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Abstract

Let ν(G) be the maximum number of vertex-disjoint odd cycles of a
graph G and τ(G) the minimum number of vertices whose removal makes
G bipartite. We show that τ(G) ≤ 6ν(G) if G is planar. This improves
the previous bound τ(G) ≤ 10ν(G) by Fiorini, Hardy, Reed and Vetta
[Math. Program. Ser. B 110 (2007), 71–91].

1 Introduction

Packing problems are among the most important problems in combinatorial
optimization. In this paper, we focus on the problem of packing odd cycles in
graphs. If G is a graph, let ν(G) be the size of a maximum collection (packing)
of vertex-disjoint odd cycles of G, and τ(G) the size of a minimum set S of
vertices (transversal) such that each odd cycle of G contains at least one vertex
of S (which is is equivalent to G \ S being bipartite). Clearly, ν(G) ≤ τ(G).

One of the most studied questions on packing problems is whether the size
of a maximum packing can be bounded by a function of the size of a minimum
transversal. If this is the case, the problem is said to have the Erdős-Pósa
property. The name is due to the result of Erdős and Pósa [3] who established
this property for packing (general) cycles in graphs. For general graphs, the
packing problem for odd cycles does not have the Erdős-Pósa property. Reed [9]
gave an example of a projective planar graph G with τ(G) arbitrary large and
no two vertex-disjoint odd cycles, i.e., ν(G) = 1. These graphs are called
Escher walls. In fact, they play a key role for the problem. The main result
from [9] asserts that the problem of packing odd cycles in a minor-closed family
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of graphs has the Erdős-Pósa property if and only if the family avoids Escher
walls of arbitrary height.

Since the class of planar graphs avoids all Escher walls, it follows that there
exists a function f such that τ(G) ≤ f(ν(G)) if G is planar. However, the
function given by the methods from [9] is enormous since the proof is based
on the graph minor machinery. So, it is natural to search for better estimates
for particular graph classes. In [4], Fiorini, Hardy, Reed and Vetta showed
that τ(G) ≤ 10ν(G) for planar graphs. The purpose of this article is to fur-
ther improve this estimate to τ(G) ≤ 6ν(G) (Theorem 9). These results also
hold in a more general setting where edges are assigned parities. Since our
proof is constructive and all its steps can be efficiently performed, we also ob-
tain the existence of a polynomial-time 6-approximation algorithm for the odd
cycle packing problem in planar graphs (Corollary 10) which improves the 11-
approximation algorithm given in [4]. The problem is known [5] to be NP-hard.

We do not believe the multiplicative constant in Theorem 9 is optimal. In
fact, we are not aware of an example showing it exceeds two. This multiplicative
factor is known [8] to be true, i.e., τ(G) ≤ 2ν(G), if G is highly connected (the
connectivity depends on ν(G)). The optimal constant is however known for the
edge version of the problem in the planar case. Similarly to the vertex case,
there is no function bounding the edge transversal τe(G) in terms of the size
νe(G) of a maximum collection of edge-disjoint odd cycles for general graphs G.
However, for planar graphs, such a function exists [1], and the optimal estimate
τe(G) ≤ 2νe(G) was proven in [6]; its more compact proof can be found in [4].

Another related problem is a conjecture of Tuza which asserts that the
minimum size τt(G) of a set of edges intersecting every triangle is at most twice
the maximum number νt(G) of edge-disjoint triangles. The conjecture is known
to be true for planar graphs [12] and it is also known that two of its fractional
relaxations hold [7].

2 Notation

We work in the more general setting of signed graphs. In this setting, each edge
is assigned a parity, i.e., it is odd or even. A cycle is said to be odd if it contains
an odd number of odd edges and it is even otherwise. A face of a plane signed
graph is odd if its boundary contains an odd number of odd edges (bridges are
counted twice); it is even otherwise. It is easy to see that the boundary of an
odd face must contain an odd cycle. The property whether a cycle is odd or
even is referred to as its parity.

Since we exclusively focus on odd cycles in signed graphs, we call a set S
of vertices of a signed graph G a transversal of G if G \ S has no odd cycle. A
collection C of cycles is a packing if the cycles in C are vertex-disjoint. The two
parameters central to our study are τ(G) which stands for the minimum size
of a transversal of G and ν(G) which is the maximum number of odd cycles
forming a packing in G. In case that all edges of a signed graph G are odd, a
cycle in G is odd if and only if its length is odd, so the definitions coincide with
those given in Section 1.
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Signed graphs we consider in this paper are always assumed to be simple.
This does not decrease the generality of our results: if a signed graph G contains
parallel edges, we can subdivide each parallel edge in such a way that one of
the new edges has the same parity as the original edge and the other one is
even. It is not hard to observe that this operation affects neither τ(G) nor
ν(G) (considering pairs of parallel edges with different parities as odd cycles of
length two).

