k2 + . . .+ kn ≤ m+ n− 1
and k1 + k2 + . . .+ kn ≥ m+ 1.

Proof. Let k1 + k2 + . . .+ kn > m+n− 1. Then k1 + k2 + . . .+ kn ≥ m+n. Thus, for
the coordinates of the points inside this cube relation r1 + r2 + . . .+ rn ≥ m is satisfied.
Furthermore, there is at most one such point where this relation is a strict equality.
Similarly, if k1 + k2 + . . . + kn < m + 1, then k1 + k2 + . . . + kn ≤ m. Then for the
coordinates of the points inside the cube r1 + r2 + . . .+ rn ≤ m is satisfied and there is
at most one point inside the cube where this relation is a strict equality.

Theorem 3. If the intersection of the cube (k1, k2, . . . , kn) and the hyperplane r1 + r2 +
. . . + rn = m, m ∈ Z, contains more than one point, then the intersection of the cube
(k1, k2, . . . , kn) and the halfspace r1 + r2 + . . . + rn ≤ m is a polyhedron. Furthermore,
all vertices of this polyhedron belong to the set of vertices of this cube.

Proof. Each vertex of the resulting polyhedron is defined by the intersection of n
hyperplanes among which are facets of the cube and the hyperplane r1+r2+. . .+rn = m.
If a vertex is defined only by the facets of the cube, then it is clearly a vertices of the
cube. If it is defined by n hyperplanes including the hyperplane r1 + r2 + . . .+ rn = m,
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then, since m is an integer, it follows that all its coordinates are integer. Therefore, it is
also a vertex of the cube.

The number of cubes that have an intersection with the hyperplane r1+r2+. . .+rn =
m in more than one point is

∑m+n−1
r=max{m+1,n}C

n−1
r−1 , where Ckn is the number of possible

combinations from n to k. Since Ck−1
n−1 ≤ Ckn for k ≤ n, we have

∑m+n−1
r=max{m+1,n}C

n−1
r−1 ≤∑n+m−2

r=0 Crn+m−2 = 2n+m−2. Then the total number of vertices of the considered cubes
is O(22n+m−2).

The algorithm we propose consists of two stages. At stage 1 it finds all the vertices of
the unit cubes that intersect with the hyperplane and their transformations by functions
fj(r).

Vertices of the polyhedron convU belong to the set U . By Theorems 2 and 3 and the
fact that functions fj(r) are continuous and piecewise linear, we deduce that vertices of
the polyhedron convU are among the above mentioned O(22n+m−1) transformed vertices.

At stage 2 the algorithm enumerates all hyperplanes each of which is defined by n
points among those found at stage 1 and such that all the remaining points are the same
side of this hyperplane in the space Rn as the point (0, 0, . . . , 0). It is clear that all the
hyperplanes that define facets of the polyhedron convU are among these hyperplanes.
Calculate the intersection point of the line p/C with each such hyperplane and find
the hyperplane with the maximum value of C which is equal to C0

max. Denote this
intersection point as u0. The complexity of stages 1 and 2 is O(2(2n+m−2)n).

Let v1, . . . , vn be the base points for the hyperplane found on stage 2. Then we
can solve the following set of n + 1 linear equalities:

∑n
l=1 λlvl = u0,

∑n
l=1 λl = 1,

l = 1, . . . , n, for λl ≥ 0, l = 1, . . . , n. Let the solution contain L+ ≤ n positive values
which are λ1, . . . , λL+ without loss of generality. Then an optimal schedule contains L+

intervals. Interval l, 1 ≤ l ≤ L+, has length λlC
0
max and resource allocation vector r(l)

corresponding to the point vl. Recall that the resource allocations r(l), l = 1, . . . , L, have
integer components according to Theorem 3. Therefore, the corresponding solution is
optimal for both problems P-CNTN and P-DSCR and its complexity O(2(2n+m−2)n).
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On the quality and complexity of Pareto equilibria in the

Job Scheduling Game

Leah Epstein∗ Elena Kleiman (Speaker)†

1 Introduction

The rise of the Internet as a global platform for communication, computation, and com-
merce brought up the necessity to reconsider the prevalent paradigm in system design
which assumes a central authority which constructs and manages the network and its
participants, with a purpose of optimizing a global social objective. Designing a protocol
intended for use in a global network such as the Internet, we have to take into account
that it consists of multiple independent and self-interested users which strive to opti-
mize their private objective functions. In networks of such scale and complexity and in
presence of raw economic competition between the parties, it is impossible to introduce
a single regulatory establishment enforcing binding commitments on the players.

In light of the above, there is an increased need to design efficient protocols that
motivate self-interested agents to cooperate. Here “cooperation” may be defined as any
enforceable commitment that makes it rational for the self interested players to choose a
given strategic profile. In the settings in discussion, any meaningful agreement between
the players must be self-enforcing. When deciding which particular strategy profile to
offer for the users, the first and most basic requirement one has to consider is its stability,
in a sense that no player would have an interest to unilaterally defect from this profile,
given that the other players stick to it. This is consistent with the notion of Nash equi-
librium (NE), which is an accepted concept of stability in non-cooperative game theory.
The second requirement is that the profile must be efficient. A fundamental concept of
efficiency considered in economics is the Pareto efficiency, or Pareto optimality. This
efficiency criterion assures that it is not possible for a group of players to change their
strategies so that every player is better off (or no worse off) than before. One may jus-
tifully argue that Nash stability and Pareto optimality should be minimal requirements
for any equilibrium concept intended to induce self-enforceability in presence of selfish-
ness. There are even stronger criteria for self-enforceability, requiring fairness in terms of
fair competition without coalitions, demanding from the profile to be resilient to groups
of players willing to coordinate their decisions, in order to achieve mutual beneficial
outcomes. This is compatible with the definition of Strong Nash equilibrium (SNE).
However, this requirement is sometimes too strong that it excludes many reasonable
profiles.

We thus restrict ourselves to profiles that satisfy the requirements of Nash stability
and Pareto efficiency. In a sense, Pareto optimal Nash equilibria can be considered as
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intermediate concepts between Nash and Strong Nash equilibria; Pareto optimal equi-
libria are stable under moves by single players or the grand coalition of all players, but
not necessarily under arbitrary coalitions. We distinguish between two types of Pareto
efficiency. In a weakly Pareto optimal Nash equilibrium (WPO-NE) there is no alterna-
tive strategy profile beneficial for all players. A strictly Pareto optimal Nash equilibrium
(SPO-NE) is also stable against deviations in which some players do not benefit but
are also not worse off and at least one player improves his personal cost. Obviously, any
strictly Pareto optimal equilibrium is also weakly Pareto optimal, but not wise-versa.

We consider strict and weak Pareto optimal pure Nash equilibria for scheduling games
on the most common three machine models, identical machines, uniformly related ma-
chines and unrelated machines with the social goal of minimization of the makespan,
that is, the maximum load of any machine. This class of games is particularly impor-
tant to our discussion as it models a great variety of problems in modern networks. We
investigate the quality of these solution concepts in the job scheduling game by com-
parison to an optimal solution, adopting a worst-case approach. As both papers that
originally suggested to compare the NE and SNE to an optimal solution to study their
quality [1, 10] demonstrated this approach in scheduling games, this gives an additional
incentive to consider these solution concepts for this particular game class.

The quality measures which consider Nash equilibria are the Price of Anarchy [10]
and the more optimistic Price of Stability [2], which are defined as the worst-case ratio
between the social cost of the worst/best Nash equilibrium to the social cost of an
optimal solution. This concept is applied analogously to Strong Nash equilibria as well
as to weakly/strictly Pareto optimal Nash equilibria yielding the Strong Price of Anarchy
and the Strong Price of Stability as well as the weak and strict Pareto Prices of Anarchy
and Stability. Some natural questions in this context are whether the Pareto Prices
of Anarchy are significantly smaller than the standard Price of Anarchy, whether the
weak Pareto Price of Anarchy is much larger than the Strong Price of Anarchy, and
finally, whether there is any relation between the Strong Price of Anarchy and the strict
Pareto Price of Anarchy. In other words, does the requirement that the equilibrium
must be Pareto optimal leads to greater efficiency, and does the further demand that
the equilibrium must be stable against arbitrary coalitions helpful.

2 Related work and our contribution

Pareto efficiency of resource assignments is an important issue in economics and welfare
economics. However Nash equilibria may generally be Pareto inefficient. The analysis of
job scheduling in the algorithmic game theory (AGT) context was initiated in [10]. The
standard and strong Prices of Anarchy and Stability in the three scheduling models were
completely established in [1,4,5,7,9,10]. The previous work on Pareto efficiency of Nash
equilibria in AGT was mainly concerned with weak Pareto equilibria, probably since
a solution which is not weakly Pareto optimal is clearly unstable. However, the strict
Pareto is a stronger and more meaningful efficiency notion, as it captures an important
aspect of human social behavior; The weak Pareto suggests that some assignment is
socially preferable over another by everyone. In reality, such unanimity of preferences
among all persons is very rare. We focus on both these important concepts.

Existence of strict Pareto optimal Nash equilibria in scheduling games (among others)
was proved in [8]. Weak Pareto Nash equilibria in routing and job scheduling games
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were considered recently in [3]. They do not consider the quality of Pareto optimal Nash
equilibria with respect to the social goal. Among other results, it is shown in [3] that any
Nash equilibrium assignment is necessarily weakly Pareto optimal for both identical and
related machines. Moreover, for any machine model, any assignment which achieves the
social optimum must be weakly Pareto optimal. We consider these issues for SPO-NE
assignments. We fully characterize the weak and strict Pareto Prices of Anarchy of the
job scheduling game in cases of identical, related and unrelated machines.

Next, we consider the complexity of recognition of weak and strict Pareto optimality
of NE. We show that recognition of WPO-NE or SPO-NE can be done in polynomial
time for identical machines and related machines. For unrelated machines, we show
that the recognition of WPO-NE is NP-hard in the strong sense and the recognition
of SPO-NE is NP-hard. We reflect upon the differences between the results for weak
and strict Pareto equilibria also compared to strong equilibria, and make conclusions
regarding the relations between the quality measures in this game.
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The Price of Anarchy for Related Machine Scheduling

Ruben Hoeksma (Speaker)∗ Marc Uetz∗

1 Introduction

Consider the problem of scheduling n nonpreemptive jobs on m machines, where each job
j has a processing requirement pj and each machine i has speed si. The processing time
of job j on machine i equals pj/si. The objective is to minimize the sum of completion
times

∑
j Cj , where Cj denotes the completion time of job j. This classical model is

referred to as uniformly related machine scheduling, or Q | |∑Cj .
We analyze a simple coordination mechanism for this problem, where each machine i

sequences its jobs shortest processing time first (SPT), and each job j chooses a machine
in order to minimize its own completion time Cj . The outcome of the coordination
mechanism is a (pure) Nash equilibrium, a solution where no job can unilaterally change
to another machine and thereby improve its own completion time. Minimizing

∑
j Cj

then corresponds to the utilitarian social choice function, as it maximizes the total utility
of the jobs. Yet, in contrast to the egalitarian social choice function Cmax, this model
has not received much attention in the literature. Moreover, as SPT minimizes

∑
Cj on

each single machine, this coordination mechanism is most natural and almost suggests
itself.

For the classical problem Q | |∑Cj , the optimal solution can be computed efficiently
by the well known MFT algorithm of Horowitz and Sahni [3]. Also Nash equilibria
can be computed efficiently by scheduling the jobs in SPT order, assigning each job to
the machine that minimizes the jobs’ completion time, also known as the Ibarra Kim
algorithm [4]; see [5]. Nash equilibria are in general not optimal for minimizing

∑
j Cj .

The ratio between the worst Nash equilibrium and the optimal solution is the price of
anarchy (PoA) [6]; it measures the cost of decentralization. What is intriguing about the
model is that both optimum solution and Nash equilibrium can be computed efficiently
by simple algorithms. Moreover, Nash equilibria correspond to outcomes of the most
natural heuristic for the problem, namely SPT. Surprisingly, the quality of this heuristic
for Q | |∑Cj has not been analyzed. We (almost) close this gap and show the following.

Theorem 1. The price of anarchy for the coordination mechanism for Q | |∑Cj with
SPT on each machine is bounded from below by e

e−1 ≈ 1.58 and from above by 2.

This result complements very resent results by Cole et al. and Correa and Queyranne
[1, 2], which show that the price of anarchy for coordination mechanisms for unrelated
machine scheduling and restricted related machine scheduling games with WSPT on each
machine is exactly 4. To prove the upper bound they in fact show that R||∑wjCj games
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are (2, 1/2)-smooth, as defined by Roughgarden [7]. Hence their results are bounds for
the robust price of anarchy, generalizing also beyond pure Nash equilibria. The same
holds for our result, as it is based on a smoothness argument, too. But in the analysis
we need to explicitly exploit properties of the optimal solution. We conjecture the PoA
to be e

e−1 rather than 2, as the analysis of the upper bound is not tight.

2 Sketch of Proofs

For the lower bound, consider an instance with n jobs and one fast machine with speed
s and n−s slow machines with speed 1. Furthermore, let the smallest s jobs have length

pj = 1 and let all other jobs have length pj =
(

s
s−1

)n−s
. This construction ensures

that the schedule with all jobs on the fastest machine is a Nash equilibrium, while the
optimal solution distributes the jobs over all the machines. For such an instance the
price of anarchy is equal to

PoA =

(
s
s−1

)s
− 1

2 ·
(

s
s−1

)−n+2s−1(
s
s−1

)s
− 1

,

which approaches e
e−1 as n and s go to infinity. For the upper bound, we show the

following, which can be seen as a (2, 0)-smoothness argument according to [7]. If σ is an
arbitrary choice of the jobs, and σ∗ the choice in an optimal solution, we show∑n

j=1
Cj(σ

∗
j , σ−j) ≤ 2

∑n

j=1
Cj(σ

∗),

where (σ∗j , σ−j) is the outcome where all jobs adhere to σ except for job j, who chooses
the machine according to σ∗. Then it follows, when σ is a Nash equilibrium, that∑n

j=1
Cj(σ) ≤

∑n

j=1
Cj(σ

∗
j , σ−j) ≤ 2

∑n

j=1
Cj(σ

∗),

which proves the upper bound of 2 on the price of anarchy. This upper bound also
extends to mixed Nash or correlated equilibra, or no-regret sequences.
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Performance of Distributed Game Theoretic Algorithms for

Single Slot Scheduling in Wireless Networks

Eyjólfur Ingi Ásgeirsson (Speaker) ∗ Pradipta Mitra †

1 Introduction

We consider the single slot scheduling problem in wireless networks, also called the capac-
ity problem. Our goal is to maximize the number of successful connections in arbitrary
wireless networks where a transmission is successful only if the signal-to-interference-
plus-noise ratio at the receiver is greater than some threshold.

A central question in the context of wireless network communications is how to model
interference between various attempted transmissions in the network. The models used
in the literature can essentially be divided into two types. First, there is the protocol
model where interference is modeled by an interference graph, and a transmission is
successful if and only if none of the neighbors of the transmission in this graph also
choose to transmit at the same time. Thus maximizing the number of scheduled links
in a single slot becomes equivalent to the maximum independent set problem.

It is well-known though, that graph-based protocols are not very good in capturing
reality and this has been demonstrated both theoretically and experimentally [6, 8]. As
a result, a lot of recent algorithmic work has focused on the so-called physical model or
the SINR model.

The capacity of random networks in the SINR model was studied by Gupta and
Kumar [5], and a large number of papers have pursued the same theme. On worst
case instances the problem is NP-hard [1]. Approximation algorithms for worst case
instances have recently garnered attention, starting with the work of Moscibroda and
Wattenhofer [7]. Since then, a large body of work has been produced for this problem [4].

We study a game theoretic approach towards single slot scheduling introduced by
Andrews and Dinitz [1] and Dinitz [3]. We prove vastly improved bounds for the game
theoretic algorithm. In doing so, we achieve the first distributed constant factor ap-
proximation algorithm for the single slot scheduling problem for the uniform power
assignment. When compared to the optimum where links may use an arbitrary power
assignment, we prove a O(log ∆) approximation, where ∆ is the ratio between the largest
and the smallest link in the network. This is an exponential improvement of the approx-
imation factor compared to existing results for distributed algorithms. All our results
work for links located in any metric space. In addition, we provide simulation studies
clarifying the picture on distributed algorithms for single slot scheduling.
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2 Models and Algorithms

We assume that there is a set L of links, where each link v ∈ L represents a potential
transmission from a sender sv to a receiver rv, each points in a metric space. The distance
between two points x and y is denoted d(x, y).

The distance from v’s sender to w’s receiver is denoted dvw = d(sv, rw). The length
of link v is the distance between the sender and the receiver of the link, denoted by
`v = d(sv, rv).

The set may be associated with a power assignment, which is an assignment of a
transmission power Pv to be used by each link v ∈ L. We assume 0 ≤ Pv ≤ Pmax for
some fixed Pmax, for all v. The setting Pv = 0 means the sender is not transmitting. For
simplicity we will assume Pmax = 1 without loss of generality. The signal received at
point y from a sender at point x with power P is P/d(x, y)α where the constant α > 0
is the path-loss exponent.

In the physical or SINR-model of interference, a receiver rv successfully receives a
message from the sender sv if and only if the following condition holds:

Pv/`
α
v∑

`w∈S\{`v} Pw/d
α
wv +N

≥ β, (1)

where N is the environmental noise, the constant β > 0 denotes the minimum SINR
(signal-to-interference-noise-ratio) required for a message to be successfully received, and
S is the set of concurrently scheduled links in the same slot.

We say that S is SINR-feasible (or simply feasible) if (1) is satisfied for each link
in S. Let ∆ = lmax

lmin
where lmax and lmin are respectively, the maximum and minimum

lengths in L.
We will use the notation OPT to denote the largest set that can be scheduled using

uniform power, and OPTP to denote the largest set that is feasible using some arbitrary
power assignment. Thus the maximum capacity of the network is |OPT | or |OPTP |,
depending the flexibility one allows on the power assignments.

The games we are interested in have n players and every player has exactly two
possible actions. Let A = {0, 1}n be the space of all possible actions for the game, i.e.
given a point A ∈ A, the ith coordinate ai represents the action used by player i in profile
A. For each player i there is a utility function αi : A → R denoting how good certain
actions for that player are. We will want to consider modifications of strategy profiles:
given A ∈ A, let A⊕a′i be the strategy set obtained by player i changing its action from
ai to a′i. We will use superscripts to denote time, so At will be the action set at time t
and ati will be the action taken by player i at time t.

Definition 1. The regret of player i at time T given strategy profiles A1, A2, . . . AT is

max
ai∈{0,1}

1

T

T∑
t=1

αi(A
t ⊕ ai)−

1

T

T∑
t=1

αi(A
t)

Having low regret essentially means that the player has done almost as well on average
as the best single action, i.e. always staying silent or always transmitting, would have.

Theorem 2 ( [2]). There is an algorithm that has regret at most O(

√
log(T/δ)

T ) with
probability at least 1− δ for any δ > 0, for any game with a constant number of possible
actions per player.
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3 Results

We will prove the following:

Theorem 3. If every sender uses a low-regret algorithm, then after O(( n
|OPT |)

2 log n)

rounds the average number of successful connections is Ω(|OPT |) = Ω(|OPTP |/ log ∆)
with probability at least 1 − 1

n . Also, a property of this class of algorithms is that all
algorithms in the class will use uniform power, that is, each sender sv either transmits
at full power Pv = 1, or does not transmit at all.

Hence, there exists a randomized distributed O(1)-approximation algorithm to de-
termine, with high probability, the capacity of a wireless network under uniform power.
For arbitrary power assignments, the same algorithm achieves a O(log ∆) approxima-
tion, with high probability. What is remarkable here is that a such results for general
metrics have not been known even for centralized algorithms until recently.
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Fast minimum float computation in activity networks under

interval uncertainty

Thierry Garaix (Speaker) ∗ Christian Artigues Cyril Briand †

1 Introduction, problem definition and related work

An important part of recent scheduling research aims at tackling uncertainty, which
occurs, under various forms, in practical applications. Dealing with activity scheduling,
a basic form of uncertainty involves uncertain durations. We consider an activity-on-
node network G(V,A) where V = {0 . . . , n + 1} represents a set of activities and A
represents simple precedence relations among the activities (PERT scheduling). Let di
denote the duration of an activity i ∈ V . We assume di is an uncertain parameter
belonging to a given interval [dmin

i , dmax
i ]. As 0 and n + 1 correspond to dummy start

and end activities, respectively, we consider that dmin
i = dmax

i = 0 for i = 0, n + 1. Let
D denote the set of possible realizations of duration vector d (scenario set). We have
D = {d ∈ Rn+2|dmin ≤ d ≤ dmax}. Given a scenario d ∈ D, let l∗i,j(d) denote the length of
the longest path from i to j in G. Given an activity i ∈ V and a duration scenario d ∈ D,
consider the earliest start time of i, denoted by esti(d) = l∗0,i(d), the latest start time of
i, denoted by lsti(d) = l∗0,n+1(d)− l∗i,n+1(d) and the float of i denoted by fi(d) = lsti(d)−
esti(d) = l∗0,n+1(d)− l∗i,n+1(d)− l∗0,i(d). We consider the problem (MinF) of determining
the minimum float of each activity over the scenario set: mind∈D fi(d), ∀i ∈ V .

Chanas and Zieĺınski [1] have proved that this problem is strongly NP-hard. Previous
studies established two properties allowing to restrict the solution space. First, Dubois
et al. [3] showed that for each activity there always exists an extreme scenario d (that
yields the minimal float) such that dj = dmin

j or dj = dmax
j for each j ∈ V . This allows

to restrict the search to the set of extreme scenarios (D̂) with |D̂| ≤ 2n. Second, Dubois
et al. [4] showed that the search can be further restricted to the set of path-induced
extreme scenarios. If p denotes a (0−n+ 1) path in G, d is an extreme scenario induced
by p if di = dmax

i for i ∈ p and di = dmin
i for i ∈ V \ p. Dubois et al. [4] derived from

this property the so-called path algorithm to solve MinF. It consists in enumerating all
(0 − n + 1) paths, and, for each of them, to compute the float of each activity under
the induced extreme scenario. If P denotes the set of (0 − n + 1) paths, the algorithm
runs in O((n + m)|P|) where m = |A|. A recent experimental evaluation by Fortin et
al. [5] reports that the path algorithm fails in producing solutions in reasonable time for
high-density networks.
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2 Integer programming Formulations

We propose two new mixed integer programming (MIP) formulations based on the path-
induced extreme scenarios: an activity independent formulation (a) and an activity
dependent formulation (b) given below. For each activity, a binary flow variable xi
indicates if i is located on the optimal path (xi = 1) or not (xi = 0). The formulations
also involve earliest start time continuous variables Si, whose value is the length of the
longest path from 0 to i in the optimal scenario. Γ−1

i (Γi) denotes the set of predecessors
(successors) of activity i, respectively.

(a) min z(k) = Sn+1 −
∑

i d
max
i xi (b) min fk = Sn+1 −

∑
i d
max
i xi

z(k) ≥ z(k − 1) Sj ≥ Si + dmini (1− xi) + dmaxi xi
Sj ≥ Si + dmini (1− xi) + dmaxi xi ∀(i, j) ∈ A ∀(i, j) ∈ A
xi ≤

∑
j∈Γ−1

i
xj ≤ 1 ∀i 6= 0, n+ 1 xi ≤

∑
j∈Γ−1

i
xj ≤ 1 ∀i 6= 0, n+ 1

xi ≤
∑

j∈Γi
xj ≤ 1 ∀i 6= 0, n+ 1 xi ≤

∑
j∈Γi

xj ≤ 1 ∀i 6= 0, n+ 1

x0 = xn+1 = 1 x0 = xn+1 = 1∑
i∈Uk xi ≥ 1 xk = 1

xi ∈ {0, 1} ∀i ∈ V xi ∈ {0, 1} ∀i ∈ V
The activity-independent formulation (a) is solved iteratively. At iteration k, a set Uk
of activities with unknown floats is considered (at iteration 0, U0 = V \ {0, n+ 1}). At
the next iteration, Uk+1 is set to Uk \ Fk where Fk is the set of activities located on the
optimal path for which the minimum float is obtained. The activity-dependent MIP (b)
is just a particular case of (a), where at each iteration k, the set Uk is reduced to the
single activity k.

3 Branch and bound

We establish a new dominance property allowing further restrictions on the set of paths
to consider. If p denotes a path, let p[a, b] denote its sub-path from a to b and let lp(d)
denote the length of p for scenario d.

Theorem 1. For each activity i ∈ V , there exists a (0−n+ 1) path p inducing scenario
d(p) verifying l∗0,i(d(p)) = lp[0,i](d(p)), l∗i,n+1(d(p)) = lp[i,n+1](d(p)) and

fi (d(p)) = maxa,b|i∈p[a,b](l
∗
a,b(d

min) + dmax
a − dmin

a − lp[a,b](dmax)) = mind∈D fi(d)

The theorem states that the search can be restricted to scenarios d(p) for which p is
the longest (0 − n + 1) path traversing i. Also, the longest path from 0 to n + 1 in G
and p diverge at unique activity a and converge at a unique activity b, where i is located
between a and b on p. A corollary allows to compute a lower bound for a partial path.

Corollary 2. Let p be a path from x ∈ V to y ∈ V with i ∈ p. The float of the scenario
induced by any path p′ extending path p towards (0, n+ 1) verifies
fi (d(p′)) ≥ l∗a,b(dmin) + dmax

a − dmin
a − lp[a,b](dmax), ∀i ∈ V , ∀a, b, i ∈ p[a, b]

We propose a branch and bound algorithm to solve MinF for a given activity i by
building the optimal path via partial path extension. A stack Q contains initially a
node representing the single-activity path {i}. A typical iteration deletes the node on
top of the stack and extends it in a direction that is changed at each iteration. For
the left extension, the predecessors of the leftmost activity of the partial path p are
scanned. According to Theorem 1, each candidate path p′ is discarded if p′ is not a
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longest (j − i) path for scenario d(p′), j being the scanned predecessor or if its lower
bound (see Corollary 2) exceeds the minimum so-far obtained float. Right extension
is symmetrical. Each non-discarded node is inserted on top of the stack for depth-first
search. For each node, the above mentioned lower-bound computations and dominance
checks can be done in linear time by precomputing the all-pairs longest path at minimal
durations.

4 Experimental results and concluding remarks

Experiments were conducted to compare the MIP formulations (a), (b) that were directly
solved by Cplex, the Dubois et al. [4, 5] Path algorithm, an improved variant of the
Path algorithm1 and the branch and bound algorithm. We generated random network
instances using RanGen [2]. We display below a comparison of algorithm average CPU
time in seconds for increasing order strengths OS (OS measures the network density [2]).

MIP (a) MIP (b) Path Improved Path Branch and bound

OS=0.5 44.62 4.99 0.21 0.12 0.01
OS=0.8 197.49 23.12 52.71 33.96 0.02
OS=0.9 99.52 17.43 (stopped) 2843 0.02

We conclude that the proposed branch and bound algorithm outperforms all other
methods thanks to the proposed dominance rule and lower bound. MIP formulation (b),
which, requires exactly n iterations, performs better than the MIP (a) formulation that
requires less iterations at the expense of a larger search space. Both perform better than
the Path algorithm and its improved variant for high-density networks.

References
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Allocating Resources in Clouds of Game Servers

Tao Li ∗ Joel Wein (Speaker) †

1 Introduction

Moving applications to a distributed cloud of servers and delivering them remotely is
an important trend in all of computing; therefore it is not surprising that it is being
investigated for digital games as well, given the great popularity of digital games as
a mode of entertainment. Traditionally, a digital game is played at a local computer
or game console. In a distributed or cloud-based model the computing element that
produces the game content (“game server”) is remote, and the user sends instructions
to the remote server, which processes them, calculates the next set of game state and
graphics, and delivers them over the network to the player, often encoded as a video
stream. Currently there are a handful of companies in their infancy that offer such
services, but with significant limitations.

