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Abstract

A fullerene graph is a cubic bridgeless planar graph with twelve 5-
faces such that all other faces are 6-faces. We show that any fullerene
graph on n vertices can be bipartized by removing O(

√
n) edges. This

bound is asymptotically optimal.

Keywords: Fullerene graph; Fullerene stability; Bipartite span-
ning subgraph

1 Introduction

Fullerenes are carbon-cage molecules comprised of carbon atoms that
are arranged on a sphere with pentagonal and hexagonal faces. The
icosahedral C60, well-known as Buckminsterfullerene was found by Kroto
et al. [10], and later confirmed by experiments by Krätchmer et al. [9]
and Taylor et al. [12]. Since the discovery of the first fullerene molecule,
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the fullerenes have been objects of interest to scientists all over the
world.

From the graph theoretical point of view, the fullerenes can be
viewed as cubic 3-connected graphs embedded into a sphere with face
lengths being 5 or 6. Euler’s formula implies that each fullerene con-
tains exactly twelve pentagons, but provides no restriction on the num-
ber of hexagons. In fact, it is not difficult to see that mathematical
models of fullerenes with precisely α hexagons exist for all values of α
with the sole exception of α = 1. See [3, 5, 6, 11] for more information
on chemical, physical, and mathematical properties of fullerenes.

The question of stability of fullerene molecules receives a lot of
attention. The goal is to obtain a graph-theoretical property whose
value influences the stability. Different properties, like the number of
perfect matchings [7] or the independence number [4] were considered.
The property investigated in this paper is how far the graph is from
being a bipartite graph, which was suggested by Došlić [1] and further
considered in [2]. Despite of the effort none of the so far considered
parameters works in all cases. Hence more research is still needed.

For a plane graph H, let F (H) be the set of the faces of H. Let
H be a fullerene graph, and let KH be the weighted complete graph
whose vertices correspond to the 5-faces of H and the weight of the
edge joining two 5-faces f1 and f2 is equal to the distance from f1 to f2
in the dual of H. Let b(H) be the size of the minimum set S ⊆ E(H)
such that H − S is bipartite. Došlić and Vukičević [2] proved the
following:

Theorem 1. If H is a fullerene graph, then b(H) is equal to the min-
imum weight of a perfect matching in KH .

A corollary of the above theorem is a polynomial-time algorithm
for finding a set of edges S whose removal makes the graph bipartite.

Došlić and Vukičević [2] conjectured that b(H) = O(
√
|V (H)|). In

fact, they gave the following stronger conjecture.

Conjecture 2. If H is a fullerene graph with n vertices, then b(H) ≤√
12n/5.
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The main result of this paper is an upper bound on b(H), confirming
the weaker version of the conjecture.

Theorem 3. If H is a fullerene graph with n vertices, then b(H) =
O(
√
n).

2 Proof of Theorem 3

Let H be a fullerene graph. A patch with boundary o is a 2-connected
subgraph G ⊆ H such that o ∈ F (G) (usually, we consider o to be
the outer face of G) and F (G) \F (H) ⊆ {o} (but it is possible for the
boundary o to be also a face of G). Let v be a vertex incident with o.
If degG(v) = 3, then v is a 3-vertex (with respect to o), otherwise v is
a 2-vertex (with respect to o). An edge e incident with o is a 22-edge
(resp. a 33-edge) if both vertices incident with e are 2-vertices (resp. 3-
vertices) with respect to o. If e is neither a 22-edge nor a 33-edge, then
it is a 23-edge. The description D(o) of the boundary o is the cyclic
sequence in that A represents a 33-edge, B represents a 22-edge, and a
maximal consecutive segment of 23-edges is represented by the integer
giving its length. For example, the boundary of the patch consisting
of a 5-face and a 6-face sharing an edge is described as BB2BBB2.