2.1 T -joins and T -cuts

A key ingredient for our proof is the notion of a T -join from combinatorial
optimization. The algorithm for finding a minimum-size T -join forms the core
of the algorithm for solving the max-cut problem for planar graphs. The planar
max-cut problem is dual to finding the minimum set of edges whose removal
bipartizes a given planar graph, which is the quantity τe defined earlier. So, it
is not surprising that the proof of an earlier bound in [4] as well as our proof
use this notion. In fact, the arguments we use in Section 4 can be viewed as an
extension of those given in [4, Subsection 4.3].

We now present the notion and results we later need. The reader can find a
more detailed introduction in monographs on combinatorial optimization, e.g.,
[2, 10]. A T -join in a connected graph G with a distinguished even-size set T of
its vertices is a subgraph J such that the odd degree vertices of J are precisely
the vertices of T . The size of a T -join J is the number of edges it contains
and it is denoted by |J |. The problem of finding a minimum-size T -join can be
reduced to the weighted perfect matching problem on complete graphs which
is well-understood and efficiently solvable. The reduction is as follows: form a
complete graph with vertex set T and assign each edge tt′ the length dG(t, t

′)
of the shortest path between t and t′ in G. For a minimum weight perfect
matching in the auxiliary graph, define a subgraph J to be the union of the
shortest paths corresponding to the edges of the matching (it can be shown
that the paths are edge-disjoint if the perfect matching has minimum weight).
So, J forms a T -join in G which is minimum.

It is well-known that the problem of finding a minimum weight perfect
matching can be formulated as a linear program. Considering its dual, we
obtain the following optimization problem with variables yv, v ∈ T , and yS ,
S ∈ O(T ), where O(T ) stands for the set of all odd-size subsets of T with at
least three elements.

yS ≥ 0 for S ∈ O(T )
yt + yt′ +

∑

S∈O(T ),|S∩{t,t′}|=1 yS ≤ dG(t, t
′) for every pair t, t′ ∈ T

min
∑

t∈T yt +
∑

S∈O(T ) yS

(Y)

The duality of linear programming implies that the optimum value of the linear
program (Y) is equal to the minimum size of a T -join in a graph G. A solution
of (Y) is called laminar if yS > 0 and yS′ > 0 implies that either S and S′ are
disjoint or one is a subset of the other. It is well-known that the linear program
(Y) has always an optimum laminar solution. Moreover, since the weights of
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the edges satisfy the triangle inequality, there is an optimum laminar solution of
(Y) with all variables being non-negative. In case that the weights of the edges
in the auxiliary graph are even (which happens, e.g., when G is bipartite), there
always exists an optimum integral solution of (Y) which is also non-negative
and laminar. We summarize these observations in the next proposition.

Proposition 1. Let G be a connected graph with a distinguished even-size set
T of its vertices. The value of the optimum solution of the linear program (Y) is
equal to the minimum size of a T -join of G. Moreover, there exists an optimum
solution of (Y) that is non-negative and laminar, and if G is bipartite, there
exists an optimum solution that is non-negative, laminar and integral.

By the duality of linear programming, if a T -join J in a graph G has the
size equal to a value of a solution y of (Y), then J is a minimum size T -join
and y is an optimum solution of (Y). We use this fact in the proof of Lemma 5
where we keep such a pair through the induction, so the T -joins we consider
are optimum.

A combinatorial structure dual to a T -join is a T -cut: a T -cut is an edge cut
that splits the graph into two parts each containing an odd number of vertices
of T . It is known [11] that if G is bipartite, then the size of a minimum T -join is
equal to the maximum number of edge-disjoint T -cuts of G. More insight in the
structure of optimum T -joins and solutions of (Y) can be derived by analyzing
specific procedures for obtaining them. We state one such condition based on
the blossom algorithm for the (weighted) perfect matching problem. To do so,
we define a vertex v of a graph G to be k-close to a set S ∈ O(T ) with respect
to a solution y of (Y) if

min
t∈S









dG(t, v)− yt −
∑

S′∈O(S)
t∈S′ 6=S

yS′









= k

where dG(t, v) is the distance between t and v in G. A solution of (Y) is a moat
solution if

• y is non-negative, integral and laminar,

• for every inclusion-wise minimal set S ∈ O(T ) with yS > 0, there exists
an ordering t1, . . . , ts of vertices of S such that yti + yti+1

= dG(ti, ti+1)
for every i = 1, . . . , s (indices modulo s), and

•
⋃

t∈T Ct∪
⋃

S∈O(T ) CS is a collection of edge-disjoint T -cuts where Ct, t ∈ T ,
is the collection of yt T -cuts formed by the edges joining pairs of vertices
at distance k and k+1 from t in G for k = 0, . . . , yt−1, and CS , S ∈ O(T ),
is the collection of yS T -cuts formed by the edges joining pairs of vertices
that are k-close and (k + 1)-close to S in G for k = 0, . . . , yS − 1.