We introduce resource allocation problems encountered while designing a system
to serve collections of interactive digital games from a cloud of remote servers. We
discuss experiments that inform our modeling of the problem domain, define two classes
of relevant resource allocation problems, and briefly point to initial simulation results
for enhanced algorithms. It is our sense that this research introduces interesting and
practical algorithmic questions that will be of interest to the MAPSP community.

The problem of optimizing resource allocation for game servers to deliver digital
experiences has significant differences from traditional distributed systems scheduling.
First, most digital games are generated in a loop, each iteration of which produces a
frame that is ready for delivery over a network. Each iteration requires both CPU and
GPU (Graphics Processing Unit) resources so the scheduling considerations are more
closely related to those of shop scheduling than to those of single or multiprocessor
scheduling. Second, the latency constraints are quite strict for games to be playable.
If a game freezes at the wrong moment and as a result a character is eliminated after
hours of careful building ... for those who play digital games, no further elaboration is
necessary.

We are working towards building a two-tier system that serves multiple games from
a cloud of game servers in a resource-efficient way. The higher tier will make decisions
about which games to assign to which servers, while the lower tier will make good
scheduling decisions on each server to effectively serve the assigned games. We know
of no prior work that defines or studies the algorithmic issues in such a system; the
closest we have found is one project that defines a general architecture for the delivery
of graphics applications from a cloud [3] and another that discusses how to steal compute
cycles from a collection of servers, each of which is serving one graphics application [2].

∗tli01@students.poly.edu. Polytechnic Institute of NYU
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2 Problem 1: Scheduling One Server

We have done substantial experimentation and instrumentation of popular digital games
which has enabled us to devise a first simple model of one underlying scheduling problem.
We have a number of games to schedule on one server. The server has one CPU and
one GPU. Each game g(i) runs in a loop, first requiring p(i) time on the CPU and then
(not necessarily immediately thereafter) q(i) time on the GPU. Each game also has a
frame rate f(i). At most one game can be utilizing the CPU at any time and at most
one game can be utilizing the GPU at any time; the goal is to construct a schedule that
respects these constraints while optimizing criteria to be discussed momentarily.

Obviously this initial model is much simplified. It ignores the “multiple threads on
multiple cores” nature of the CPU processing, the smaller intervening spikes of CPU
and GPU utilization, and the fact that the game likely does not utilize the entire CPU
while processing. However, the model captures key elements of the scheduling challenge
while maintaining a simplicity that can lead to implementable solutions of value. We have
developed a set of test workloads based on our afore-mentioned detailed instrumentations
and done simulations to develop appropriate scheduling policies for these workloads.

The goal of a scheduling policy is to schedule as many games on one server as possible
while providing a sufficient quality of service to each player. More specifically, if the
problem is within capacity - namely it is possible to schedule all the games at their
desired frame rates – we’d like to schedule all these games so as to allow each to achieve
its’ appropriate frame rate. If the problem is over capacity the goal is to schedule all these
games as best as possible while bounding the degradation of the player’s experiences.
We could have several goals in bounding this degradation: define a minimal acceptable
frame rate for each game (below its usual rate) and keep each game as close as possible
to it, or degrade all games by the same percentage, or reduce the frame rates of the
games with higher frame rates first preferentially.

Additionally, a key element in the successful delivery of a game over a network is
making the game experience sufficiently responsive so that the end user is unconcerned
that the computer that is generating the experience is remote. Claypool and coauthors
broadly categorize digital games into three categories: first person shooter, sports/role
playing, and real-time strategy, and argue that in order to achieve playability, the games
respectively need response times not exceeding 80 ms, 150 ms and 400 ms [1]. While
internet latencies are variable and dependent on many factors, as a general rule of thumb
20-30 ms should usually be sufficient for a one-way trip of 1000 miles in the US. So,
crudely estimated, if client and server are within 20-30ms of each other, and processing
can happen in 20 or so ms, it should be possible to achieve playability.

Thus there are two important elements in achieving playability in a cloud of game
servers: (1) efficient processing of user input and production of game state at the server,
and (2) delivery of the produced graphical content to the end user. Our focus in this
project is on optimizing (1) and exploring how such optimization can lead to relaxation
of the constraints for (2). There is, in fact a multidimensional tradeoff between the load
on the game server, the service requirements of the games being served, and the set
of game servers that are feasible for a particular client. In addition, the production of
certain frames must be treated as higher priority, as they must be serviced to achieve
the latency requirements in order to indicate responsiveness and achieve playability. If
the end user is not doing anything, the rate at which frames are produced can be lower.
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If the user enters input, a response must be generated within latency bounds. We call
such frames that must be generated within these latency bounds vital frames.

We note that the scheduling domain we have presented can be characterized as a two-
machine flowshop. Simple variants of that problem, such as optimizing the makespan,
can be solved in polynomial time. The variant we consider here however, with the
multiple repetitive operations of loop iterations, and the imposed deadlines for vital
frames, is likely NP-hard; a simple heuristic with a provable performance bound would
be of great value.

We have conducted experiments on workloads generated from our instrumented data,
and developed an algorithm called VFDL (“Vital Frame Deadline”) that, when compared
to naive scheduling approaches, such as FirstComeFirstServed(FCFS), in high-load set-
tings, can achieve better rates of frames delivered per second while enabling all games
to be delivered with sufficient responsiveness to insure playability, while FCFS misses
playability latency constraints by 10-15% for the majority of served games.

3 Problem 2: Resource Management Across Multiple
Servers

As each game to be scheduled on a server iteratively uses first the CPU and then the
GPU, the choice of games assigned to a server will substantially impact the resource
utilization of that server. For example, if all games assigned to a server had CPU
requirements of duration far in excess of their GPU requirements, the GPU would sit idle
much of the time. Therefore, there is a need for a game assignment strategy, preferably
online, as game players arrive over time, that assigns games to servers in a fashion that
balances and optimizes CPU and GPU utilization. We have developed new assignment
strategies for this problem but omit discussion in this abstract.
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Scheduling and performance of divisible MapReduce

applications

Joanna Berlińska ∗ Maciej Drozdowski (Speaker) †

1 Introduction

We consider scheduling MapReduce parallel application [2, 5] as two divisible computa-
tions working in tandem, and then study its performance determinants.

MapReduce [2, 5] is a distributed processing paradigm which consists in dividing
computations on big data sets into two steps of mapping and reducing. In the mapping
step a file (the dataset) is distributed between m mapper machines, each of which pro-
duces a set of (key1, value1) pairs using a Map function. The set of (key1, value1) pairs
produced on a mapper is divided into r parts. Each of such parts is dedicated to one
reducer machine. The reducers process the m input data parts using a Reduce function
and produce yet another set of (key2, value2) pairs. For example, in the inverted in-
dex computation all documents comprising certain words must be identified. The Map
function emits pairs (word, docID) for each word encountered in the input data, where
docID is a document identifier (e.g. a URL). In the Reduce function (word, docID)
pairs are sorted, and finally pairs (word, list docIDs) are emitted, where list docIDs is
a sorted list of docIDs of the files comprising the word.

Divisible load model is a scheduling model of parallel computations assuming that
computations are arbitrarily divisible, and can be performed independently in parallel.
The divisible work medium is generally termed load, and in most cases refers to big
datasets. The assumption on the divisibility and independence of computation grains is
fulfilled with good accuracy by many practical applications: search for patterns in text
and database files, processing measurement data, image and video processing, linear
algebra. Surveys of Divisible Load Theory (DLT) can be found, e.g., in [1, 3, 4].

The problem consists in dividing the input file of size V into parts α1, . . . , αm for m
mapper computers and scheduling communications in a network with limited bandwidth,
so that schedule length is minimum.

2 A scheduling model

The two-step MapReduce, from the scheduling point of view, involves five stages of
communication and computation. The first stage is computation startup, which includes,
e.g, code deployment. We assume that activation of each processor takes S units of time,
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and the processors are activated consecutively. Thus, all processors are activated in time
mS. The second step is mapping. We assume that reading remote data, processing it
and storing the results for further reducing is performed with rate Ai on mapper i. Thus,
load αi is processed on the ith mapper in time Aiαi. A constant fraction γ of the results
is produced by all mappers. For example, mapper i produces γαi bytes of output in r
files of roughly equal size γαi/r. In the third stage the files are transferred to the reducers
over a network with communication rate C, and bandwidth limited to l/C. The limit l
means that at most l concurrent communication channels can be opened in the whole
network without reduction of the speed. We will call it bisection width limit. Hence, all
the results of mapper i could be read by the reducer machines in time Cγαi provided that
there were no bisection width limit. Hence, the communications have to be scheduled
to avoid congestion. The fourth step is reducing which lasts tR = sred + aredx log x
units of time for x bytes of input load. Thus, the reducing time includes startup sred,
and nonlinear component aredx log x representing sorting time. The fifth step is storing
the reducing results for further processing. However, we assume that the resulting files
remain on the reducers, and the duration of this step is included in the reducing time tR.
Since reducers receive roughly equal load γV/r and work independently, the scheduling
problem boils to minimizing the length of the partial schedule including the first three
stages: startup, mapping, and mapper to reducer communication.

Two algorithms for load partitioning have been proposed. Below we outline the
simpler one, which ignores the bisection width limit l. It is assumed in this method that
mapper computers are activated one by one, and the time of computation on mapper i
and exporting its results to the first reducer is equal to the time of starting mapper i+ 1
and computing on it. This leads to a system of linear equations

(Ai + γC/r)αi = S +Ai+1αi+1 for i = 1, . . . ,m− 1 (1)
m∑
i=1

αi = V (2)

which can be solved in O(m) time for αi. Then, the schedule length is

m
max
i=1
{iS + αi(Ai + γC) +

γC

r

m∑
j=i+1

αj}+ tR (3)

A different algorithm based on linear programming was designed to account for the
bisection width limit l.

3 Performance implications

The performance simulations lead us to the following conclusions:

• Since the order of complexity of reducing is higher than for the other stages,
MapReduce scales well with the number of reducers r.

• It seems that sorting in the reducing stage is a bottleneck for the performance of
MapReduce.

• The amount of results γV produced by the mappers is a key parameter controlling
performance of MapReduce. The value of γ determines the balance of the work
between mapping and reducing.
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• Increasing bandwidth between mappers and reducers, be it by increasing the num-
ber of channels l or the communication speed 1/C, has similar effect.

4 Conclusions and future work

To our best knowledge, it is one of the first attempts of analyzing MapReduce, as well
as two divisible applications working in tandem, i.e. when the first one produces load
for the second one. Communications between the computations are explicitly scheduled.

Further study may include, for example, unequal load partitioning between the re-
ducers, more advanced scheduling of communications, longer chains of divisible compu-
tations.
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Cyclic Scheduling - New Application and Concept of Core

Precedences

Zdeněk Hanzálek (Speaker)† Claire Hanen ∗ Přemysl Š̊ucha †

1 Introduction

Cyclic resource constrained project scheduling problem with temporal constraints (cyclic
RCPSP/TC) is a useful way to model scheduling problems occurring either in code gener-
ation for VLIW architectures as well as in production systems. We studied the scheduling
problems [1] induced by the IEEE 802.15.4/ZigBee [2], Wireless Sensor Network (WSN),
and we observed that the problem has a cyclic scheduling nature.

In this paper, we introduce a new kind of constraints, called core precedence con-
straints, in a cyclic RCPSP/TC. We use them to model energy saving in a ZigBee
scheduling problem. Then we study the impact of these new constraints on an efficient
approach for cyclic RCPSP/TC, the decomposed software pipelining. Using 3-SAT we
prove that our problem is NP-complete even if there are no resource constraints.

1.1 Motivating problem

The IEEE 802.15.4/ZigBee standards are leading technologies for low-cost, low-power
and low-rate WSNs. In the beacon-enabled variant, the paths of the data flows are
determined by the tree topology.

We consider that all communication nodes may have sensing or/and actuating ca-
pabilities, therefore they can be sources or/and sinks of periodic data flows. The data
flows traverse different clusters on their routing paths from the source nodes to the sink
nodes. Particular task represents communication of given data flow in the given cluster.
Each data flow is represented by an acyclic oriented graph consisting of tasks and their
precedence relations. The clusters may have collisions when they are in the neighbor-
hood. Thus, the key problem is to find a periodic schedule which specifies when the
clusters are active while avoiding possible inter-cluster collisions and meeting all data
flows’ end-to-end deadlines.

The cyclic nature of the problem is given by the three aspects: (1) In order to
ensure minimal energy consumption, the cluster is active only once during the period.
Therefore, all the flows in the cluster are joined together and the cluster is inactive in
the rest of the period. (2) The flows can have opposite directions, and therefore the
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best phasing (i.e. complete occurrence of the flow is executed in one period) of cluster
activity in one direction is the worst phasing in the opposite direction (i.e. complete
occurrence of the flow is executed in k periods, where k is the longest chain of clusters
traversed by the two flows) . (3) End-to-end delay, given as a time between the instant
when a source cluster i starts to communicate the message and the instant when the
sink cluster j receives this message, is bounded by deadline d̃ij .

2 Definition of the problem with core precedences

In the cyclic RCPSP/TC model, a set T of n tasks with processing time {pi}1≤i≤n is
supposed to be executed infinitely many times. For each task Ti, and each integer q,
we denote by T qi the qth occurrence of task Ti. An infinite schedule s assigns to each
occurrence T qi of task Ti a starting time sqi .

We focus on periodic schedules, i.e. schedules such that each task is repeated every
λ time unit: ∀Ti ∈ T , sqi = si + (q − 1)λ, where si is the starting time of the first
occurrence of Ti and λ is the period of the schedule.

The resource constraints are defined as follows: There are m resource types. Avail-
ability of resource type k ∈ {1, . . . ,m} is denoted by Rk. To each task Ti and each type
of resource k is associated an integer request rik, such that each occurrence of Ti uses
rik units of type k resource during its execution. If s is a schedule then for any time unit
t, and any resource k, the number of resource requirements made by the tasks T qi such
that sqi ≤ t < sqi + pi is not greater than Rk.

The usual model for cyclic precedence constraints is called “uniform precedences”.
Such constraints are defined by a bivalued graph GU = (T , EU ) with integer valuations l
and h called respectively length and height of its arcs. For an arc a = (Ti, Tj) we denote
by lij its length and by hij is height. For a periodic schedule, a uniform constraint
induces a simple linear inequality: sj − si ≥ lij − λhij .

This model is convenient to represent the precedence relations within each data flow
of our motivating problem. Indeed, if two tasks of data-flow communicate (from a
cluster to a neighbor cluster), this communication may induce a precedence constraint
with delay between occurrences of these two tasks belonging to the same iteration, and
thus induce a uniform precedence constraint with height equal to 0.

The end-to-end delay d̃ij can be modeled by a uniform constraint from Tj to Ti with
length pj − d̃ij and height 0.

Let s be a periodic schedule of period λ. It is useful to consider another representation
of s: For a task Ti, we decompose si, the starting time of its first occurrence modulo
period λ. We call retiming of Ti, and denote by αi the greatest integer such that there
exist σi ∈ [0, λ) with si = σi + αiλ. Where (σi)i∈{T } is called the core of the periodic
schedule. Thus, σi is an acyclic schedule of tasks that fulfills the resource constraints.
The retiming αi models the span of the schedule of an iteration over different periods.

A uniform precedence constraint (Ti, Tj) induces the following inequality:

σj − σi ≥ lij − λ(hij + αj − αi) (1)

2.1 Core precedence constraints

Now, in our example, the constraints that bind the tasks in a cluster in order to insure
minimal energy consumption cannot be modeled by uniform precedence constraints.
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Thus we introduce a new type of constraints, called core precedences, aimed at modeling
these constraints. A core precedence constraint links the core execution times of two
tasks Ti and Tj with a time lag denoted by cij ∈ Z

σj − σi ≥ cij (2)

We consider a graph GC = (T , EC) of such core constraints in addition with an
instance of the cyclic RCPSP/TC problem.

Notice that a core precedence links the execution times of tasks occurrences in any
period interval of the steady state of a periodic schedule, regardless of the iteration
number of the considered occurrences.

So, it shares this indifference with usual resource constraints, whereas it shares the
notion of precedence with uniform constraints. Such constraints might also result from
partial choices with respect to usual resource constraints.

2.2 Modeling energy efficiency in ZigBee by core precedences

In our motivating example, all tasks of the different data-flows that use a given cluster are
supposed to be grouped during each period, so as to minimize the energy consumption,
regardless of the iteration number of the concerned data-flow.

This can be modeled by a cluster dummy task Ti representing the starting of the
cluster activity with processing time 0. For each task Tj of a data flow passing through
the cluster, we can define two core precedences : (1) (Ti, Tj) with core value 0 that model
the fact that the data-flow task always starts after the dummy task in any period. (2)
(Tj , Ti) with core value −(x − pj) where x is the maximum allowed activation interval
of the cluster in a period.

In this way we ensure that all tasks performed by the cluster are executed within x
time units and that the cluster is inactive in the rest of the period.

3 Reported work

At the workshop we will present: (1) ILP model for a cyclic RCPSP/TC with uniform
and core constraints assuming fixed period λ. (2) We recall the main features of the
decomposed software pipelining (DSP) [3], and we discuss its extension to handle core
constraints. (3) Using 3-SAT we prove that our problem is NP-complete even if there
are no resource constraints. (4) We present a heuristic algorithm being a priority-rule
based method with unscheduling step.
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Flow Shop Scheduling for Sustainable Manufacturing

Kan Fang∗ Nelson A. Uhan (Speaker) † Fu Zhao‡

John W. Sutherland §

Under the pressures of global climate change, rising energy costs and the importance
of energy security, manufacturing enterprises are paying more and more attention to
reducing their energy consumption and carbon footprint. Until recently, most of the
focus in this regard has been on improving the energy efficiency of manufacturing equip-
ment. However, using existing machinery more effectively—for example, through better
scheduling strategies—may also lead to significant reductions in energy and power con-
sumption and carbon footprint. In this work, we examine scheduling as a means to
address the environmental concerns arising with manufacturing enterprises. In particu-
lar, we study a shop scheduling problem with energy- and environment-related criteria,
in addition to the classic time-related objectives.

The scheduling problem we study is as follows. We are given a set of jobs J =
{1, . . . , n} and a set of machines M = {1, . . . ,m} in a flow shop environment. In
particular, each job j ∈ J must be processed nonpreemptively on each of the machines,
and the machines are ordered so that a job cannot start on machine i until it is completed
on machine i− 1, for i = 2, . . . ,m. Each job on each machine can be run at a different
speed. We consider two different assumptions on the available machine speeds:

(i) Discrete speeds. In this case, the processing time of job j ∈ J on machine i ∈ M
at speed s ∈ S = {1, . . . , d} is pijs. The power consumption of machine i ∈ M
when processing job j ∈ J at speed s ∈ S is qijs. Note that this case allows for an
arbitrary relationship between speed and power.

(ii) Continuous speeds. In this case, job j ∈ J on machine i ∈ M requires pij units
of work. A job that requires p units of work and is processed at speed s has a
processing time of p/s. In addition, the power consumption of a machine running
at speed s is Ksα for some constants α ≥ 1 and K ≥ 0.

We also consider two different assumptions on the intermediate storage between ma-
chines: (i) unlimited intermediate storage, and (ii) zero intermediate storage (sometimes
referred to as “blocking”), in which a completed job cannot proceed to the next machine
until all jobs already being processed on the next machine are finished. The peak power
consumption of a schedule is the maximum total power consumption of all machines
over all time instants. Peak power consumption is a common basis of energy costs in the

∗fang19@purdue.edu. School of Industrial Engineering, Purdue University, West Lafayette, IN, USA.
†nuhan@purdue.edu. School of Industrial Engineering, Purdue University, West Lafayette, IN, USA.
‡fzhao@purdue.edu. Division of Environmental and Ecological Engineering and School of Mechanical

Engineering, Purdue University, West Lafayette, IN, USA.
§jwsuther@purdue.edu. Division of Environmental and Ecological Engineering, Purdue University,

West Lafayette, IN, USA.

168



manufacturing industry. The objective is to find a schedule that minimizes the makespan
while ensuring that the peak power consumption is at most Qmax.

There is a considerable body of related work on speed scaling scheduling in the
computer science community. For an older survey of the work in this area, we refer the
reader to [5]. Some examples of more recent work includes [1–4, 8, 9] (note that this
list is by no means complete). In this body of work, each job typically needs to be
processed on a single machine (either in single or multiple machine environments). This
differs from typical manufacturing environments, in which each job needs to be routed
through multiple machines in a shop environment. In contrast to the speed scaling
literature, the literature on reducing environmental impacts in manufacturing scheduling
is rather sparse. Mouzon et al. [6] considered the problem of scheduling jobs on a single
CNC machine to minimize the total energy consumption and total completion time, and
showed that better scheduling strategies significantly reduce total energy consumption.
Mouzon and Yildrim [7] looked at the same single machine problem, except minimizing
total energy consumption and total tardiness. To the best of our knowledge, our work is
the first to consider shop scheduling with energy- and environment-related constraints.

Contributions of this work. We investigate both mathematical programming and
combinatorial approaches to the different variations of the scheduling problem described
above. In particular:

• For the case of discrete speeds and unlimited intermediate storage, we propose
two mixed integer linear programs, one using linear ordering variables with dis-
junctive constraints, and the other using positional and assignment variables. We
investigate the relative strength of these formulations. In addition, using CPLEX
and Gurobi, we study the computational performance of these two formulations
on a set of hypothetical instances arising from the manufacturing of cast iron
plates with slots. Preliminary results indicate that even relatively small instances
(m = 2, n = 36, d = 2) are computationally challenging. These mixed integer pro-
grams can be extended to include constraints on the carbon footprint of a schedule.
The carbon footprint of a schedule is linearly proportional to the schedule’s total
energy consumption, where energy is power integrated over time.

• For the case of continuous speeds, zero intermediate storage, and two machines
(m = 2), we show that there exists an optimal schedule in which the total power
consumption at any time instant is exactly Qmax. In addition, we show that this
problem can be seen as a special case of the asymmetric traveling salesman problem.
Furthermore, if the work of jobs is consistent across machines (i.e. p1j ≤ p1k

implies p2j ≤ p2k for all j, k ∈ J ), then an optimal schedule can be found in
O(n2) time. In addition, if p1j = p2j ≡ pj for each job j ∈ J , then an optimal
schedule can be found in O(n log n) time; in particular, if the jobs are sorted so
that p1 ≤ p2 ≤ · · · ≤ pn, then the schedule (1, 3, 5, . . . , n, . . . , 6, 4, 2) is optimal.

• For the case of discrete speeds, zero intermediate storage, and two machines, we
show again that the scheduling problem can be seen as a special case of the asym-
metric traveling salesman problem.

• For the case of continuous speeds, unlimited intermediate storage, and two ma-
chines, we show that when the total power consumption at any time instant is ex-
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actly Qmax, given a fixed permutation of the jobs, an optimal schedule (i.e. machine
speeds for each job) can be found in polynomial time by dynamic programming.
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Mathematical modelling of a real flexible job shop in aero

engine component manufacturing

Karin Thörnblad (Speaker) ∗ Michael Patriksson †

Ann-Brith Strömberg ‡ Torgny Almgren §

1 Introduction

We formulate two mixed integer programming models stemming from a real flexible
job shop problem with a total of ten resources and five main processing multipurpose
machines. The models are compared w.r.t. memory usage, computation times, and
accuracy.

The job-shop, called the multitask cell, is supposed to carry out a large variety of
jobs since five of the cell’s resources are multi-purpose machines that are able to process
three types of operations: milling, turning, and drilling. Typically, each product visits
the multitask cell multiple times on its way to completion. Inside the multitask cell
each part follows a specific routing consisting of three to five operations, starting and
ending respectively with the mounting and removing of fixtures at one of the three set-up
stations. The second operation is always processed in one of the multitask machines.
Some parts need manual and/or robot deburring. Figure 1 shows a part’s possible path
in the cell drawn with dashed lines.

Figure 1: A schematic overview of the production cell.
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2 The time-indexed formulation

Due to initial problems with high computation times, the model has been decomposed
into two to be solved in sequence. The first model, called the machining model, finds
an optimal sequence of operations for each of the five processing machines. The second
model, henceworth called the feasibility model, generates a feasible schedule for all ten
resources, with the optimal sequence for the five processing machines as input data.
The loss of accuracy from this decomposition is very small since the workload of the
processing resources are much higher than for the other resources. In [1] we present the
first developed machining model, here called the engineer’s model. The feasibility model
is based on the same logic. These two models work well, but the computation times still
are far too long for practical usage.

Therefore, we have developed a new model using discrete time steps, inspired by [2]
and [3], in order to find the optimal sequences of operations for the processing resources.
The discretization approximates all data in multiples of the length of the discrete time
interval chosen, and hence the final schedule may alter from the result of the engineer’s
model.

The main decision variables are defined as

xjku =

{
1, if job j starts at resource k at the beginning of time interval u,
0, otherwise.

The discrete time machining model minimizes the sum of the total tardiness (hj) and
completion time (sj) for all jobs j ∈ J and is formulated as to

minimize
∑
j∈J

(sj + hj), (1a)

subject to
∑
k∈K

∑
u∈T

xjku = 1, j ∈ J , (1b)∑
u∈T

xjku≤λjk, j ∈ J , k∈K (1c)

u∑
ν=(u−pj+1)+

xjkν +
u∑

µ=(u−pq+1)+

xqkµ≤ 1, j, q ∈ J , j 6= q, k ∈ K, u = 0, . . . , T, (1d)

∑
k∈K

xjku +

u+v
pm
jq−1∑

ν=0

xqkν

≤ 1, (j, q) ∈ Q, u = 0, . . . , T − vpmjq + 1, (1e)

xjku = 0, (j, q) ∈ Q, k ∈ K, u = T − vpmjq , . . . , T, (1f)∑
k∈K

∑
u∈T

uxjku + pj + p
pm
j = sj , j ∈ J , (1g)

sj − hj ≤ dj , j ∈ J , (1h)
hj ≥ 0, j ∈ J , (1i)

xjku = 0, j ∈ J , k ∈ K, u = 0, 1, . . . , rj , (1j)
xjku = 0, j ∈ J , k ∈ K, u = 0, 1, . . . , ak, (1k)
xjku ∈ {0,1}, j ∈ J , k ∈ K, u ∈ T , (1l)

where (u)+ := max{0, u} for all u ∈ T , rj and dj denotes realease and due dates
respectively, v

pm
jq is the planned lead time between preceding machining operations, pj is

the processing time, and λjk is 1 if a job is allowed to be processed on a resource, and 0
otherwise.
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3 Computational results

Presently, the multitask cell is processing about 30 different machining operations on
eight different products. Results from the engineer’s model and the discrete time model
with varying discrete time intervals were compared for six real data scenarios collected
from the cell during the autumn of 2010. For each scenario, we created up to ten
different instances, comprising the first 5m jobs in the current queue to be scheduled,
where m ∈ {1, . . . , 10}.

The starting and completion times obtained from the optimal solution of the discrete
machining model are given in terms of multiples of the length of the discrete time interval
`, and the optimal value of the objective function differs from that of the engineer’s model.
Therefore, the completion times sj are recalculated using the original non-discrete data
while retaining the ordering of operations on each processing machine received from the
discrete time model. The optimal value after this postprocessing is then compared with
the optimal value from the engineer’s model.

Although the smallest processing time for the multipurpose machines was 0.6h (the
largest was 22.4h), the optimal value of the discrete time maching model with a discrete
interval length of at most 1h were identical with that of the engineer’s model for all
instances except one with 20 jobs, that we were able to solve using this model.