Let s(o) and t(o) be the numbers of 22-edges and 33-edges of o,
respectively, and let s2(o) be the number of pairs of consecutive 22-
edges of o. Let p(G) be the number of 5-faces of G distinct from o.
The following lemma relates the number of 22- and 33-edges; a similar
relation was derived by Kardoš and Škrekovski [8].

Lemma 4. If G is a patch with the boundary o, then s(o) = 6−p(G)+
t(o).

Proof. Suppose that the length of o is `. Let n = |V (G)|, m = |E(G)|
and let f be the number of faces of G. Since each edge of G is incident
with two faces,

2m = 6(f − p(G)− 1) + 5p(G) + `,
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i.e., ` = 2m + p(G) + 6 − 6f . Note that the number of 2-vertices is
(` + s(o) − t(o))/2, which can be easily seen from the modification of
the boundary by adding s(o) and deleting t(o) 3-vertices so that there
is no 33-edge or 22-edge. Thus

2m = 3n− (`+ s(o)− t(o))/2.

Substituting for `, we obtain

3m = 3n+ 3f − 6 +
6− p(G) + t(o)− s(o)

2
.

By Euler’s formula, m = n + f − 2, thus 6 − p(G) + t(o) − s(o) = 0
and the claim of the lemma follows.

A patch G with the boundary o is a fat worm if p(G) = 0, the
subgraph of G induced by V (G) \ V (o) is a path P , and the edges of
E(G) \ E(P ) incident with each two consecutive inner vertices of P
are not incident to a common face of G. See Figure 1(a). Note that in
this case, the description of o is

• BB2B(2k + 2)BB2B(2k + 2) if P has length 2k + 1 and

• BB2B(2k + 2)B2BB(2k + 4) if P has length 2k + 2.

We consider the patch with exactly one vertex not incident with o (and
boundary BB2BB2BB2) to be a fat worm as well (in this case, P has
length 0). The patch G is a slim worm if p(G) = 0, V (G) = V (o)
and t(o) = 0. Geometrically, it is a straight line of hexagons, see
Figure 1(b). Note that D(o) = BBB(2k)BBB(2k) for some k (or
D(o) = BBBBBB, when k = 0 and o is a 6-face). The patch G is a
worm if it is a fat worm or a slim worm. The shell is the patch G with
boundary o such that p(G) = 0 and D(o) = BB4BB4BB4 (having 4
internal vertices). See Figure 1(c).

An `-chord of a cycle C in a patch G is a path of length ` with
distinct endvertices belonging to V (C) such that the inner vertices
and edges of the path do not belong to C. We say a chord instead of
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(a)

(b) (c)

Figure 1: A fat worm, a slim worm and the shell.

a 1-chord. Consider an `-chord Q of the boundary o of a patch G. Let
G1 and G2 be the two patches into that Q splits G (i.e., the subgraphs
such that G1∪G2 = G, G1∩G2 = Q and G1 6= Q 6= G2), and o1 and o2
their boundaries. We say that Q splits off a face if G1 = o1 or G2 = o2.
The patch G is decomposable if it contains a simplifying cut, that is

• an `-chord Q of o with ` ≤ 3 such that t(o1) + t(o2) < t(o), or

• two 4-chords Q1 = v0v1v2v3v4 and Q2 = w0w1w2w3w4 such that
v0w0, v2w2 and v4w4 are edges of G. See Figure 2.

Otherwise, we call G indecomposable. We say that G is a normal patch
if G is indecomposable, no 5-face of G distinct from o shares an edge
with o and G is neither a worm nor a shell.

Lemma 5. Let G be a normal patch with boundary o and Q an `-chord
of o, with ` ≤ 3. Then ` ≥ 2 and Q splits off a face. Furthermore, the
number of 33-edges incident with the endvertices of Q is most `− 2.

Proof. Let G1 and G2 with boundaries o1 and o2, respectively, be the
patches to that Q splits G. Let

Q = q0q1 . . . q` and o2 = q0v1v2 . . . vaq`q`−1 . . . q0.
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Figure 2: Two 4-chords.
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Figure 3: 3-chords from Lemma 5.

