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Abstract

The packing chromatic number χρ(G) of a graph G is the smallest
integer k such that vertices of G can be partitioned into disjoint classes
X1, ..., Xk where vertices in Xi have pairwise distance greater than i.
We study the packing chromatic number of infinite distance graphs
G(Z, D), i.e. graphs with the set Z of integers as vertex set and
in which two distinct vertices i, j ∈ Z are adjacent if and only if
|i− j| ∈ D.

In this paper we focus on distance graphs with D = {1, t}. We
improve some results of Togni who initiated the study. It is shown that
χρ(G(Z, D)) ≤ 35 for sufficiently large odd t and χρ(G(Z, D)) ≤ 56
for sufficiently large even t. We also give a lower bound 12 for t ≥ 9
and tighten several gaps for χρ(G(Z, D)) with small t.
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1 Introduction

In this paper we consider simple undirected graphs only. For terminology

and notations not defined here we refer to [2]. Let G be a connected graph

and let distG(u, v) denote the distance between vertices u and v in G. We ask

for a partition of the vertex set of G into disjoint classes X1, ..., Xk according

to the following constraints. Each color class Xi should be an i-packing,

a set of vertices with property that any distinct pair u, v ∈ Xi satisfies

distG(u, v) > i. Such a partition is called a packing k-coloring, even though

it is allowed that some setsXi may be empty. The smallest integer k for which

there exists a packing k-coloring of G is called the packing chromatic number

of G and it is denoted χρ(G). The very first results about packing chromatic

number were obtained by Slopper [15]. He studied an eccentric coloring but

his results were directly translated to the packing chromatic number. The

concept of packing chromatic number was introduced by Goddard et al. [9]

under the name broadcast chromatic number. The term packing chromatic

number was later proposed by Brešar et al. [3]. The determination of the

packing chromatic number is computationally difficult. It was shown to be

NP-complete for general graphs in [9]. Fiala and Golovach [6] showed that

the problem remains NP-complete even for trees.

The research of the packing chromatic number was driven by investigating

χρ(Z2) where Z2 is the Cartesian product of two infinite paths - the (2-

dimensional) square lattice. Goddard et al. [9] showed that 9 ≤ χρ(Z2) ≤ 23.

Fiala et al. [7] improved the lower bound to 10 and Holub and Soukal [10]

improved the upper bound to 17. The lower bound was pushed further to 12

by Ekstein et al. [4]. For Z3 see [7, 8].

Let D = {d1, d2, ..., dk}, where di are positive integers and i = 1, 2, ..., k.

The (infinite) distance graph G(Z, D) with distance set D has the set Z of

integers as a vertex set and in which two distinct vertices i, j ∈ Z are adjacent

if and only if |i− j| ∈ D. We denote the graph G(Z, {a, b}) by D(a, b). The

study of a coloring of distance graphs was initiated by Eggleton et al. [5]. In

last twenty years there were more than 60 papers concerning this topic. We

recall e.g. contributions by Voigt and Walter [17], Ruzsa et al. [14], Liu [12],

Liu and Zhu [13] and Barajas and Serra [1].

The study of a packing coloring of distance graphs was initiated by

Togni [16]. Results for D(1, t) for small values of t, obtained by Togni [16],

are summarized in the left part of Table 1. Our improvements are emphasized

2



D χρ ≥ χρ ≤
1,2 8 8

1,3 9 9

1,4 11 16

1,5 10 12

1,6 11 23

1,7 10 15

1,8 11 25

1,9 10 18

D χρ ≥ χρ ≤
1,2 8 8

1,3 9 9

1,4 14 15

1,5 12 12

1,6 15 23

1,7 14 15

1,8 15 25

1,9 13 18

Table 1: Lower and upper bounds for the packing chromatic number of

D(1, t). Left table contains previously known bounds and the right table

contains current bounds.

in the right part of the table and they were obtained by a computer. We

wrote two independent programs (one in Pascal and other one in C++).

The source codes and the outputs of the programs can be downloaded from

http://kam.mff.cuni.cz/~bernard/dist.

For larger t Togni proved the following theorem.