The computations were carried out using AMPL-CPLEX12 as optimization software
on a computer with two 2.66GHz Intel Xeon 5650, each with six cores. The total memory
was 48 Gbyte. Optimum was reached for all problem sizes with at most 15 jobs for the
engineer’s model, and with at most 45 jobs for the discrete time model. No results were
obtained for four of the instances with 20 jobs and more for the engineer’s model, since
CPLEX ran out of memory, and the same happened for instances with 50 jobs and more,
for the discrete time model with time interval length of 1h. This should however, not
cause any problem for the real application, since the maximum amount of storage in the
multitask cell is around 35 parts.
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[1] K. Thörnblad and A-B. Strömberg and T. Almgren and M. Patriks-
son (2010). Optimization of schedules for a multitask production cell. 22nd Nofoma
conference proceedings, Kolding, Denmark.

[2] J.M van den Akker and C.A.J. Hurkens and M.W.P Savelsberg (2000).
Time-Indexed Formulations for Machine Scheduling Problems: Column Generation.
INFORMS Journal on Computing 12, 111–124.

[3] L.A. Wolsey (1997). MIP modelling of changeovers in production planning and
scheduling problems. European Journal of Operational Research 99, 154–165.

173



An exact polynomial time algorithm for the preemptive

mixed shop problem with two unit operations per job

Aldar Dugarzhapov ∗ Alexander Kononov (Speaker) †

1 Introduction

Shop scheduling problems appear ubiquitously in modeling of many real-life phenomena
such as manufacturing production lines, packet exchange in communication networks,
timetabling, etc. These problems received much attention from researchers in different
communities. Recently, new exact polynomial-time algorithms were obtained for job
shop and mixed shop scheduling problems with at most two unit operations per job. We
consider a preemptive counterparts of these shop scheduling problems and present new
exact polynomial time algorithms for the mixed shop problems.

Mixed Shop Scheduling Problem. In shop scheduling problems, the processing of
each job is split into several operations. We are given a set of n jobs J = {J1, . . . , Jn}
and a set of m machines M = {M1, . . . ,Mm}. Each job Jj consists of νj operations
O1j , . . . , Oνjj , where each operation Oij has to be completed on the specific machine
Mk ∈ M during pij time units. The value pij is called the processing time or length of
the operation Oij . The schedule is called feasible if at any moment in time every job
can be processed by at most one machine and every machine can execute at most one
operation. Every operation can be preempted allowing the execution of other operations.
The execution of the interrupted operation can be resumed later on the same machine.
The goal is minimizing the makespan.

The two basic models of shop scheduling problems or their sub-problems are consid-
ered in scheduling literature.

Job Shop: The operations O1j , . . . , Oνjj of the job Jj define a sequence in which they
must be processed. In other words, the operation Oi−1,j must be completed before
the operation Oi,j starts.

Open Shop: The operations O1j , . . . , Oνjj of the job Jj can be executed in arbitrary
order.

A mixed shop is a combination of the job shop and the open shop and an instance
of the mixed shop problem can include the job shop jobs as well as the open shop jobs.
In this paper we will use the standard three-field scheduling notations. Job shop, open
shop and mixed shop problems with the goal to minimize the length of the schedule will
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be denoted respectively as 〈J | ∗ |Cmax〉, 〈O| ∗ |Cmax〉 and 〈JO| ∗ |Cmax〉, where in the
field ∗ the different restrictions on the problem parameters are listed. In our paper we
use the following restrictions: pij = 1 means that all processing time of operations are
equal to 1, op ≤ 2 means that each job has at most two operations. In addition, symbol
pmtn means that operations of jobs may be preempted.

2 Related results

To the best of our knowledge, Masuda et al. [3] considered the mixed shop problem
for the first time. They considered the non-preemptive case with two machines, at
most two operations per job and where all job shop jobs must be executed in the same
order. In that paper, an O(n log n) algorithm was proposed to construct a schedule with
minimum makespan. This result was improved by Strusevich in [7], [8], a polynomial
time algorithm was developed for the two-machine mixed shop problem with an arbitrary
order of executions of job shop jobs. We note that the different cases of the preemptive
and non-preemptive two-machine problems became NP -hard even for two jobs if the
number of operations is not fixed [2], [5]. For the comprehensive survey of the complexity
of other mixed shop problems see paper by Shakhlevich et al. [6].

In our paper we consider the special case of the preemptive problem with an arbi-
trary number of machines. We suppose that each job has at most two unit operations,
i.e. the processing time of each operation is equal to one. We denote this problem as
JOm|pmtn, pij = 1, op ≤ 2|Cmax if the number of machines is fixed and equal to m and
JO|pmtn, pij = 1, op ≤ 2|Cmax if the number of machines is the part of the input.

The restriction on the number of operations per job plays the crucial role to design
exact polynomial algorithms for the job shop and the mixed shop scheduling problems.
As shown in [1], the multigraph edge coloring theorem due to Melnikov and Vizing [4] can
be reformulated for the non-preemptive job shop scheduling problem with unit processing
times and at most two operations per job. This result implies polynomial time algorithm
for the job shop problem. Next in [1], this algorithm was extended to the non-preemptive
mixed shop problem.

3 Our results

Let us consider preemptive counterparts of shop scheduling problems with at most two
unit operations per job. We note that for any problem instance of the job shop problem
with integral data there exists an optimal preemptive schedule where all interruptions
and all starting and completion times occur at integral dates. Thus, the preemptive job
shop scheduling problem with at most two unit operations per job is redundant to its
non-preemptive version and can be solved in polynomial time.

For the mixed shop problem the situation is different. Let us consider the following
instance with four machines, four job shop jobs J2, J3, J4, J5 and two open shop jobs J1

and J6. Jobs J2 and J5 have first operations on machine 3. Jobs J3 and J4 have first
operations on machine 4. Jobs J2 and J4 have second operations on machine 2. Jobs J3

and J5 have second operations on machine 1. Job J1 has operations on machine 1 and
2. Job J6 has operations on machine 3 and 4. An optimal schedule has a length 7

2 and
it is shown on Fig. 1.
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Figure 1: An instance with a fractional optimal schedule

In our paper we present an exact polynomial time algorithm for the preemptive mixed
shop scheduling problem with at most two operations per jobs and obtain the following
results.

Theorem 1. Each instance of JO3|pmtn, pij ≤ 1, op ≤ 2|Cmax allows an optimal sched-
ule without preemptions.

Theorem 2. Problem JO|pmtn, pij = 1, op ≤ 2|Cmax is solvable in polynomial time.
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Efficient enumeration of optimal and approximate solutions

of the two-machine flow-shop problem

Sergey Sevastyanov (Speaker) ∗ Bertrand M.T. Lin †

We consider the “most classical” scheduling problem stated by Johnson in his seminal
paper [6], where he presented an exact efficient algorithm for the case of two machines.
(As is known now due to Garey, Johnson and Sethi [4], already three-machine problem is
strongly NP-hard.) According to the common three-field classification [5], the problem
is normally denoted as F2 ||Cmax. It can be formulated as follows.

We are given n jobs {J1, . . . , Jn} = J that should be processed on two machines: M1

and M2. Each job Jj has exactly two operations (Oj1 and Oj2) that must be executed
in the predefined order: first Oj1 on machine M1, and next Oj2 on machine M2, with
processing times aj and bj respectively. Each machine may process its operations also
consecutively, in a certain order that should be chosen in the course of problem solution.
One needs to find a schedule S with the minimum length, or the minimum makespan
denoted as Cmax(S).

As follows from the general project scheduling theory, to minimize the makespan
for a given flow shop, it suffices to restrict our consideration to active schedules only,
each uniquely defined by sequences of operations on machines M1 and M2. Moreover,
as shown by Johnson [6], we need not enumerate all combinations of two sequences of
operations on the machines. It suffices to consider only pairs of identical job sequences on
both machines (so called permutational schedules Sπ specified by a unique permutation
π of job indices), assuming that all n jobs (including those having zero length operations
on the corresponding machine) are elements of each sequence.

In his analysis of optimality of a given sequence, Johnson defined a relation ”�” on
the set of jobs:

Ji � Jj , if min{ai, bj} ≤ min{aj , bi}.
He found a sufficient condition for a sequence of jobs to be optimal (so called, Johnson’s
rule): a permutation of jobs (job indices) π = (π1, . . . , πn) is optimal, if

Jπi � Jπj , for all i < j. (1)

And though the relation ”�” does not define a linear order (for it is not transitive: for
three jobs J1, J2, J3 with vectors of processing times (5, 4), (2, 2), (3, 4) respectively, we
have J1 � J2, J2 � J3, which does not imply J1 � J3), Johnson showed that for any
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problem instance there always exist job sequences (being further referred to as Johnson’s
sequences) that satisfy (1). (As is well known, there may be many such sequences.)

A part of sequences implementing Johnson’s rule can be found with the help of two
ideas (so called, special Johnson’s rule). Let δj

.
= bj − aj be called a balance of job Jj ,

and let the whole set of jobs be partitioned into two subsets: JL and JR. All jobs in
JL (called left jobs) have non-negative balance, and all jobs in JR (right jobs) have non-
positive balance. The distribution of zero-balanced jobs among these two subsets may
be taken arbitrarily (which does not affect the ultimate result). The first idea is that the
left jobs should go first, and the right jobs should go next. The second idea prescribes
the left jobs follow in nondecreasing order of aj , and right jobs — in nonincreasing order
of bj . Since such a permutation meets (1), it defines an optimal active schedule. (As
became known later, any such permutation can be found in O(n log n) time.)

It can be seen that in the case when all operation processing times are different,
Johnson’s rule defines a unique job sequence, because relation (1) becomes a transitive
anti-symmetric relation. Yet in the case when some left jobs have equal-length operations
on machine M1, or some right jobs have equal-length operations on machine M2, or there
are jobs with zero balance, Johnson’s sequence becomes not uniquely defined. In general,
Johnson’s rule provides a wide variety of optimal job sequences, giving a possibility for
choosing the desired solution from among a wide family of optimal solutions and enabling
one to optimize some additional criteria.

Among the papers addressing the issue of enumeration of all job sequences that
meet Johnson’s rule, we can mention the book by Bellman, Esogbue and Nabeshima [1],
where a so called General Working Rule (GWR) was derived, enabling one to generate
any Johnson’s sequence of jobs. This rule can be easily transformed into an efficient
procedure of enumerating all Johnson’s sequences without repetition.

However, it is clear that in general case the set of optimal sequences is not limited to
Johnson’s sequences only, because rule (1), while being sufficient, is not necessary for a
sequence of jobs to be optimal. So, the problem of enumerating all optimal permutations
of jobs for F2 ||Cmax problem is more general, and is of its own interest. A number of
authors addressed this issue, trying to design various enumeration procedures that would
be more effective than the direct enumeration of all n! permutations of n jobs (see,
e.g., [8], [9], [3], [2], [7]). Yet they could not guarantee efficiency of their procedures.
Moreover, in none of the above mentioned papers a definition of “efficiency” for an
enumerative procedure was given. In this paper we adhere the following definitions.

Definition 1. We say that a listing algorithm has polynomial delay if the time required
to generate each new output element (as well as the time after the last output before
halting) is polynomial in the input size.

Definition 2. We say that a listing algorithm is polynomial space if at any step it
consumes memory space polynomial in the input size.

In this paper we present the first (up to our knowledge) algorithm that enumerates
all optimal job permutations for the two-machine flow-shop problem with polynomial
delay and polynomial space. In fact, our result is somewhat more general.

Definition 3. A sequence π of job indices is ∆-optimal, if Cmax(Sπ) ≤ B+ ∆, where B
is the total load of machine M2.

Our main result consists in designing an algorithm A(∆) and proving the following
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Theorem 4. For any given ∆ ≥ 0 and a given instance of problem F2 ||Cmax, algorithm
A(∆) enumerates all ∆-optimal permutations of n jobs without repetition. The algorithm
is polynomial-delay, spending O(n log n) time for generating each new permutation and
for halting, when all proper permutations are enumerated. The algorithm is polynomial-
space, consuming O(n) memory space at every step of the algorithm.

The result of this type may be useful for purposes of multi-criteria optimization.
Our next result concerns the structure of the set of optimal solutions. Given an in-

stance of our problem, let its ∆-optimal permutations of jobs be considered as vertices of
a graph G∆. Two permutations π′ and π′′ are connected by an edge, iff one permutation
can be obtained from the other by a transposition of two neighboring elements. We
proved the following

Theorem 5. For any ∆ ≥ 0 graph G∆ is connected.

Corollary 6. Any optimal permutation of jobs can be obtained from any Johnson’s
(optimal) permutation by consecutive transpositions of neighboring elements, so that all
intermediate permutations are also optimal.
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Efficient enumeration of optimal and approximate solutions

of the two-machine flow-shop problem

Roman Čapek (Speaker) ∗ Přemysl Š̊ucha Zdeněk Hanzálek

1 Introduction

This research is motivated by the production processes that involve several ways how to
complete a product (e.g. wire harnesses production in Styl Plzeň). In other words, more
process plans can be defined for one type of a product. Since only one of these process
plans has to be chosen, we call them alternative process plans. Traditional scheduling
approach (see [1]) assumes an exactly given set of activities and therefore there is only
one process plan. We use an approach extended by a formulation of alternative process
plans where so called alternative branchings can be defined to model the possibility of
choice. In our approach, both the traditional scheduling and the decision which activities
will be present in the schedule are integrated into one problem.

In this paper, we focus on the scheduling on dedicated machines considering sequence
dependent setup times and alternative process plans while the goal is to minimize the
total weighted tardiness (TWT).

2 Related Works

Abdul-Razaq et al. [2] and Madureira [3] published a survey of scheduling techniques for
the single machine total weighted tardiness (STWT) problem. Recently, many authors
employed evolutionary algorithms to solve the total weighted tardiness problem. Chou
[4] presented an experienced learning genetic algorithm, Anghinolfi [5] used a discrete
particle swarm optimization and Tasgetiren [6] published a discrete differential evolution
method for solving the STWT problem. On the other hand, up to our best knowledge
there is no work dealing with the total weighted tardiness and alternative process plans
on dedicated machines and therefore we focus on such a case. In our previous work ( [7]),
we have focused on the resource constrained project scheduling problem with positive
and negative time-lags while minimizing the schedule length. In the present paper, we
also use the alternative process plans but the criterion is adapted to take into account
due dates. Moreover, problem constraints are also modified such that simple precedences
are assumed instead of generalized temporal relations.
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3 Problem Statement and Solution Method

We consider a problem of scheduling a set of n activities A = {1 . . . n} on a set of
m dedicated machines M = {M1 . . .Mm}. Processing time pj , due date dj and the
machine dedication θj are given for each activity. The problem can be formulated as
PD |res m11, oij , alts|

∑
wj · Tj using the well-know α|β|γ notation [1, 8]. More pre-

cisely, we deal with the non-preemptive scheduling where activities are constrained by
the precedence relations (included in alternative process plans). The term ’res m11’
represents the fact that each activity requires at most one unit of a resource and each
resource has a capacity equal to one. Finally, oij denotes the presence of the sequence
dependent setup times and alts stands for the alternative process plans. The goal of
the scheduling is to minimize the objective function

∑
wj · Tj , i.e. the total weighted

tardiness where Tj = max (0, sj + pj − dj) stands for the tardiness of activity j, sj is the
start time and wj is the weight of activity j.

To solve the proposed model, we use the discrete differential evolution (DDE) algo-
rithm proposed by Tasgetiren [6]. For our PD |res m11, oij , alts|

∑
wj · Tj problem, we

have to extend the selected method to handle alternative process plans at first. The
algorithm has to return not only the sequence of activities on each machine (and conse-
quently also start times of activities) but also the presence of activities in the schedule.
Therefore, we have to extend the population based method by a functionality of selecting
and rejecting of activities according to the defined alternative process plans. Further-
more, the algorithm has to be also extended to handle different machine environment -
dedicated machines instead of single machine. Precedence relations between activities
are also considered.

The advantage of the population based method is the utilization of an intensification
phase for individuals. In this phase, the algorithm can profit from the specific features
of the problem and improve individuals using local search or more complex method in
each iteration of an evolution. In this work, we would like to investigate the properties
of our problem and focus on estimation of the lower and upper bounds of the objective
function. The DDE method uses so called Destruct and Construct (DCd) procedure
where a subset of d activities is removed from the schedule and then the activities are re-
inserted into different positions in the schedule. Since we have to evaluate the objective
function repeatedly for each activity insertion into a partial schedule, a fast evaluation
and a good estimation of the bounds for the objective function is a great benefit for
the algorithm effectiveness. Due to the presence of the precedence relations, it is also
necessary to estimate the earliest start times of activities in a schedule with respect to
the definition of alternative process plans.

4 Contribution and Future Work

The main contribution of our work is in the interconnection of the scheduling with alter-
native process plans and the objective function taking into account the total weighted
tardiness of activities. We propose a model allowing to define different ways how to
complete a product while meeting of due dates is considered. For the given problem, we
propose a population based algorithm able to solve instances. The key point of successful
implementation of the evolutionary algorithm is an addition of alternative process plans
into the representation of individuals and also into the evolution scheme.
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In the future work, we will focus on the extension of an objective function by the total
processing costs. In this case, a processing cost is assigned to each activity and the goal is
to create a schedule such that both the total weighted tardiness and the total processing
costs are minimized. An extended approach can be used, for example, to model problems
with discretely controllable processing times (or other activity attributes).
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An AFPTAS for due date scheduling with related machines

of general costs

Leah Epstein ∗ Asaf Levin (Speaker) †

1 Introduction

We study the following problem. We are given an unlimited supply of machines of r
different types. All machines are available for one time unit. A machine of type i has
a speed bi associated with it and its cost is ci. We assume 1 = b1 > b2 > · · · > br.
We normalize the costs so that c1 = 1. A set of n jobs I is given, where job j has a
processing time requirement (also called size) 0 < sj ≤ 1. The goal is to assign the jobs
to machines, so that the total cost is minimized. Note that it is allowed to use multiple
instances of any of the machine types, but this counts towards the total cost.

Specifically, the goal is to partition the jobs into subsets J1, J2, . . . , Jk, where each
subset ` has a type associated with it, t(`). The partition must satisfy

∑
j∈Ji sj ≤ bt(`),

and the cost of J` is ct(`). That is, the total cost is
∑k

`=1 ct(`).

As our main result, we design an asymptotic fully polynomial time approximation
scheme (AFPTAS) for the problem. Note that the number of machine types r is seen as
a part of the input (it is not assumed to be a constant), and there are no assumptions on
the relation between the costs ci of the different machine types (e.g., we do not assume
that the machine cost function is a concave function of the speed).

This scheduling problem can be presented as a bin packing problem with variable
sized bins, and was previously studied as such [3], where an APTAS was designed for it.
Related problems, where the cost of a machine is a concave function of the speed which
it is forced to use were studied in [9, 10]. Variable sized bin packing is the special case
where bi = ci for all i, and an AFPTAS for this problem was given by Murgolo [11],
generalizing the AFPTAS (and the APTAS) known for standard bin packing [2, 8].

The problem has applications in production due date scheduling, packing of goods
for mixed truckload and less-than-truckload services, and in data storage on non-uniform
disks [3,9,10]. In bin packing problems there is a common assumption that data storage
devices have the property that the cost per unit of storage area is constant. It was
argued in [3] that the following common assumption is not necessarily true. For small
disks the cost is usually larger than half the cost of a disk which is twice as large. On
the other hand, a large disks which uses a new technology can be much more expensive
than twice the price of a disk which is half its size.
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2 The approach

The difficulties in solving the problem arise in several aspects. Since the number of
machine types is non-constant, several tricky reductions are required in order to reduce
the number of machine types. Still, the remaining machine types can be very different
in terms of the ratio of cost to speed, also called density. While the sequence of costs
can be assumed to be monotone, this is not the case with the sequence of densities. It
is not difficult to see that even if the density of the machines type 1 is large, still some
jobs cannot be assigned into slower machines due to their sizes. Once instances of this
machine type are used, an algorithm is faced with the decision of which smaller jobs
can use the resulting empty space. Moreover, in some cases a slower machine can be
preferred to a slightly faster one, even if it has a larger density, since its cost is still
smaller.

One natural attempt to solve the problem would be to apply a dynamic programming
algorithm on the different machine types, starting with the slower ones, as in [7], where
a PTAS is given for scheduling on uniformly related machines so as to minimize the
makespan. The difference between the two problems is that in our case the number of
machines is to be determined by the algorithm, but on the other hand, all jobs need to
be completed by the deadline.

Another natural attempt would be to apply techniques coming from the bin packing
problem. The approximation schemes of [2, 8] strongly rely on the fact that the cost
of a bin is uniform, and in [11] the methods rely on the fact that the cost of a bin is
proportional to its size. Note that it is fairly straightforward to extend the results of [11]
for the case that the cost of a bin is a concave function of its size.

In order to solve the problem, we develop of a novel set of reductions and methods. In
addition, we combine a number of methods, including those mentioned above, rounding
[6, 7], shifting [4, 5] and the usage of medium sets of elements [1, 12], which is applied in
our case not to jobs or machine speeds, but to machine densities.

In our reductions we partition the machine types into subsequences, and deal with
each subsequence almost independently. The input jobs are partitioned into subse-
quences too, but it is unfortunately impossible to partition the input into completely
independent parts, since it is necessary to allow the assignment of small jobs to very fast
machines, as well as their assignment to much slower machines. We develop an AFPTAS
for an auxiliary problem on (long but constant sized) subsequences of machine types.
The solutions for the partial inputs are combined via dynamic programming, taking into
account the remaining smaller jobs that still need to be packed.

3 Additional results

The problem which is studied in [9, 10] is defined as follows. An unlimited supply of
machines, available for one time slot is given. The jobs are to be assigned to machines,
so that the total size of jobs assigned to a machine does not exceed 1. A machine
which received a total size of S of jobs can run in a speed of 1

S . A concave function
f : (0, 1] → (0, 1] is given, where f(0) = 0 and f(1) = 1. The cost of a machine which
uses a speed s is f(s). The goal is to assign all jobs to machines so as to minimize the
cost. An APTAS was given in [9].

We show a reduction from a generalized version of this problem with an arbitrary

184



monotone non-decreasing non-negative function f , to the problem which we study, and
thus we obtain an AFPTAS for this generalized version as well.
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Faster approximation algorithms

for scheduling with fixed jobs

Klaus Jansen (Speaker) ∗ Lars Prädel † Ulrich M. Schwarz ‡

Ola Svensson §

1 Introduction

In parallel machine scheduling, an important issue is the scenario where either some jobs
are already fixed in the system [2, 11] or intervals of non-availability of some machines
must be taken into account [1,2,6]. The first problem occurs when high-priority jobs are
already scheduled in the system while the latter problem is due to regular maintenance
of machines. Both models are relevant for turnaround scheduling [10] and distributed
computing [3] where machines are donated on a volunteer basis.

Formally, the problem can be defined as follows: an instance consists of m machines
and n jobs with non-negative processing times p1, . . . , pn ∈ IN. The first k jobs are
fixed via a list (m1, s1), . . . , (mk, sk) giving a machine index and starting time for the
respective job. We assume that these fixed jobs do not overlap. A schedule is a non-
preemptive assignment of the jobs to machines and starting times such that the first k
jobs are assigned as encoded in the instance and that the jobs do not intersect.

For the problem with fixed jobs, the objective is to minimize the makespan of all
jobs, including the fixed ones. In the setting with non-availability, the fixed jobs are not
included when finding the makespan. Without loss of generality, we may assume m < n.
Both problems generalize the well-known problem P||Cmax(scheduling jobs on parallel
identical machines to minimize the makespan) [4] and hence are strongly NP-hard.

2 Related Work

Scheduling with fixed jobs was studied by Scharbrodt, Steger, and Weisser [11, 12].
They mainly studied the problem for constant m; for this strongly NP-hard formulation
(which consequently does not admit an FPTAS) they presented a PTAS. They also
found approximation algorithms for general m with ratios 3 [12] and (2 + ε) [11]; since
the finishing time of the last fixed job is a lower bound for the optimal makespan C∗max,
they can simply use a PTAS for the well-known problem P||Cmax [5] to schedule the
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remaining n − k jobs after the fixed job which finishes last. Scharbrodt, Steger, and
Weisser [11] also proved that for scheduling with fixed jobs there is no approximation
algorithm with ratio (3/2− ε), unless P = NP, for any ε ∈ (0, 1/2].

For the variant with non-availability, the scheduling problem is harder to approxi-
mate. First, there does not exist a polynomial time algorithm with a constant approx-
imation ratio, unless P = NP, even if for each time step there is at least one available
machine [1]. Furthermore, scheduling with non-availability does not admit a polynomial
time approximation algorithm with ratio (3/2− ε) [2], unless P = NP, even if a constant
fraction ρ of machines is always available. On the other hand, Diedrich and Jansen [2]
presented a (3/2 + ε)-approximation for arbitrary ε > 0 for both settings. However both

methods rely on large enumeration steps and involves up to m1/ε1/ε
2

calls to a subrou-
tine to approximately solve a difficult maximization subproblem, the Multiple Subset
Sum Problem (MSSP) with accuracy ε (i.e. selecting a subset of items with total max-
imum size that can be packed into a set of bins without exceeding the capacities). We
denote by TMSSP (n, ε) the time complexity of this subroutine for n items. The best cur-
rently known algorithm for MSSP (and for the more general Multiple Knapsack Problem
(MKP) with additional item profits) is an efficient PTAS due to Jansen [7] with a run-
ning time of TMSSP (n, ε) = 2O(1/ε5 log(1/ε))+poly(n) for n items and at most n target bins,

which was subsequently improved to TMSSP (n, ε) = 2O(1/ε log4(1/ε)) + poly(n) [8]. If the
integrality gap for bin packing with different bin sizes is bounded by a constant (similar
to the Modified Integer Roundup Conjecture (MIRUP) of Scheithauer and Terno [13]
for the classical bin packing problem), the running time can be further reduced to

TMSSP (n, ε) = 2O(1/ε log2(1/ε)) + poly(n) [8].

3 New Results

We present improved algorithms for scheduling with fixed jobs and scheduling with
non-availability (see also [9]). These algorithms achieve exactly the bound of 3/2 and,
are both faster and conceptually simpler than the previous algorithms in [2]. Formally
stated, our results are the following:

Theorem 1. Scheduling with fixed jobs admits an approximation algorithm with ratio
3/2 and running time O(n log n+ log(nmaxj=1,...,n pj)(n+ TMSSP (n, 1/8))).

Theorem 2. Scheduling with non-availability, as long as a constant fraction ρ ≥ 1/m of
machines is always available, admits a 3/2-approximation with running time O(n log n+
log(nmaxj=1,...,n pj)(n+ TMSSP (n, ρ/8))).

The underlying ideas are to guess via binary search the makespan T , to discard
too-small values of T , to generate the gaps g(T ) for the non-fixed jobs and to use an
approximation algorithm for the multiple subset sum problem as a subroutine to pack
almost all non-fixed jobs into the gaps. The main difficulty now are the large jobs Jj
with pj > T/2, since an unpacked large job could cause an approximation ratio close
to 2. But using an interesting exchange argument we are able to insert the non-packed
large jobs into the schedule without increasing the total load of the non-packed jobs too
much.
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Logarithmic-approximations for the relocation problem
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Maxim Sviridenko ‡

1 Introduction

The relocation problem is a resource constraint scheduling problem typically rising in
house redevelopment projects. For example, in XX Century a large-scale public housing
project was initiated in East Boston Area [1,2] to rehabilitate a set of old buildings. Be-
fore demolishment of an old house, all its residents must be relocated to some temporary
houses. Then, the old house is destroyed, a new house is built, and the residents are
relocated again to their new accommodations. Given the capacities of the houses (old,
new and temporary), the authority has to schedule house renovation activities such that
at any moment in time all residents are (at least temporarily) housed. Here, the typical
objective is to minimize the makespan, i.e., the project duration.