Suppose first that ` = 1. Since G is not a slim worm, there exists an
edge e ∈ E(G) that either is a 33-edge of o or is incident with a vertex
in V (G) \V (o). Let us choose the chord Q and the patches G1 and G2
so that e ∈ E(G2) and G2 is minimal. As G is indecomposable, each
33-edge of G is also a 33-edge in G1 or G2. It follows that v1 and va

are 2-vertices, and since the internal face incident with q0v1 has length
six, v2 and va−1 must be adjacent. Since e ∈ E(G2), we have G2 6= o2;
hence, v2va−1 is a chord of o. The chord v2va−1 splits G to patches G′1
and G′2 with G′2 ⊂ G2. However, this contradicts the choice of Q, since
it is easy to see that e ∈ E(G′). We conclude that o is an induced
cycle.

Suppose now that ` = 2. By symmetry between G1 and G2, we
may assume that q1 is a 2-vertex in G2. Since t(o1) + t(o2) ≥ t(o), we
have that v1 and va are 2-vertices, and it follows that G2 = o2 is a face
split off by Q.

6



Finally, suppose that ` = 3. Suppose first that both q1 and q2 are
2-vertices in G2, and thus q1q2 is a 33-edge with respect to o1. Since
t(o1) + t(o2) ≥ t(o), at least one of v1 and va (say v1) is a 2-vertex.
Thus, V (Q) ∪ {v1, v2, va} are all incident with a common face, which
is only possible if v2 = va and G2 consists of a single face. It follows
that Q splits off a face.

The case that both q1 and q2 are 2-vertices in G1 is symmetrical.
Hence, without loss of generality, we assume that q1 is a 2-vertex and
q2 is a 3-vertex in G2. As t(o1)+ t(o2) ≥ t(o), we infer that both v1 and
va are 2-vertices. Let x 6∈ {q1, q3} be the third neighbor of q2. Observe
that

• if x ∈ V (o), then both xq2q3 and xq2q1q0 split off a face (for the
former, note that the edge joining va−1 with a neighbor of x is
not a chord, since we already proved that o is an induced cycle).
See Figure 3(a).

• if x 6∈ V (o), then x and v2 are adjacent, v1v2xq2q1q0 is a face and
we may apply the same observations to the 3-chord v2xq2q3. See
Figure 3(b).

By symmetry, this argument also holds for o1. Hence by repeating
the argument we conclude that G is a fat worm, contradicting the
assumption that G is a normal patch.

Furthermore, note that if Q splits off a face, then t(o) = t(o1) +
t(o2)− (`− 2) + k, where k is the number of 33-edges incident with q0
or q`. Since G is indecomposable, it follows that k ≤ `− 2.

For a patch G with boundary o, let G′ ⊆ G be the subgraph con-
sisting of the outer layer of the faces of G; that is, e is an edge of G′

if and only if it is incident with a face that shares an edge with o. Let
S ⊆ V (G)\V (o) be the set of vertices that have at least two neighbors
in o. Let o′ = G′ − (V (o) ∪ S). See Figure 4(a).

Lemma 6. If G is a normal patch with boundary o, then o′ is a cycle,
and the patch bounded by o′ satisfies t(o′) = t(o), s(o′) = s(o) and
s2(o

′) ≥ s2(o). Furthermore, `(o′) = `(o) + 2p(G)− 12− 2s2(o).
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Figure 4: Patch G and o′ and a configuration from Lemma 6.

Proof. Since G is not a fat worm, we have |V (G) \ V (o)| > 1. If two
vertices of S were adjacent, then |V (G) \ V (o)| = 2 by Lemma 5 and
G would be a fat worm, thus S is an independent set and o′ is not
empty. Lemma 5 also implies that G− V (o) is connected, and since S
only contains vertices whose degree in G−V (o) is one, o′ is connected
as well.

