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Abstract

Numerous sophisticated local algorithm were suggested in the literature for various fun-
damental problems. Notable examples are the MIS and (∆ + 1)-coloring algorithms by
Barenboim and Elkin [6], by Kuhn [22], and by Panconesi and Srinivasan [34], as well as the
O(∆2)-coloring algorithm by Linial [28]. Unfortunately, most known local algorithms (in-
cluding, in particular, the aforementioned algorithms) are non-uniform, that is, they assume
that all nodes know good estimations of one or more global parameters of the network, e.g.,
the maximum degree ∆ or the number of nodes n.

This paper provides a rather general method for transforming a non-uniform local algo-
rithm into a uniform one. Furthermore, the resulting algorithm enjoys the same asymptotic
running time as the original non-uniform algorithm. Our method applies to a wide family
of both deterministic and randomized algorithms. Specifically, it applies to almost all of the
state of the art non-uniform algorithms regarding MIS and Maximal Matching, as well as to
many results concerning the coloring problem. (In particular, it applies to all aforementioned
algorithms.)

To obtain our transformations we introduce a new distributed tool called pruning algo-
rithms, which we believe may be of independent interest.
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1 Introduction

1.1 Background and Motivation

Distributed computing concerns environments in which many processors, located at different
sites, must collaborate in order to achieve some global task. One of the main themes in dis-
tributed network algorithms concerns the question of how to cope with locality constrains, that
is, the lack of knowledge about the global structure of the network (cf., [35]). On the one hand,
information about the global structure may not always be accessible to individual processors
and the cost of computing it from scratch may overshadow the cost of the algorithm using it. On
the other hand, global knowledge is not always essential, and many seemingly global tasks can
be efficiently achieved by letting processors know more about their immediate neighborhoods
and less about the rest of the network.

A standard model for capturing the essence of locality is the LOCAL model (cf., [35]). In
this model, the network is modeled by a graph G = (V, E), where the nodes of G represent the
processors and the edges represent the communication links. To perform a task, nodes are woken
up simultaneously, and computation proceeds in fault-free synchronous rounds during which
every node exchanges messages with its neighbors, and performs arbitrary computations on its
data. Since many tasks cannot be solved distributively in an anonymous network, symmetry
breaking must be addressed. The typical way to address this issue is by assuming that a unique
identity Id(v) is initially provided to each node v in the network, and encoded using O(log n)
bits, where n is the number of nodes in the network. A local algorithm operating in such a setting
must return an output at each node such that the collection of outputs satisfies the required
task. For example, in the Maximal Independent Set (MIS) problem, the output at each node v
is a bit b(v) indicating whether v belongs to a selected set S ⊆ V of nodes, and it is required
that S forms a MIS of G. The running time of a local algorithm is the number of rounds needed
for the algorithm to complete its operation at each node, taken in the worst case scenario. This
is typically evaluated with respect to some parameters of the underlying graph. The common
parameters used are the number of nodes n in the graph and the maximum degree ∆ of a node
in the graph.

To ease the computation, it is often assumed that some kind of knowledge about the global
network is provided to each node a priori. A typical example of such knowledge is the number
of nodes n in the network. It turns out that in some cases, this (common) assumption can give
a lot of power to the distributed algorithm. This was observed by Fraigniaud et al. [16] in the
context of local decision: they introduced the complexity class of decision problems NLD, which
contains all decision problems that can be verified in constant time with the aid of a certificate.
They proved that, although there exist decision problems that do not belong to NLD, every
(decidable) decision problem falls in NLD if it is assumed that each node knows the value of n.

In general, the amount and type of such information may have a profound effect on the
design of the distributed algorithm. Obviously, if the whole topology of the network is known to
each node in advance, then the distributed algorithm can be reduced to a central one. In fact,
the whole area of computation with advice [9, 12, 13, 14, 15, 20, 21] is dedicated to studying
the amount of information known to nodes and its effect on the performances of the distributed
algorithm. For instance, Fraigniaud et al. [15] showed that if each node is provided with only
a constant number of bits then one can locally construct a BFS-tree in constant time, and can
locally construct a MST in O(log n) time, while both tasks require diameter time if no knowledge
is assumed. As another example, Cohen et al. [9] proved that O(1) bits, judiciously chosen at
each node, can allow a finite automata to distributively explore every graph. As a matter of fact,
from a radical point of view, for many questions (e.g., MIS and Maximal Matching), additional
information may push the question at hand into absurdity: even a constant number of bits
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of additional information per node is enough to compute a solution—simply let the additional
information encode the solution!

When dealing with locality issues, it is desired that the amount of information that is known
to nodes regarding the whole network is minimized. A local algorithm that assumes that each
node initially knows merely its own identity is often called uniform. Unfortunately, there are
only few local algorithms in the literature that are uniform (e.g., [11, 26, 29, 30, 37]). In contrast,
most known local algorithms assume that all nodes know upper bounds on the values of some
global parameters of the network. Moreover, it is often assumed that all nodes agree on their
candidates for being these upper bounds. Furthermore, typically, not only the correct operation
of the algorithm requires the knowledge of the upper bounds, but also its running time is actually
a function of the upper bound estimations and not of the actual value of the parameters. Hence,
it is desired that the known upper bounds are not significantly larger than the real values of the
parameters.

Some attempts to transform a non-uniform local algorithm into a uniform one were made
by examining the details of the algorithm at hand and modifying it appropriately. For example,
Barenboim and Elkin [6] first gave a non-uniform MIS algorithm for the family of graphs with
arboricity a = O(log1/2−δ n), for some constant δ ∈ (0, 1/2), running in time O(log n/ log log n).
At the cost of increasing the running time to O( log n

log log n log∗ n), the authors show how to modify
their algorithm to not require the knowledge of a. (Nevertheless, their algorithm still requires
nodes to agree on an upper bound on n.)