Theorem 1. [16] For every q, t ∈ N:

χρ(D(1, t)) ≤



86 if t = 2q + 1, q ≥ 36,

40 if t = 2q + 1, q ≥ 223,

173 if t = 2q, q ≥ 87,

81 if t = 2q, q ≥ 224,

29 if t = 96q ± 1, q ≥ 1,

59 if t = 96q + 1± 1, q ≥ 1.

We improve some results of Theorem 1 as follows.

Theorem 2. For any odd integer t ≥ 575,

χρ(D(1, t)) ≤ 35.

For any even integer t ≥ 648,

χρ(D(1, t)) ≤ 56.
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We also give a lower bound for the packing chromatic number of D(1, t)

for t ≥ 9, as a corollary of the following statement.

Theorem 3. [4] The packing chromatic number of the square lattice is at

least 12.

Corollary 4. Let D(1, t) be a distance graph, t ≥ 9 an integer. Then

χρ(D(1, t)) ≥ 12.

Throughout the rest of the paper by a coloring we mean a packing

coloring.

2 D(1, t) with small t

In this section we prove new lower and upper bounds for the packing chro-

matic number of D(1, t) which are mentioned in Table 1.

Lemma 5. χρ(D(1, 4)) ≤ 15.

Proof. We prove this lemma by exhibiting a repeating pattern for 15-packing

coloring of D(1, 4). The pattern has period 320 and is given here:

1,3,1,2,4,1,5,1,8,2,1,3,1,10,11,1,2,1,6,4,1,3,1,2,5,1,7,1,9,2,1,3,1,12,4,1,2,1,13,

8,1,3,1,2,6,1,5,1,4,2,1,3,1,7,10,1,2,1,15,14,1,3,1,2,5,1,4,1,11,2,1,3,1,6,9,1,2,1,

8,7,1,3,1,2,4,1,5,1,12,2,1,3,1,10,13,1,2,1,4,6,1,3,1,2,5,1,7,1,8,2,1,3,1,4,14,1,2,

1,11,9,1,3,1,2,6,1,5,1,4,2,1,3,1,7,10,1,2,1,8,12,1,3,1,2,5,1,4,1,13,2,1,3,1,6,9,1,

2,1,15,7,1,3,1,2,4,1,5,1,8,2,1,3,1,10,11,1,2,1,6,4,1,3,1,2,5,1,7,1,9,2,1,3,1,12,4,

1,2,1,13,8,1,3,1,2,6,1,5,1,4,2,1,3,1,7,10,1,2,1,14,15,1,3,1,2,5,1,4,1,11,2,1,3,1,

6,9,1,2,1,8,7,1,3,1,2,4,1,5,1,12,2,1,3,1,10,13,1,2,1,4,6,1,3,1,2,5,1,7,1,8,2,1,3,1,

4,11,1,2,1,15,9,1,3,1,2,6,1,5,1,4,2,1,3,1,7,10,1,2,1,8,12,1,3,1,2,5,1,4,1,13,2,1,

3,1,6,9,1,2,1,14,7.

The pattern was found with help of a computer using simulated annealing

heuristics [11].

Lemma 6.

14 ≤ χρ(D(1, 4)),

12 ≤ χρ(D(1, 5)),

14 ≤ χρ(D(1, 7)),

13 ≤ χρ(D(1, 9)).
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Proof. These results were obtained by a computer using a brute force search

programs. We have written two independent programs (one in Pascal and

one in C++) implementing the brute force search. The programs take ver-

tices X = {1, 2, . . . k} from D(1, t). Then they try to construct a packing

coloring % of X using colors from 1 up to c. First, they assign %(1) = c and

then they try to extend % to X. If the extension is not possible we conclude

that χρ(D(1, t)) > c. The results of computations are summarized in Table 2.

D c k Configurations Time

1,4 13 81 6.4 · 1012 26 days

1,5 11 134 8.1 · 109 25 minutes

1,7 13 229 6.9 · 1013 335 days

1,9 12 66 6.2 · 1012 28 days

Table 2: Computations from Lemma 6. Time of the computation is measured

on a workstation from year 2010.