A moat solution always exists if G is bipartite. Let us state this as a separate
proposition.

4



Proposition 2. Let G be a connected bipartite graph with a distinguished even-
size set T of its vertices. There exists an optimum solution of (Y) that is a moat
solution.

Observe that every optimum T -join intersects every T -cut in the collection
⋃

t∈T Ct∪
⋃

S∈O(T ) CS from the definition of a moat solution and this intersection
is formed by a single edge: this follows from that every T -join intersects every
T -cut and the size of an optimum T -join is equal to the number of T -cuts in
the collection.

3 Faces in clouds

In this section, we analyze sets of odd faces that are “connected” in a considered
plane signed graph. Formally, we define the vertex-face incidence graph VF(G)
of a plane signed graph G to be the bipartite graph with vertex set formed by
vertices and faces of G such that the vertex of VF(G) associated with a face f
of G is adjacent to the vertices of G incident with f . The subgraph of VF(G)
induced by the vertices of G and the odd faces of G is denoted by VFodd(G).
Finally, a cloud is a set of all odd faces in the same component of the graph
VFodd(G).

We start with the following lemma.

Lemma 3. Let G be a plane 3-connected signed graph and R a cloud of G.
There exists a set F of vertex-disjoint faces of R and a set of vertices U with
the following properties:

P1 each face of R is incident with at least one vertex of U ,

P2 each vertex of U is incident with a face of F , and

P3 |U | ≤ 5|F| − 1.

Proof. The construction is iterative: at the beginning, we set F0 and U0 to be
empty sets, and at each step we enlarge Fk to Fk+1 by adding a single face f
and Uk to Uk+1 by adding at most five vertices incident with f . So, |Fk| = k.
The sets Fk and Uk will satisfy the following:

Q1 the faces of Fk are vertex-disjoint, and

Q2 if a face f ′ shares a vertex with a face f ∈ Fk, then f ′ is incident to a
vertex of Uk.

Suppose that Fk and Uk have already been constructed. If every face of R
is incident to a vertex of Uk, set F = Fk and U = Uk (we verify at the end of
the proof the properties P1, P2 and P3). So, we assume that there is a face
of R incident to no vertex of Uk. To make our presentation clearer, let us call
faces of R incident to vertices of Uk blocked; the remaining faces of R are called
free.

We now construct an auxiliary plane graph H in the following way. The
vertices of H are free faces. For every vertex u of G incident to at least three
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free faces, say f1, . . . , fd (the faces are listed in the cyclic order around u),
add edges between fi and fi+1, i = 1, . . . , d (indices modulo d). We call these
edges u-edges. If two free faces are incident but they do not share a vertex
contained in at least three free faces, we pick an arbitrary vertex u they share
and add an edge to H between the two faces and we call this edge a u-edge. The
construction of H implies that H is a planar graph since there is an embedding
of H naturally inherited from G; so we consider H as a plane graph. Since G is
3-connected, any two faces of G share at most two vertices and therefore there
are at most two parallel edges between any two vertices of H. Moreover, there
are two edges between two vertices of H (if and) only if the associated faces of
G share two vertices and both these vertices are contained in at least three free
faces.

Let H ′ be the plane graph obtained from H by removing from every pair of
parallel edges one of the edges. Since H ′ is plane, it contains a vertex of degree
at most five. Let f be the face of R associated with a vertex of minimum degree
in H ′. Let u1, . . . , uℓ be the vertices of G such that f is incident with a ui-edge
for i = 1, . . . , ℓ. Let d be the degree of f in H, d′ its degree in H ′, and d3 the
number of indices i such that ui is shared by at least three free faces of G. Since
the number of pairs of parallel edges incident with f is at most d3, it holds that
d − d′ ≤ d3. On the other hand, it holds that ℓ = d − d3 (f is incident with
two ui-edges if and only if ui is shared by three free faces). So, we obtain that
ℓ = d− d3 ≤ d′ ≤ 5.

Now set Fk+1 = Fk ∪ {f} and Uk+1 = Uk ∪ {u1, . . . , uℓ}. We verify that
Fk+1 and Uk+1 satisfy Q1 and Q2. The faces of Fk+1 are disjoint: if f shared a
vertex with a face of Fk, it would be incident with a vertex of Uk by Q2 and f
would be blocked. To verify Q2, consider a face f ′ that shares a vertex with a
face of Fk+1. If f

′ is blocked, it is incident to a vertex of Uk. If f
′ is free (which

includes the case f ′ = f), it must be incident to at least one of the vertices
u1, . . . , uℓ.