In this paper, we present a rather general method for transforming a non-uniform local
algorithm into a uniform one without increasing the asymptotic running time of the original
algorithm. Our method can apply to a wide family of both deterministic and randomized
algorithms. In particular, our method can apply to all of the state of the art non-uniform
algorithms regarding MIS and Maximal Matching, as well as to several of the best known results
concerning the coloring problem.

Our transformations are obtained using a new type of local algorithms termed pruning algo-
rithms. Informally, the basic property of a pruning algorithm is that it allows one to iteratively
apply a sequence of local algorithms (whose output may not form a correct global solution) one
after the other, in a way that “always progresses” toward a solution. In a sense, a pruning
algorithm is a combination of a gluing mechanism and a local checking algorithm (cf., [16, 32]).
A local checking algorithm for a problem Prob runs on graphs with an output value at each node
(and possibly an input too), and can locally detect whether the output is “legal” with respect
to Prob. That is, if the instance is not legal then at least one node detects this, and raises an
alarm. (For example, a local checking algorithm for MIS is trivial: each node in the set S, which
is suspected to be a MIS, checks that none of its neighbors belongs to S, and each node not in
S checks that at least one of its neighbors belongs to S. If the check fails, then the node raises
an alarm.) A pruning algorithm needs to satisfy an additional gluing property not required by
local checking algorithms. Specifically, if the instance is not legal, then the pruning algorithm
must carefully choose the nodes raising the alarm (and possibly modify their input too), so that
a solution for the subgraph induced by those alarming nodes can be well glued to the previous
output of the non-alarming nodes, in a way such that the combined output is a solution to the
problem for the whole initial graph.

We believe that this new type of algorithms may be of independent interest. Indeed, as
we show, pruning algorithms have several types of other applications in the theory of local
computation, besides the aforementioned issue of designing uniform algorithms. Specifically,
they can be used also to transform a local Monte-Carlo algorithm into a Las Vegas one, as well
as to obtain an algorithm that runs in the minimum running time of a given set of uniform
algorithms.
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Problem Parameters Time Ref. This paper (uniform) Theorem

Det. MIS and (∆+1)-coloring n, ∆ O(∆ + log∗ n) [4, 22]
min

{

O(∆ + log∗ n), 2O(
√

log n)
}

Th. 1

n 2O(
√

log n) [34] Th. 2
Det. MIS (arboricity a = o(

√
log n)) n, a o(log n) [6] o(log n) Th. 1

Det. MIS (arboricity a = O(log1/2−δ n)) n, a O(log n/ log log n) [6] O(log n/ log log n) Th. 1
Det. λ(∆ + 1)-coloring n, ∆ O(∆/λ + log∗ n) [4, 22] O(∆/λ + log∗ n) Th. 3
Det. O(∆)-edge coloring n, ∆ O(∆ǫ + log∗ n) [7] O(∆ǫ + log∗ n) Th. 5
Det. O(∆1+ǫ)-edge coloring n, ∆ O(log ∆ + log∗ n) [7] O(log ∆ + log∗ n) Th. 5

Det. Maximal Matching n or ∆ O(log4 n) [19] O(log4 n) Th. 6
Rand. MIS uniform O(log n) [30, 1]

Rand. (2, 2(c + 1))-ruling-set n O(2c log1/c n) [36] O(2c log1/c n) Th. 7

Table 1: Comparison of LOCAL algorithms with respect to global parameter knowledge. “Det.”
stands for deterministic, and “Rand.” for randomized.

1.2 Previous Work

MIS and coloring: There is a long line of research concerning the two related (∆ + 1)-
coloring and MIS problems [3, 10, 17, 18, 23, 24, 28]. Recently, Barenboim and Elkin [4] and
independently Kuhn [22] presented two elegant (∆ + 1)-coloring and MIS algorithms running in
O(∆ + log∗ n) time on general graphs. This is the current best bound for these problems on low
degree graphs. For graphs with a large maximum degree ∆, the best bound is due to Panconesi
and Srinivasan [34], who devised an algorithm running in 2O(

√
log n) time. The aforementioned

algorithms are not uniform. Specifically, all three algorithms require that all nodes know and
agree on an upper bound on n and the first two also require an upper bound on ∆.

For bounded-independence graphs, Schneider and Wattenhofer [37] designed uniform de-
terministic MIS and (∆ + 1)-coloring algorithms running in O(log∗ n) time. Barenboim and
Elkin devised [6] a deterministic algorithm for the MIS problem on graphs of bounded ar-
boricity that requires time O(log n/ log log n). More specifically, for graphs with arboricity
a = o(

√
log n), they show that a MIS can be computed deterministically in o(log n) time, and

whenever a = O(log1/2−δ n) for some constant δ ∈ (0 , 1/2), the same algorithm runs in time
O(log n/ log log n). At the cost of increasing the running time by a multiplicative factor of
O(log∗ n), the authors show how to modify their algorithm to not require the knowledge of a.
Nevertheless, all their algorithms require all nodes to know and agree on an upper bound on the
value of n. Another MIS algorithm which is efficient for graphs with low arboricity was devised
by Barenboim and Elkin [5]; this algorithm runs in time O(a + aǫ log n) for arbitrary ǫ > 0.