Formally, the problem can be described as follows. We are given a set of activities
J = {1, 2, . . . , n} with processing requirement pj for each activity j ∈ J . There is a
single resource needed for processing of the activities. Let Ω0 be the initial amount
of the resource. For each activity j ∈ J , we are given the start time Sj . At time
Sj activity j consumes αj units of the resource. Clearly, this amount of the resource
should be available at Sj , and it should be devoted exclusively for activity j. At its
completion time Cj = Sj + pj , activity j ∈ J releases βj units of the resource, and
this amount becomes freely available for any other activities. No activity preemption is
allowed. Given the resource constraint, the task is to find a schedule σ = {Sj : j ∈ J}
minimizing the makespan Cmax = maxj∈J Cj . Notice, we have no limits on the amount
of activities being processed at the same time. We also assume that all numbers in the
input are non-negative integers.

Regarding the computational complexity, the relocation problem is hard to approx-
imate within a factor better than 3/2, unless P = NP , even if all activities have unit
processing times; see [3]. Kononov and Lin in [3] discuss approximability of the more
restricted versions of the problem. There, the crucial additional assumption is that the
processing times are the same for all jobs. In this setting, polynomial-time constant-
approximation algorithms are developed. In contrast, in this paper we develop the first
polynomial-time O(log n)-approximation algorithm for the relocation problem with ar-
bitrary processing times.
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2 Approximation algorithms with performance guarantees
O(log pmax) and O(log n)

Notice, without loss of generality we may assume αj ≤ βj for all j ∈ J , for otherwise
we make use of the schedule mirroring argument as in [3]. Moreover, let the activities
be arranged in non-decreasing order of the release-to-consumption ratios, i.e., β1/α1 ≤
β2/α2 ≤ . . . ≤ βn/αn. Here, if αj = 0 for some j ∈ J , we naturally assume that the
ratio is +∞.

Now, we are ready to present the ideas for the approximation algorithms. We start
with a polynomial-time O(log pmax)-approximation algorithm, where pmax = maxj∈J pj .

1. We slightly modify the instance rounding up the processing times of the activities to
the nearest power-of-two numbers. Then, let the set of activities having processing
time 2i, i ∈ {0, 1, . . . , dlog2 pmaxe}, be denoted by Ji.

2. At each step of the algorithm we select several activities from a single set Ji, i ∈
{0, 1, . . . , dlog2 pmaxe}, such that the aggregated resource requirement of selected
activities does not exceed the available resource. Then, selected activities are
started and completed simultaneously. Let the completion time of the activities
scheduled in step k ≥ 1 of the algorithm be denoted by tk. Finally, we compute
the amount Ωk of the resource available at time tk.

If activities of set Ji are scheduled at step k, for simplicity, we say: set Ji is
scheduled at step k. Further we specify the choice of a set to be scheduled at step
k ≥ 1 of the algorithm, and the choice of activities to be processed at step k.

At step k = 1 we consider activities from set J0. We pick an activity j ∈ J0 that
has the lowest index (equivalently, the highest value of the release-to-consumption
ratio). If the amount of available resource is at least αj , we start processing j at
time 0 and we decrease the amount of available resource by αj . Otherwise, we
disregard j and recurse on the (not-disregarded) rest of set J0. Since all activities
from set J0 have unit processing times, the completion time t1 of the scheduled
activities is 1. Let Ω1 be the amount of resource becoming available at time t1 = 1.

Now, consider step k ≥ 2 of the algorithm. First, we specify which set should
be scheduled at step k. This is done according to the following rule: for all
0 ≤ i ≤ dlog2 pmaxe − 1, set Ji must be scheduled exactly four times between any
two consecutive scheduling of set Ji+1 (for completeness we assume that prior to
time 0 all sets are scheduled). Given the initial set J0, this rule uniquely defines the
sequence of scheduled sets. For instance, if there are only two sets, J0 and J1, the
sequence is formed by repetition of subsequence S2 = [J0, J0, J0, J0, J1]. If the num-
ber of sets is 3, the sequence is generated by repetition of S3 = [S2, S2, S2, S2, J2].
Recursively, given subsequence S` determined for ` sets, the sequence for `+ 1 sets
is formed by repetition of S`+1 = [S`, S`, S`, S`, J`].

Given a set to be scheduled at step k ≥ 2, similarly to step 1, we select the activi-
ties from the set according to non-decreasing order of the release-to-consumption
ratios such that the total amount of consumed resources is up to Ωk−1. We start
processing the selected activities at time tk−1.

3. We stop the algorithm when all activities are scheduled.
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Clearly, the algorithm runs in time O(n log n). To provide an intuition for the cor-
rectness of the claimed performance guarantee, we have the following propositions.

Proposition 1. When rounding up the processing times of the activities to the nearest
power-of-two numbers, we increase the makespan by at most factor of 2.

Further we assume that the processing times of all activities are power-of-two num-
bers.

Proposition 2. There exists a nested (laminar) schedule of the activities such that its
makespan is at most a constant times the optimal makespan.

Proposition 3. The makespan of the schedule returned by the algorithm is at most
O(log pmax) times the makespan of an optimal nested schedule.

Intuitively, the last proposition follows from the following facts. First, any nested
schedule can be stretched, i.e., rescheduled in such a way that at any moment in time only
activities with the same processing requirements are executed, and the precedence order
of the activities is preserved, i.e., if one activity starts after completion of another in the
nested schedule, the same order takes place in the stretched schedule. One can show that
stretching affects the makespan by at most factor of K, where K is the number of distinct
processing times. Second, the algorithm above represents one such stretching. Third,
the sufficiency of the resources is guaranteed by non-decreasing order of the release-to-
consumption ratios. Therefore, the algorithm outputs a feasible schedule with makespan
at most O(log pmax) times the optimum.

Finally, using standard scaling techniques we turn the O(log pmax)- into O(log n)-
approximation: at small additional cost to the makespan, we transform the processing
times of the activities to numbers polynomial in n. This brings us to the main theorem:

Theorem 4. The relocation problem admits O(log pmax)- and O(log n)-approximation
algorithms, both running in O(n log n)-time.
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Approximating the Joint Replenishment Problem

Neil Dobbs Tomasz Nowicki Maxim Sviridenko (Speaker)
Grzegorz Swirszcz∗

1 Introduction

The Joint Replenishment Problem is one of the fundamental problems in Inventory
and Supply Chain Management. We are given a warehouse and the set of retailers
{1, . . . , n} = [n]. We are given the discrete time horizon {1, . . . , T} = [T ] and the set of
demands D consisting of pairs (i, t) for retailer of type i ∈ [n] and time t ∈ [T ]. Let dit
be the amount of demand for retailer i that arrived at time t. The demand (i, t) must
be satisfied by an order placed in the time interval [0, t]. If the demand for retailer i
at time t is satisfied by an order placed at time s ≤ t then it incurs per unit holding
costs of hist. A retailer i can place an order at warehouse at any time τ and incur the
retailer ordering cost Ki, at the same time the warehouse places an order and incurs
the warehouse ordering cost of K0. Therefore, it makes sense to combine many retailer
orders together. For a example if at time τ we place orders for retailers from the set
S ⊆ [n] then we incur ordering cost of K0 +

∑
i∈SKi. The goal is to define the set of

warehouse and retailer orders to satisfy all the demand and minimize the total ordering
and holding costs.

Literature Overview. The Joint Replenishment Problem (JRP) and related One
Warehouse Multiple Retailer Problem (OWMR) are well known abstract models of the
practical inventory management. It is usually assumed that the holding costs are linear,
i.e. hist = (t− s)∆i but in this work we will work with more general holding costs first
introduced by Levi et al. [3] that allow us to model various types of perishable goods.
It is well-known that JRP is NP-hard, Arkin et al. [2]. Moreover, Souza and Nonner [5]
showed that the general model is APX-hard, i.e. there exists a constant c > 1 (it could
be very close to one) such that there is no c-approximation algorithm for JRP with
general holding costs unless P = NP .

A polynomial time algorithm is called c-approximation algorithm if it always finds a
solution of value at most c times the optimal value. Levi et al. [4] designed a linear pro-
gramming based 1.8-approximation algorithm even in a more general setting of OWMR
problem. Nonner and Souza [5] suggested a different type of randomized rounding for
the same linear programming relaxation. They proved that their algorithm has perfor-
mance guarantee of 5/3 for the special case of the holding costs hist ∈ {0,+∞}, i.e.
every demand must be served in its corresponding time window.

The literature on various heuristics, enumerative approaches and generalizations of
the JRP is quite extensive we refer an interested reader to the recent survey [1] on the
topic.

∗IBM Watson Research Center, Math. Sciences, PO Box 218, Yorktown Heights, NY 10598, USA
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Our results. In this paper we consider the special case when hist = 0 for all
s ∈ [rit, t] and hist = +∞ otherwise. This special case models the situation when
we have perishable goods with negligible holding costs within expiration time window.
We consider the randomized rounding algorithm suggested by Nonner and Souza [5]
and show that the performance guarantee of that algorithm can be improved to ap-
proximately 1.574 if we use a different probability measure for random variables in the
algorithm. We also conjecture that our probability measure is optimal for this class of
algorithms. Unfortunately, it can be shown that our probability measure does not gen-
erate an algorithm with good performance guarantee in the case of general holding costs
but we strongly believe that this type of algorithms works well even for general holding
costs. The main challenge and an open problem is to find a good probability measure
for the general case.

2 Linear Programming Formulation and Randomized
Rounding Algorithm

We will use the notation Hist = dithist for the cumulative holding cost. We consider the
linear programming relaxation of the JRP.

min

T∑
s=1

K0x0s +

n∑
i=1

T∑
s=1

Kixis +

n∑
i=1

T∑
s=1

T∑
t=1

Histyist, (1)

t∑
s=1

yist = 1, (i, t) ∈ D, (2)

yist ≤ xis, (i, t) ∈ D, i ∈ [n], s ∈ [T ], (3)

xis ≤ x0s i ∈ [n], s ∈ [T ], (4)

x0s, xis, yist ≥ 0, i ∈ [n], s, t ∈ [T ]. (5)

The objective function (1) minimizes the total order opening and holding costs.
The constraint (2) requires every demand pair (i, t) to be served by some order. The
constraint (3) allows demand to be served only by an opened order of the same retailer.
Finally, the constraint (4) requires to open a warehouse order at any time with opened
retailer order.

The standard assumption on holding costs is thatHist are non-increasing in s (see [3]).
This property basically implies that any integral or fractional solution xit completely
defines variables yist. Each demand (i, t) is fractionally served by the closest to it frac-
tionally opened retailer i orders.

Let (x∗, y∗) be an optimal solution for the linear programming relaxation (1)-(5) (we
assume polynomial running time of our LP solver). For each retailer i ∈ [n] define a
piecewise linear increasing continuous function

ωi :

[
0,

T∑
τ=1

x∗0τ

]
→
[

0,
T∑
τ=1

x∗iτ

]

such that ωi(0) = 0 and ωi(
∑t

τ=1 x
∗
0τ ) =

∑t
τ=1 x

∗
iτ for each t ∈ [T ]. The inequalities (4)

and the definition of ωi imply the simple property that ωi(z) − ωi(z′) ≤ z − z′ for any
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0 ≤ z′ ≤ z ≤∑T
τ=1 x

∗
0τ (basically all linear functions comprising ωi(x) have derivatives

≤ 1), i.e. ωi(x) are contracting (or 1-Lipshitz) functions.
Consider the following rounding algorithm that finds an integral solution for our

optimization problem. The input to the algorithm is the fractional solution (x∗, y∗) and
a probability distribution defined on the interval [0, 1] defined by the probability measure
µ(x).

1. Define intervals It = (
∑t−1

τ=1 x
∗
0τ ,
∑t

τ=1 x
∗
0τ ] for time t ∈ [T ] and intervals Iit =

(
∑t−1

τ=1 x
∗
iτ ,
∑t

τ=1 x
∗
iτ ] for retailer i ∈ [n] and time t ∈ [T ].

2. Let D0 = 0, Λ = ∅. Consecutively draw random variable di from the interval
[0, 1] according to the probability measure µ(x). Define Di = Di−1 + di. If Di >∑T

τ=1 x
∗
0τ then stop the process and go to the step 3. Otherwise, Λ = Λ ∪ {Di},

we set i = i+ 1 and repeat.

3. For each retailer i ∈ [n], independently apply the following process. Initialize y = 0
and Λi = ∅. Define time y′ = ω−1

i (ωi(y) + 1)) (note that y′ ≥ y + 1 since all ωi
are contracting functions). Let z′ = max{z ∈ Λ : z ≤ y′} and Λi = Λi ∪ {ωi(z′)}.
After that we set y = z′ and repeat the process again until ωi(y) + 1 >

∑T
τ=1 x

∗
iτ .

4. Open retailer i order at the times t ∈ T such that there exists z ∈ Λi such that
z ∈ Iit. Open warehouse order at the times t ∈ T such that there exists D ∈ Λ
such that D ∈ I0t.

It remains to define the probability measure µ(x) to completely describe the approx-
imation algorithm. Fix θ ≈ 0.36455. We define µ[0, θ) = 0 and

• µ[0, x) = log(x/θ) for x ∈ [θ, 2θ);

• µ[0, x) = log(x/θ)−
∫

[2θ,x]
log((x−θ)/θ)

x dx for x ∈ [2θ, 1);

• finally, µ[1] := 1− µ[0, 1).
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Quantifying the Sub-optimality of Uniprocessor Fixed

Priority Scheduling

Robert I. Davis (Speaker) ∗

1 Introduction

This presentation examines the relative effectiveness of fixed priority pre-emptive
scheduling in a uniprocessor system, compared to an optimal algorithm such as Earliest
Deadline First (EDF). The quantitative metric used in this comparison is the processor
speedup factor, equivalent to the factor by which processor speed needs to increase to
ensure that any taskset that is schedulable according to an optimal scheduling algorithm
can be scheduled using fixed priority pre-emptive scheduling, assuming an optimal prior-
ity assignment policy. Three types of taskset are considered, with implicit, constrained,
and arbitrary deadlines. For constrained-deadline tasksets where all task deadlines are
less than or equal to their periods, the maximum value for the processor speedup factor
is shown to be 1/Ω ≈ 1.76322, (where Ω is the mathematical constant defined by the
transcendental equation ln(1/Ω) = Ω). The presentation also covers speedup factors for
fixed priority non-preemptive scheduling.

The research that will be presented has been previously published in [3], [4], and [5].
It examines the relative effectiveness of fixed priority (FP) scheduling of sporadic tasks
in a uniprocessor system, compared to an optimal algorithm, such as Earliest Deadline
First (EDF). The quantitative metric used in this comparison is the processor speedup
factor [6], defined as the factor by which processor speed needs to increase to ensure that
any sporadic taskset that is schedulable according to EDF can be scheduled using FP
scheduling. Two classes of scheduling algorithm are considered:

1. Pre-emptive.
2. Non-pre-emptive.

Further, three categories of sporadic taskset are considered, based on the relationship
between the period and deadline of each task.

1. Implicit-deadline: All tasks have deadlines equal to their periods.
2. Constrained-deadline: All tasks have deadlines less than or equal to their periods.
3. Arbitrary-deadline: Task deadlines may be less than, equal to, or greater than their

periods.

2 Tasking Model

The research presented considers the scheduling of a set of sporadic tasks (or taskset)
on a uniprocessor. Each taskset comprises a static set of n tasks (τ1 . . . τn), where n

∗rob.davis@cs.york.ac.uk. Real-Time Systems Research Group, Department of Computer Sci-
ence,University of York, York, UK.
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is a positive integer. Each task τi is characterised by its bounded worst-case execution
time Ci, minimum inter-arrival time or period Ti, and relative deadline Di. Each task
τi therefore gives rise to a potentially infinite sequence of invocations (or jobs), each
of which has an execution time upper bounded by Ci an arrival time at least Ti after
the arrival of its previous invocation, and an absolute deadline Di time units after its
arrival. The utilisation Ui of a task is given by its execution time divided by its period
(Ui = Ci/Ti). The total utilisation U , of a taskset is the sum of the utilisations of all of
its tasks.

The following assumptions are made about the behaviour of the tasks: The arrival
times of the tasks are independent and unknown a priori, hence the tasks may share a
common release time. The tasks are independent and so cannot block each other from
executing by accessing mutually exclusive shared resources, with the exception of the
processor in the case of non-preemptive scheduling. The tasks do not voluntarily suspend
themselves.

A taskset is said to be schedulable with respect to some scheduling algorithm, if all
valid sequences of jobs that may be generated by the taskset can be scheduled by the
scheduling algorithm without any deadlines being missed.

3 Sub-optimality and speedup factors

The seminal work of Liu and Layland [7] characterises the maximum performance penalty
incurred when an implicit-deadline taskset is scheduled using Rate-Monotonic, FP-P
scheduling instead of an optimal algorithm such as EDF-P. Combining the utilisation
bounds of Liu and Layland [7] for EDF-P and FP-P, shows that the processor speedup
factor required to guarantee that FP-P scheduling can schedule any implicit-deadline
taskset schedulable by EDF-P is 1/ ln(2) ≈ 1.44270.

The research that will be presented provides an analogous characterisation of the
maximum performance penalty incurred when constrained-deadline tasksets are sched-
uled using Deadline-Monotonic, FP-P scheduling instead of an optimal algorithm such as
EDF. Here, the speedup factor is equal to 1/Ω ≈ 1.76322 (where Ω is the mathematical
constant defined by the transcendental equation ln(1/Ω) = Ω, hence, Ω ≈ 0.567143), see
Davis et al. [3].

The presentation will also summarise research giving lower and upper bounds on the
speedup factors for:

1. The pre-emptive case with arbitrary deadlines (Davis et al. [4]).
2. The non-pre-emptive case (comparing FP-NP and EDF-NP) for tasksets with im-

plicit, constrained, and arbitrary deadlines (Davis et al. [5]).

These results are summarised in the table below.

Pre-emptive Non-Pre-emptive

Task deadlines Lower bound Upper bound Lower bound Upper bound

Implicit 1/ ln(2) ≈ 1.44269 1/Ω ≈ 1.76322 2

Constrained 1/Ω ≈ 1.76322 1/Ω ≈ 1.76322 2

Arbitrary 1/Ω ≈ 1.76322 2 1/Ω ≈ 1.76322 2

We note that the two cases where a tight bound is known correspond to the only
cases where optimal priority assignment can be achieved independently of schedulability
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testing. In the arbitrary deadline case for FP-P scheduling and all cases of FP-NP
scheduling, Audsley’s Optimal Priority Assignment algorithm [1], [2] is required to find
the optimal priority ordering. This dependence of priority ordering on schedulability
testing makes it more difficult to reason about the properties of a theoretical speedup-
optimal taskset that requires the exact speedup factor to be schedulable. In these cases,
the exact sub-optimality of fixed priority scheduling remains an open question.
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Intra-Type Migrative Scheduling of Implicit-Deadline

Sporadic Tasks on Two-Type Heterogeneous Multiprocessor

Gurulingesh Raravi (Speaker) ∗ Björn Andersson†∗

Konstantinos Bletsas ∗

1 Introduction

Consider the problem of scheduling a set of implicit-deadline sporadic tasks to meet all
deadlines on a two-type heterogeneous multiprocessor platform. Each processor is either
of type-1 or type-2 with each task having different execution time on each processor type.
Jobs can migrate between processors of same type (referred to as intra-type migration)
but cannot migrate between processors of different types. We present a new scheduling
algorithm namely, LP-Relax(THR) which offers a guarantee that if a task set can be
scheduled to meet deadlines by an optimal task assignment scheme that allows intra-
type migration then LP-Relax(THR) meets deadlines as well with intra-type migration
if given processors 1

THR as fast (referred to as speed competitive ratio) where THR ≤ 2
3 .

2 LP-Relax Algorithm

The system considered in this paper is as follows: (i) Tasks (denoted as τ): n implicit-
deadline sporadic tasks, i.e., for each task, its deadline = its minimum inter-arrival time
(denoted as Ti) (ii) Utilization: The utilization of a task τi ∈ τ on a processor of type-t

(where t ∈ {1, 2}) is given by U ti where U ti =
Cti
Ti

(Cti denotes the worst-case execution
time of a task τi on a processor of type-t) and (iii) Processors: The platform consists of
m processors of which mP 1 processors are of type-1 and mP 2 processors are of type-2.
The following assumptions are made: (i) Intra-Type Migrative: The jobs released by
tasks can only migrate between processors of the same type but not between processors
of different types, (ii) No job parallelism: A job can be executing on at most one
processor at any given point in time and (iii) Independent tasks: The execution of
jobs are independent, i.e., they neither share any resources nor have data dependency.

Let THR denote a real number number in the range (0, 2/3], selectable by the algo-
rithm designer. Based on THR, let us define the following disjoint sets:

H12 = {τi ∈ τ : U
1
i > THR ∧ U

2
i > THR} (1)

H1 = {τi ∈ τ : U
1
i ≤ THR ∧ U

2
i > THR} (2)

H2 = {τi ∈ τ : U
1
i > THR ∧ U

2
i ≤ THR} (3)

L = {τi ∈ τ : U
1
i ≤ THR ∧ U

2
i ≤ THR} (4)
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function: LP-Relax(THR)
1 Form sets H12, H1, H2, L as defined by Eq. 1-4 21 if (∃i such that 0 < xi,1 < 1 and 0 < xi,2 < 1) then
2 if (H12 6= φ) then declare FAILURE end if 22 Let τf denote that task and t1 denote its favorite

3 UP1 := UP2 := 0 //used capacities of two processor types and t2 its non-favorite type, i.e., Ut1i ≤ U
t2
i

4 τp1 := assign(H1, UP1, 1) (where t1 = 1, t2 = 2 or t1 = 2, t2 = 1)

5 if (τp1 6= H1) then declare FAILURE end if 23 UP t1 := UP t1 + xf,t1 · Ut1f
6 τp2 := assign(H2, UP2, 2) 24 UP t2 := UP t2 + xf,t2 · Ut2f
7 if (τp2 6= H2) then declare FAILURE end if 25 if (UP t1 − xf,t1 · Ut1f + Ut1f ≤ mP

t1) then

8 LPR := formulate LP(L,UP1, UP2,mP1,mP2) 26 UP t1 := (UP t1 − xf,t1 · Ut1f + Ut1f )

9 (Z, X) = LP-Solver(LPR) //Solve LPR using an LP-Solver 27 τpt1 := τpt1 ∪ {τf}
10 if (Z > 1) then declare FAILURE 28 declare SUCCESS
11 for each task τi ∈ L do //xi,1, xi,2 ∈ X 29 end if

12 if (xi,1 = 1 ∧ xi,2 = 0) then 30 if (UP t2 − xf,t2 · Ut2f + Ut2f ≤ mP
t2) then

13 τp1 := τp1 ∪ {τi} //assign τi to processor type-1 31 UP t2 := (UP t2 − xf,t2 · Ut2f + Ut2f )

14 UP1 := UP1 + U1
i 32 τpt2 := τpt2 ∪ {τf}

15 end if 33 declare SUCCESS
16 if (xi,1 = 0 ∧ xi,2 = 1) then 34 end if

17 τp2 := τp2 ∪ {τi} //assign τi to processor type-2 35 declare FAILURE

18 UP2 := UP2 + U2
i 36 else

19 end if 37 declare SUCCESS
20 end for 38 end if

Figure 1: The LP-Relax(THR) algorithm for assigning tasks on to a two-type heteroge-
neous multiprocessor platform.

function assign(ts: set of tasks; U: out current utilization
of processors; k: favorite processor type of ts)
return set of tasks

1 assigned tasks := ∅
2 Use any order for tasks ts, but maintain it

during the execution of the function assign.
3 τi := first task in ts

4 if (U + Uki ≤ mP
k) then

5 U := U + Uki
6 assigned tasks := assigned tasks ∪ {τi}
7 if (remaining tasks exist in ts) then
8 τi := next task in ts
9 go to line 4.

10 end if
11 end if
12 return assigned tasks

(a) Assigning heavy tasks to type-k processors

function formulate LP(L,UP1, UP2)
return the formulation

1 Let myLP denote the following linear program
2 Minimize Z subject to:
3 ∀τi ∈ L : xi,1 + xi,2 = 1

4
(∑

τi∈L
xi,1 · U1

i

)
+ UP1 ≤ mP1 · Z

5
(∑

τi∈L
xi,2 · U2

i

)
+ UP2 ≤ mP2 · Z

6 ∀τi ∈ L : xi,1 and xi,2 are non-negative real
numbers

7 return myLP

(b) LP formulation for assigning light tasks to
processors

Figure 2: Sub-routines used by LP-Relax(THR) algorithm while assigning the task set.

Note that H12 ∪H1 ∪H2 ∪ L = τ .

A task is termed heavy on a processor type if its utilization on that processor type
is greater than THR. The set H12 represents those tasks that are heavy on both types
of processors and hence these tasks cannot be assigned to any processor type to meet
deadlines if the processor speed would be scaled by THR. H1 and H2 represent those
tasks that are heavy on processors of type-2 and type-1 respectively and hence they must
be assigned to processors of type-1 and type-2 respectively. L represents those tasks that
are not heavy (termed light) on both the processor types and hence they can be assigned
to processors of any type.

The new algorithm is shown in Figure 1 which uses sub-routines assign() and for-
mulate LP() shown in Figure 2(a) and Figure 2(b) respectively.

The algorithm first assigns tasks that are heavy on a certain processor type say,
type-1 to processors of type-2 and vice versa (if the schedulability test permits). We can
formulate the problem of assigning light tasks to processors as an Integer Linear Program
(ILP) and then relax it to Linear Program (LP). For assigning light tasks, LP-Relax
solves this relaxed LP formulation using an LP-solver which gives the optimal solution
at the vertex of the convex region. This vertex solution gives the assignment (if the
schedulability test permits) of all the light tasks to unique processor type except at most
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one task say, τfract, which may be assigned to both the processor types – see Lemma 6
in [5]. Finally, if τfract was assigned to two processor types then LP-Relax algorithm
(re-)assigns τfract to a single processor type (if the schedulability test permits). Once the
task assignment is done, an optimal scheduling algorithm for identical multiprocessors,
such as Pfair [1] can be used on each processor type to schedule the tasks.

We now list some important properties about the performance guarantee offered
by LP-Relax algorithm. The proofs of these properties are omitted here due to space
constraint and can be found in Section 4 in [5].

Theorem 1. The speed competitive ratio of LP-Relax(2/3) is at most 1.5.

The following theorem states the speed competitive ratio of LP-Relax algorithm when
the maximum utilization of any task on any type of processor (type-1 or type-2) is upper
bounded by α, i.e., ∀τi ∈ τ : U1

i ≤ α ∧ U2
i ≤ α where 0 < α ≤ 2

3 .

Theorem 2. The speed competitive ratio of LP-Relax(m−αm ) is at most ( m
m−α).

Corollary 3. If a task set τ is schedulable by any algorithm that allows intra-type migra-
tion on a computing platform Π of m processors (having mP 1 processors of type-1 and
mP 2 processors of type-2) then LP-Relax(2

3) also schedules τ on a computing platform

Π
′

of at most m + 1 processors (having either mP 1 + 1 processors of type-1 and mP 2

processors of type-2 or mP 1 processors of type-1 and mP 2 + 1 processors of type-2).

Corollary 4. If migration of tasks is allowed between processors of different types (i.e.,
fractional assignment of tasks is allowed – for a task τi, 0 < xi,1 < 1 and 0 < xi,2 < 1)
then LP-Relax (with THR=1) is optimal.

Note: Though Corollary 4 is an important result, we would like to mention that it is
not the first of its kind. A feasibility condition exists [3] for checking the schedulability
of a task set on a heterogeneous multiprocessor platform (having more than two types
of processors) that allows task migration between processors of any type.
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Production Optimization and Scheduling in a Steel Plant:

Hot Rolling Mill

Matteo Biondi ∗ Iiro Harjunkoski † Sleman Saliba (Speaker) ‡

1 Introduction

Production scheduling in the steel industry has been recognized as one of the most diffi-
cult industrial scheduling problems. Many different and often contradicting constraints
must be taken into account while defining a feasible and, possibly, optimal schedule for
the production.