To finish the proof, it remains to argue that the resulting sets F and U
satisfy the properties P1, P2 and P3. The property P1 is satisfied since we
have stopped when all faces of R are blocked. The property P2 follows from
the fact that at each step we added to U at most five vertices, all of them
incident with a face added to F at that step. The construction implies that
|U | ≤ 5|F|. To verify P3, which asserts that |U | ≤ 5|F| − 1, we show that at
most four vertices are added to U in the last step.

Consider the graphs H and H ′ from the last step of the construction; let
f be the face of R added to F at this step. If the degree d′ of f in H ′ is at
most four, at most d′ ≤ 4 vertices are added to U . So, we can assume that
d′ = 5. Consequently, the minimum degree of H ′ is five by the choice of f .
Next, let w1, . . . , w5 be the neighbors of f in H ′ in a cyclic order around f
and fi, i = 1, . . . , 5, the face of H ′ containing the vertex associated with f , the
vertex wi and the vertex wi+1 (indices modulo 5). Note that some of the faces
f1, . . . , f5 can coincide.

Let u1, . . . , u5 be the vertices added to U at the last step. Since the con-
struction of F and U terminates after this step, every free face f ′ contains one
one of the vertices u1, . . . , u5. Hence, the vertex of H ′ associated with f ′ is inci-
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dent with (at least) one of the faces f1, . . . , f5 in H ′. We now derive a new plane
graph H ′′ from H ′. Insert in each face fi a new vertex w′

i, i = 1, . . . , 5, join
w′
i to the vertex associated with f , the vertex wi and the vertex wi+1 (again,

indices modulo 5). In addition, join each vertex of H ′ different from the vertex
associated with f and the vertices w1, . . . , w5 to one of the vertices w′

1, . . . , w
′
5

in such a way that the resulting graph is plane.
We now count the degrees of vertices of H ′′. Let n be the number of vertices

of H ′′. Each vertex v of H ′ associated with a free face different from f has
degree at least six in H ′′ since the minimum degree of H ′ is five and each
such vertex v is joined to at least one of the vertices w′

1, . . . , w
′
5, The degree

of the vertex associated with f is 10 and the degrees of the vertices w′
1, . . . , w

′
5

are at least three. So, the sum of the degrees of vertices of H ′′ is at least
6(n− 6) + 10+ 5 · 3 = 6n− 11. However, the sum of the degrees cannot exceed
6n − 12 since H ′′ is plane. This contradicts our assumption that d′ = 5 in the
last step of the construction.

We are now ready to prove the main lemma of this section.

Lemma 4. Let G be a plane 3-connected signed graph and R a cloud of G.
There exists a set W of vertices of G such that the subgraph of VFodd(G) induced
by R∪W is connected and |W | ≤ 6ν(R)−2, where ν(R) is the maximum number
of vertex-disjoint faces of R. In particular, every face of R is incident with a
vertex of W .

Proof. Let F and U be the set of vertex-disjoint odd faces and vertices satisfying
properties P1, P2 and P3 from Lemma 3. Set W = U . Consider the component
of VFodd(G) corresponding to R and the subgraph H of it induced by R ∪W .
By P1, every face of R is incident with at least one vertex of U = W and, by
P2, every vertex of U = W is incident with a face of F . So, each component of
H contains at least one face of F and thus the number of components of H is
at most |F|.

As long as H is not connected, proceed as follows. Choose one of the
components. By the definition of a cloud, there exists a face f in this component
and a face f ′ that is not contained in the chosen component such that f and
f ′ share a vertex. Add this vertex to W and reset H to be the subgraph of
VFodd(G) induced by R ∪ W . Since in each step, the number of components
decreases by at least one, the final size of W is at most |U |+ |F|−1 ≤ 6|F|−2.
Since F is a collection of vertex-disjoint odd faces of R, |F| ≤ ν(R) and the
lemma follows.

4 Graphs with deadly faces

To combine the results of this section with Lemma 4, we need to consider signed
plane graphs with distinguished faces which we refer to as deadly. To be able
to cope with them, we will first state a lemma relating T -joins and T -cuts in
bipartite graphs with deadly vertices, which correspond to deadly faces in our
application.
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A td-graph is a plane connected bipartite graph H with parts A and B and
two distinguished subsets T and D of A such that T has even size. A T -cut of
H given by a vertex partition (X,Y ) is nice if the end-vertex of every edge e
that is in X is in A the end vertex of e in Y is not adjacent to a vertex of D.
Two nice T -cuts are vertex-disjoint if there is no vertex of B incident with an
edge of each of them. If two nice T -cuts are vertex-disjoint, they must also be
edge-disjoint.

Lemma 5. Let H be a td-graph with parts A and B and non-empty sets T and
D with T ⊆ D. If |T | is even and t is the minimum size of a T -join of H, then
H contains at least t/2− 2|D|+ 2 vertex-disjoint nice T -cuts.