Concerning the problem of coloring with more than ∆ + 1 colors, Linial [27, 28], and subse-
quently Szegedy and Vishwanathan [38], described O(∆2)-coloring algorithms with running time
Θ(log∗ n). Barenboim and Elkin [4] and, independently, Kuhn [22] generalized this by presenting
a tradeoff between the running time and the number of colors: they devised a λ(∆ + 1)-coloring
algorithm with running time O(∆/λ + log∗ n), for any λ > 1. All these algorithms require the
knowledge of upper bounds on both n and ∆.

Barenboim and Elkin [5] devised a ∆1+o(1) coloring algorithm running in time
O(f(∆) log ∆ log n), for an arbitrarily slow-growing function f(∆) = ω(1). They also produced
an O(∆1+ǫ)-coloring algorithm running in O(log ∆ log n)-time, for an arbitrarily small constant
ǫ > 0, and an O(∆)-coloring algorithm running in O(∆ǫ log n) time, for an arbitrarily small
constant ǫ > 0. All these coloring algorithms require the knowledge of both ∆ and n. Other
deterministic non-uniform coloring algorithms with number of colors and running time corre-
sponding to the arboricity parameter were given by Barenboim and Elkin [5, 6].

Efficient deterministic algorithms for the edge-coloring problem can be obtained from [5, 7,
33]. The state of the art results are due to Barenboim and Elkin [7], who designed an O(∆)-edge
coloring algorithm running in time O(∆ǫ) + log∗ n, for any ǫ > 0, and an O(∆1+ǫ)-edge coloring
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algorithm running in time O(log ∆) + log∗ n, for any ǫ > 0. Both these algorithms require the
knowledge of upper bounds on both n and ∆.

Randomized algorithms for MIS and (∆+1)-coloring running in expected time O(log n) were
initially given by Luby [30] and, independently, by Alon et al. [1].

Recently, Schneider and Wattenhofer [36] constructed the best known non-uniform (∆ + 1)-
coloring algorithm, which runs in time O(log ∆+

√
log n). They also provided random algorithms

for coloring using more colors. For every positive integer c, a randomized algorithm for (2, 2(c +
1))-ruling-set running in time O(2c log1/c n) is also presented. All these algorithms of Schneider
and Wattenhoffer [36] are not uniform and require the knowledge of an upper bound on n.

Maximal Matching: Schneider and Wattenhofer [37] designed a uniform deterministic maxi-
mal matching algorithm on bounded-independence graphs running in O(log∗ n) time. For general
graphs, however, the state of the art maximal matching algorithm is not uniform: Hanckowiak
et al. [19] presented a non-uniform deterministic algorithm for maximal matching running in
time O(log4 n). This algorithm assumes the knowledge of an upper bound for n (for some parts
of the algorithm, the nodes can ignore n provided they know ∆).

1.3 Our Results

The main conceptual contribution of the paper is the introduction of a new type of algorithms
called pruning algorithms. Informally, the fundamental property of this type of algorithms is
to allow one to iteratively run a sequence of algorithms (whose output may not necessarily be
correct everywhere) so that the global output does not deteriorate, and it always progresses
toward a solution.

Our main application for pruning algorithm concerns the problem of locally computing a
global solution while minimizing the necessary global knowledge known to nodes. Addressing
this, we provide a rather general method for transforming a non-uniform local algorithm into
a uniform one without increasing the asymptotic running time of the original algorithm. Our
method applies to a wide family of both deterministic and randomized algorithms; in particular,
it applies to many of the best known results concerning classical problems such as MIS, Coloring,
and Maximal Matching. (See table 1.2 for a summary of some of the uniform algorithms we
obtain and the corresponding state of the art existing non-uniform algorithms.)

In another application, we show how to transform a Monte-Carlo local algorithm into a Las
Vegas one. Finally, given several uniform algorithms for the same problem whose running times
depend on different parameters—which are unknown to nodes—we show a general method for
constructing a uniform algorithm solving the problem, that on every instance runs asymptotically
as fast as the fastest algorithm among those given algorithms. In particular, we obtain the
following theorems.

Theorem 1. There exists a uniform deterministic algorithm solving MIS on general graphs in
time

min
{

O(∆ + log∗ n), 2O(
√

log n), f(a)
}

,

where f(a) := o(log n) for graphs of arboricity a = o(
√

log n), and f(a) := O(log n/ log log n) for
arboricity a = O(log1/2−δ n), for some constant δ ∈ (0 , 1/2); and otherwise: f(a) := O(a log a +
aǫ log n log a), for arbitrary small constant ǫ > 0.

Theorem 2. There exists a uniform deterministic algorithm solving the (∆+1)-coloring problem
on general graphs in time min{O(∆ + log∗ n), 2O(

√
log n)}.

Theorem 3. There exists a uniform deterministic algorithm solving the λ(∆+1)-coloring prob-
lem on general graphs and running in time O(∆/λ + log∗ n), for any λ > 1, such that ∆/λ is a

4



moderately-slow function. In particular, there exists a uniform deterministic algorithm solving
the O(∆2)-coloring problem in time O(log∗ n).

Theorem 4. Let ǫ > 0 be a constant. The following uniform deterministic coloring algorithms
exist.

• A uniform ∆1+o(1)-coloring algorithm running in time O(f(∆) log ∆ log n log log n), for an
arbitrarily slow-growing function f(∆) = ω(1).

• A uniform O(∆1+ǫ)-coloring algorithm running in O(log ∆ log n log log n) time.

• A uniform O(∆)-coloring algorithm running in O(∆ǫ log n log log n) time.

Theorem 5. (1) There exists a uniform deterministic O(∆)-edge coloring algorithm for general
graphs running in time O(∆ǫ + log∗ n), for any ǫ > 0. (2) There exists a uniform deterministic
O(∆1+ǫ)-edge coloring algorithm for general graphs that runs in time O(log ∆ + log∗ n), for any
ǫ > 0.