In one of the most typical production configuration, the steel-making process can be
roughly subdivided into three parts: the melt shop, where melt steel is produced and
cast into semi-finished products (slabs), see e.g. Harjunkoski & Grossmann [1]; the hot
rolling, in which slabs are transformed by means of a mechanical and thermal process
in the final product (coils, billets, wires,Ě); cold rolling and finishing line operations can
achieve customers’ specifications for final dimensions, surface quality and mechanical
properties. These production steps are highly interconnected; the ideal situation would
be to comprise all of them into one optimization model. In our present work, we will
focus on the problem of production scheduling on the hot rolling mill.

2 Hot Rolling

The hot strip mill typically consists of several processing stages (reheating furnace,
roughing mill, finishing mill, down coiler), on which the slabs need to be processed
sequentially in order to be rolled to coils. Strict production rules determine the sequence
of the slabs on the hot rolling mill. These production rules are based on physical and
metallurgical facts, as well as local experience and quality requirements. Some rules
exist in order to avoid wearing or too big temperature changes. Many rules arise from
ensuring the product (e.g. surface) quality, for instance through the fact that roll width
and thickness changes are limited.

Additionally, orders that are produced in the hot rolling mill need to meet customer
due dates, if the product is sold right after the rolling mill, or internal due dates, if the
coils are to be further processed in other sections of the steel plant (e.g. cold rolling
mill). In this case, the product mix in the hot rolling mill has to also be balanced in
order to “feed” different parallel down-stream processes.

Due to the complexity and the variety of plant designs in metals hot rolling only few
mathematical programming approaches with applications to real world steel plants have
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been published. Lopez et al. [2] suggested a heuristic based on Tabu Search, which was
successfully applied to Dofasco, a Canadian steel producer, but failed to be applied to
other steel plants. Most recently, Zhao et al. [4] applied a two-stage scheduling method
to the hot rolling area of Baosteel, China.

3 The Scheduling Algorithm

A production schedule for the hot rolling mill consists of a set of production campaigns
(rolling programs), which are composed of a finite number of slabs/coils. The hot rolling
scheduling problem consists of creating feasible rolling programs and sequencing them
on the plant.

A pure single-step mathematical programming approach can neither capture all the
relevant problem aspects nor meet the performance criteria. Therefore, a two-step ap-
proach combining heuristic-mathematical programming methods has been developed.

1. Build hot rolling programs,

2. Sequence the built rolling programs.

The programs built in step 1 should be as long as possible and contain as many
orders as possible meeting production and quality rules. The procedure to build rolling
programs takes into account all rules for allowed width and thickness changes, as well
as metallurgical and physical constraints related to subsequent coil compatibilities. The
procedure first applies a construction heuristics to form program parts belonging to a
certain width class: From a set of orders of a given width class and steel family, a
“skeleton” of the program section is built. This “skeleton” contains only the minimal
number of coils to fulfill the hard constraints to ensure that the program part is feasible
from the production point of view. After this, each part is filled up with other compatible
orders to maximize their length. The built program sections (also called program bodies)
are thereafter combined into rolling programs by assigning them a cost/profit and by
solving a min-cost-flow problem.

The vertices of the graph are the program bodies bi, i = 1, . . . , n, a source s and
a sink t. For each body bi that can be followed by body bj in a feasible program, we
introduce an arc. Moreover, we connect the source s to each body that can be the first
body in a program and each body that can be the last body in a program with the sink t.

Each arc connecting two bodies has an associated cost that corresponds to the
negated profit of the bodies bi and bj and the profit of combining the two bodies to
the same program. The arcs connecting the source and the sink have no additional cost.
All arcs have capacity of one unit of flow.

The objective is now to minimize the cost of the flow from the source to the sink.
In addition to the traditional capacity and flow conservation constraints, we introduce
a uniqueness constraint. This constraint ensures that the incoming flow for each body
vertex is less than or equal to 1, such that each program body is used at most once. The
flow value is determined by solving upfront a max-flow-problem on the same graph.

The built programs are then sequenced, which is a traditional scheduling-type of
problem. An MILP formulation of the problem is proposed taking into account due
date and production mix constraints. The formulation is an extension of the slot-based
approach by Pinto and Grossmann [3].
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4 Benefits

Using the described approach for building hot rolling programs, we can ensure that
all production requests that were not included in a program can neither form a valid
program by themselves nor be added to already built programs.

The concept of building skeletons and filling the skeletons to form program parts
ensures that we always consider the most valuable production requests first. Valuable
production requests are e.g. coils with early due dates or coils with minimal finishing
thicknesses.

Moreover, the utilization of the minimum cost flow problem for composing program
parts to full programs ensures that the most valuable program parts are selected and
that the combination of program parts is optimal in terms of similar due dates and
common steel properties. Valuable program parts are e.g. bodies that contain a high
number of valuable coils and that form a long sequence of production requests in kilome-
ters. Therefore, our approach results in a feasible rolling program meeting the quality
requirement, while maximizing the number of rolled production requests and the value
of the production requests, as well as minimizing the work roll changes and the usage of
waste material.

Considering production requests of one month (about 2000−5000 coils), the program
building procedure takes less than 30 seconds of computational time. The second step,
sequencing the programs, requires more computational effort. Restricting the compu-
tational time of the sequencing MILP to 120 seconds yields sufficiently good sequences.
Therefore, we can ensure a total computational time of strictly less than three minutes.

Finally, since we consider orders for up to several weeks (e.g., production requests
in next month’s order book), the scheduling department gains a better insight into the
order book and the additional material needed to fill the gaps in the order portfolio.
The visualization of the production plan for the next weeks and the highlighting of key
performance indicators enable the schedulers to plan and react more accurately to the
business plan and, therefore, improve the productivity of the plant.
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Mixed-Criticality Scheduling of Sporadic Task Systems

Vincenzo Bonifaci (Speaker) ∗ Gianlorenzo D’Angelo †

Alberto Marchetti-Spaccamela ‡ Suzanne van der Ster § Leen Stougie §

1 Introduction

There is an increasing trend in embedded systems towards implementing multiple func-
tionalities upon a single shared computing platform. This can force tasks of different
criticality to share a processor and interfere with each other. These mixed-criticality
(MC) systems are the focus of our research.

We consider the scheduling of finite collections of jobs as well as the scheduling of
so-called sporadic task systems; see [2] for an introduction to task systems. Although a
mixed-criticality system could in principle have many criticality levels, in this paper we
limit ourselves to two criticality levels.

In the remainder of this introduction we describe the model and give some notation.
In Section 2 we consider scheduling mixed-criticality task systems on a single machine.
In Section 3 we consider the case of multiple identical machines, both in the setting of
finite collections of jobs and of task systems.

MC jobs. A job in an MC system is characterized by a 4-tuple of parameters:
Jj = (rj , dj , χj , cj), where rj is the release time, dj is the deadline (dj ≥ rj), χj ∈ {1, 2}
is the criticality level of the job and cj is a pair (cj(1), cj(2)) representing the worst-case
execution times (WCET) of job Jj at level 1 and level 2 respectively; it is assumed that
cj(1) ≤ cj(2). Each job Jj in a collection J1, . . . , Jn should receive execution time Cj
within time window [rj , dj ]. The value of Cj is not known but is discovered by executing
job Jj until it signals completion. A collection of realized values (C1, C2, . . . , Cn) is called
a scenario. The criticality level of a scenario (C1, . . . , Cn) is defined as the smallest integer
` such that Cj ≤ cj(`), ` = 1, 2. (We only consider scenarios where such an ` exists.) The
crucial aspect of the model is that, in a scenario of level `, it is necessary to guarantee
only that jobs of criticality at least ` are completed before their deadlines. In other
words, once a scenario is known to be of level 2, the jobs of criticality 1 can be safely
dropped.

MC task systems. Let T = (τ1, . . . , τn) be a system of n tasks, each task
τj = (cj , pj , χj) having an execution time vector cj = (cj(1), cj(2)), a period pj , and
a criticality level χj ∈ {1, 2}. Again we assume that cj(1) ≤ cj(2). Task τj generates
a potentially infinite sequence of jobs, with successive jobs being released at least pj
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units apart. Each such job has a deadline that is pj time units after its release (implicit
deadlines). The criticality of such job is χj , and its WCET vector is given by cj .

MC-schedulability. An (online) algorithm schedules a sporadic task system T
correctly if it is able to schedule every job sequence generated by T such that if the
criticality level of the corresponding scenario is `, then all jobs of level at least ` are
completed between their release time and deadline. A system is called MC-schedulable
if it admits some correct scheduling algorithm.

Utilization. Let Lk = {j ∈ {1, . . . , n} : χj = k}. Define

uj(k) =
cj(k)

pj
, k = 1, 2, j = 1, . . . , n;

Ui(k) =
∑
j∈Li

uj(k), i, k = 1, 2.

Vector uj is called the utilization of task j. It is well-known that in the case of a single
criticality level, an (implicit-deadline) task system is feasible on m processors if and only
if U1(1) ≤ m and uj(1) ≤ 1 for all j.

Related work. The mixed-criticality model that we follow has first been proposed
and analyzed, for independent collections of jobs, by Baruah, Li and Stougie [3]. Baruah
et al. [1] gave further results for scheduling independent jobs on a single machine. The
mixed-criticality model has been extended to task systems by Li and Baruah [5].

2 Single machine

The scheduling of a collection of independent mixed-criticality jobs on a single processor
has already been treated in reference [1], where an algorithm with a speedup bound of
1.619 has been provided. Thus, in this section we focus on the case of a task system.

We consider a variant of the Earliest Deadline First algorithm, EDF-VD (EDF with
virtual deadlines). When U1(1) + U2(2) ≤ 1, EDF-VD is nothing but the usual EDF
algorithm. Otherwise, it consists in applying EDF to the modified task system in which
the period of each task in L2 is scaled down by a factor 1− U1(1).

We give the following sufficient condition for schedulability by EDF-VD.

Theorem 1. Assume T satisfies

U1(1) + min

(
U2(2),

U2(1)

1− U2(2)

)
≤ 1.

Then T is schedulable by EDF-VD on a unit-speed processor.

The above schedulability condition is then used to obtain a speedup guarantee.

Theorem 2. Let φ = (
√

5 + 1)/2 < 1.619. If T satisfies max(U1(1) + U2(1), U2(2)) ≤ 1
then it is schedulable by EDF-VD on a speed φ processor. In particular, if T is MC-
schedulable on a unit-speed processor, it is schedulable by EDF-VD on a speed φ processor.
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3 Multiple identical machines

Scheduling a finite collection of independent jobs

For a single machine, Baruah et al. [1] analyzed the Own Criticality Based Priority
(OCBP) rule and showed that it guarantees a speedup bound of φ on a collection of
independent jobs. We show that this approach can be extended to multiple identical
machines at the cost of a slightly increased bound.

Theorem 3. Let J be a collection of jobs that is schedulable on m unit-speed processors.
Then J is schedulable using OCBP on m processors of speed φ+ 1− 1/m.

Scheduling a sporadic task system without migration

In this case we consider scheduling algorithms that partition the tasks on the machines
and then schedule them independently (no migration). Using Theorem 2, the partition-
ing problem becomes a two-dimensional vector scheduling problem [4] where the vectors
to be packed are the utilization vectors (uj) of the tasks. The two-dimensional vector
scheduling problem can be approximated in polynomial time within a factor 1 + ε for
any ε > 0 [4], and we are able to derive the following.

Theorem 4. For any ε > 0 there is a polynomial-time partitioning algorithm P such
that any task system that is MC-schedulable by some non-migratory algorithm on m
unit-speed processors can be scheduled by P and EDF-VD on m speed φ+ ε processors.

Acknowledgement. We thank Sanjoy Baruah for showing us the interpretation of the
speedup result as a sufficient schedulability condition and pointing reference [4] to us.
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Scheduling serial batching machine with two competitive

agents

Ammar Oulamara (Speaker) ∗ Ameur Soukhal †

1 Introduction

We consider batch scheduling problems on a single serial batching machine with two
competitive agents. The problem that we want to analyze may be formulated as follows.
There are two agents A and B, each agent has it own set of jobs to be processed on a
common serial batching machine. Agent A has to schedule the set JA = {JA1 , . . . , JAnA}
of nA jobs whereas agent B has to process the set JB = {JB1 , . . . , JBnB} of nB jobs. All
jobs are available at time zero and all jobs should be processed without preemption. The
processing time of job JAj (JBj ) is denoted by pAj (pBj ), its due date by dAj (dBj ) and its

weight by wAj (wBj ). The serial batching machine can process several jobs sequentially as
a batch, i.e., a job only becomes available when the complete batch to which it belongs
has been processed. The length of a batch equals the sum of processing times of its
jobs and when a new batch starts, a constant setup time s occurs. We assume that
jobs of both agents cannot be batched together in the same batch. The objective is
to find a schedule such that jobs of agents A and B are to be processed on a common
serial batching machine, where the objective function of agent A is minimized under the
condition that the value of the objective function of agent B will not exceed a fixed value
Q.

The concept of scheduling with competitive agents has been treated in Agnetis et al. [1],
Agnetis et al. [2] which addressed the scheduling models on single machine in which two-
or multi-agent compete to scheduling their jobs and each agent has his own objective
function. Leung et al. [5] generalizes the work of Agnetis et al. [1] by allowing the
preemption and the dynamic arrival of jobs. Problems related to multi-agent scheduling
are also considered in [3], [6], [7].

Extending the standard classification scheme for scheduling problem (Graham et al. [4])
and following the notation of multi-agent scheduling problem of Agnetis et. al. [2], noted
by α|β|γA : γB, where γA is the objective function of agent A and γB the objective
function of agent B. The problems to be considered here may be classified as

• (LAmax : fBmax): 1|s− batch|LAmax : fBmax

• (fAmax : fBmax): 1|s− batch|fAmax : fBmax
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• (
∑
wAi U

A
i :
∑
wBi U

B
i ): 1|s− batch|∑wAi U

A
i :
∑
wBi U

B
i

Where for agent G, G ∈ {A,B}, we have

• fGmax = max1≤j≤nG{fGj (CGj )}, maximum of regular fonctions

• ∑(wGj )UGj =
∑nG

j=1(wGj )UGj , number of late jobs

Since the jobs of agent B are scheduled such that value of the objective function of agent
B is less than or equal to given fixed value Q (i.e. agent B will accept a schedule of cost

up to Q), and since the function fBj (.) are known, let us define a deadline d
B
j for each

job JBj which corresponds to the latest completion time CBj for which fBj (CBj ) = Q, i.e.,

the completion time at which the cost of job JBj is equal to Q. It is easy to see that if

the inverse function f
−(B)
j (.) is available the deadline d

B
j can be computed in constant

time. In the rest we assume that all d
B
j can be easily computed.

2 Dynamic programming for (LAmax : fBmax)

The following lemma is usefull to derive a dynamic programming algorithm for the
problem (LAmax : fBmax).

Lemma 1. For the problem (LAmax : fBmax) there is an optimal schedule such that the
jobs within agent A are processed in the EDD order.

To derive a dynamic programming algorithm for the problem (LAmax : fBmax), we
define a partial schedule S for jobs JA1 , . . . , J

A
jA
, JB1 , . . . , J

B
jB

to be in state (jA, jB, t) if
the latest batch of S is completed at time t and all jobs of agent B are ontime. Let
F (jA, jB, t) the objective value of the state (jA, jB, t). The state (jA, jB, t) is obtained
by adding a batch consisting of jobs jAk+1, . . . , J

A
jA

to partial schedule composed of jobs

JA1 , . . . , J
A
k , J

B
1 , . . . , J

B
jB

or by adding batch consisting of jobs jBk+1, . . . , J
B
jB

to partial

schedule composed of jobs JA1 , . . . , J
A
jA
, JB1 , . . . , J

B
k .

The optimal value is given by min{F (nA, nB, t) : 2s + P ≤ t ≤ n.s + P} where
P =

∑
j∈A∪B pj and the corresponding schedule is obtained by backtracking. The op-

timal value of the objective function is obtained in O(n2
A.n

2
B(n.s + P )). This dynamic

programming algorithm can be easily adapted to solve the problem (fAmax : fBmax).

3 Dynamic programming for (
∑
wA
i U

A
i :
∑
wB
i U

B
i )

We can see that all late jobs of agent A (B) can be scheduled into one batch after all
other early batches. In the following, we assume that the jobs of agent A (B)are indexed
in the nondecreasing order of their due dates, i.e;, dA1 ≤ . . . ≤ dAna (dB1 ≤ . . . ≤ dBnb).

Lemma 2. For the problem (
∑
wAi U

A
i :

∑
wBi U

B
i ), there exists an optimal schedule in

which the early jobs of agents A(B) are scheduled in nondecreasing order of their indices.

To derive a dynamic programming algorithm for the problem (
∑
wAi U

A
i :
∑
wBi U

B
i ),

we define CG(jA, jB, wA, wB, d) the minimal completion time of last early job in a partial
schedule S of jobs JA1 , . . . , J

A
jA

, JB1 , . . . , J
B
jB

in which
∑
wAi U

A
i (
∑
wAi U

A
i ) is wA (wB),
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the last processed batch contains jobs of agent G, G ∈ {A,B} and the earliest due date
in the last batch of S is equal to d.
A schedule in state (jA, jB, wA, wB, d, A) with value CA(jA, jB, wA, wB, d) is obtained
by one of the following cases : (i) In a schedule defining CA(jA, jB, wA, wB, d), job jA
is late, then CA(jA, jB, wA, wB, d) = CA(jA − 1, jB, wA − wjA , wB, d) (ii) In a schedule
defining CA(jA, jB, wA, wB, d), job jA is scheduled early jointly with at least one other
job in the last early batch, in this case we have CA(jA − 1, jB, wA, wB, d) + pjA ≤ d
and CA(jA, jB, wA, wB, d) = CA(jA − 1, jB, wA, wB, d) + pjA (iii) In a schedule defining
CA(jA, jB, wA, wB, d), job jA is the only job scheduled in the last early batch, then we
must have d = djA and,CA(jA, jB, wA, wB, d) = min1≤k≤jA−1CA(jA−1, jB, wA, wB, dk)+
s+ pjA or CA(jA, jB, wA, wB, d) = min1≤k≤jB CB(jA − 1, jB, wA, wB, dk) + s+ pjA .
A schedule in state (jA, jB, wA, wB, d, B) with value CB(jA, jB, wA, wB, d) is symmetri-
cally established according to the above analysis.
Finally the optimal value of the weighted number of tardy jobs of agent A is w∗A =
minG∈{A,B}{wA : CG(nA, nB, wA, Q, d) < ∞, 0 ≤ wA ≤

∑nA
j=1w

A
j , d ∈ {dG1 , . . . , dGnG}}

and it can be computed in O(n2
A.n

2
B.WA.WB) where WA =

∑nA
j=1w

A
j and WB =∑nB

j=1w
B
j .
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M machine scheduling under uncertainties on machine

availabilities

Frédéric Guinand ∗ Amine Mahjoub † Eric Sanlaville (Speaker) ‡

1 Model and Notations

A set of n independent tasks is to be scheduled on m machines. Task durations are
denoted by p1, . . . , pn. Machine i is unavailable during the time interval [si, ei], and
the machines are numbered according to increasing order of the si’s. Another hypoth-
esis states that at any time, at least one machine is available. The objective is the
minimization of the makespan.

This problem has been much studied during the recent years (see first survey in [3]),
as it has immediate applications in workshop management (unavailability is due to main-
tenance periods) or in parallel computing (occurence of top priority tasks). However,
even if the unavailability period remains of fixed duration, it may occur at another time
than the forecasted one si. What happens now for the makespan? In other words, what
is the performance decrease of the chosen schedule? This problem is tackled here.

The approach considered is proactive-reactive [4] : a first schedule, hereafter called
reference schedule, is computed with the estimated values si (proactive phase). If there
are disturbances on the unavailability periods during the execution, the schedule is mod-
ified to couple with these disturbances (reactive phase). This modification, called stabi-
lization, is explain in the next section.

The uncertainty is modeled as follows : for one machine i, the real unavailability
starting time is supposed to remain inside an interval [si − ε, si]. The case where un-
availability occurs later than expected leads to similar results. Several indicators may
be used to measure the robustness of a method (in our proactiv-reactive approach, the
method is defined by the computation of the reference schedule and by the stabilization
process). A measure of its stability is given by the difference between the makespan
of the real schedule and the makespan of the reference schedule. Another measure is
the difference between the optimal makespan for the real unavailability periods and the
makespan of the real schedule ( the absolute deviation). Both proposed measures can be
computed as upper bounds on all problem instances and all disturbances with a fixed ε.

In the case of the m machine scheduling of independent tasks, the deterministic
problem is NP-Hard. However, it has been established that LPT (Longest Processing

∗frederic.guinand@univ-lehavre.fr. Laboratoire LITIS, Université du Havre, rue Philippe Lebon,
BP 540, 76058 Le Havre Cedex, France.

†mahjoub.amin@gmail.com. UTIC, Ecole Supérieure des Sciences et Techniques de Tunis, 5 avenue
Taha Hussein, BP 56, Bab Menara, 1008 Tunis, Tunisie

‡eric.sanlaville@univ-lehavre.fr. Laboratoire LITIS, Université du Havre, rue Philippe Lebon,
BP 540, 76058 Le Havre Cedex, France.
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Time first) list schedules behave quite good, even when machines are not continuously
available [1]. The objective of our study is to show that LPT is still a good choice under
uncertainties on unavailability periods.

2 Computing the impact of disturbance on any schedule

The stabilization process is now presented. Note first that in our model, the tasks are not
preemptive nor resumable. That is, if a task is interrupted because the machine becomes
unavailable, then it must be entirely re-executed later. Let us consider a disturbance on
machine mi. The tasks which are no more executable before the unavailability on the
machine mi are scheduled after all the others, as soon as possible, on any machine and
according to the same order as in the reference schedule.

The resulting schedule is called the final schedule or the stabilized schedule, see [1].
In figure 1, due to the disturbance on machine m2 unavailabilty, the tasks T1 and T2 are
rescheduled. T1 is executed first on machine m2, however T2 is executed on machine m1

because it is available first. The overall makespan is changed from C2 to C̃1.
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Figure 1: Effect of disturbance

The impact of disturbances is evaluated by the stability measure, for any reference
schedule S with makespan CS . Denote by S̃ the stabilized schedule, with CS̃ its
makespan. The goal is to bound the difference CS̃ −CS . Obviously, this bound depends
on ε and on P = maxj∈{1,...,n} pj .

Theorem 1. Let Q be the smallest multiple of P larger than ε : Q = k ·P and (k−1)P ≤
ε < k · P . Then, for any schedule S,

CS̃ − CS ≤ P +Q = (k + 1) · P

Two cases must be distinguished for the proof, wether ε is smaller or larger than P .

The key point is that this bound is obtained without any hypothesis on S. Remark
also that it is a step-function of ε. However, it is of course better when the reference
schedule has a small makespan. Hence in the next section the special case of LPT
schedules is considered.
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3 Performances of LPT schedules

In this section, the performances of the schedules obtained by LPT rule are considered.
It means that the schedule denoted by S is now obtained by LPT .
Since [2], a relative bound on the performance ratio of LPT for the deterministic
problem is known (C∗ denote the optimal makespan):

CS/C
∗ ≤ m+ 1

2
This is quite bad for a problem without precedence ! However, we suspected one

might find more favourable results, especially the existence of an absolute bound (re-
member that in the case without unavailability, the relative bound is 4/3, whereas there
exists an absolute bound of P for any list schedule).

Theorem 2. For any instance of the problem with unavailability,

CS − C∗ ≤ m · P

and this bound is asymptotically tight.

In the previous section, we have established a general result about the stability of
any schedule. Now, considering that the schedule denoted by S is obtained by LPT ,
we provide the following result, which is still a conjecture at the time this abstract is
written.
Remember, that CS̃ is the makepan of the stabilized LPT schedule. We denote by S′

the schedule obtained by LPT rule for the real instance (a posteriori computation) :

Conjecture 3.
CS̃ − CS′ ≤ P

Provided the conjecture is indeed verified, and due to theorem 2, we get a result on
the robustness of LPT for the problem at hand:

CS̃ − C̃∗ ≤ (m+ 1) · P

where C̃∗ denotes the optimal makespan of the real instance.
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Media Streams Planning∗

Hana Rudová (Speaker) † Pavel Troubil∗

1 Introduction

Media streams planning introduces a problem where placement of latency-sensitive
streams over network is processed. In contrast to other classical path placement prob-
lems [4], each stream represents a communication tree with the root at producer and
leafs at consumers. This problem may seem to be suitable for the standard multicast
transmissions but it cannot be used for two reasons. First, the planning is processed
over heterogeneous networks where multicast is not generally available. Second, mini-
mization of latency unavailable by multicast must be considered to allow transmission
of high-bandwidth streams.

Our work introduces an alternative to the constraint programming approach [1] in-
cluded in an application middleware CoUniverse [2] representing pioneering orchestration
of component-based interactive collaborative environments. The CoUniverse (with the
constraint programming solver) has been demonstrated in many deployment cases such
as distributed classroom taught at the Louisiana State University and transmitted to a
number of universities and institutes in the U.S., Argentina and the Czech Republic (reg-
ularly taught since 2007). An example of data transmission computed by the CoUniverse
is demonstrated in Figure 1. Our aim is to replace actual constraint programming solver
by a new integer linear programming solver, which appears to have a better performance.

2 Integer Linear Programming Formulations

Integer linear programming (ILP) solver implemented in Gurobi Optimizer1 builds on
top of the constraint programming (CP) solver [1]. Here binary variables xs,l called
streamlinks are introduced to represent transmission of a stream s over a network link l.
Basically, there are linear constraints handling network capacity limitations and con-
straints managing tree transmission of each stream from producer to his consumers.
The aim of optimization is to minimize achieved latency over all streamlinks.

To implement the new ILP solver, it was necessary to redefine some of the constraints
managing tree transmission to ensure their linearity. This results in the first ILP for-
mulation which already has a better performance over the CP solver. The new solver
improves the running time for two out of the three input network topologies. Hence, it

∗This work has been supported by the Ministry of Education, Youth and Sports of the Czech Republic
under the research intent No. 0021622419.

†hanka@fi.muni.cz, pavel@ics.muni.cz. Faculty of Informatics, Masaryk University, Botanická
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1Gurobi Optimizer version 4.0.1 available from http://www.gurobi.com.
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Figure 1: Data transmissions computed by the CoUniverse during the 7th Annual Global
LambdaGrid Workshop (GLIF) 2007 (taken from [1]).

leads to an increase of input sizes (number of sites) which can be solved in real time,
i. e., within a few seconds (media transfers are basically realized among several sites
representing geographical structure of the network typically).

The initial formulation involves constraints avoiding cycles to ensure tree structure
of each transmission. Performance analyses have shown that these constraints impact
performance of the ILP solver severely. We have proposed several cycle avoidance meth-
ods, which are always applied upon a set of core constraints (initial formulation without
the cycle avoidance).

In the CP solver, there are two alternatives based on the subtour formulation and
the MTZ formulation [3] known from the traveling salesman problem. Due to relatively
low number of cycles emerging in the solutions, we proposed an alternative methods,
where application of the constraints is delayed. The problem is solved without any cycle
avoidance constraints and they are added only to eliminate cycles which actually appear
in the solution. Due to low number of the additional constraints (typically lower than
number of nodes in the input network), running time is significantly shorter.

We have also proposed and analyzed network flows formulation for cycle avoidance.
We introduced new integer linkflow variables ys,l counting the number of consumers
receiving the stream s through the link l. While network flows formulation is not appli-
cable to streamlinks due to violation of Kirchhoff’s laws at data distribution nodes, it
can be applied to linkflows. Measurements show that the network flows formulation of
cycle avoidance performs the fastest of the presented formulations.