Proof. We prove the following claim by induction on the size of a minimum
T -join: if H is a td-graph with parts A and B and sets T and D, |T | is even
and positive, and J is a minimum T -join of H, then H contains at least |J |/2−
2|D|+ |T ∩D| − |T |+ 2 vertex-disjoint nice T -cuts. Since the statement of the
lemma guarantees T ⊆ D, this is enough to establish the lemma.

For the induction, consider a minimum T -join J and the corresponding moat
solution y of (Y). The existence of y is guaranteed by Proposition 2. During
the induction step, we contract a connected subgraph to a new vertex in such
a way that the new vertex belongs to T if and only if the contracted subgraph
contains an odd number of vertices of T . In this way, the T -cuts of the new
graph correspond to the T -cuts of the original graph. We distinguish three
(mutually excluding) cases:

• There exists a vertex w ∈ T with yw ≥ 2. Let W be the set containing
all vertices at distance at most two from w (including the vertex w itself).
Contract the subgraph of H induced by W to a new vertex w′. Observe
that the new graph H ′ is bipartite. Vertices of H ′ different from w′ belong
to T ′ and D′ depending on their presence in the sets T and D in H. If
|W ∩ T | is odd, w′ belongs to T ′. If (W \ {w}) ∩D is non-empty, then w′

belongs to D′. So, H ′ can be viewed as a td-graph with sets T ′ and D′.

Since y is a moat solution, J contains exactly two edges in the contracted
subgraph. Let J ′ be obtained from J by contracting these two edges. It
is easy to observe that J ′ is a T ′-join of the td-graph H ′. Define y′ to be
y (with the provision that y′

S\W∪{w′} = yS for W ⊆ S) and, if w′ ∈ T ′,

y′w′ = yw − 2. Note that if w′ 6∈ T ′, then W contains another vertex of
T and (Y) and the non-negativity of y imply that yw ≤ 2 which means
yw = 2. So, J ′ and the newly defined y′ are optimal solutions, i.e., J ′ is a
minimum T ′-join of H ′.

If T ′ = ∅ (so, we cannot apply induction), then |J | = 2. If D 6= ∅, then
we derive from |D ∩ T | ≤ |D| that

|J |/2 − 2|D|+ |T ∩D| − |T |+ 2 ≤ |J |/2− 1− |D|+ |T ∩D| − |T |+ 2

≤ |J |/2 − 1− |T |+ 2 = 2− |T | ≤ 0 .

So, the claim holds. If D = ∅, then |J |/2 − 2|D| + |T ∩ D| − |T | + 2 =
3−|T | ≤ 1. Choose arbitrarily w ∈ T and observe that the cut with parts
{w} and V (H) \ {w} is a nice T -cut. So, the claim also holds.
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If T ′ 6= ∅, we invoke the induction. So, H ′ contains a collection C′ of
|J ′|/2 − 2|D′| + |T ′ ∩ D′| − |T ′| + 2 vertex-disjoint nice T ′-cuts. This
collection corresponds to a collection C of nice T -cuts in H (recall that
if any vertex of W \ {w} belongs to D, then w′ is in D′). In case that
W contains no vertex of D, enhance the collection C by the (nice) T -cut
with parts {w} and V (H) \ {w}. Observe that the cuts of C are still
vertex-disjoint.

It remains to argue that C contains at least |J |/2−2|D|+ |T ∩D|− |T |+2
cuts. Observe that |J ′| = |J | − 2 and |D′| ≤ |D|. We distinguish several
cases:

– The sets W and D are disjoint. It holds that |D′| = |D| and
|T ′ ∩D′| = |T ∩D|. Using the inequality |T ′| ≤ |T |, we obtain that

|C| = |C′|+ 1 = |J ′|/2− 2|D′|+ |T ′ ∩D′| − |T ′|+ 3

≥ |J |/2 − 2|D|+ |T ∩D| − |T |+ 2 .

– The only vertex of W in D is w. It holds that |D′| = |D| − 1
and |T ′ ∩D′| = |T ∩D| − 1. Since |T ′| ≤ |T |, we get that

|C| = |C′| = |J ′|/2 − 2|D′|+ |T ′ ∩D′| − |T ′|+ 2

≥ |J |/2− 1− 2(|D| − 1) + (|T ∩D| − 1)− |T |+ 2

= |J |/2− 2|D|+ |T ∩D| − |T |+ 2 .

– D contains a vertex of W \ {w} and in addition w′ ∈ T ′ and

w ∈ D. Since W contains two vertices of D, the size of D′ is strictly
smaller than the size of D. Now observe that

|T ∩D| − |T ′ ∩D′| = |(W \ {w}) ∩ T ∩D| ≤ |T | − |T ′| . (1)

So, we obtain from (1) that

|C| = |C′| = |J ′|/2− 2|D′|+ |T ′ ∩D′| − |T ′|+ 2

≥ |J |/2 − 1− 2(|D| − 1) + |T ∩D| − |T |+ 2

> |J |/2 − 2|D|+ |T ∩D| − |T |+ 2 .