Theorem 6. There exists a uniform deterministic algorithm solving the maximal matching
problem in time O(log4n).

Theorem 7. For a constant integral c > 0, there exists a uniform randomized algorithm solving
the (2, 2(c + 1))-ruling-set problem in time O(2c log1/c n).

2 Preliminaries

General definitions: For two integers a and b, we let [a , b] := {a, a + 1, · · · , b}. For an undi-
rected and unweighted graph G, we let V (G) and E(G) be the vertex set and edge set of G,
respectively. The degree degG(v) of a node v ∈ V (G) is the number of neighbors of v in G. The
maximum degree of G is ∆G := max {degG(v) | v ∈ V (G)}. The distance distG(u, v) between
two nodes u, v ∈ G is the number of edges on a shortest path connecting them. Given a node
u and an integer r, the ball of radius r around u is the subgraph BG(u, r) of G induced by the
collection of nodes at distance at most r from v. The neighborhood NG(u) of u is the set of
neighbors of u, i.e., NG(u) := BG(u, 1) \ {u}. In what follows, we may omit the subscript G
from the previous notations when there is no risk of confusion.

Functions: Fix an integer k. A function f : Rk → R is non-decreasing if f(x1, x2, · · · , xk) 6
f(y1, y2, · · · , yk) for any two sequences (x1, x2, · · · , xk) and (y1, y2, · · · , yk) where xi 6 yi for
each i ∈ [1 , k]. An ascending function is a non-decreasing and unbounded function f : R → R+

(by unbounded, we mean that limx→∞ f(x) = ∞). A function f : (R+)ℓ → R+ is additive if
f(x1, · · · , xℓ) =

∑ℓ
i=1 fi(xi) where fi is ascending for each i ∈ [1, ℓ].

A function f : R+ → R+ is moderately-increasing if it is increasing and there exists a
positive integer α such that f(αi) > 2f(i) and αf(i) > f(2i) for every integer i > 2. Note that
f(x) = xk1 logk2(x) is a moderately-increasing function for every non-negative constants k1 and
k2 (such that k1 + k2 > 0).

A function f : R+ → R+ is moderately-slow if it is non-decreasing and there exists a positive
integer α such that αf(i) > f(2i) for every integer i > 2. In other words, f(c · i) = O(f(i)) for
every constant c and every integer i, where the constant hidden in the O notation depends only
on c. Note that every moderately-increasing function is moderately-slow. On the other hand,
there are natural functions that are moderately-slow (such as the constant functions) but are
not moderately-increasing.
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Consider a function f : Nℓ → R+. The following definition gives a certain measure for the
“separation” between the variables in f . A sequence-number function sf : N → N for f is a
moderately-slow function for which there exists a constant c > 0, referred to as a the bounding
constant, such that for every i ∈ N, the value sf (i) upper bounds the size J of a (possibly empty)

finite set of sequences Sf (i) := {(xj
1, xj

2, · · · , xj
ℓ)}j∈[1,J ] satisfying the following two properties.

1. f(xj
1, xj

2, · · · , xj
ℓ) 6 c · i for every j ∈ [1, J ], and

2. if f(x1, x2, · · · , xℓ) 6 i, then ∃j ∈ [1, J ] such that xk 6 xj
k for every k ∈ [1 , ℓ].

For example, consider the case where f : Nℓ → R is additive, i.e., f(x1, x2, · · · , xℓ) :=
∑ℓ

k=1 fk(xk), where fk is a non-negative ascending function for each k ∈ [1 , ℓ]. Here, the constant
function 1 is a sequence-number function for f . Indeed, for i ∈ N, let Sf (i) := {(x1

1, x1
2, · · · , x1

ℓ )},
where x1

k is the largest integer y such that fk(y) 6 i, for each k ∈ [1, ℓ] (if such an integer y
exists, otherwise, Sf (i) is empty). Thus Condition (1) above is satisfied with c = ℓ, and if
(x1, x2, · · · , xℓ) ∈ Nℓ such that f(x1, x2, · · · , xℓ) 6 i then, since each function fk is non-negative,
we deduce that fk(xk) 6 i for each k ∈ [1 , ℓ]. Hence xk 6 x1

k, as required by Condition (2).
As another example, consider the case where f : N2 → R is given by f(x1, x2) := f1(x1) ·

f2(x2), where fℓ is an ascending function with fℓ > 1 for each ℓ ∈ [1 , 2]. Then, the function
sf (i) := ⌈log i⌉+1 is a sequence-number for f . Indeed, for i ∈ N let Sf (i) := {(xj

1, xj
2)}j∈[0,⌈log i⌉]

where xj
1 is the largest integer y1 such that f1(y1) 6 2j and xj

2 is the largest integer y2 such that
f2(y2) 6 2log i−j+1 for each j ∈ [0 , ⌈log i⌉] (if such integers y1 and y2 exist, otherwise we do not
define the pair (xj

1, xj
2)). Again, a straightforward check ensures that both Conditions (1) and

(2) hold (with bounding constant c = 2).

Observation 2.1

• The constant function 1 is a sequence-number function for any additive function.

• Let f : N2 → R be a function given by f(x1, x2) := f1(x1) · f2(x2), where f1 > 1 and
f2 > 1 are ascending functions. Then, the function sf (i) := ⌈log i⌉ + 1 is a sequence-
number function for f .

Finally, note that not all functions have a bounded sequence-number function, as one can
see by considering the min function over N2.