Our current work involves implementation in an open-source solver to allow its public
distribution with the CoUniverse. Our future work includes consideration of heuristic
algorithms for the current problem or further extensions of the problem such as inclusion
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of partial knowledge of physical topology or availability of multicast in some subnetworks.
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Fast separation algorithms for

three-index assignment problems

Trivikram Dokka (Speaker) ∗ Ioannis Mourtos † Frits C.R. Spieksma ‡

1 Introduction

Given a specific combinatorial optimization problem, an Integer Linear Program (ILP)
formulation is of the form min{cTx : Ax = b, x ∈ Zn+}, where x denotes an n-dimensional
column vector of variables, and where A, b, and c are given coefficients of appropriate
dimensions. The convex hull of the feasible solutions is defined by the corresponding
polyhedron PI = conv{x ∈ Zn+ : Ax = b}. The strongest possible inequalities valid
for PI are the so-called facet-defining inequalities. It is a standard technique in cutting
plane algorithms to efficiently use these inequalities to strengthen the linear programming
relaxation PL = min{cTx : Ax = b, x ≥ 0}.

In cutting plane methods, an inequality is added to the current linear program only
when it is violated by a specific vector x ∈ Rn. The problem of determining whether
such a vector violates an inequality of a specific family is called the separation problem
for this family and an algorithm solving it is called a separation algorithm. Thus, an
important task, once families of inequalities have been identified, is to design separation
algorithms. These are often family-specific, and, in order to be useful, should be of low
computational complexity.

It is customary to express the complexity of a separation algorithm in terms of n,
the dimension of the vector x. This seems reasonable since, at the very least, one would
need to inspect each entry of the vector x to decide whether a violated inequality exists.
In fact, separation algorithms with a complexity of O(n) have been called “best-possible”
( [2], [4]). In this contribution, we point out that, due to the fact that the vector x can
often be described (much) more compactly than listing all n entries, it is interesting to
study the impact of this fact on the design of separation algorithms.

Indeed, as described above, separation algorithms are normally incorporated within
a Branch & Cut scheme, i.e., a search scheme to find z = min{cTx : x ∈ PI} by strength-
ening the LP-relaxation at various nodes of the search tree. And indeed, within such a
scheme, the separation algorithm receives as input not any x ∈ Rn, but instead a vector
describing an optimal solution of the current LP-relaxation, i.e., an x ∈ PL\PI . Hence
it appears reasonable to ask whether this fact can be employed to speed-up separation
algorithms, thus resulting in more efficient Branch & Cut schemes.

∗trivikram.dokka@econ.kuleuven.be. Operations Research Group, Leuven University, Naamses-
traat 69, B-3000 Leuven, Belgium.

†mourtos@aueb.gr. Department of Management Science and Technology, Athens University of Eco-
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In this paper, we answer this question in the positive for specific classes of inequalities
known to be valid for polytopes corresponding to three-index assignment problems. More
specifically, we give separation algorithms for two classes of facet-defining inequalities of
the 3-index assignment polytope that are faster than the known ones.

2 The three-index assignment polytope

The 3-index assignment problem, defined on three disjoint n-sets I, J,K and a weight
function w : I × J ×K −→ R, asks for a collection of triples M ⊆ I × J ×K such that
each element of any set appears in exactly one triple and function w is minimized (over
all possible such collections). Its formulation as an ILP is

min
∑
i∈I

∑
j∈J

∑
k∈K

wijkxijk

s.t.
∑
j∈J

∑
k∈K

xijk = 1 ∀i ∈ I, (1)∑
i∈I

∑
k∈K

xijk = 1 ∀j ∈ J, (2)∑
i∈I

∑
j∈J

xijk = 1 ∀k ∈ K, (3)

xijk ∈ {0, 1} ∀i ∈ I, j ∈ J, k ∈ K. (4)

Let An denote the (0, 1) matrix corresponding to the constraints (1) - (3), which has
n3 columns and 3n rows. Notice that from this point in the text onwards, n denotes
the cardinality of each set being ‘assigned’; hence, the number of variables is n3. Then,
the 3-index assignment polytope is PnI = conv{x ∈ {0, 1}n3

: Anx = e}, while its LP-

relaxation is Pn = {x ∈ Rn
3

: Anx = e, x ≥ 0}. A survey of Multi-index assignment
problems can be found in [3, 5].

The column intersection graph of An, namely G(V,E), has a node for each column
of An, and an edge for every pair of columns that have a +1 entry in the same row.
Notice a column contains three +1’s. We define the intersection of two columns c and
d denoted by |c ∩ d|, as the set of rows of An where both columns have +1 entry. It is
easy to see that V = I × J ×K and E = {(c, d) : {c, d} ⊆ V, |c ∩ d| ≥ 1}, i.e., a node
in V corresponds to a triple, and two nodes are connected if the corresponding triples
share some index. A clique is a maximal complete subgraph.

In G(V,E), there are two types of cliques that give rise to families of inequalities that
are facet-defining for PI and that are separable in polynomial time. To formally define
the two types of clique inequalities, let:

• for each c ∈ V : Q(c) = {d ∈ V : |c ∩ d| ≥ 2}, and

• for each c ∈ V : coQ(c) = {d ∈ V : |c ∩ d| = 1}, and

• for each c, d ∈ V with |c ∩ d| = 0 : Q(c, d) = {c} ∪ {Q(d) ∩ coQ(c)},

Notice that c ∈ Q(c).

As usual, x(Q(c)) =
∑

q∈Q(c) xq, x(Q(c, d)) =
∑

q∈Q(c,d) xq.
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Definition 1. For each c ∈ V , the facet-defining inequality x(Q(c)) ≤ 1 is called a clique
inequality of type I.

Definition 2. For each c, d ∈ V with |c∩d| = 0, the facet-defining inequality x(Q(c, d)) ≤
1 is called a clique inequality of type II.

Separation of cliques of type I and II was first treated in Balas and Saltzman [1]
through algorithms of O(n4) time complexity. Improved O(n3) algorithms (i.e., of com-
plexity linear in the number of variables) were presented in Balas and Qi [2]. These
separation algorithms were called ‘best-possible’.

The following fact is from linear programming theory:

Proposition 3. An extreme point of Pn has at most 3n non-zero variables.

3 Fast Separation Algorithms: Our Results

We show how the complexities of current algorithms can be improved when we use as
input-measure the number of positive components of the given vector x. Formally we
denote this input measure as T : the number of positive components in given vector x. In
a cutting plane context, T varies from O(n) to O(n3). Given Proposition 3, it is relevant
to use this input measure T to design faster separation algorithms.

Our main results are the following:

Theorem 4. Given an arbitrary x ∈ Pn, a violated clique inequality of type I can be
identified in O(n2 + T ) time.

Theorem 5. Given an arbitrary x ∈ Pn, a violated clique inequality of type II can be
identified in O(nT ) time.

Theorem 6. For each fixed ε > 0, we can find out in O(n2 + T ) time whether a clique
inequality of type II with right-hand side 1 + ε is violated.
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An Integrated Vehicle Routing and Duty Roster Planning of

Toll Control Inspectors ∗

Ralf Borndörfer † Guillaume Sagnol ‡ Elmar Swarat (Speaker) §

1 Introduction

In 2005 a distance-based toll for all commercial trucks of twelve tonnes vehicle weight and
above has been introduced on German motorways, in order to fund growing investments
for maintenance and motorway extensions. These are caused by an increasing amount
of freight transport. The toll enforcement is in responsibility of the Federal Office for
Goods Transport (BAG). It is done by a combination of an automatic enforcement by
stationary bridges with a mobile enforcement by random tours of 300 control vehicles
through the whole network. We consider the problem of finding optimal control tours
for these mobile control teams. A team is mostly composed of two inspectors or of only
one. The goal is to guarantee a network-wide control which is proportional to spatial
and time depending traffic distributions. An important restriction is that each team,
and respectively each vehicle, may only control sections that are close to their home
depot. The number of vehicles and its depots are given as fixed.

To the best knowledge of the authors there is no optimization approach to toll en-
forcement in the literature. There exists a lot of literature for other problems concerning
evading, like tax evading or ticket evading in public transport. Those approaches mainly
discuss the expected behaviour of evaders or payers, e.g. [2], or optimal levels of inspec-
tion, see [1]. A very recent approach in inspector scheduling in public transport was
made at DSB S-tog in Denmark [3], but in contrast to our problem they only consider
the temporal scheduling of the inspectors and not their routing through the network.

2 A graph model for an integrated staff and tour planning

The basic structure for our problem consists of a graph G = (S,N), in which the nodes
s ∈ S are so-called “control sections”, that are sub-parts of the network with a length of
approximate 25-50 km. An edge n ∈ N connects two sections, if they have at least one
motorway junction or interchange in common. Furthermore, there is a given planning
horizon T , e.g., four weeks, and a pre-chosen time discretization ∆. According to the

∗This work was funded by the German Federal Office for Goods Transport (BAG).
†borndoerfer@zib.de. Zuse Institute Berlin, Department Optimization, Takustrasse 7, D-14195
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Figure 1: Example of a time-expanded control planning graph

requirement to define both the spatial routing and the temporal sequence of the tours
we extend G to a time-expanded digraph D = (V,A). There the nodes v ∈ V are
either defined as a pair of a section and a point in time, i.e. v = (s, t) ∈ S × [0, T ] or
they represent the artifical start and end nodes for the vehicle paths (depot nodes). The
directed arcs connect either adjacent time intervals of a same section, a = ((s, t1), (s, t2))
with t2 = t1 + ∆ starting at t1 = 0 until t2 = T , or they connect adjacent sections, i.e.,
if (s1, s2) ∈ N it holds that ((s1, ti), (s2, ti+1) ∈ A∀ti ∈ {0,∆, . . . , T −∆}, see Figure 1
for an example. In addition to that, arcs are directed from the start depot to all other
nodes (except for the end depot node) and from all nodes to the end depot node.

If we assign a time-dependent profit value to each section to control, our problem
could be seen as a special vehicle routing problem with profits under some additional
constraints. The vehicle routing problem is a well established research area, see [4] for
an overview, and for the special case of dealing with profits Feillet et al. [5] give a survey
on relevant literature.

We formulate our problem as a 0/1 multi-commodity-flow-problem inD. The vehicles
represent the commodities and each feasible control tour relates to a length restricted
path in D, starting and ending at the depot nodes. For each section s that must not
be visited by a vehicle f we impose an outflow of zero for all v = (s, ti) ∈ V for the
commodity representing f . Minimum control requirements for s ∈ S lead to minimum
outflow conditions for the set of nodes v = (s, ti). The profit value for each node v ∈ V
is set on all outflow arcs a ∈ δ+(v), to collect it by each path visiting v. The resulting
multi-commodity-flow-problem is formulated as an IP maximizing the overall profit.

The second task is the planning of the duties, the rosters and the staff assignments.
In public transport this is usually done sequentially (see [6] Chapter 1) and partly anony-
mously. The use of mathematical methods is thereby already well established. Unfortu-
nately, an analogues approach for the toll control is not possible according to the above
mentioned spatial restrictions for the teams. Hence, we must add a person-based duty
roster planning to the tour planning problem, to prevent infeasible staff assignments.

Similar to models for vehicle scheduling in public transport [7] we formulate the
rostering problem by a multi-commodity flow problem in a graph, where the nodes
represent duties and the arcs model a feasible sequence of two duties according to legal
rules. Again there are two artifical start and end nodes that are connected with all other
nodes. This problem is formulated by an IP minimizing the duty costs. Then the two
planning problems are connected by coupling constraints to an integrated formulation.
More precisely, those coupling constraints ensure that for each chosen tour path in D
all inspectors in the corresponding team have a feasible duty roster path with a duty in
the time horizon of the planned tour. The objective function is then a combination of
collecting the profit and minimizing the cost. Our challenge is to compute the solution
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instance ∆(h) dc lr wtd columns rows v(lp) v∗ gap(%) time(sec.)

T1 4 x x x 136264 17245 368997.56 350288.76 0.06 12283.0†

T2 4 x x - 136264 17237 449883.49 435343.00 - 181.62
T3 4 - x x 128808 17257 533597.42 499561.80 1.84 21600.00
T4 2 x x x 376328 22877 677133.58 644458.66 0.05 21600.00

T5 2 x x - 376328 22869 732316.22 709276.99 0.04 3554.2†

T6 2 - x x 368872 22889 846722.87 796495.47 1.52 21600.00

Table 1: IP-Solution analysis of some instances from a control region of Brandenburg with a
time limit of 6h (21600 sec) and a tree memory limit of 10 GB. The term v(lp) denotes the root
relaxation value and v∗ the best integer value. The instances are characterised by the parameters
dc, lr and twd. The dc stands for using duty costs, the lr that legal rules are fulfilled and the
wtd that a desired working time window distribution across the day is part of the input.

of the integrated vehicle routing and duty roster planning. This approach is different to
the routing and scheduling problems that are mostly discussed in the literature.

In Table 1 we present computational results from a control area of Brandenburg. We
calculated four-week control plans using CPLEX 12.2 [8] as an IP solver. An important
result is that all duty-cost instances could be solved near to optimality. And mainly for
the four-hour discretization (∆ = 4), the solution time reduces extremely if we omit the
working time distribution constraints. However the problem is more difficult to solve if
we replace the duty costs by coefficients that prefer an employee-friendly plan.
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Stability in multi-skill workforce assignments: complexity

analysis and stable assignments polytope

Cor Hurkens (Speaker) ∗ Murat Fırat †

1 Introduction

We analyze stability in multi-skill workforce schedules. In our stability analysis, we
extend the notion of blocking pairs as stated in the Marriage model of Gale-Shapley. It
is shown that finding stable schedules is NP-Hard. In some special cases stable schedules
can be constructed in polynomial time. Finally, we define a set of inequalities that must
be satisfied by all stable schedules.

Firstly, we define the preferences of the players: technicians and jobs. An assignemnt
is said to be blocked if a technician-job pair not assigned can improve their individual
preferences by being assigned. This is the same definition of a blocking pair in the
milestone paper of [1]. The challenge in our assignment problem is to satisfy the multi-
dimensional skill requirements of jobs. A job can be performed by a team of technicians
provided that the collective capabilities of the team are above a certain threshold.

2 Problem Description and Notation

2.1 Skills

The degree of experience or expertise in a skill domain is interpreted by hierarchical
levels. An expert possesses the highest level and a beginner qualifies as the lowest. Let
D be the set of skill domains and L the set of hierarchical skill levels. The skill (l, d) is
said to be at level l and belongs to domain d.

2.2 Technicians

We are given a set T of technicians and skills for technician for t ∈ T are specified by

St ∈ {0, 1}L×D. If skill level of technician t in skill domain d is l ∈ L, then S
(l′,d)
t = 1 for

l′ ≤ l and S
(l′,d)
t = 0 otherwise.

Skill value of technician t, denoted by εt, is found by aggregating the skills in all
domains at all levels with corresponding weights. If we let W ∈ RL×D be the skill weight
matrix, then the skill value of t is calculated by εt = 〈W,St〉.

The skill of a team T ′ ⊆ T is defined as the skill sum of individual technicians:
ST ′ =

∑
t∈T ′ St. Similarly, the skill value of T ′, denoted by εT ′ , is found by εT ′ =∑

t∈T ′ εt = 〈W,ST ′〉.
∗c.a.j.hurkens@tue.nl. Department of Mathematics and Computer Science, TU Eindhoven, P.O.
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In an assignment, the job to which technician t is assigned is denoted by J(t) and
T (j) denotes the team assigned to job j. Clearly, in a schedule J(t) = j if and only if
t ∈ T (j).

2.3 Jobs

We are given a set J of jobs with skill requirements RQj ∈ RL×D,∀j ∈ J . All jobs have
a work day length and are processed in parallel on a workday. Skill requirements are
cumulative in the sense that any requirement in a higher level is carried to lower levels.

For j ∈ J , we have l′ ≤ l⇒ RQ
(l′,d)
j ≥ RQ(l,d)

j , l, l′ ∈ L, d ∈ D. The non-cumulative or
explicit skill requirement, denoted by RQ∗j , is obtained from RQj as follows:

RQ
∗(l,d)
j =

{
RQ

(l,d)
j if l = |L|,

RQ
(l,d)
j −RQ(l+1,d)

j if 0 < l < |L|.

Contributions to Jobs: We make the assumption that technicians can use their
skills in more than one skill domain simultaneously while performing a job. The
contribution level of technician t to a job j in skill domain d, is defined as the
maximum level that is both explicitly required j and reached by t. It is found by

CON d
(t,j) = max

[
{0} ∪ {l ∈ L|RQ∗(l,d)

j > 0 and S
(l,d)
t > 0}

]
.

In skill domain d, the highest contribution level that technician t can achieve is found
by CON d

(t,J) = maxj∈J{CON d
(t,j)}. Each technician orders skill domains lexicographically

with respect to CON (t,J). Ties due to the same maximum contributions are broken by
choosing the domain in which there is less competition and further ties are broken by
choosing the domain with minimum index. The skill domain with highest ranking is
called the favorite domain and it is denoted by d∗t (J) = Argmax{CON d

(t,j), d ∈ D}.

Definition 1. ∆(j, t) is the set of skills that are required by job j for which t is not
qualified. Skills in ∆(j, t) are called exclusive. Note that for an exclusive skill (l, d), we

have RQ
∗(l,d)
j > 0 and S

(l,d)
t = 0.

Definition 2. In an assignment, the skill (l, d) for which we have RQ
(l,d)
j = S

(l,d)
T (j) and

RQ
(l,d)
j > 0 is called critical and the contributions in this skill are also called critical.

C(j) ⊂ L× D denotes the set of critical skills.

Proposition 3. In an assignment, let t′ ∈ T (j) and t 6∈ T (j). Technician t can replace

t′ in T (j) if and only if S
(l,d)
t′ ≤ S(l,d)

t for all (l, d) ∈ C(j).

3 Preference Structure

In this section we explain the preference criteria of technicians and jobs.

Preference criterion of technicians: Technician t likes job j more than j′ if and

only if CON
d∗t (J)

(t,j′) < CON
d∗t (J)

(t,j) . Ties are broken by checking the contributions in t’s
lexicographic skill domain ordering. Further ties are broken by job indices.

Preference criterion of jobs: Job j likes technician t if and only if, j decreases the
total skill value of its team by employing t and releasing one technician. Let the released
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technician be t′, then we know S
(l,d)
t′ ≤ S(l,d)

t for all (l, d) ∈ Cµ(j) by Proposition (3) and
εt < εt′ .

Blocking pairs: We adapt the idea of blocking pairs of [1] to our scheduling context.
The pair (t, j) is said to block a schedule if and only if t and j like each other.

4 Complexity Analysis

The subset of problem instances in which there is one skill domain is denoted by 1D-nL-
nT. In nD-1L-2T, jobs are performed two technicians and in a skill domain technicians
are skilled or unskilled. We have the following results:

Theorem 4. In feasible 1D-nL-nT instances, stable assignments can be constructed in
polynomial time.

Theorem 5. Constructing a feasible assignment in nD-1L-2T is NP-Hard.

5 Stable assignments polytope

We have xtj = 1 if j ∈ T (j), otherwise xtj = 0. If ytj = 1, then technician t likes job
j, otherwise ytj = 0. If β(j,(l,d)) = 0, then the requirement of j in skill (l, d) is critical,
otherwise β(j,(l,d)) = 1. Lastly, if τ(t,j,t′) = 0, then technician t can replace technician t′

in the team T (j), otherwise τ(t,j,t′) = 1. Let β′(j,l,d) and y′tj denote the negations of the

corresponding terms. The set J<(j, t) of jobs denotes the jobs to which job j is preferred.
Lastly, δεt,t′ = 1 if εt > εt′ , 0 otherwise.

∑
j∈J

xtj ≤ 1, ∀t ∈ T (1)

∑
t∈T

Stxtj ≥ RQj , ∀j ∈ J (2)

xtJ<(j,t) = ytj , ∀(t, j) ∈ T × J (3)∑
t∈T

S
(l,d)
t xtj −RQ(l,d)

j ≥ β(j,(l,d)), ∀j ∈ J, ∀(l, d) : RQ
(l,d)
j > 0, (4)

∑
t∈T

S
(l,d)
t xtj −RQ(l,d)

j ≤ |L||D|β(j,(l,d)), ∀j ∈ J, ∀(l, d) : RQ
(l,d)
j > 0 (5)

∑
(l,d)∈∆(j,t)

S
(l,d)

t′ β′(j,(l,d)) ≥ τ(t,j,t′), ∀(t, t′), ∀j ∈ J (6)

∑
(l,d)∈∆(j,t)

S
(l,d)

t′ β′(j,(l,d)) ≤ |L||D|τ(t,j,t′), ∀(t, t′), ∀j ∈ J (7)

xt′j ≤ y′tj + τ(t,j,t′) + δεt,t′ , ∀(t, t′), ∀j ∈ J (8)

(1) and (2) ensure the feasibility. In (3), technician t likes job j iff he is assigned to
a job he likes less than j. (4) and (5) (6)and(7) determine the critical skills {technician
replacements}. Finally, (8) is the key inequality to prevent instability.

Proposition 6. An assignment satisfying the inequalities (1)-(8) is stable.
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Scheduling of underground mining processes

Marco Schulze (Speaker) ∗ Jürgen Zimmermann †

1 Introduction

During the last five decades, numerous publications (e.g. [1] and [5]) have appeared
concerned with the application of optimization methods in the mining industry. Most of
them focus on long-term production scheduling for underground mining, e.g. [7] as well
as open pit mining, cf. [6]. In contrast, this paper addresses the short-term underground
mine production scheduling problem that can be defined as specifying the sequence in
which blocks should be removed from the mine. The aim is to minimize the makespan
subject to a variety of constraints, because the management of the mining company is
interested in an efficient utilization of the resources. The constraints relate to the mining
extraction sequence, resource capacities and safety-related restrictions.

The extraction of the examined German potash mine is done by room-and-pillar
mining. In this mining system the mined material is extracted across a horizontal plane
while leaving pillars of untouched material to support the roof of the mine. Thus, open
areas (rooms) emerge between the pillars. As mining advances, a grid-like pattern of
rooms and pillars is formed. There are two types of room-and-pillar mining: conventional
mining and continuous mining. Except for some special applications, the excavation of
potash is based on the former type involving drilling and blasting. This kind of under-
ground mining is characterized by the following eight consecutive sub-steps (operations),
that can be defined as a production cycle (see Fig. 1): scaling the roof, bolting the roof
with expansion-shell bolts, drilling large diameter bore holes, removing the drilled mate-
rial, drilling blast holes, filling the blast holes with an explosive substance, blasting and
transportation of the broken material to a crusher.

Figure 1: Sub-steps of the production cycle
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For each processing step except for the blasting step one special mobile machine is
required. In order to excavate one block of a certain underground location (for example
block 8 at location a2 in Fig. 2) it is necessary that all sub-steps of the preceding
production cycle have been finished, e.g. the preceding block (block number 7 in Fig. 2).

After the completion of the first step of the production cycle, the remaining oper-
ations ought to be finished within a certain time limit τ . If an operation cannot start
within the time limit, a security precaution is needed in which the roof is scaled once
more.1 Then, the next operation of the original cycle can be resumed (see Fig. 3, where
τ has elapsed for a job after completion at stage 3).
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Figure 2: Schematical view of a mining
region that consists of five locations (a1-
a5), several blocks per location (4-6) and
one crusher. For a better orientation the
blocks are consecutively numbered.

Figure 3: Hybrid flow shop design of the
excavation process. The dashed line sym-
bolizes that the time period τ is exceeded.
Consequently the job has to visit stage 1
(scaling the roof) once more.

2 A mixed integer linear programming formulation

The described excavation process represents a common manufacturing environment that
can be identified as a hybrid flow shop scheduling problem, cf. [2]. The hybrid flow shop
problem is a generalization of the classical flow shop problem. There are K production
stages, i.e. sub-steps of the production cycle, in series (K = 7, because we can ignore the
step “blasting”), separated by unlimited intermediate buffers, and each stage k consists
of M (k) unrelated parallel machines. The jobs (i.e. blocks) have to visit the stages
in the same order starting from stage 1 through stage K. A machine can process at
most one job at a time and a job can be processed by at most one machine at a time.
Preemption of processing is not allowed. The scheduling problem consists of assigning
jobs to machines at each stage and sequencing the jobs assigned to the same machine
so that the makespan is minimized. In contrast to this “standard” form of the hybrid
flow shop problem, cf. [8], we developed a mathematical model (MIP) for this problem
including the specific restrictions associated with the underground mining production
cycle.

1If jobs may visit each stage several times, it is called re-entry or recirculation, c.f. [4] or [3].

226



3 Computational Results

In order to test the introduced model we generated fifteen scenarios, each with ten in-
stances, where the number of parallel machines at each stage and the number of under-
ground locations as well as the total number of jobs were varied. When solving the small
instances (15, 20 and 25 jobs) we set the time limit to 1,800 seconds and the maximum
allowed gap to 0%. The results for these scenarios show something quite interesting:
in case where we always have two parallel machines, the computation times are always
lower compared to the cases with only one machine at each stage or the configuration
with one to three parallel machines at each stage. After analyzing the results in more
detail, we could see, that the LP bounds were always better when solving the scenarios
with two parallel machines and that might be the reason for the faster results. All small
instances could be solved to optimality within acceptable computation time, but to ful-
fill practical needs we have to consider larger instances with around 15-20 underground
locations and approximately 120 jobs that have to be scheduled for an usual mining
region. Consequently, we analyzed near practical instances with 60 and 100 jobs each.
For these scenarios we set the time limit to 200,000 seconds and the maximum allowed
gap to 5% in order to decrease the solution time. In case of 60 jobs solutions within the
allowed gap were found in reasonable time for 28 out of 30 instances. Considering the
instances with 100 jobs 19 out of 30 instances were solved in acceptable time while for
the remaining instances the gap of 5% could not be reached within the time limit. When
solving the configurations with only one machine and one to three parallel machines at
each stage, we implemented lower bounds that considered the last stage (transportation
of the broken material to a crusher) as a bottleneck stage. The results show that our
lower bounds lead to significant faster results compared to the lower bounds that were
generated by the solver itself in case of two parallel machines.
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Breaks, cuts, and patterns

Dries R. Goossens ∗ Frits C.R. Spieksma (Speaker) †

1 Introduction

Consider a sports competition in which an even number of teams (say 2n) compete.
Each team has its own venue, and each pair of teams meets once in one of the team’s
venues. Clearly, this is a single round robin tournament which can be played in 2n − 1
rounds. A schedule is called compact when it uses the minimum number of rounds
required to schedule all the games. In a compact schedule with an even number of
teams, each team plays exactly one game in each round. If the league contains an odd
number of teams, a dummy team may be added, reducing this situation to the case
with an even number of teams. In each round, the team playing against the dummy
team has a ‘bye’, i.e. does not play. In this work, we deal solely with compact schedules
for an even number of teams.

Traditional terminology prescribes that the sequence of home matches (‘H’) and
away matches (‘A’) played by a single team is called its home-away pattern (HAP).
Given such a HAP, the occurrence of two consecutive home matches, or two consecutive
away matches is called a break.

In this contribution, we will generalize the concept of a break. The idea is simple:
instead of defining a break as two home games (or two away games) in a pair of con-
secutive rounds, we will view a break as two home (away) games in a given, arbitrary
pair of rounds. More specific, each team i, i = 1, . . . , 2n specifies a set of pairs of rounds
indicating that this team does not want to play either at home or away in both rounds
of each pair (which need not be consecutive). The set of pairs is called the break set of
team i, and is denoted by Bi, with i = 1, . . . , 2n. It generalizes the traditional concept
of a break. Indeed, the traditional setting arises when:

B1 = B2 = . . . = B2n = {{1, 2}, {2, 3}, {3, 4}, . . . , {2n− 2, 2n− 1}}.

We say that a home-away pattern (HAP) is break-free with respect to a break set
Bi if no two home matches or two away matches are scheduled on a pair of rounds that
is an element of Bi. We call a set of 2n home-away patterns a pattern set if they are
pairwise distinct, and when each round has n H’s (and hence n A’s). Clearly, these
conditions are necessary (but not sufficient!) for the existence of a feasible schedule.
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We call a pattern set break-free if the i-th HAP in the set is break-free with respect to
Bi. The main problem can now be described as follows: assuming a compact schedule,
and given 2n break sets Bi, with i = 1, . . . , 2n, does there exist a break-free pattern set
with respect to Bi?