– D contains a vertex of W \ {w} and in addition w′ ∈ T ′ and

w 6∈ D. Since w is in T but not in D and w′ is both in T ′ and D′,
we obtain that

|T ∩D| − (|T ′ ∩D′| − 1) = |(W \ {w}) ∩ T ∩D| ≤ |T | − |T ′| . (2)

The equation (2) implies that

|C| = |C′| = |J ′|/2− 2|D′|+ |T ′ ∩D′| − |T ′|+ 2

≥ |J |/2 − 1− 2|D|+ |T ∩D| − |T |+ 3

= |J |/2 − 2|D|+ |T ∩D| − |T |+ 2 .
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– D contains a vertex of W \ {w} and w′ 6∈ T ′. If |W ∩D| ≥ 2,
then |D′| ≤ |D| − 1. Now observe that

|T ∩D| − |T ′ ∩D′| = |W ∩ T ∩D| ≤ |T | − |T ′| . (3)

We combine (3) and |D′| ≤ |D| − 1 to obtain the desired estimate

|C| = |C′| = |J ′|/2− 2|D′|+ |T ′ ∩D′| − |T ′|+ 2

≥ |J |/2 − 1− 2(|D| − 1) + |T ∩D| − |T |+ 2

> |J |/2 − 2|D|+ |T ∩D| − |T |+ 2 .

If |W ∩ D| = 1, then w 6∈ D by the case assumption. So, we can
strengthen (3):

|T ∩D| − |T ′ ∩D′| = |W ∩ T ∩D| ≤ |T | − |T ′| − 1 . (4)

We now combine (4) and |D′| ≤ |D| to derive

|C| = |C′| = |J ′|/2− 2|D′|+ |T ′ ∩D′| − |T ′|+ 2

≥ |J |/2 − 1− 2|D|+ |T ∩D| − |T |+ 3

≥ |J |/2 − 2|D|+ |T ∩D| − |T |+ 2 .

• There exists S ∈ O(T ) with yS ≥ 1 and yw ≤ 1 for all w ∈ T .
Consider an inclusion-wise minimal subset S ⊆ T with yS ≥ 1. Since y is
a moat solution and H is bipartite, it holds that yw = 1 for every w ∈ S.
Let H ′ be the graph obtained from H by identifying the vertices of S and
let w′ be the new vertex. Define T ′ to be the set containing w′ and all
vertices of H ′ that are in T . Define D′ to be the set containing all vertices
of H ′ in D; add w′ to D′ if S contains at least one vertex from D.

Let J ′ be the T ′-join of H ′ obtained from J by removing the (|S| − 1)/2
new pairs of parallel edges of J arising by identification of the vertices of
S. The size of J ′ is thus |J | − |S| + 1. Define y′w′ = yS + 1 and y′ equal
to y otherwise (setting y′

S′\S∪{w′} = yS′ for S′ ⊃ S). So, J ′ and y′ are

optimal, i.e., J ′ is a minimum T ′-join of H ′.

By induction, we obtain that H ′ contains a collection C of at least |J ′|/2−
2|D′| + |T ′ ∩ D′| − |T ′| + 2 vertex-disjoint nice T ′-cuts. These cuts also
form a collection of vertex-disjoint nice T -cuts in H.

We claim that C consists of at least |J |/2− 2|D|+ |T ∩D| − |T |+2 cuts.
First observe that |T ∩D|−|T ′∩D′| = |D|−|D′| and |T ′| = |T |−(|S|−1).
Hence, the number of cuts in C is at least

|J ′|/2 − 2|D′|+ |T ′ ∩D′| − |T ′|+ 2

≥ |J ′|/2 − |D| − |D′|+ |T ′ ∩D′| − |T ′|+ 2

≥ |J |/2− (|S| − 1)/2 − 2|D|+ |T ∩D| − |T |+ (|S| − 1) + 2

> |J |/2− 2|D|+ |T ∩D| − |T |+ 2 .
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• It holds that yw ≤ 1 for every w ∈ T and yS = 0 for every S ∈ O(T ).
Observe that |J | =

∑

w∈T yw ≤ |T |. On the other hand, |J | must contain
at least |T | edges since the distance between any two vertices of T is
at least two. So, |J | = |T |. The equality |J | = |T | and the inequality
|T∩D| ≤ |D| now imply that |J |/2−2|D|+|T∩D|−|T |+2 ≤ 2−|D|−|T |/2.
So, ifD is non-empty, the claim holds. IfD is empty, then 2−|D|−|T |/2 ≤
1. Choose now a vertex w in T arbitrarily and consider the T -cut with
parts {w} and V (H) \ {w}. Since this is a nice T -cut, the claim follows.