Problems and instances: Given a set V of nodes, a vector for V is an assignment x of a
bit string x(v) to each v ∈ V , i.e., x is a function x : V → {0, 1}∗. A problem is defined by
a collection of triplets: Prob = {(G, x, y)}, where G = (V, E) is a (not necessarily connected)
graph, and x and y are input and output vectors for V , respectively. We consider only problems
that are closed under disjoint union, i.e., if G1 and G2 are two vertex disjoint graphs and
(G1, x1, y1), (G2, x2, y2) ∈ Prob then (G, x, y) ∈ Prob, where G := G1 ∪ G2, x := x1 ∪ x2

and y := y1 ∪ y2. An instance, with respect to a given a problem Prob, is a pair (G, x) for
which there exists an output vector y satisfying (G, x, y) ∈ Prob. In what follows, whenever
we consider some collection F of instances, we always assume that F is closed under inclusion.
That is, if (G, x) ∈ F and (G′, x′) ⊆ (G, x) (i.e., G′ is a subgraph of G and x′ is the input vector
x restricted to V (G′)) then (G′, x′) ∈ F . Informally, given a problem Prob and a collection
of instances F , the goal is to design an efficient distributed algorithm that takes an instance
(G, x) ∈ F as input, and produces an output vector y satisfying (G, x, y) ∈ Prob. The reason
why we require Prob to be closed under disjoint union is that a distributed algorithm operating
on an instance (G, x) behaves separately and independently on each connected component of
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G. Let G be a family of graphs closed under inclusion. We define F(G) to be the set of pairs
{(G, x) | G ∈ G, x is arbitrary}.

We assume that each node v ∈ V is provided with a unique integer referred to as the identity
of v, and denoted Id(v), encoded using O(log |V |) bits; by unique identities, we mean that
Id(u) 6= Id(v) for every two distinct nodes u and v. (In some works on coloring, the assumption
that the identities are unique is relaxed and the collection of assigned identities is only required to
be a coloring, i.e., every two neighboring nodes have different identities.) For ease of exposition,
we consider the identity of a node to be part of its input.

We consider classical problems such as coloring, (α, β)-ruling set (and in particular MIS,
which is (2, 1)-ruling set) and maximal matching. Informally, viewing the output of a node as
a color, the requirement of coloring is that the colors of two neighboring nodes must be differ-
ent. In MIS (for Maximal Independent Set), the output at each node is Boolean, and indicates
whether the node belongs to a set S that must form a MIS, that is, S must be independent: no
two neighboring nodes are in S, and must be maximal: if all neighbors of a node v are not in
S then v ∈ S. In (α, β)-ruling set, the set S of selected nodes must satisfy: (1) two nodes that
belong to S must be at distance at least α from each other, and (2) if a node does not belong to
S, then there is a node in the set at distance at most β from it. (Observe that MIS is precisely
(2, 1)-ruling set.) Finally, given a triplet (G, x, y), two nodes u and v are said to be matched if
(u, v) ∈ E, y(u) = y(v) and y(w) 6= y(u) for every w ∈ (NG(u) ∪ NG(v)) \ {u, v}. In MM (for
Maximal Matching) it is required that each node u is either matched to one of its neighbors or
that every neighbor v of u is matched to one of v’s neighbors.

Parameters: Fix a problem Prob and let F be a collection of instances for Prob. A parameter
p is a non-decreasing positive valued function p : F → N. By non-decreasing, we mean that if
(G′, x′) ∈ F and (G′, x′) ⊆ (G, x) then p(G′, x′) 6 p(G, x).

Let F be a collection of instances. A parameter p for F is called a graph-parameter if p is
oblivious of the input, that is, if p(G, x) = p(G, x′) for every two instances (G, x), (G, x′) ∈ F
such that the input assignments x and x′ preserve the identities, i.e., the inputs x(v) and x′(v)
contain the same identity Id(v) for every v ∈ V (G). For example, in what follows, we will focus
on the following graph-parameters: the number n of nodes of the graph G, i.e., |V (G)|, the
maximum degree ∆ = ∆(G) of G, i.e., max {degG(u) | u ∈ V (G)}, and the arboricity a = a(G)
of G, i.e., the least number of edge-disjoint forests whose union is G.

Local algorithms: Consider a problem Prob and a collection of instances F for Prob. An
algorithm for Prob and F takes as input an instance (G, x) ∈ F and must terminate with
an output vector y such that (G, x, y) ∈ Prob. We consider the LOCAL model (cf., [35]).
During the execution of a local algorithm A, all processors are woken up simultaneously and
computation proceeds in fault-free synchronous rounds, i.e., it occurs in discrete rounds. In
each round, every node may send messages of unrestricted size to its neighbors and may perform
arbitrary computations on its data. A message that is sent in a round r, arrives to its destination
before the next round r + 1 starts. It must be guaranteed that after a finite number of rounds,
each node v terminates with some output value y(v). (It is required that a node knows that its
output is indeed its final output.) The algorithm A is correct if for every instance (G, x) ∈ F ,
the resulted output vector y satisfies (G, x, y) ∈ Prob.

Let A be a local deterministic algorithm for Prob and F . The running time of A over a
particular instance (G, x) ∈ F , denoted TA(G, x), is the number of rounds from the beginning
of the execution of A until all nodes terminate. The running time of A is typically evaluated
with respect to a collection of parameters Λ = {q1, q2, · · · , qℓ}. Specifically, it is compared to a
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function f : Nℓ → R+; we say that f is an upper bound for the running time of A with respect
to Λ if TA(G, x) 6 f(q∗

1, q∗
2, · · · , q∗

ℓ ) for every instance (G, x) ∈ F with parameters q∗
i := qi(G, x)

for i ∈ [1 , ℓ].
For an integer i, the algorithm A restricted to i rounds is the local algorithm B that consists

in running A for precisely i rounds. The output y(u) of B at a vertex u is defined as follows:
if, during the i rounds, A outputted a value y at u then y(u) := y; otherwise we let y(u) be an
arbitrary value, e.g., “0”.