Suppose that a vertex w of o′ is adjacent to more than one vertex
of S. Since G is not the shell, w is adjacent to exactly two vertices
in S; let z be the neighbor of w not in S. Since G is not a fat worm,
we have z 6∈ V (o). Let z1 and z2 be the neighbors of z distinct from
w; since z 6∈ S, we may assume that z2 6∈ V (o). Let f be the face
of G incident with w, z and z2, and let x be the neighbor of z2 in
f distinct from z. Note that f is incident with a neighbor of w that
belongs to S, and thus f shares an edge with o. Hence f is a 6-face and
we have x ∈ V (o). If z1 ∈ V (o), then the 3-chord z1zz2x contradicts
Lemma 5. Otherwise, by a symmetric argument we conclude that a
face f ′ incident with w, z and z1 is also a 6-face sharing an edge with
o, see Figure 4(b). However, f ∪ f ′ forms a simplifying cut (a pair of
4-chords) in G, which is a contradiction. Therefore, each vertex of o′

has at most one neighbor in S.
By Lemma 5, no vertex of o′ has a neighbor both in S and in o,

since at least one of the two resulting 3-chords would not split off a
face. If v is a vertex of o′ that has a neighbor in o or S, then v has two
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neighbors in o′, and thus o′ has at least three vertices.
Suppose that o′ contains a bridge e = uv. Note that both faces f1

and f2 of G incident with e share an edge with o. As u, v 6∈ S, these
two vertices do not lie on 2-chords. Note that f1 ∪ f2 contains an `u-
chord Pu of o such that u ∈ V (Pu) and v 6∈ V (Pu), where 3 ≤ `u ≤ 5.
Similarly, let Pv be an `v-chord of o such that v ∈ V (Pv) and u 6∈ V (Pv).
As neither Pu nor Pv splits off a face, Lemma 5 implies that `u, `v ≥ 4.
Since f1 and f2 are 6-faces, we conclude that Pu and Pv are 4-chords.
Lemma 5 further implies that u and v are middle vertices of Pu and
Pv, thus f1 and f2 is a pair of 4-chords forming a simplifying cut. This
is a contradiction; therefore, o′ is 2-edge-connected. Since o′ ⊂ G′,
every edge of o′ is incident with a face that shares an edge with o. We
conclude that o′ is a cycle.

Consider now a 33-edge x1x2 in o and let x1x2x3x4x5x6 be the in-
cident 6-face. Lemma 5 implies that each of x3 and x6 has only one
neighbor in o, as otherwise one of them would belong to a 2-chord
whose endpoint is incident with a 33-edge x1x2. Therefore, x3, x6 6∈ S
and x3x4x5x6 is a part of o′, and x4x5 is a 33-edge with respect to o′.
It follows that t(o′) ≥ t(o). On the other hand, consider a 33-edge
y4y5 of o′, and let y3y4y5y6 be a part of the boundary of o′. As y4
and y5 are 3-vertices in o′, there exists a 6-face y1y2y3y4y5y6 in G, and
y1y2 is a 33-edge in o. Hence, we have t(o′) = t(o) and by Lemma 4,
s(o′) = s(o).

Similarly, consider a part z0z1z2z3z4z5z6 of o, where z2z3 and z3z4
are 22-edges. The common neighbor z of z1 and z5 belongs to S, and
its neighbor z′ distinct from z1 and z5 belongs to o′. As we observed
before, both neighbors z′1 and z′2 of z′ distinct from z belong to o′.
Furthermore, by Lemma 5, the endpoints of the 2-chord z1zz5 are
incident with no 33-edges, thus z0 and z6 are 2-vertices. It follows that
both z′1 and z′2 have a neighbor in o, and z′1z

′ and z′2z
′ are 22-edges

with respect to o′. Hence, we conclude that s2(o
′) ≥ s2(o).