Let Hk denote a finite subgraph of D(1, t) on vertices 1, . . . , k and let H ′k
denote a finite subgraph of D(1, t) on vertices −k,−k + 1, . . . , k.

For a subset X of vertices of D(1, t) we define its density d(X) as

d(X) = lim sup
k→∞

|X ∩ V (H ′k)|
|V (H ′k)|

.

For a color c we define its density d(c) as

d(c) = max
χ

d(Xc),

where χ is a packing coloring of D(1, t) and Xc is a c-packing. Similarly, by

d(c1, . . . , cl) we mean

d(c1, . . . , cl) = max
χ

d(Xc1 ∪ . . . ∪Xcl).

The following statement was proved in [7].

Lemma 7. [7] If there exists a coloring of D(1, t) by k colors then, for every

1 ≤ l ≤ k, it holds that

k∑
i=1

d(i) ≥ d(1, . . . , l) +
k∑

i=l+1

d(i) ≥ d(1, . . . , k) = 1.
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Lemma 8.

15 ≤ χρ(D(1, 6)),

15 ≤ χρ(D(1, 8)).

Proof. To the contrary we suppose that χρ(D(1, 6)) ≤ 14. Using a computer

we verified that d(1, 2, 3, 4) ≤ 31
41

since we can color at most 31 vertices of

H41 using colors 1, 2, 3, 4. The computation took about three minutes and it

checked 4.6 · 109 configurations. Clearly, d(i) ≤ 1
6i−9

for i ≥ 2 since there is

no pair of vertices in H6i−9 with distance greater than i and hence at most

one vertex of H6i−9 can be colored by color i. By Lemma 7 we easily get

d(1, 2, . . . , 14) ≤ d(1, 2, 3, 4) +
14∑
i=5

d(i) ≤ 31

41
+

1

21
+ · · ·+ 1

75
= 0.999771 < 1,

which is not possible since d(1, 2, . . . , 14) = 1 by the assumption that

χρ(D(1, 6)) ≤ 14.

Now to the contrary we suppose that χρ(D(1, 8)) ≤ 14. Using a computer

we verified that d(1, . . . , 6) ≤ 50
58

since we can color at most 50 vertices of

H58 using colors 1, . . . , 6. The computation took about sixty hours and it

checked 7.5 · 1011 configurations. Clearly, d(i) ≤ 1
8i−20

for i ≥ 3 since there is

no pair of vertices in H8i−20 with distance greater than i and hence at most

one vertex of H8i−20 can be colored by color i. By Lemma 7 we easily get

d(1, 2, . . . , 14) ≤ d(1, . . . , 6) +
14∑
i=7

d(i) ≤ 50

58
+

1

36
+ · · ·+ 1

92
= 0.999110 < 1,

which is not possible since d(1, 2, . . . , 14) = 1 by the assumption that

χρ(D(1, 8)) ≤ 14.

3 D(1, t) with large t

A key observation for this section is that a distance graph D(1, t), for t > 1,

can be drawn as an infinite spiral with t lines orthogonal to the spiral (e.g.

D(1, 5) on Figure 1).

For i ∈ {0, 1, ..., t − 1}, the i-band in a distance graph D(1, t), denoted

by Bi, is an infinite path in D(1, t) on the vertices V (Bi) = {i + kt, k ∈ Z}.
Note that the band Bi corresponds to one of t lines orthogonal to the spiral.

For i ∈ {0, 1, ..., t − 24}, the i-strip in a distance graph D(1, t), t > 23,
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Figure 1: Distance graph D(1, 5).

denoted by Si, is a subgraph of D(1, t) induced by the union of vertices of

Bi, Bi+1, ..., Bi+23.

We use the following statement proved by Goddard et al. in [9].

Proposition 9. [9] For every k ∈ N, the infinite path can be colored by

colors k, k + 1, ..., 3k + 2.

Holub and Soukal [10] improved the upper bound for a packing coloring

of the square lattice to 17 by finding a pattern on 24×24 vertices using color

1 on positions as white places on a chessboard. We use this pattern to prove

the following lemma.

Lemma 10. Let D(1, t) be a distance graph, t > 24, and Si its i-strip. Then

χρ(Si) ≤ 17.