A randomized local algorithm is a local algorithm that allows each node to use random
bits in its local computation—the random bits used by different nodes being independent. A
randomized algorithm A is Las Vegas if its correctness is guaranteed with probability 1. The
running time of a Las Vegas algorithm ALV over a particular configuration (G, x) ∈ F , denoted
TALV

(G, x), is a random variable, which may not be bounded. However, the expected value
of TALV

(G, x) is bounded. A Monte-Carlo algorithm AMC with guarantee ρ ∈ (0 , 1] is a
randomized algorithm that takes a configuration (G, x) ∈ F as input and terminates before a
predetermined time TAMC

(G, x) (called the running time of AMC). It is guaranteed that the
output vector produced by Algorithm AMC is a solution to Prob with probability at least ρ.
Finally, a weak Monte-Carlo algorithm AW MC with guarantee ρ ∈ (0 , 1] guarantees that with
probability at least ρ, the algorithm outputs a correct solution by its running time TAW MC

(G, x).
(Observe that it is not guaranteed that any execution of the weak Monte-Carlo algorithm will
terminate by the prescribed time TAW MC

(G, x), or even terminate at all.) Note that a Monte-
Carlo algorithm is in particular a weak Monte-Carlo algorithm, with the same running time and
guarantee. Moreover, for any constant c ∈ (0 , 1], a Las Vegas algorithm running in expected
time T is a weak Monte-Carlo algorithm running in time O(T ) with guarantee c.

A remark about running an algorithm after another: Many LOCAL algorithms happen
to have different termination times at different nodes. On the other hand, most of the algorithms
rely on a simultaneous wake up of all nodes. This becomes a problem when one wants to run
an algorithm A1 and subsequently an algorithm A2 taking the output of A1 as input. Indeed,
this problem amounts to running A2 with non-simultaneous wake up: a node u starts A2 when
it terminates A1.

As observed (e.g., by Kuhn [22]), one can use a synchronizer [2] to run a synchronous local
algorithm in an asynchronous system, with the same asymptotic time complexity. Hence, the
synchronicity assumption can actually be removed. Although the standard asynchronous model
introduced still assumes simultaneous wake up, it can be easily verified that the technique still
applies with non-simultaneous wake up times if a node can buffer messages received before it
wakes up, which is the case when running an algorithm after another. However, we have to
adapt the notion of running time. We define it as the number of time units elapsed between
the last wake up time of a node and the last termination time of a node. We let A1; A2 be
the process of running A2 after A1. Note that the running time of A1; A2 is bounded by the
sum of the running times of A1 and A2. In the sequel we implicitly assume that the simple α
synchronizer is used when running a sequence A1; A2; · · · ; Ak of algorithms.

Local algorithms requiring parameters: Fix a problem Prob and let F be a collection
of instances for Prob. Let Γ = {p1, p2, · · · , pr} be a collection of parameters and let A be a
local algorithm. We say that A requires Γ if, in order to execute A on an instance (G, x) ∈ F ,
all nodes must agree on a value p̃ for each parameter p ∈ Γ. The value p̃ is a guess for p. A
collection of guesses for the parameters in Γ is denoted by Γ̃ and an algorithm A that requires
Γ is denoted by AΓ. An algorithm that does not require any parameter is uniform.
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Consider an instance (G, x) ∈ F , a collection Γ of parameters and a parameter p ∈ Γ. A
guess p̃ for p is termed good if p̃ > p(G, x), and the guess p̃ is called correct if p̃ = p(G, x). We
typically write correct guesses and collection of correct guesses with a star exponent, that is p∗

and Γ∗(G, x), respectively. When (G, x) is clear from the context, we may use the notation Γ∗

instead of Γ∗(G, x).
An algorithm AΓ depends on Γ if for every instance (G, x) ∈ F , the correctness of AΓ over

(G, x) is guaranteed when AΓ uses a collection Γ̃ of good guesses.
Consider an algorithm AΓ that depends on a collection of parameters Γ = {p1, p2, · · · , pr}

and fix an instance (G, x). Observe that the running time of AΓ over (G, x) may be different for
different collections of guesses Γ̃, in other words, the running time over (G, x) is a function of Γ̃.
Recall that when we consider an algorithm that does not require parameters, we still typically
evaluate its running time with respect to a collection of parameters Λ. We generalize this to the
case where the algorithm depends on Γ as follows.

Consider two collections of parameters Γ = {p1, p2, · · · , pr} and Λ = {q1, q2, · · · , qℓ}. Some
parameters may belong to both Γ and Λ. Without loss of generality, we shall always as-
sume that {pr′+1, pr′+2, · · · , pr} ∩ {qr′+1, qr′+2, · · · , qℓ} = ∅ for some r′ ∈ [0 , min{r, ℓ}] and
pi = qi for every i ∈ [1 , r′]. Notice that Γ \ (Γ ∩ Λ) = {pr′+1, pr′+2, · · · , pr}. A function
f : (R+)ℓ → R+ upper bounds the running time of AΓ with respect to Γ and Λ if the running
time TAΓ(G, x) of AΓ for (G, x) ∈ F using a collection of good guesses Γ̃ = {p̃1, p̃2, · · · , p̃r} is
at most f(p̃1, p̃2, · · · , p̃r′ , q∗

r′+1, · · · , q∗
ℓ), where q∗

i = qi(G, x) for i ∈ [r′ , ℓ]. Note that we do not

put any restriction on the running time of AΓ over (G, x) if some of the guesses in Γ̃ are not
good. In fact, in such a case, the algorithm may not even terminate.