In fact, D(o′) can be obtained from D(o) in the following way: Add
0 between each two consecutive letters in D(o). Since endvertices of
a 2-chord of o are not incident with 33-edges, if B0B appears in the
resulting sequence, then it is as a part of a subsequence n1B0Bn2,
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where n1, n2 ≥ 3. We construct D(o′) by

• for each n1B0Bn2 subsequence, decreasing each of n1 and n2 by
3,

• for each B not contained in such a subsequence, decreasing each
of the neighboring integers by 1,

• for each A, increasing each of the neighboring integers by 1, and

• suppressing any zeros.

Note that the increases/decreases are cumulative, e.g., if D(o) con-
tains a subsequence A3B2B, then the sequence D(o′) contains a sub-
sequence A3B0B (or A3BB after suppressing zeros). By Lemma 4,
t(o)− s(o) = p(G)− 6, and the formula for the length of o′ follows:

`(o′) = `(o) + 2t(o)− 2(s(o)− 2s2(o))− 6s2(o)

= `(o) + 2p(G)− 12− 2s2(o).

Consider a patch G with boundary o1. A sequence of cycles o1, o2,
. . . , ok (with k ≥ 2) is called an uninterrupted peeling if for 1 ≤ i < k,
the subpatch of G bounded by oi is normal and oi+1 = o′i.

Lemma 7. Let o be the boundary of a patch G such that p(G) 6= 6.
If o = o1, o2, . . . , ok is an uninterrupted peeling, then the number of
vertices of G outside of (and not including) ok is at least 4k2/9.

Proof. By Lemma 6, we have s2(o1) ≤ s2(o2) ≤ . . . ≤ s2(ok). Moreover,
Lemma 6 also implies that the sequence `(o1), . . . , `(ok) is concave.

Let a be the largest index such that `(o1) < . . . < `(oa) and let b
be the smallest index such that `(ob) > . . . > `(ok). Note that if the
whole sequence is decreasing then a = b = 1 and similarly if the whole
sequence is increasing then a = b = k, hence a ≤ b in all the cases. We
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compute a lower bound on the the number of vertices of G outside of
ok as

k−1∑
i=1

`(oi) =
a−1∑
i=1

`(oi) +
b−1∑
i=a

`(oi) +
k−1∑
i=b

`(oi).

First, we deal with the middle term. Let m = b − a. Suppose
that a < b. In this case, we have `(oa) = `(oa+1) = . . . = `(ob); let
r = `(oa). By Lemma 6, s2(oi) = p(G) − 6 for a ≤ i < b. Since
p(G) 6= 6, we conclude that s2(oa) ≥ 1. It follows that D(oa) contains
a subsequence n1BBn2, where n1, n2 ≥ 3 by Lemma 5. By Lemma 4,
t(oa) − s(oa) = p(G) − 6 = s2(oa). As s(oa) ≥ 2s2(oa), we conclude
that t(oa) ≥ 3, and thus n1 + n2 + 5 ≤ r. By symmetry, assume that
2n1 ≤ r − 5. As observed in the proof of Lemma 6, D(oa+1) contains
a subsequence n′1BBn

′
2, where n′1 ≤ n1 − 2 (the equality is achieved if

n1 is adjacent to A in D(oa)). The same observation applies to oa+1,
. . . , ob−2. In the normal patch ob−1, the integers adjacent to BB are
greater or equal to three, thus n1 ≥ 2m+ 1 and r ≥ 4m+ 7. It follows
that

∑b−1
i=a `(oi) = mr ≥ m(4m + 7). In the case that a = b, we have∑b−1

i=a `(oi) = 0 = m(4m+ 7), since m = 0.
Now we deal with the other terms of the sum. If a > 1, then the

sequence `(o1), `(o2), . . . , `(oa−1) dominates the arithmetic sequence
with the first element `(o1) ≥ 5 and step 2 due to Lemma 6 and
the fact that p(G) − 6 − s2(oi) ≥ 1 for 1 ≤ i ≤ a − 1. Hence∑a−1

i=1 `(oi) ≥
∑a−1

i=1 (3+2i) = (a−1)(a+3). If a = 1 then
∑a−1

i=1 `(oi) =
0 = (a− 1)(a+ 3).