Proof. We cyclically use the pattern on 24×24 vertices to color all the vertices

of Si. Hence it is obvious that χρ(Si) ≤ 17.

Lemma 11. Let D(1, t) be a distance graph and Bi its i-band. If vertices

{i+2jt, j ∈ Z} are colored by color 1, then it is possible to extend the coloring

to all vertices of Bi using colors k, k + 1, ..., 2k − 1, for every k ∈ N, k > 2.

Proof. We color Bi by the following periodic pattern: 1, k, 1, k+1, ..., 1, 2k−1.

As the period for every color different from 1 is 2k and the largest used color

is 2k − 1, we conclude that we get a packing coloring of Bi.

Lemma 12. Let D(1, t) be a distance graph, t ≥ 50, and Bi, Bi+25 its bands.

Then it is possible to color Bi and Bi+25 using colors C = {1, 18, 19, ..., 35}.
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Proof. We color the vertices of Bi and Bi+25 repeating the pattern from the

proof of Lemma 11. We start to color Bi at the vertex i and Bi+25 at the

vertex i−kt for any k ∈ {11, 12, ..., 25}. Lemma 11 assures that the distance

between two vertices colored with color c in a single band is greater than c.

Let u ∈ V (Bi) and v ∈ V (Bi+25) be colored by the same color. By the

pattern from the proof of Lemma 11 we conclude that the distance between

u and v is min{k, 36 − k} + 25 which is greater than 35. Hence we have

a packing coloring of Bi and Bi+25.

For a distance graph D(1, t) we use notation D(1, t) = S0B24S25B49 . . .

to express that we view D(1, t) as a union of strips S0, S25, . . . and bands

B24, B49, . . ..

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Case 1: t is odd.

Let r, s be positive integers such that t = 24s + r, where r < 24 is also

odd. Since t ≥ 575, we get s ≥ r (for r = 23 we have 24s ≥ 552).

Thus we have s disjoint strips and r disjoint bands such that D(1, t) =

S0B24S25B49...S24(r−1)+r−1B24r+r−1S24r+r...S24(s−1)+r.

For odd j = 1, 3, ..., r, we color the strips S24(j−1)+j−1 cyclically with the

pattern on 24×24 vertices starting at the vertex 24(j − 1) + j − 1. For even

j = 2, 4, ..., r − 1, we color S24(j−1)+j−1 cyclically with the pattern on 24×24

vertices starting at the vertex 24(j− 1) + j− 1− t. For j = r+ 1, r+ 2, ..., s,

we color S24(j−1)+r cyclically with the pattern on 24×24 vertices starting at

the vertex 24(j−1)+r− t. Hence we have a packing coloring of all s disjoint

strips of D(1, t) using the same principle as in the proof of Lemma 10.

For odd j = 1, 3, ..., r − 2, we color the bands B24j+j−1 cyclically with

the sequence of colors 1, 18, 1, 19, ..., 1, 35 starting at the vertex 24j + j − 1.

For even j = 2, 4, ..., r − 3, we color B24j+j−1 cyclically with the sequence of

colors 1, 18, 1, 19, ..., 1, 35 starting at the vertex 24j + j − 1− 17t. We color

B24(r−1)+r−2, B24r+r−1 cyclically with the sequence of colors 1, 18, 1, 19, ...,

1, 35 starting at the vertex 24(r−1)+r−2−13t, 24r+r−1−24t, respectively.

Hence we have a packing coloring of all r disjoint bands of D(1, t) using the

same principle as in the proof of Lemma 12.

Note that the bands are colored by colors 1, 18, 19, ..., 35 and the strips are

colored by colors 1, 2, ..., 17 such that no pair of adjacent vertices is colored

with color 1. Then we conclude that we have a packing coloring of D(1, t),

hence χρ(D(1, t)) ≤ 35.

8



We illustrate this situation on Figure 2. The black vertices are colored

by 1 and we color bands cyclically only with the sequence of colors of length

6 instead of 36 and a strip consists of only 4 bands instead of 24. Note that

this decomposition is equivalent to our situation.

S0 B24 S25 B49 B25r−1 St−24 S0

Figure 2: Distance graph D(1, t) for odd t.