In the next section, we motivate the concept of generalized breaks. We mention our
results in the last section.

2 Motivation

In most major football leagues, the vast majority of the matches are scheduled on
weekend days. However, as there are often more rounds than available weekends, some
rounds need to be scheduled on Wednesdays. Since a home game on a Wednesday
typically attracts less fans, teams generally do not appreciate a home game on a
midweek round. Consequently, teams ask for a schedule where the assignment of home
games on Wednesdays is balanced: if a team plays at home on one Wednesday round,
they don’t want to play at home on the next Wednesday round. Obviously, Wednesday
rounds need not be consecutive, and hence generalized breaks arise.

In most sports competitions, the number of consecutive away (home) games is limited
(see e.g. Goossens and Spieksma [2]). When at most two consecutive away (home) games
are allowed for each team, we can express this condition with the following break set:

B1 = B2 = . . . = B2n = {(1, 3), (2, 4), (3, 5), . . . , (2n− 3, 2n− 1)}.

This type of constraint is also relevant for the traveling tournament problem. In
this problem, the objective is to minimize the total distance traveled by the teams to
complete a (double) round robin tournament. Obviously, combining a number of away
games that are geographically close by in a single trip is useful to reduce the travel
distance. However, the length of an away trip is usually limited to some value k, which
can be expressed using generalized breaks. Indeed, a schedule for 2n teams will have
at most k consecutive home (away) games if and only if it uses a break-free pattern set
with respect to the following break set:

B1 = B2 = . . . = B2n = {(1, k + 1), (2, k + 2), (3, k + 3), . . . , (2n− 1, k + 2n− 1)}.

3 Our results

We present the following results.

Theorem 1. Given a break set Bi for each team i = 1, . . . , 2n, deciding whether a
break-free pattern set exists is NP-complete.

Theorem 2. Given a common break set B, the question whether or not a break-free
pattern set exists, can be answered in polynomial time.

Theorem 3. Given a common break set B, finding a pattern set that minimizes the
number of breaks is NP-hard.
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The train positioning problem

Dirk Briskorn (Speaker) ∗ Malte Fliedner †

1 Problem description

We consider a problem arising in the context of shunting yards. In a shunting yard trains
carrying containers are positioned on a set of n tracks to be loaded or unloaded. The
tracks are arranged such that they run in parallel over the entire yard’s width. A set of
m cranes positioned next to the tracks operate on all tracks within a specific section of
the yard. Often, operations in such a yard are processed in two alternating phases. In
the first phase trains that already have been served leave the yard and trains to be served
next enter the yard. In the second phase trains are served by cranes loading containers
onto trains or unloading containers from trains. The decisions to be made here can be
described as follows.

• Trains have to be bundled into subsets of trains to enter the yard at the same time.

• The position of trains within the yard have to be determined.

• Crane operations have to be scheduled.

In this talk we focus on the second decision. The object is minimize the maximum
workload among cranes in order to minimize the time needed to serve the current bundle
of trains. We make the following simplifying assumptions.

• The crane’s effort for serving a car does not depend on the corresponding train’s
position within the yard, that is the track and the position within the track.

• At most one train will be positioned on each track. Thus, considering the previous
assumption we can assume that each train is preassigned to a certain track.

• Each section served by a crane has a width being a multiple of the length of a car.
Therefore, we have a discrete set of positions for a car in each section.

• Each car of each train has to be served exactly once.

We can describe the resulting train positioning problem (TPP) more formally as follows.
Given a set of trains where each train is specified by its length and an ordered set of
crane sections where each crane section is specified by its width find a position for each
train such that the maximum number of cars positioned in a crane’s section is minimized.
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In the following we restrict ourselves to the decision problem where we ask whether
it is possible to find a positioning such that the maximum workload does not exceed a
given number. Note that we can solve the optimization version employing binary seach
on the maximum workload by iteratively solving instances of the decision version.

Fig. 1 provides an example with three cranes and four tracks. Each crane’s section
has width 4. The first car of trains 1, 2, 3, and 4 are positioned in slot 6, 1, 2, and 11,
respectively.

4

3

2

1

Trains Crane 1 Crane 2 Crane 3

Figure 1: Yard with three cranes and four tracks

2 Results

Theorem 1. TPP is strongly NP-hard even if all cranes’ section have identical width.

Note that the characteristics of cranes can be encoded by two integers, namely the
number of cranes m and the sections’ width. Thus, a trivial approach does not suffice
to show that TPP with identical cranes’ section widths is in NP. Accordingly, we first
prove membership to NP. Then, the proof of the theorem is completed by a reduction
from 3-PARTITION which is known to be strongly NP-hard, see [1].

Theorem 2. TPP is ordinarily NP-hard for a fixed number (at least three) of cranes.

We first show, that TPP is NP-hard even for three cranes having identical sections’
widths by reduction from PARTITION which is known to be NP-hard, see [1]. Sec-
ond, we provide an approach that solves TPP with a fixed number m of cranes in
O
(
mnm+1 · lmax

)
where lmax is the maximum length among trains.

Theorem 3. TPP can be solved in O (mn).

We provide an algorithm proving the theorem. Note that its run time complexity is
polynomial in input size if the number of trains n is fixed and cranes’ section widths are
individual, that is we need Ω(m) integers to encode the problem instance. However, if
cranes’ section widths are identical, then this algorithm is pseudo-polynomial.

Last but not least we provide a simple 2-approximation algorithm for the optimization
version of the problem.
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Online Scheduling of Unit-Length Intervals on Parallel

Machines

Stanley P.Y. Fung ∗ Chung Keung Poon (Speaker) †

Duncan K.W. Yung ‡

1 Introduction

We study the online preemptive scheduling of weighted intervals on m identical machines.
The input consists of a set of intervals that arrive online and each machine is capable of
processing one interval at a time. Our goal is to maximize the total weight of completed
intervals. More precisely, each interval I has an arrival time a(I), a deadline d(I) and
a weight w(I). To complete interval I, it must be processed on a machine continuously
from time a(I) to d(I) without interruption. Before time a(I), the scheduler does not
know of I, not even its presence. Upon the arrival of I at time a(I), all the parameters
of I become known. Then the scheduler has to decide right away and without knowledge
of the future intervals whether to start I and on which machine to process it, preempting
the current interval there if any. We define the quantity, d(I) − a(I), as the processing
time (or length) of I. In this paper, we consider unit-length intervals and hence we have
d(I) = a(I) + 1.

Previous results. When there is only one machine (m = 1), Woeginger [5] gave a
deterministic 4-competitive algorithm and proved that it is optimal. If randomization
is allowed, the best result is a 2-competitive algorithm by Fung et al. [3]. Epstein and
Levin [1] gave a lower bound of 1 + ln(2) ≈ 1.693 for randomized algorithms. For
the 2-machine case, Fung et al. [4] presented an algorithm that has competitive ratio
approximately 3.582 and gave a lower bound of 2. For the case of general m, Faigle
and Nawijn [2] considered variable length but unweighted intervals and gave an optimal
1-competitive algorithm.

Our results. In this paper, we designed an online algorithm for the problem and
proved that it is 2-competitive for all even m, and (2 + 2

2m−1)-competitive for all odd
m ≥ 3. Thus the competitive ratio is 2.4 when m = 3 and gradually approaches 2 as the
number of machines m increases (and remains to be odd).
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2 Even Number of Machines

Suppose we have an even number of machines, i.e., m = 2q for some integer q ≥ 1. We
partition the time axis into slots s1, s2, . . . of unit length. We also divide the machines
into two groups, A and B, each with q machines. For each odd slot si, (i.e., when i is
odd), machines in group A will select the q heaviest intervals that arrive within the slot.
To achieve this, machines in A start the first q intervals that arrive in si. After that, if a
new interval I with heavier weight than any of the q intervals currently being processed
arrives within si, the interval with the smallest weight will be preempted and I will be
started. During the next slot si+1, the machines in A will continue the execution of those
selected intervals that have not been finished by the end of si. After their completion,
the machines wait quietly until the end of si+1, ignoring any new interval that arrives
within si+1. At the same time, B will select the q heaviest intervals that arrives in si+1

using the same method as A used in slot si.

It can be shown that the algorithm can always obtain the weight of the top q heaviest
intervals arrived in each slot while OPT can obtain at most the top 2q heaviest ones.
Hence we have the following theorem:

Theorem 1. Our online algorithm is 2-competitive when m is even.

3 The Case of Three Machines

If we allocate two machines for the odd slots and one machine for the even slots, then
one can prove that the algorithm is 3-competitive using the same argument as in the
previous section. A simple example shows that this bound is also tight. To get a smaller
competitive ratio, one needs to have a way of sharing the 3 machines between two slots
“evenly”.

Let the three machines be A, B and C. In slot s1, machines A and B will take care
of intervals that arrive in the slot in a strictly greedy manner: They will start the first
two intervals arrived in s1. Whenever a new interval I arrives within slot s1 and is of
heavier weight than either of the two intervals currently being processed by A and B,
the machine processing the lighter interval will preempt its interval and start I. Thus,
at any moment A and B will be processing the heaviest and second heaviest intervals
arrived in s1 so far.

Let I1 and J1 be respectively the intervals being processed by A and B when slot
s1 ends. Without loss of generality, assume w(I1) ≥ w(J1). In slot s2, machine A will
complete I1 and then wait until the end of s2. Machine B and C will take care of new
intervals that arrive in slot s2. Roughly speaking, B will only abort J1 when it can start
an interval of large enough weight.

We can argue that the online algorithm can always gain the weight of the heaviest
interval arrived in each slot. The more tricky (and crucial) part of the analysis is to
show that the algorithm can also gain some of the second heaviest.

Theorem 2. Our online algorithm is 2.4-competitive when m = 3.
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4 Extension to General Odd Number of Machines

Suppose we have m = 2q + 1 machines, P1, P2, . . . , P2q+1. We allocate machines
P1, . . . , Pq+1 for slot s1 to pick up the q+1 heaviest intervals arrived in slot s1. Without
loss of generality, assume Pq+1 is processing the (q+ 1)-st heaviest interval, denoted J1,
arrived in s1 when slot s1 ends. Then P1, . . . , Pq will run their intervals to completion
in slot s2. Machine Pq+1 may preempt its interval J1 when there are large enough inter-
vals while Pq+2, . . . , P2q+1 act like machine C in the 3-machine case. We generalize the
competitive analysis for the 3-machine case and obtain the followings:

Theorem 3. Our online algorithm is (2 + 2
2m−1)-competitive when m is odd.
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Interval Scheduling on Related Machines:

Complexity and Online Algorithms

Clemens Thielen (Speaker) ∗ Sven O. Krumke † Stephan Westphal ‡

1 Introduction

In classical scheduling problems, one is given a number of machines on which finitely
many jobs must be scheduled. The task of the scheduler consists of assigning jobs to
machines and choosing a starting time for each job on the machine it is assigned to in a
way that optimizes some given objective function.

In interval scheduling problems (also known as fixed job scheduling problems or k-
track assignment problems), the scheduler is not allowed to choose the starting times of
the jobs, but each job (or interval) has a fixed time at which it must be started. If an
interval is not started at the given starting time, it is lost and cannot be scheduled at all.
The objective is related to the set of accepted intervals, e.g., maximizing the number
of accepted intervals or the sum of their weights. The task of the scheduler consists
of choosing which intervals to accept and determining which machines they should be
assigned to. Such problems arise naturally in many situations such as the assignment
of transports to loading/unloading terminals, bandwidth allocation for communication
channels, or work planning for personnel.

We consider interval scheduling on related machines, where the machines have dif-
ferent speeds, so an interval finishes earlier when assigned to a faster machine and later
when assigned to a slower machine. Problems of this nature arise whenever perishable
products or raw materials (e.g., hot metal in a foundry or steel works) have to be pro-
cessed immediately on arrival, but several facilities of different speed or performance are
available to process them. Such differences in the performance of facilities processing the
same materials are quite common in large factories (e.g., in steel works) where machines
of different generations are often used contemporaneously. Another application is the
assignment of emergency patients to doctors in a hospital. The time needed to treat an
emergency patient varies depending on the type of injury or disease of the patient, but
is also dependent on the level of skill and experience of the doctor the patient is assigned
to.

Even though interval scheduling problems on a single machine and on identical ma-
chines are well studied in literature (cf., for example, [1–3]), interval scheduling on related
machines has not been studied so far.
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2 Formal Problem Definition

We consider the problem of scheduling intervals online on m related machines. Each
interval (or job) j arrives at its release date rj ≥ 0 and must be scheduled immediately
on one of the machines to start at time rj . Intervals that are not scheduled immediately
at arrival are lost. Each machine i has a speed si > 0 at which it runs and which
does not depend on the currently processed interval. The speeds of the machines are
known in advance, i.e., before the first interval arrives. Each interval j has a length (or
processing requirement) pj > 0 which becomes known at its release date. Processing
interval j on machine i needs time pj/si, so the interval finishes at time rj + pj/si if it is
assigned to machine i. An interval that was started on a machine may be aborted before
it completes in order to be able to start a new interval. In this case, the aborted interval
is lost. Migration of an already started interval to another machine is not allowed. The
objective is to maximize the number of accepted intervals (or, equivalently, to minimize
the number of lost intervals).

3 Overview of Our Results

Before considering online algorithms for interval scheduling on related machines, we
examine the complexity of the offline version of the problem. Our main result in this
context is the following theorem:

Theorem 1. The decision version of interval scheduling on related machines is strongly
NP-complete. That is, given m machines with speeds s1, . . . , sm > 0, n intervals with
release dates r1, . . . , rn ≥ 0 and processing requirements p1, . . . , pn > 0, and an integer
0 ≤ l ≤ n, it is NP-complete to decide whether there exists a schedule in which at least l
of the intervals are accepted.

Our NP-hardness proof uses a reduction from 3-satisfiability (3-SAT). Note that NP-
completeness of interval scheduling on related machines stands in sharp contrast to the
complexity of the problem on identical machines, which is known to be efficiently solvable
in polynomial time by using a min-cost flow formulation even when the intervals have
weights [4, 5].

For the online version of interval scheduling on related machines, we show a lower
bound of 5/3 on the competitive ratio of any deterministic online algorithm:

Theorem 2. No deterministic online algorithm for interval scheduling on related ma-
chines can achieve a competitive ratio smaller than 5/3.

The proof of this result uses instances with 5 intervals and 3 machines. We suspect
that the construction can be generalized to yield a lower bound of 2− 1

m on m machines
by using 2m − 1 intervals. This more general bound would be interesting since, by our
next result, it would imply that the natural greedy algorithms for interval scheduling on
related machines are already best possible. These greedy (online) algorithms are defined
by the following two rules:

The Accept Rule:
Always accept an arriving interval j as long as there are still machines available at the
release date rj .
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The Finish Early Rule:
If all machines are already busy at the release date rj of interval j, accept j if and only if
there exists a machine i on which the interval j(i) that is processed at time rj will finish
later than at time rj + pj/si. In this case, abort interval j(i) and assign j to machine i.

Our main results on the greedy algorithms defined by the above rules are the following
theorems:

Theorem 3. Every online algorithm that uses the accept rule and the finish early rule
is 2-competitive for interval scheduling on related machines.

Theorem 4. Every online algorithm for interval scheduling on related machines can be
turned into an algorithm that uses the accept rule and the finish early rule and accepts
at least the same number of intervals on every instance.

Besides having a good competitive ratio, the greedy algorithms defined by the above
rule are also computationally efficient: Using techniques from computational geome-
try, we show how one of these 2-competitive algorithms can be implemented to run in
O(n logm) time. Moreover, we provide experimental results which indicate that the al-
gorithms perform very well in practice: Using up to 10 machines and up to 500 intervals,
we see that the average competitivity on any instance size tested was no larger than 1.2
and the running time was less than a second.

Conceptually, our results show that, even though the problem is computationally
hard already in the offline version, one can easily to obtain 2-competitive algorithms
that also perform very well on average even for the online setting.
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New Lower Bounds for Online Multi-threaded Paging

Problem

Denis Trystram ∗ Frédéric Wagner (Speaker) † Haifeng Xu ‡

Guochuan Zhang §

1 Introduction

The setup for classical paging problem is as follows: Given a task set T as well as a
cache, which can hold at most K tasks, we have to serve a sequence of requests, each
of which specifies some task, according to the arrival order. The objective function is to
minimize the total number of faults. More precisely, when a requested task is not in the
cache, load it into the cache, which incurs a fault, and remove some other tasks from the
cache, if necessary, so that the total number of tasks stored in the cache doesn’t exceed
K; otherwise, the request could be served without incurring any cost.

We consider an extension of this problem, namely multi-threaded paging problem,
which was introduced by Feuerstein and Loma [2]. Instead of one request chain, we need
to serve Q (≥ 2) parallel request chains. Specifically, there is no precedence constraint
between any two requests which are in different chains. For the online case of this
problem, only the first unserved request, if any, is revealed in each chain.

2 New lower bounds for online algorithms

Feuerstein and Loma [2] presented a lower bound for online algorithms: K+1− 1
Q , which

tends to be K + 1 if Q is large enough. Inspired by their approach, we can improve the
lower bound a little bit.

Theorem 1. The lower bound for any online algorithm is (K+2)Q−2
Q+1 .

Proof. We have Q request chains, each of which begins with a request sequence σi such
that |σi| = N , and σi ∩ σj = ∅ (i 6= j). Moreover, we are able to make the processing
cost of any online A is N , while the optimum processing cost is at most N

K ( [3]).

• Stage 1: For any online A , without loss of generality, we can assume that A
would finish the request chain σi before σj (i < j).

∗denis.trystram@imag.fr . Institut Universitaire de France & INP Grenoble, France.
†frederic.wagner@imag.fr . INP Grenoble, France.
‡xuhaifeng@zju.edu.cn . Department of Mathematics, Zhejiang University, China.
§zgc@zju.edu.cn . College of Computer Science, Zhejiang University, China.

239



As soon as A finishes some request sequence σi (2 ≤ i ≤ Q) for the first time, the
adversary generates σi−1 again after σi. In particular, there is no request arriving
for the first chain when A finishes σ1.

If some request sequence σi in the second column is finished again, and there still
exists some other request sequence to be served, then the adversary doesn’t output
any request for the corresponding chain.

• Stage 2: Let σi−1 be the last sequence which is not finished. The adversary just
outputs a request sequence, σ = σQ · · ·σi · σi−2 · · ·σ1 (σ doesn’t consist of σi−1).

It is easy to check, the optimum schedule just needs to serve the ith chain. So,

Copt = (Q+ 1)× N

K
.

No doubt, when A serves some request chain for the first time, it must incur a cost
of N . However, it may incur a cost of N

K when serving some request chain for the second
time. Thus,

CA ≥ Q×N + (Q− 1)× N

K
+ (Q− 1)× N

K
.

As a result,
CA

Copt
≥ Q(K + 2)− 1

Q+ 1
→ K + 2 (Q→ +∞).

Theorem 2. When K = 1, the lower bound for any online algorithm is 3.8.

Proof. When K=1 and Q=2, Alborzi et al. [1] presented a lower bound, α = 1.8, for
any online algorithm. Using the construction mentioned above, we derive a lower bound
(α+2)Q−4

Q+2 → 3.8 (Q→ +∞).

Definition 3. Given a request sequence σ, we say a sequence S(σ) is a supersequence
of σ, if we can get S(σ) by inserting some requests into σ.

Lemma 4. For any request sequence σ generated from a set consisting of K + 1 tasks,
we can find a supersequence S(σ) of σ such that any online algorithm A would incur a

fault for each request of S(σ), and the optimal cost of S(σ) is min
{
|S(σ)|
K , |σ|

}
.

If we can’t find such a supersequence, then we can conclude that A is not a compet-
itive online algorithm.

Proof. We proceed by induction on the length of σ.

Let S1(σ) := σ1. Assuming that we have found a supersequence Si(σ) of σ1 · · ·σi .
Now we argue two cases depending on whether σi+1 is stored in the cache of A or not.

Case I : σi+1 is not stored in the cache of A :

Thus we concatenate σi+1 to the end of Si(σ), namely Si+1(σ) = Si(σ) · σi+1.
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Case II : σi+1 is stored in the cache of A :

The adversary can always ask for the task which is not in the cache, until A evicts
σi+1 from the cache. Then the adversary generates σi+1.

If A never evicts σi+1 for a sufficient long time, we can stop this procedure and
claim that A is not a competitive online algorithm. Because the optimal cost is
finite for a request sequence generated from a set consisting of K tasks, but the
corresponding cost incurred by A is infinite.

Next, we estimate the optimal processing cost of S(σ) if A is competitive.
Since there are exactly K + 1 different tasks, we get first upper bound directly:

Copt(S(σ)) ≤ |S(σ)|
K .

On the other hand, during the procedure of the second case, all the requests before
σi+1 are generated from a set consisting of K tasks, since the cache capacity is K, one
of which is occupied by σi+1. Thus, in order to concatenate σi+1 to Si(σ), the adversary
generates one phase at most. Since the number of phases of S(σ) is bound by |σ|, and
OPT pays unit cost for each phase, we have Copt(S(σ)) ≤ |σ|.

As a result,

Copt(S(σ)) ≤ min

{ |S(σ)|
K

, |σ|
}
≤ K + 1

K + 2
× |S(σ)|

K
+

1

K + 2
|σ| .

Theorem 5. When Q = 2, the lower bound for any online algorithm is K(K+2)
K+1 .

Fix a large integer N in advance. We have two request chains, σ1 and σ2, each of
which is generated from two disjoint tasks sets consisting of K + 1 tasks such that any
deterministic online algorithm pay one for all the requests.

Without loss of generality, let σ1 be the first one that generates N requests, then it
is finished. After σ2 generates N requests, we concatenate a supersequence S(σ1) of σ1

to the end of σ2 according to Lemma 4.
Thus, we have:

CA = CA (σ1) + CA (σ2) + CA (S(σ1)) = 2N + |S(σ1)| .
While the optimal solution just needs to process the second chain:

Copt = Copt(σ
2) + Copt(S(σ1)) ≤ K + 1

K(K + 2)
× (2N + |S(σ)|) .

So

CA

Copt
≥ K(K + 2)

K + 1
.
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Minimizing predicted air travel delay∗.

Tanujit Dey † David Phillips ‡ Patrick Steele (Speaker) §

Air traffic delays are a current and growing problem with severe economic and en-
vironmental impacts. A recent congressional report has estimated that delays cost $41
billion in 2007 alone and caused an extra 740 million gallons of jet fuel to be burned [4].
Moreover, a 2009 Government Accounting Office report has estimated that the number
of flights is going to increase from 50 million in 2008 to 80 million by the year 2025 [8].
We consider the problem of the air traveler determining how to best plan his travel
minimizing either total travel time or delay.

Our specific contributions are as follows.

• We formulate the problem of finding a flight plan with minimum delay as a stochas-
tic optimization problem we call the shortest paths problem with correlated random
lengths. We also show how to extend our formulation to minimize more general
functions such as overall flight time and flight costs.

• We develop a statistical model by using an ensemble technique to find significant
variables for predicting delay for any given airline. The resulting prediction can
then be used in cascade sampling.

• We give an algorithm to determine the relevant flight legs for the given origin and
destination. Subsetting to the relevant flight legs allows us to tractably use Monte
Carlo simulation in computing the flight plans with the highest probability of small
delay.

• We implemented a visualization tool which displays results from our algorithms
as well as other statistical analyses on the air transport graph. The visualization
of both our algorithmic results and the statistical analyses makes it possible to
discern meaningful trends in a large and complicated dataset. The data set used
correponds to all U.S. domestic flights from October 1987 to April 2008.

Previous works focus on the scheduling decisions airlines can make to reduce overall
delay. For example, [3] solve integer programs that help airline companies determine
flight rerouting plans that minimize the delay to passengers when exogenous events (e.g.,
inclement weather) disrupt the flight schedule. [6] use stochastic optimization techniques
to determine air traffic policies that reduce air space congestion. In related papers, [13]

∗This work is based on the paper, A Graphical Tool to Visualize Predicted Minimum Delay, that
will appear in the Journal of Computational and Graphical Statistics.
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and [12] present Markov decision process approaches to scheduling flights accounting for
inclement weather.

In contrast, we focus on developing decision support tools that help individual trav-
elers find flight plans that minimize expected delay. In formulating and solving the
problem from the individual traveler’s perspective our methods can also be used by
airlines and air traffic policy makers to determine bottleneck airports with respect to
delay.

An essential part of our model is the use of the airport-flight graph. We consider a
graph, G = (V, E), where V represents vertices and E represents edges between pairs of
vertices. By considering the airports as vertices and the flight legs as edges, a graph
is a natural way to represent the air travel system (all references cited that consider
air travel use variations of this model). A flight plan in such a graph corresponds to a
directed path in the network.

1 The stochastic optimization problem formulation

We reduce the problem of finding the flight time with the highest probability of minimum
delay to a shortest paths problem with uncertain edge costs. For our graph G = (V, E),
we assume a set of edge costs, cij , ∀(i, j) ∈ E .

For the case of deterministic edge costs and graph structures, the shortest paths
problem is well-studied, e.g., see the texts [1] and [5]. Early work on the case where the
edge costs were randomized include [7] where the problem was reduced to the determin-
istic version by considering expected values of each edge costs. For the problem where
edge costs were random, but independently generated, algorithms that find edges with
probability guarantees include those by Loui [11] and adaptive algorithms by Bertsekas
and Tsitsitklis [2] and Fan and Nie [10]. For the case where edge costs were random
and correlated but the density functions were known, Fan, et al. [9] recently described
an algorithm to determine the path with the highest probability of being less than a
certain cost. Our problem differs from these previous results in that our probability
density functions are unknown, although we are able to simulate the various edge costs.
Moreover, since the delay of a given flight leg causes delays to other flight legs, we cannot
assume independence in flight delays.

Recall that G = (V, E) is a graph where V are vertices representing airports and E
are edges (i.e., pairs of nodes) that represent possible flight legs. We use Cij to denote
the random amount of delay on a given flight leg (i, j) ∈ E . For a given origin, s, and
destination, t, we can formulate our problem as follows:

min
∑

(i,j)∈E Cijxij
subject to 0 ≤ xij ≤ 1 ∀(i, j) ∈ E
(a)

∑
{j:(i,j)∈E} xij −

∑
{k:(k,i)∈E} xki = 0 ∀i ∈ V \ {∫ ,t}∑

{j:(s,j)∈E} xsj = 1∑
{k:(k,t)∈E} xkt = 1

(1)

To solve for x∗ij in (1), we adopt a Monte Carlo simulation [14]. For each arc, we randomly
generate a sample cost and then we solve a (deterministic) shortest paths problem. By
repeating this several times, and counting up the number of times an arc appears on a
shortest path, we estimate xij with a controllable sample.

The key bottleneck in our approach is the sampling required to efficiently simulate
the flight delays. To solve this issue, we use a combination of network optimization
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and statistical sampling techniques. In our talk, we discuss these key issues as well as
computational results.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows : Theory,
Algorithms, and Applications, Prentice Hall, Englewood Cliffs, NJ, 1993.

[2] D. Bertsekas and J. Tsitsiklis, An analysis of stochastic shortest path problems,
Mathematics of Operations Research, (1991), pp. 580–595.

[3] S. Bratu and C. Barnhart, Flight operations recovery: New approaches consid-
ering passenger recovery, Journal of Scheduling, 9 (2006), pp. 279–298.

[4] T. J. E. Committee, Your flight has been delayed again, flight delays cost pas-
sengers, airlines and the u.s. economy billions, congressional report, United States
Congress, Washington, DC, 2008.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, The MIT Press and McGraw-Hill, second ed., 2001.