Similarly, the sequence `(ob), `(ob+1), . . . , `(ok−1) dominates the arith-
metic sequence with the last element `(ok−1) ≥ 7 and step −2, hence∑k−1

i=b `(oi) ≥
∑k−b

i=1 (5 + 2i) = (k − b)(k − b+ 6).
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Note that (a−1)+m+(k−b) = k−1. Summing these inequalities,
we obtain

k−1∑
i=1

`(oi) ≥ (a− 1)(a+ 3) +m(4m+ 7) + (k − b)(k − b+ 6)

≥ (a− 1)2 + 4m2 + (k − b)(k − b+ 2) + 1

≥ 4k2/9,

where the lower bound in the last inequality is achieved for a − 1 =
4k/9, k − b = 4k/9− 1 and m = k/9. Since all the cycles o1, . . . , ok−1
are strictly outside of ok, the claim follows.

Lemma 8. Let H be a fullerene with n vertices and f a 5-face of H.
There exist at least five 5-faces distinct from f whose distance to f in
the dual of H is at most

√
63n/2 + 14.

Proof. We define a rooted tree T with each vertex of T corresponding
to a patch G ⊆ H such that p(G) 6= 0 and p(G) 6= 6. Furthermore, we
assign a weight d(e) to each edge e of T . The root of T is the patch
G0 = H whose boundary is the cycle bounding f , i.e., p(G0) = 11.
Suppose that a patch G with boundary o is a vertex of T . Let us note
that G is neither a worm nor the shell, since p(G) > 0. The sons of G
in the tree are defined as follows:

(a) If p(G) ∈ {1, 7} and o shares an edge with a 5-face of G, then G
is a leaf of T .

(b) If G is a normal patch, then G has a single son G′, equal to the
last element of the maximal uninterrupted peeling starting with
o. The weight of the the edge e joining G with G′ is equal to the
length (number of patches) of the uninterrupted peeling. Note
that G′ is not a normal patch.

(c) If G has a simplifying cut, then let o1 and o2 be the boundaries
of the two patches G1 and G2 to that it splits G. Note that
t(o1) + t(o2) < t(o). The patch Gi (with i ∈ {1, 2}) is a son of
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G if p(Gi) 6= 0 and p(Gi) 6= 6. In that case, the edge between G
and Gi has weight 1. Since 0 < p(G) < 12 and p(G) 6= 6, G has
at least one son.

(d) Finally, if G is indecomposable, p(G) 6∈ {1, 7} and o shares an
edge with a 5-face f ′, note that there exists an `-chord (with ` ≤
4) splitting off f ′ (otherwise f ′ would be incident with a chord and
a 2-chord and both of them would witness the decomposability
of G). We let the son G′ of G with boundary o′ be the patch
obtained from G by removing edges incident to both f ′ and o
and by removing isolated vertices. We let the edge of T between
G and G′ have weight 1.

The type of G is defined according to the rule ((a) to (d)) in that its
sons are described.

Observe that at least five 5-faces distinct from f share edges with
boundaries of the patches forming the vertices of T of type (a) or (d).
Indeed, either all 5-faces are reachable in this way, or there are exactly
six potentially unreachable 5-faces contained in a single patch that is
a leaf of T , or split off by a simplifying cut from an internal vertex of
T . Let T1 be a subtree of T of smallest possible depth that contains
five vertices of type (a) or (d). We choose T1 to be minimal, i.e., all
leaves of T1 are of type (a) or (d).