Case 2: t is even.

Let r, s be positive integers such that t = 24(s + 2) + r, where 0 < r ≤ 24

is also even. Since t ≥ 648, we get s ≥ r (for r = 24 we have 24s ≥
576). Thus we have now s + 2 disjoint strips and r disjoint bands such

that D(1, t) = S0S24B48S49B73...S24(r−1)+r−2B24r+r−2S24r+r−1S24(r+1)+r−1...

S24(s+1)+r−1B24(s+2)+r−1.

For odd j = 1, 3, ..., r − 1, we color the strips S0, S24j+j−1 cyclically with

the pattern on 24×24 vertices starting at the vertex 0, 24j+j−1, respectively.

For even j = 2, ..., r−2, we color S24j+j−1 cyclically with the pattern on 24×24

vertices starting at the vertex 24j + j − 1− t. For j = r, r + 1, ..., s + 2, we

color S24j+r−1 cyclically with the pattern on 24×24 vertices starting at the

vertex 24j + r− 1− t. Hence we have a packing coloring of all s+ 2 disjoint

strips of D(1, t) using the same principle as in the proof of Lemma 10.

For odd j = 1, 3, ..., r− 1, we color the bands B24(j+1)+j−1 cyclically with

the sequence of colors 1, 18, 1, 19, ..., 1, 35 starting at the vertex 24(j + 1) +

j − 1. For even j = 2, 4, ..., r − 2, we color B24(j+1)+j−1 cyclically with the

sequence of colors 1, 18, 1, 19, ..., 1, 35 starting at the vertex 24(j + 1) + j −
1 − 17t. We color B24(s+2)+r−1 with sequence of colors 18, 19, ..., 56 starting

at the vertex 24(s + 2) + r − 1 by Proposition 9 for k = 18. Note the band

B24(s+2)+r−1 is the only one with colors greater than 35. We have a packing

9



coloring of all r disjoint bands of D(1, t) by the fact that the distance between

an arbitrary vertex of B24(s+2)+r−1 and a vertex of any other band is at least

49 and using the same principle as in the proof of Lemma 12.

Note that the bands are colored by colors 1, 18, 19, ..., 56 and the strips are

colored by colors 1, 2, ..., 17 such that no pair of adjacent vertices is colored

with color 1. Then we conclude that we have a packing coloring of D(1, t),

hence χρ(D(1, t)) ≤ 56.

We illustrate this situation on Figure 3. Note that this decomposition is

equivalent to our situation as in Case 1.

S0 S24 B48 S49 B25r−2 S0St−25 Bt−1

Figure 3: Distance graph D(1, t) for even t.

Note that in some cases we can decrease t for which Theorem 2 is true.

It depends on r from the proof of Theorem 2. We have t ≥ 24r + r for odd

t and t ≥ 24r + r + 48 for even t (see Table 3).

4 Lower bound from square lattice

In this section we give a proof of the lower bound for χρ(D(1, t)).

Proof of Corollary 4. By the proof of Theorem 3, a finite square lattice 15×9

cannot be colored using 11 colors. Clearly D(1, t) contains a finite square

grid as a subgraph and t ≥ 9 assures existence of the square lattice 15× 9 in

D(1, t). Therefore, χρ(D(1, t)) ≥ 12 for every t ≥ 9.

10



r t ≥ r t ≥
1 25 2 98

3 75 4 148

5 125 6 198

7 175 8 248

9 225 10 298

11 275 12 348

13 325 14 398

15 375 16 448

17 425 18 498

19 475 20 548

21 525 22 598

23 575 24 648

Table 3: Table for t depending on r.

5 Conclusion

We have shown that the packing chromatic number of an infinite distance

graph D(1, t) is at least 12 for t ≥ 9 and at most 35 for odd t greater or equal

than 575 or at most 56 for even t greater or equal than 648. Moreover, we

have found some smaller values of t for which Theorem 2 holds. The next

research in this area can be focused on finding better bounds for D(1, t). In

particular, obtaining a lower bound for D(1, t) which would exceed the upper

bound for the square lattice would be an interesting result.
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