For simplicity of notation, when Γ and Λ are clear from the context, we say that f upper
bounds the running time of AΓ, without writing that it is with respect to Γ and Λ.

The set Γ is weakly-dominated by Λ if for each j ∈ [r′ + 1 , r], there exists an index ij ∈ [1 , ℓ]
and an ascending function gj such that gj(pj(G, x)) 6 qij

(G, x) for every instance (G, x) ∈ F .
(For example, Γ = {∆} is weakly-dominated by {Λ} = n, since ∆(G, x) 6 n(G, x) for any
(G, x).)

3 Pruning Algorithms

3.1 Overview

Consider a problem Prob in the centralized setting and an efficient randomized Monte-Carlo
algorithm A for Prob. A known method for transforming A into a Las Vegas algorithm is based
on repeatedly doing the following. Execute A and, subsequently, execute an algorithm that
checks the validity of the output. If the checking fails then continue, and otherwise, terminate,
i.e., break the loop. This transformation can yield a Las Vegas algorithm whose expected running
time is similar to the running time of the Monte-Carlo algorithm provided that the checking
mechanism used is efficient.

If we wish to come up with a similar transformation in the context of locality, a first idea
would be to consider a local algorithm that checks the validity of a tentative output vector.
This concept has been studied from various perspectives (cf., e.g., [16, 21, 32]). However, such
fast local checking procedures can only guarantee that faults are detected by at least one node,
whereas to restart the Monte-Carlo algorithm, all nodes should be aware of a fault. This notifi-
cation can take diameter time and will thus violate the locality constraint.

Instead of using local checking procedures, we introduce the notion of pruning algorithms.
Informally, this is a mechanism that identifies “valid areas” where the tentative output vector ŷ

is valid and prunes these areas, i.e., takes them out of further consideration. A pruning algorithm
P must satisfy two properties, specifically, (1) gluing: P must make sure that the current solution
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on these “pruned areas” can be extended to a valid solution for the remainder of the graph, and
(2) solution detection: if ŷ was a valid global solution to begin with then P should prune all
nodes. Observe that since the empty output vector is a solution for the empty input graph then
(1) implies the converse of (2), that is, if P prunes all nodes, then ŷ was a valid global solution.

Now, given a Monte-Carlo algorithm A and a pruning algorithm P for the problem, we can
transform A into a Las Vegas algorithm by executing the pair of algorithms (A; P) in iterations,
where each iteration i is executed on the graph Gi induced by the set of nodes that were not
pruned in previous iterations (G1 is the initial graph G). If, in some iteration i, Algorithm A
solves the problem on the graph Gi, then the solution detection property guarantees that the
subsequent pruning algorithm will prune all nodes in Gi and hence at that time all nodes are
pruned and the execution terminates. Furthermore, using induction, it can be shown that the
gluing property guarantees that the correct solution to Gi combined with the output of the
previously pruned nodes forms a solution for G.

3.2 Pruning algorithms: definition and examples.

We now formally define pruning algorithms. Fix a problem Prob and a family of instances F
for Prob. A pruning algorithm P for Prob and F is a uniform algorithm that takes as input
a triplet (G, x, ŷ), where (G, x) ∈ F and ŷ is some tentative output vector, and returns a bit
b(v) and an updated input x′(v) at each node v. The bit b(v) indicates whether v belongs to
some selected subset W ⊆ V (G) of nodes to be pruned. (Recall that the idea is to assume that
nodes in W have a satisfying tentative output value and that they can be excluded from further
computations.) Let G′ be the subgraph of G induced by the nodes in V (G) \ W . The pruning
algorithm does not change the input of the nodes in W , i.e., x′(v) = x(v) whenever b(v) = 1
(that is, v ∈ W ). On the other hand, the pruning algorithm may change the input for the rest
of the nodes, i.e., those in G′. (Informally, this is because after P pruned the set W , it may
need to adjust the remaining nodes for further use.) Thus, Algorithm P takes a triplet (G, x, ŷ)
as input, where (G, x) ∈ F , and returns a pair (G′, x′). The pruning algorithm must guarantee
that (G′, x′) ∈ F .

Consider now an output vector y′ for the nodes in V (G′). The combined output vector y of
the vectors ŷ and y′ is the output vector that is a combination of ŷ restricted to the nodes in
W and y′ restricted to the nodes in G′, i.e., y(v) := ŷ(v) if v ∈ W and y(v) := y′(v) otherwise.
A pruning algorithm P for a problem Prob must satisfy the following properties.

• Solution detection: (G, x, ŷ) ∈ Prob =⇒ P outputs W = V (G).

• Gluing: if P(G, x, ŷ) = (G′, x′) and y′ is a solution for (G′, x′), i.e., (G′, x′, y′) ∈ Prob,
then the combined output vector y is a solution for (G, x), i.e, (G, x, y) ∈ Prob.

As mentioned earlier, it follows from the gluing property that if the pruning algorithm P
outputs W = V (G) (i.e., all nodes are pruned) then (G, x, ŷ) ∈ Prob.

The pruning algorithm P is monotone with respect to a parameter p if p(G, x) > p(G′, x′),
for every (G, x) ∈ F , where (G′, x′) = P(G, x, ŷ), for some ŷ. The pruning algorithm P is
monotone with respect to a collection of parameters Γ if P is monotone with respect to every
parameter p ∈ Γ. In such a case, we may also say that P is Γ-monotone. The following assertions
follow from the definition of a parameter.