The proof of the lemma is now finished.

We continue with the following lemma implicit in [4]. We include the proof
for completeness.

Lemma 6. Let G be a signed plane graph and let T be the set of its odd faces.
It holds that τ(G) ≤ t/2 where t is the minimum size of a T -join in VF(G).

Proof. Fix a minimum T -join in VF(G) and let W be the set of vertices of G
(which are also vertices of VF(G)) incident with an edge of the T -join. Since
no vertex of W is in T , every vertex of W is incident with at least two edges of
the T -join. Since VF(G) is bipartite, each edge of the T -join is incident with
at most one vertex of W and we get that |W | ≤ t/2. We show that every odd
cycle of G contains a vertex of W .

Let C be an odd cycle of G, i.e., the interior of C contains an odd number of
odd faces. Since the vertices of C form a vertex cut in VF(G) and the number
of odd faces inside it is odd, at least one of the vertices of C in VF(G) is incident
with edges of the T -join. Such a vertex is contained in W .

Lemmas 5 and 6 yield the following theorem.

Theorem 7. Let G be a signed plane graph with some faces marked as deadly.
If G contains an odd face and every odd face is deadly, then τ(G) ≤ νdead(G)+
2d−2 where νdead(G) is the maximum number of vertex-disjoint odd cycles that
are vertex-disjoint from deadly faces and d is the number of deadly faces.

Proof. Let H be the vertex-face incidence graph VF(G) of G and let A be its
part corresponding to faces. Set D ⊆ A to be the vertices of H corresponding to
deadly faces and T ⊆ A those corresponding to odd faces. So, H is a td-graph.

By the assumption of the theorem, T is a subset of D. Let J be a minimum
T -join of H. By Lemma 5, H contains |J |/2 − 2|D| + 2 = |J |/2 − 2d + 2
vertex-disjoint nice T -cuts. Let C be a collection of such cuts.

Consider a nice T -cut given by a vertex partition (X,Y ) and let F be the
set of faces corresponding to vertices in X. Consider the symmetric difference
of the boundary cycles of the faces of F . Since the considered cut is a T -cut, F
contains an odd number of odd faces. Consequently, the symmetric difference
is formed by a union of cycles such that at least one of the cycles is odd. So,
every cut of C gives rise to an odd cycle. Since the cuts of C are vertex-disjoint,
these odd cycles are vertex-disjoint, and since the cuts are nice, the cycles
do not share a vertex with a deadly face. We conclude that G contains at

11



least |J |/2 − 2d + 2 vertex-disjoint odd cycles disjoint from deadly faces, i.e.,
νdead(G) ≥ |J |/2− 2d+ 2.

On the other hand, τ(G) ≤ |J |/2 by Lemma 6 which finishes the proof.

5 Main result

We first combine Lemma 4 and Theorem 7 to prove our bound for 3-connected
plane signed graphs.

Theorem 8. Let G be a 3-connected plane signed graph. If G contains an odd
cycle, then τ(G) ≤ 6ν(G)− 2.

Proof. Let R1, . . . , Rk be the clouds of G. By Lemma 4, for each i = 1, . . . , k,
there exists a set Wi of vertices and a collection Ci of vertex-disjoint odd faces
of Ri such that |Wi| ≤ 6|Ci| − 2 and Ri ∪Wi induces a connected subgraph of
VFodd(G).

Let G′ be the graph obtained from G by removing the vertices of W1 ∪
· · · ∪ Wk. If G′ has no odd faces (which implies it has no odd cycles), then
W1∪ · · ·∪Wk is a transversal of G. Since C1∪ · · ·∪Ck is a packing of odd cycles
in G, we get the following:

τ(G) ≤

∣

∣

∣

∣

∣

k
⋃

i=1

Wi

∣

∣

∣

∣

∣

=

k
∑

i=1

|Wk|

≤
k
∑

i=1

(6|Ci| − 2) ≤ 6

∣

∣

∣

∣

∣

k
⋃

i=1

Ci

∣

∣

∣

∣

∣

− 2 ≤ 6ν(G) − 2 .