Consider a vertex G1 with a son G2 in T1, and let o1 and o2 be the
boundaries of these patches. If G1 is of type (b), then p(G1) = p(G2)
and t(o1) = t(o2) by Lemma 6. If G1 is of type (c), then p(G1) ≥ p(G2)
and t(o1) > t(o2). If G1 is of type (d), then p(G1) > p(G2) and
t(o1) ≥ t(o2)− 1.

Let P = p1p2 . . . pm be the path in T joining the root G0 = p1 with
a leaf G = pm whose boundary is incident with a 5-face f ′. Observe
that the distance between f and f ′ in the dual of G is at most the
sum of the weights of the edges of P , plus 1. Let o0 and o be the
boundaries of G0 and G, respectively. Let mb, mc and md be the
numbers of vertices of types (b), (c) and (d) in P distinct from G,
respectively. By the observations in the previous paragraph, we have
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t(o) ≤ t(o0) + md −mc = 5 + md −mc. By the choice of T1, we have
md ≤ 4, and since t(o) is nonnegative, mc ≤ 9. Therefore,∑

pi is non-normal

d(pipi+1) ≤ mc +md ≤ 13.

Let d1, d2, . . . , dmb
be the sequence of the weights of all edges pipi+1

of P such that pi is a normal patch; by the construction of T , pi+1 is
not a normal patch in this case, hence mb ≤ mc +md + 1 ≤ 14. Using
Lemma 7, we obtain

n ≥ 4

9

mb∑
i=1

d2
i ≥

4

9mb

(
mb∑
i=1

di

)2

.

Therefore, the total weight of these edges is at most
√

63n/2, and the

distance between f and f ′ is at most
√

63n/2 + 14.

Lemma 9. Every graph G on 12 vertices with minimum degree 5 such
that K5,7 6⊆ G has a perfect matching.

Proof. If G does not have a perfect matching, then there exists a set
S ⊆ V (G) such that G − S has more than |S| components of odd
size. Consider such a set S, and observe that |S| < 6. As δ(G) ≥ 5,
G is either 2K6 (and thus has a perfect matching) or G is connected.
Therefore, |S| ≥ 1.

If |S| < 5, then since δ(G) ≥ 5, no component of G−S may consist
of a single vertex, and hence G−S has at most three odd components
and |S| ≤ 2. Since δ(G) ≥ 5, each component of G − S has size at
least 4. However, G−S must have at least two components of odd size,
thus it would have exactly two components of size 5. However, then
|S| = 2, which is not smaller than the number of odd components.

Therefore, |S| = 5 and G−S has at least 6 components of odd size.
However, this is only possible if each component of G − S consists of
a single vertex, and hence K5,7 ⊆ G.
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Proof of Theorem 3. Let K ′H be the subgraph of KH consisting of

edges with weight at most
√

63n/2 + 14. By Lemma 8, δ(K ′H) ≥ 5,
and thus K ′H either has a perfect matching or K5,7 as a subgraph, by
Lemma 9. In the former case, the weight of each perfect matching in
K ′H (and thus of the minimum-weight perfect matching in KH) is at

most 6(
√

63n/2 + 14) =
√

1134n + 84. In the latter case, note that
the weights in KH satisfy the triangle inequality, thus the weight of
any edge in KH is at most 2(

√
63n/2 + 14), and we conclude that

KH has a perfect matching of weight at most (5 + 2)(
√

63n/2 + 14) =√
3087n/2 + 98. By Theorem 1, b(H) = O(

√
n).

The multiplicative constant
√

3087/2 ≈ 39.29 is likely to be far
from the best possible. Indeed, it can be somewhat improved by a
more complicated analysis of our argument (e.g., observing that not
all 5-faces can appear in T on the lowest possible level, indicating
that some of the edges of KH are much shorter than we estimated).
Nevertheless, we could not improve it enough to approach the best
known lower bound of

√
12/5 ≈ 1.549 of Došlić and Vukičević [2].
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