[6] D. Delahaye and A. Odoni, Airspace congestion smoothing by stochastic opti-
mization, Lecture Notes in Computer Science, (1997), pp. 163–176.

[7] E. W. Dijkstra, “A note on two problems in connection with graphs”, Numerische
Mathematik, 1 (1959), pp. 260–271.

[8] G. Dillingham, Next generation air transportation system, status of transforma-
tion and issues associated with midterm implementation of capabilities, Testimony
before the Subcommittee on Aiviation, Committee on Transportation and Infras-
tructure, House of Representatives GAO-09-479T, United States Government Ac-
countability Office, Washington, DC, 2009.

[9] Y. Fan, R. Kalaba, and J. Moore, Shortest paths in stochastic networks with
correlated link costs, Computers and Mathematics with Applications, 49 (2005),
pp. 1549–1564.

[10] Y. Fan and Y. Nie, Optimal routing for maximizing the travel time reliability,
Networks and Spatial Economics, 6 (2006), pp. 333–344.

[11] R. Loui, Optimal paths in graphs with stochastic or multidimensional weights, Com-
munications of the ACM, (1983).

[12] A. Nilim and L. El Ghaoui, Robust solutions to markov decision problems with
uncertain transition matrices, Operations Research, 53 (2005), pp. 780–798.

[13] A. Nilim, L. El Ghaoui, and V. Duong, Multi-Aircraft Routing and Traffic
Flow Management under Uncertainty, in 5th USA/Europe Air Traffic Management
Research and Development Seminar, Budapest, Hungary, 2003, pp. 23–27.

[14] J. Spall, Introduction to stochastic search and optimization: estimation, simula-
tion, and control, Wiley-Interscience, 2005.

244



Solving the one-machine scheduling problem with

cumulative payoffs

Yasmina Seddik (Speaker) ∗ Christophe Gonzales †

Safia Kedad-Sidhoum ‡

1 Introduction

We address a one machine non-preemptive scheduling problem. N jobs J1, . . . , JN have
to be scheduled. Each job Ji has a release date ri ≥ 0 and a processing time pi > 0. K
delivery dates are given: D1, . . . , DK , with 0 < D1 < · · · < DK .

Given a schedule S, variable Vk represents the number of jobs executed before Dk in
S. The payoff of a given schedule S is defined by v(S) =

∑K
k=1 Vk. The payoffs related

to the delivery dates are cumulative: jobs delivered at a given delivery date are also
counted for each of the subsequent delivery dates. Extending the three-field notation of
Graham et al. [2], the problem we address in this paper can be defined as 1|ri|

∑K
k=1 Vk.

We will refer to the payoff related to a job Ji as v(Ji). For a given schedule S, v(Ji) is
the number of delivery dates before which Ji is scheduled in S. Let Ci be the completion
time of job Ji in S; v(Ji) can be represented by the following non-increasing stepwise
function:

v(Ji) =



K if 0 < Ci ≤ D1
...
2 if DK−2 < Ci ≤ DK−1

1 if DK−1 < Ci ≤ DK

0 if DK < Ci

In the example of Figure 1, jobs J1 and J2 are executed before D1, the payoff of each
of these jobs is thus 3. J4’s completion time occurs after D1 but before D2, so J4’s payoff
is 2. Finally, J3’s completion time occurs after D2 but not later than D3: its payoff is 1.
Consequently, the total payoff is 3 + 3 + 2 + 1 = 9.

0 D1 D2 D3

J3J4J2J1

r1 r2 r4 r3

Figure 1: Example of a schedule

Problem 1|ri|
∑K

k=1 Vk has a practical application in the domain of bibliographical
digitization where a huge amount of books must be digitized, following a linear process.
The books to be digitized become available at different times. In addition, the client sets
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several delivery dates Dk, k = 1, . . . ,K, and target values Qk, k = 1, . . . ,K, indicating
the minimal number of books the client wants to be delivered at the corresponding
delivery date Dk. Therefore, Q1 > 0 and Qk = αk +

∑k−1
l=1 Ql with αk > 0, for every

k = 2, . . . ,K. In addition, the client naturally pays the digitizing company in function
of the number of books actually digitized. Consequently, it is desirable to maximize the
difference Vk −Qk for every k = 1, . . . ,K. Aggregating these K criteria by summation,
we must maximize the objective function

∑K
k=1 Vk − Qk or, equivalently, max

∑K
k=1 Vk

as
∑K

k=1Qk is a constant.

If we do not take into account the cumulative payoffs, our problem is related to the
problems with fixed delivery dates studied by Hall et al. [1]. They considered several
classical scheduling criteria, including the following variant: the cost of a job Ji depends
on the earliest delivery date occurring after the completion of Ji. In addition, they
established complexity results for several problems, with different criteria and machine
configurations.

As for the cumulative payoffs, Janiak and Krysiak [4] define a criterion which is a
generalization of

∑K
k=1 Vk. They attempt to minimize a schedule’s cost defined as the

sum of the costs of the jobs in the schedule, and each job having its own distinct stepwise
cost function. Janiak and Krysiak show that the problem without release date is NP-
hard in the general case. They also provide a pseudopolynomial time algorithm for the
special case in which the breakpoints are the same for all the job’s stepwise functions.

Finally, there exists another class of problems closely related to 1|ri|
∑K

k=1 Vk: the
generalized due date problem [3], where due dates are not related to the jobs. Instead,
global due dates are defined, and before each of them, one job must be finished. Com-
plexity results have been established for many problems with generalized due dates [3].

2 Complexity results

2.1 General problem

We show that 1|ri|
∑K

k=1 Vk is unary NP-hard, by reducing the 3-Partition problem to

the decision problem corresponding to 1|ri|
∑K

k=1 Vk.

2.2 Two delivery dates problem

The problem with two delivery dates 1|ri|V1 + V2 is proven to be NP-hard, by reducing
to it the Partition problem. More precisely, 1|ri|V1 + V2 is weakly NP-hard (a pseu-
dopolynomial time algorithm is provided, see Section 3.2).

2.3 Polynomial cases

Four polynomial cases have been identified, which result from relaxations of the general
problem 1|ri|

∑K
k=1 Vk.

The problem with no release date 1||∑K
k=1 Vk can be optimally solved with the

Shortest Processing Time rule (SPT) in time O(NlogN).

The preemptive problem 1|ri, pmtn|
∑K

k=1 Vk can be optimally solved with the Short-
est Remaining Processing Time rule (SRPT) in time O(NlogN).

The problem with identical processing times 1|ri, pi = p|∑K
k=1 Vk can be optimally

solved by ordering the jobs following their nondecreasing release dates (O(NlogN)).
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The single delivery date problem 1|ri|V is equivalent to the problem 1|ri, di = d|∑Ui.
We provide a polynomial time algorithm for this problem, based on the Moore-Hodgson
algorithm (O(NlogN)) for problem 1||∑Ui [5].

3 Exact methods

3.1 General problem

In order to solve 1|ri|
∑K

k=1 Vk, we implement a Branch and Bound method. We use the
two following lower bounds. First, the problem can be partitioned in K subproblems,
each corresponding to a delivery date. Then, the algorithm for 1|ri|V can be iteratively
applied to each interval between two consecutive delivery dates (here, and for the follow-
ing, we set D0 = 0), in order to obtain a feasible solution. Second, the same algorithm
can be applied on the whole time-line: jobs can be processed from their release date to
DK , and DK is the only delivery date taken into account.

The upper bounds derive from the solutions of the relaxed problems, such as no
release dates, preemption, identical processing times (in this case, we must choose pi =
pmin, to be sure to obtain an upper bound).

Finally, the dominance rules are the following.

1. The jobs scheduled between two consecutive delivery dates are ordered following
their nondecreasing release dates.

2. A dominance rule for problem 1|ri|V1 + V2 : by applying the algorithm for 1|ri|V
on the first delivery date, we obtain the maximum number of jobs that can be processed
before D1, say NM

1 . We show that there exists an optimal solution for 1|ri|V1 + V2 such
that NM

1 jobs are processed before D1. This dominance rule can be useful in the Branch
and Bound method, when the problem is solved until the (K − 2)-th delivery date.

3.2 Two delivery dates problem

For 1|ri|V1 + V2 we provide a pseudopolynomial time algorithm, based on a dynamic
programming approach, which runs in time O(N(D1(D2)2) + N logN). The algorithm
principally relies on the dominance rule 1. of Section 3.1. Then, the algorithm constructs
schedules by adding iteratively jobs before D1, between D1 and D2, or not adding them
to the partial schedule.
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To the conjecture on the minimum number of migrations in

the optimal schedule for the Pm | pmtn(delay = d) |Cmax
problem

Alexander Kozlov (Speaker) ∗

We consider the problem of scheduling independent jobs on parallel machines subject
to migration delays so as to minimize the makespan. There are m identical machines
M1, . . . ,Mm which are used to process n jobs, J1, . . . , Jn. Each job Jj (j = 1, . . . , n)
has a processing time pj . Each machine can process at most one job at a time, and
each job can be processed by at most one machine at a time. Preemption with a mi-
gration delay d is allowed, that is, the processing of any job Jj on a machine Mi can
be interrupted and resumed at any later time on Mi, and at least d time units later if
Jj migrates to another machine Mk. The goal is to schedule the jobs so as to minimize
the makespan. By extending the three-field notation [1, 2], this problem was denoted
in [4] as 〈α | pmtn(delay = d) |Cmax〉, where α is either Pm (for a fixed number m of
machines), or P (for an arbitrary number of machines).

In classical scheduling models the migration of a job is done without a delay con-
straint. For instance, in the book by Tanaev a.o. [3], while considering problems with
preemption the following assumption is made: “interruptions cause no time or other
penalties”. However, in production planning, for example, it is natural to reserve some
time for the transition of a product from one machine to another. Simply speaking,
the transportation of the product takes time. Besides, technical issues might make it
necessary to wait for some time after completing the processing of a job (e.g., a heated
product might need to cool down first, or a product needs to be dried before its next
operation can start). We refine the classical model of identical machines by adding a
delay constraint d, which is independent of the job and the machines.

In [4] it was shown that the sub-problem Xλ of problem X
.
= 〈P | pmtn(delay =

d) |Cmax〉 with m machines and delays d ≤ λ(∆ − pmax) (where ∆ = max{pmax, L},
pmax = maxnj=1 pj , and L = 1

m

∑n
j=1 pj) can be solved in linear time for every λ ∈ [0, 1]

and is strongly NP-hard for each λ > 1. They also showed that for the two-machine
problem, 〈P2 | pmtn(delay = d) |Cmax〉, there always exists an optimal schedule which
yields at most one preemption, and for the three-machine problem, 〈P3 | pmtn(delay=
d) |Cmax〉, there exists an optimal schedule which yields at most two migrations. They
proposed the following conjecture.

Conjecture 1. For any instance of 〈Pm | pmtn(delay = d) |Cmax〉 there exists an opti-
mal schedule with at most m− 1 migrations.
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This conjecture, be it valid, implies the existence of a pseudo-polynomial time algo-
rithm for the problem with a fixed number of machines. We can prove this conjecture
for the case of four machines.

Theorem 2. For any instance of 〈P4 | pmtn(delay = d) |Cmax〉 problem there exists an
optimal schedule with at most three migrations.
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Particle swarm optimization algorithm for workforce job

rotation scheduling

Hesham K. Alfares (Speaker) ∗ Ahmad A. Zaid †

1 Introduction

In this paper, an efficient particle swarm optimization (PSO) methodology is presented
for solving workforce job rotation scheduling problem. The workforce job rotation prob-
lem is concerned with assigning and sequencing a set of tasks of varying levels of occu-
pational hazards or physical demands among several employees. Rotating tasks assures
fairness and reduces risk, by avoiding the assignment of one or few workers continuously
to the most exhausting or dangerous tasks. Workforce job rotation objectives include
equal workload, minimum exposure to risky or demanding tasks, and maximum safety
and productivity. The integer programming (IP) model of this problem is formulated,
but its size is quite large for realistic problems, making optimum IP solutions impractical
for real-life problems. Therefore, a PSO heuristic methodology is developed and applied
to a number of test problems. The proposed PSO methodology shows promising results,
producing near-optimal solution in short computation times.

2 Literature Review

Several approaches have been proposed in the literature for solving the job rotation
scheduling problem. Due to the complexity of this problem, optimum solutions using IP
(branch-and-bound) are difficult even for problems of moderate size. Therefore, recent
research has been mostly focused on heuristic algorithms, especially meta-heuristics such
as simulated annealing, ant colony optimization, and genetic algorithms. Seçkiner and
Kurt [4] develop a simulated annealing (SA) heuristic for solving job rotation scheduling
problems, whose objective is to ensure equal workloads among employees. Later on,
Seçkiner and Kurt [5] present two ant colony optimization (ACO) algorithms for solving
the same problem, and they perform comparisons that confirm that ACO is competitive
with both IP and SA. Diego-Mas et al. [1] apply a multi-criteria genetic algorithm (GA)
to construct job rotation schedules that balance multiple objectives. The objectives (cri-
teria) considered in the model are: minimum risk of musculoskeletal disorders, maximum
task diversification, worker disabilities, and worker preferences.
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Particle swarm optimization (PSO) is a meta-heuristic approach originally proposed
by Kennedy and Eberhart [3] for simulating social behavior. Each“particle” is an individ-
ual feasible solution that moves around the search-space guided by the fitness (objective)
function and by the movements of its neighboring particles. PSO has been applied to
several staff scheduling problems, but not to the workforce job rotation problems in par-
ticular. Staff scheduling can be defined as the assignment of employees to jobs/machines
in each time period to achieve certain objectives while satisfying various constraints.
There are several recent publications in the area of staff scheduling using PSO. For ex-
ample Günther and Nissen [2] use PSO and evolutionary strategies (ES) for sub-daily
staff scheduling for the logistics industry. They conclude that while both PSO and ES
heuristics outperform manual staff scheduling, but PSO provides the best overall perfor-
mance. Given this conclusion, the aim of this paper is to apply PSO to workforce job
rotations problems.

3 The Integer Programming Model

The integer programming model represents a tour scheduling problem of full-time em-
ployees to satisfy varying work demands for 12 work hours per day and seven workdays
per week. Binary decision variables Xnmik are used to indicate whether or not employee
n is assigned to job m in shift k on day i. To achieve fairness, the IP model has a min-
imax objective, seeking to minimize the maximum employee cost among all employees.
The constraints ensure satisfaction of work demands and other work conditions.

The combinatorial structure and binary integer restrictions make the problem is
NP-complete and thus makes the optimum solution very difficult. Therefore, the only
practical option is efficient solution using heuristic search methods such as particle swarm
optimization. Because of this reason, the particle swarm algorithm is used to achieve
workload balancing.

4 Particle swarm optimization (PSO) approach

A PSO metaheuristic is used to balance of the workload among workers, which is de-
termined for each job based on the number of days and the type of job. The PSO for-
mulation is based on the traveling salesman problem (TSP). Each order to be processed
is represented as a “city” in the TSP network. In the single objective TSP, a matrix
D shows the distance between each pair (ij ) of cities. In the job rotation scheduling
problem, each cmik represents the cost, in terms of workload, of any worker performing
job m in shift pattern k on day i. The job rotation scheduling problem model involves
the Xnmik = 0−1 binary variables, while the standard PSO is essentially a real-coded al-
gorithm. Therefore, some revisions are needed to enable it to deal with the binary-coded
optimization problem.

5 Computational results

To facilitate comparison, 26 randomly generated test problems developed by Seçkiner
and Kurt [4] were used for computational analysis. According to Seçkiner and Kurt [4],
no optimal solutions were found by CPLEX solver 8.1 within the limit of 86,400 CPU
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seconds, but near optimal solutions were obtained. These IP solutions were used as
benchmarks for the proposed PSO algorithm. The results are compared according to
objective function value (nearness to optimal solution) for each of the 26 test problems.
Comparing PSO with integer programming, results show that the PSO is capable of
producing near-optimal solutions in very short computation times. Comparing PSO
with simulated annealing, preliminary results are very promising, indicating that PSO
is competitive with SA. However, PSO computational times increase considerably as the
number of worker increases. Currently, ongoing research is being performed to refine
the proposed PSO algorithm in order to improve its efficiency (speed) and effectiveness
(solution quality).
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Optimal robust algorithms for preemptive scheduling

Leah Epstein (Speaker) ∗ Asaf Levin †

1 Introduction

We study preemptive scheduling on m identical machines. A set of n jobs is given,
where pj denotes the processing time of the j-th job. The goal is to assign the jobs
to the machines, minimizing the maximum completion time of any machine. We next
describe the set of feasible assignments. In preemptive scheduling, each machine can
execute one job at each time, and every job can be run on at most one machine at each
time. Idle time is allowed. A job is not necessarily assigned to a single machine, but
its processing time can be split among machines. The intervals in which it is processed
do not necessarily have to be consecutive. That is, a job is split under the constraint
that the time intervals, during which it runs on different machines, are disjoint, and the
length of their union is exactly the processing time of the job.

In the offline scenario, jobs are given as a set, while in the online problem, jobs arrive
one by one to be assigned in this order. The exact time slots allocated to the job must
be reserved during the process of assignment, and cannot be modified later. Idle time
may be created during the process of assignment, and as a result, the final schedule may
contain idle time as well. Note that in this variant, unlike non-preemptive scheduling,
idle time can be beneficial, and this is why it is allowed to introduce it.

It is known for a while that the offline problem can be solved optimally, even for
more general machine models, and in some of the cases, for other cost functions which
are based on machine completion times [9,11,12,12–14]. A number of articles considered
the online problem [1–4, 7, 8, 18], including many results where algorithms of optimal
competitive ratio were designed. However, it is impossible to design an online algorithm
which outputs an optimal solution [1, 16].

There is a recent interest in problems which possess features of both offline and
online scenarios. These are not offline problems, in the sense that the input arrives
gradually, but they are not purely online either, since some reassignment or reordering
of the input is allowed. One such model is the model of robust algorithms or algorithms
with bounded migration. Jobs arrive one by one. When a new job arrives, its processing
time becomes known. The algorithm needs to maintain a schedule, but when a new job
j arrives, it is allowed to change the assignment of its preceding jobs in a very restrictive
way. More accurately, the total size of all parts of jobs which are moved to different
time slots should be upper bounded by a constant factor, called the migration factor,
times pj , that is, at most a constant multiplicative factor away from the size of the new
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job. Algorithms which operate in this scenario are called robust. We expect a robust
algorithm to be optimal not only for the entire input, but also for every prefix of the
input, comparing the partial output to an optimal solution for this partial input. We
would like to stress the fact that in the preemptive variant which we study, at each time
the parts of a given job may be scheduled to use different time slots on possibly different
machines. When the schedule is being modified, we allow to cut parts of jobs further,
and only the total size of part of jobs which are moved to a different time slot, or to a
different machine (or both), counts towards the migration factor.

Robust algorithms were studied in the past for scheduling and bin packing problems.
This model was introduced by Sanders, Sivadasan and Skutella [15], where several simple
strategies with a small migration factor, but an improved approximation ratio, compared
to online algorithms [10], were presented, as well as a robust polynomial time approxi-
mation scheme (PTAS). The bin packing problem, was shown to admit an asymptotic
robust PTAS [5] (and even the problem of packing d-dimensional cubes for any d ≥ 2
into unit cubes of the same dimension admits an asymptotic robust PTAS [6]). On the
other hand, not every problem which admits a PTAS admits a robust PTAS [6,17].

Our main result is an algorithm of migration factor 1− 1
m which maintains a strongly

optimal solution (a solution whose sorted vector of machine completion times is lexico-
graphically minimal). We show that this result is tight in the sense that no optimal
robust algorithm can have a smaller migration factor.

In addition to the basic case of identical machines, we study other, more general,
machine models, such as uniformly related machines and identical machines with re-
stricted assignment. We show that an optimal robust solution cannot be maintained in
the last two machine models. Note that for identical machines, the study of scheduling
with the goal function of the `p norm of machine completion times results in the same
set of (strongly) optimal schedules. This is not necessarily the case for other machine
models [9].

2 The approach

Next, we sketch the behavior of our algorithm. At the arrival time of a job, we use
a simple algorithm, Loads which computes the sorted vector of machine loads in an
optimal solution.

Algorithm Loads is based on the methods of McNaughton [14] and [12]. The al-
gorithm creates a potential schedule of a simple form (which cannot be used by the
algorithm, since it needs to modify its existing schedule rather than creating one from
scratch). Loads is a recursive algorithm which assigns the largest remaining job to run
non-preemptively on an empty machine, unless the remaining set of jobs can be sched-
uled in a balanced way. Thus, the sorted vector of completion times has a parameter k,
where the k machines of smallest completion time have the exact same completion time.

After finding the output of Loads, our algorithm finds which machines have an
augmented completion time, and the new job is assigned. There may be a time slot in
which the job can be scheduled on one machine, but typically some parts of jobs need
to be moved to make room for the parts of the new job. We carefully move parts of
jobs. In the process it is necessary to make sure that no parts of a job are scheduled
to run in parallel (not only parts of the new job), and that parts of jobs are not moved
unnecessarily, to avoid an increase in the migration factor.
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Reassignment models in online scheduling on two related

machines

György Dósa (Speaker) ∗ Attila Benkő † Xin Han ‡

1 Rearrangement models

We consider several (semi) online non-preemptive scheduling problems on two related
machines. The common thing among the investigated and compared models is that they
all allow some kind of reassignment. But they differ from each other in the allowed way
of reassignment.

The machines are related, i.e. the machines have speeds, we assume that the first
(or slow) machine has speed 1 while the second (or fast) machine has speed s ≥ 1. Jobs
arrive one by one over list, and as soon as a new job arrives, it must be assigned to
one of the machines. We are interested in minimizing the makespan, i.e. the maximum
completion time of the machines, which equals to the biggest one of the load of the slow
machine, and the load of the fast machine divided by it’s speed s. Before coming the
jobs, an integer K is fixed, it means that how many jobs can be moved, or can be stored
temporarily in a buffer.

When K = 0 and s = 1, this problem degenerates into one of the most fundamental
scheduling problems on two machines, online assigning jobs to identical parallel machines
to minimize the makespan. It is known that this (offline) scheduling problem is NP-hard.

There are (at least) six different reassignment models what are dealt with in the last
some years. These are the next:

1. Bounded migration [1]. In case of such problems when a new job comes some
already scheduled jobs can be reassigned, here the bound of this reassignment is deter-
mined by the sizes, or reassignment cost of the jobs. So this model is quite different
from the other reassignment models, where the possibility of some rearrangement is de-
termined by a constant K: At most K jobs, having also some further conditions, can be
moved at some point of the scheduling.

2. Having a (reordering) buffer [2–5]. In case of such a buffer problem we have a
buffer of size K, i.e. at any time of the running at most K jobs can be temporarily
stored in the buffer. When a new job comes it can be assigned to one of the machines
(then this assignment can not be changed later), or put into the buffer, if there is room
for it in the buffer. If the buffer is full (there are already K jobs in the buffer), then the
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incoming job must be assigned, or if it is stored, then another job from the buffer must
be taken off, and be assigned to some machine. At the end, when no more job comes,
the content of the buffer must be also assigned to the machines. We denote this problem
as BB (bounded buffer).

3. Rearrangement of any K jobs at any time when a new job comes [6] (without
knowledge that the sequence is ended or not), denoted by BR for short (bounded re-
arrangement). This problem BR is a natural relaxation of the buffer problem BB (i.e.
theoretically it allows more). We can show this in the next way: In case of the buffer
problem at the end, when there is no more job, all jobs being in the buffer can be as-
signed together to the machines optimally. Thus in the BR problem at any time when
a new job comes we can choose exactly that jobs which would be stored in the buffer in
case of problem BB, and we temporarily but optimally reassign these chosen jobs. But,
in problem BR we can reassign any job, while in case of problem BB if a job is taken
from the buffer it cannot be put back, so we can not change the assignment of a job
what is taken from the buffer.

This means that problem BR is equivalent to such a problem where we have a buffer
of size K, and at any moment when a new job comes, any K jobs can be put into the
buffer, no matter that the job is just being in the buffer, it is just revealed or it is already
assigned to some machine. (At the end when there is no job, the content of the buffer
must be also assigned to the machines.) On the other hand, in most cases the condition
of problem BR provides better chance to get better schedule (than condition of problem
BB) only theoretically. For example in many cases turns out that the biggest K jobs (so
far) are worth to be stored in the buffer, so we can not get better competitive ratios for
s ≥ 2, neither for K ≥ 2, see for details [4, 6].

There are three further problems, defined in [8], where rearrangement can be done
only after all jobs are revealed and scheduled. These are the next:

4. The last job of any machine can be moved to the other machine.

5. The last K jobs of the sequence can be moved.

6. After the sequence ended any K jobs can be rearranged. Here first all jobs are
(temporarily) scheduled, then we are informed that there is no further job (i.e. the
sequence is ended). Then at most K already scheduled jobs can be removed from the
schedule, and then all removed jobs must be (re)assigned to the machines. We denote
this version as problem BFR (bounded final rearrangement). This problem seems to be
the relaxation of the similar problem BR, where at any moment the rearrangement is
allowed. But on the other hand in case of BFR we are informed about the end of the
sequence while in case of BR we are not, so in the latter case any rearrangement must
be made in such a way that ”it would not be too bad” if the sequence will just end, and
we are not allowed to make further change at all, but it also must be quite good if the
sequence follows [7].

2 Results

We will mainly concentrate on three versions, the buffer problem BB, the rearrangement
model BR, and the final rearrangement problem BFR. With respect to the best possible
worst case ratio, we obtain that

i) For s ≥ 2, all three models BB, BR, and BFR are equivalent, they all allow to get
C(s) = s+2

s+1 as optimal competitive ratio, and K = 1 is enough to get this optimal ratio
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(we get no advantage having K > 1, but with K = 0 we can get only weaker competitive
ratio.)

ii) For 1 ≤ s ≤ 2, for all three problems K = 2 is enough to get the best competitive
ratio

C(s) =

{
(s+1)2

s2+s+1
1 ≤ s ≤ 1+

√
5

2
s2

s2−s+1
1+
√

5
2 ≤ s ≤ 2

what can be achieved by arbitrary big value of K.
iii) By getting 1 ≤ s ≤ 2 and K = 1, all three problems seems to be more difficult:

it is very hard to obtain the best possible competitive ratios. But we still can establish
some results: there exists at least some subinterval of 1 ≤ s ≤ 2, where using K = 1 does
not allow to get as good competitive ratio than the help of K = 2. To get the optimal
competitive ratios remains open, at least for some subinterval of [1, 2].

References

[1] N. Sivadasan, P. Sanders, M. Skutella, Online scheduling with bounded migration,
Math. Oper.Res. 34 (2) (2009) 481-498.

[2] H. Kellerer, V. Kotov, M. G. Speranza, Z. Tuza, Semi on-line algorithms for the
partition problem. Operations Research Letters, 21 (1997) 235-242.

[3] G. C. Zhang, A simple semi-online algorithm for P2||Cmax with a buffer. Information
Processing Letters, 61 (1997), 145-148.

[4] G. Dosa, L. Epstein, Preemptive online scheduling with reordering, SIAM Journal
on Discrete Mathematics, Volume 25, Issue 1, pp. 21-49 (2011)

[5] G. Dosa, L. Epstein, Online scheduling with a buffer on related machines,
J.Comb.Optim. 20(2) 2010, 161-179.

[6] G. Dosa, Y. Wang, X. Han, H. Guo, Online scheduling with rearrangement on two
related machines, Theoretical Computer Science, 412(8-10): 642-653 (2011)

[7] A. Benko, X. Chen, G. Dosa, X. Han, Online scheduling with bounded rearrangement
at the end, to be submitted, 2011.

[8] Z. Tan, S. Yu, Online scheduling with reassignment, Oper.Res.Lett. 36(2) 2008, 250-
254.

258



Author Index

A
Aggoune, 137
Akker, 73
Alfares, 250
Almgren, 171
Anand, 119
Andersson, 198
Antoniadis, 32
Artigues , 156
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