So, we can assume that G′ has an odd face.
Mark the new faces of G′, i.e., those containing a region bounded by an

odd face of G, as deadly. Since each Ri ∪ Wi induces a connected subgraph
of VFodd(G), the regions bounded by the faces of the same cloud Ri are now
contained in the same face of G′. Hence, the number of deadly faces does not
exceed k. We now apply Theorem 7 to G′. So, there exists a set W0 of vertices
of G′ such that G′ \W0 has no odd cycle and a collection C0 of vertex-disjoint
odd cycles of G′ disjoint from deadly faces such that |W0| ≤ |C0| + 2k − 2. In
particular, the union W0 ∪W1 ∪ · · · ∪Wk is a transversal of G and the union
C0 ∪ C1 ∪ · · · ∪ Ck is a packing of odd cycles. We now relate the sizes of the two
unions:

τ(G) ≤

∣

∣

∣

∣

∣

k
⋃

i=0

Wi

∣

∣

∣

∣

∣

= |W0|+
k
∑

i=1

|Wk| ≤ |C0|+ 2k − 2 +

k
∑

i=1

(6|Ci| − 2)

≤

(

k
∑

i=0

6|Ci|

)

− 2 = 6

∣

∣

∣

∣

∣

k
⋃

i=0

Ci

∣

∣

∣

∣

∣

− 2 ≤ 6ν(G)− 2 .

This completes the proof of the theorem.

We now prove our main result.
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Theorem 9. Let G be a plane signed graph. It holds that τ(G) ≤ 6ν(G).

Proof. If G has no odd cycles, there is nothing to prove. So, we assume that
G has an odd cycle. We prove by the induction on the number of vertices of
G the following: if G contains an odd cycle, then τ(G) ≤ 6ν(G) − 2. If G is
3-connected, the estimate follows from Theorem 8. If G is not connected, then
apply induction to each connected component containing an odd cycle to get
the desired inequality. So, we assume that G is connected but it contains a
vertex cut of size one or two.

Let C be a minimum vertex cut of G and let G1 and G2 be two non-trivial
subgraphs of G such that G1 and G2 intersect at C only and their union is G.
If |C| = 2 and the two vertices of C are adjacent, we include the edge between
them to both G1 and G2.

If neither G1 \ C nor G2 \ C contains an odd cycle, then τ(G) ≤ 2 since C
is a transversal. Consequently, τ(G) ≤ 6ν(G) − 2 because ν(G) ≥ 1.

If both G1 \C and G2 \C have an odd cycle, then apply induction to each of
them. This yields transversals T1 and T2 and packings C1 and C2 of odd cycles
in G1 \ C and G2 \ C, respectively, such that |Ti| ≤ 6|Ci| − 2 for i = 1, 2. Since
T1 ∪ T2 ∪C is a transversal of G and C1 ∪ C2 is a packing, we get the following:

τ(G) ≤ |T1|+ |T2|+ |C| ≤ 6|C1|− 2+6|C2|− 2+2 ≤ 6|C1 ∪C2|− 2 ≤ 6ν(G)− 2 .

It remains to consider (by symmetry) the case that G1 \C has an odd cycle
and G2 \C has no odd cycle. If G2 has an odd cycle, apply induction to G1 \C
to get a transversal T1 and a packing C1 of odd cycles of G1 \ C such that
|T1| ≤ 6|C1| − 2. Since T1 ∪ C is a transversal of G and the packing C1 can be
extended by an odd cycle of G2 to a packing of G, we obtain that

τ(G) ≤ |T1|+ |C| ≤ 6|C1| − 2 + 2 = 6(|C1|+ 1)− 6 ≤ 6ν(G)− 6 ≤ 6ν(G)− 2 .

Hence, we assume that G2 has no odd cycle. If |C| = 2, then all paths between
the two vertices of C in G2 have the same parity. So, if |C| = 2 and the
two vertices of C are not adjacent, let G′

1 be the graph obtained from G1 by
adding an edge between the two vertices of C with the parity equal to the
common parity of the paths between them in G2. Otherwise, let G′

1 be G1.
By induction, G′

1 contains a transversal T1 and a packing C1 of odd cycles such
that |T1| ≤ 6|C1| − 2. The packing C1 gives rise to a packing of the same size
in G since we can reroute a possible cycle using the added edge through the
interior of G2. We now argue that T1 is a transversal of G. Consider an odd
cycle of G \ T1. This cycle must include a vertex of G1 \ C (there are no odd
cycles avoiding vertices of G1 \ C in G) and a vertex of G2 \ C (otherwise, T1

is not a transversal of G1 ⊆ G′
1). In particular, |C| = 2 and the cycle includes

both vertices of C. Rerouting the cycle through the edge between the vertices
of C yields an odd cycle in G′

1 \ T1 contrary to the fact that T1 is a transversal
of G′

1. We conclude that T1 is a transversal of G and since G has a packing of
|C1| odd cycles, the theorem follows.

A close inspection of the proofs presented in this paper yields that all their
steps can be efficiently performed, i.e., there exists a polynomial-time algorithm
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that for a given (signed) planar graph G returns a collection C of vertex-disjoint
odd cycles and a set of vertices W such that G \ W has no odd cycle and
|W | ≤ 6|C|. So, the next corollary follows.

Corollary 10. There exists a polynomial time algorithm that for a given planar
(signed) graph G returns a collection of vertex-disjoint odd cycles of size at least
ν(G)/6.
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