Observation 3.1 Let P be a pruning algorithm. Then (1) Algorithm P is monotone with respect
to any graph-parameter, and (2) If P does not update the inputs of the unpruned nodes, i.e.,
x′(v) = x(v) for every v ∈ V \ W , then P is monotone with respect to any parameter.

For simplicity, we restrict the running time of a pruning algorithm P to be constant. We
stress however, that our results can be extended to general pruning algorithms while paying

10



an extra additive cost to the running time that corresponds to the running time of the given
pruning algorithm; we shall elaborate more on this later.

We now give examples of (constant time) pruning algorithms for several problems, namely,
(2, β)-Ruling set for a constant integer β (recall that MIS is precisely (2, 1)-Ruling set), and
maximal matching. These pruning algorithms do not change the input at nodes outside W
(in fact, the input is ignored in these problems, and can be assumed to be empty). Thus, by
Observation 3.1, they are monotone with respect to any parameter.

The (2, β)-ruling set pruning algorithm: Let β be a (constant) integer. We define a
pruning algorithm P(2,β) for the (2, β)-ruling set problem as follows. Given a triplet (G, x, ŷ),
let W be the set of nodes u satisfying one of the following two conditions.

• ŷ(u) = 1 and ŷ(v) = 0 for all v ∈ N(u), or

• ŷ(u) = 0 and ∃v ∈ BG(u, β) such that ŷ(v) = 1 and ŷ(w) = 0 for all w ∈ N(v).

The question of whether a node u belongs to W can be determined by inspecting BG(u, 1+β),
the ball of radius 1 + β around u. Hence, we obtain the following.

Observation 3.2 Algorithm P(2,β) is a pruning algorithm for the (2, β)-ruling set problem, run-
ning in time 1 + β. (In particular, P(2,1) is a pruning algorithm for the MIS problem running
in time 2.) Furthermore, P(2,β) is monotone with respect to any parameter.

The interested reader can check that this pruning algorithm is not implementable through
simple combinations of the classical local check procedure for (2, β)-ruling set even though it
has a similar flavor.

The maximal matching problem: We define a pruning algorithm PMM as follows. Given
a tentative output vector ŷ, recall that u and v are matched when u and v are neighbors,
ŷ(u) = ŷ(v) and ŷ(w) 6= ŷ(u) for every w ∈ (NG(u) ∪ NG(v)) \ {u, v}. Set W to be the set of
nodes u satisfying one of the following conditions.

• ∃v ∈ N(u) such that u and v are matched, or

• ∀v ∈ N(u), ∃w 6= u such that v and w are matched.

Observation 3.3 Algorithm PMM is a pruning algorithm for MM whose running time is 3. Fur-
thermore, PMM is monotone with respect to any parameter.

We exhibit several applications of pruning algorithms. The main application appears in the
next section, where we show how pruning algorithms can be used to transform non-uniform
algorithms into uniform ones. Before we continue, we need the following concept.

3.3 Alternating Algorithms

A pruning algorithm can be used in conjunction with a sequence of algorithms as follows. Let
F be a collection of instances for some problem Prob. For each i ∈ N, let Ai be an algorithm
defined on F . Algorithm Ai does not necessarily solve Prob, it is only assumed to produce some
output.

Let P be a pruning algorithm for Prob and F , and for i ∈ N, let Bi := (Ai; P), that is,
given an instance (G, x), Algorithm Bi first executes Ai, which returns an output vector y

for the nodes of G and, subsequently, Algorithm P is executed over the triplet (G, x, y). We
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define the alternating algorithm π for (Ai)i∈N and P as follows. The alternating algorithm π =
π((Ai)i∈N, P) executes the algorithms Bi for i = 1, 2, 3, · · · one after the other: let (G1, x1) =
(G, x) be the initial instance given to π; for i ∈ N, Algorithm Ai is executed on the instance
(Gi, xi) and produces the output vector yi. The subsequent pruning algorithm P takes the triplet
(Gi, xi, yi) as input and produces the instance (Gi+1, xi+1). See Figure 1 for a schematic view
of an alternating algorithm. The definition extends to a finite sequence (A)k

i=1 of algorithms in
a natural way; the alternating algorithm for (A)k

i=1 and P being A1; P; A2; P; · · · ; Ak; P.

(G1, x1)
B1

(G1, x1, y1)

(G2, x2)
B2

(G2, x2, y2)

(G3, x3) (Gi, xi)
Bi

(Gi, xi, yi)

(Gi+1, xi+1)

A
1 P

A
2 P

A
i P

Figure 1: Schematic view of an alternating algorithm for (Ai)i∈N and P.

The alternating algorithm π terminates on an instance (G, x) ∈ F if there exists k such that
V (Gk) = ∅. Observe that in such a case, the tail Bk; Bk+1; · · · of π is trivial. The output vector
y of a terminating alternating algorithm π is defined as the combination of the output vectors
y1, y2, y3, · · · . Specifically, for s ∈ [1 , k − 1], let Ws := V (Gs) \ V (Gs+1). (Observe that Ws is
precisely the set of nodes pruned by the execution of the pruning algorithm P in Bs.) Then,
the collection {Ws | 1 6 s 6 k − 1} forms a partition of V (G), i.e., Ws ∩ Ws′ = ∅ if s 6= s′, and
∪k−1

s=1Ws = V (G). Observe that the final output y of π is defined by y(u) = ys(u) for every
u ∈ Ws and every s ∈ [1 , k − 1]. That is, the output of π restricted to the nodes in Ws is
precisely the corresponding output of Algorithm As.

Lemma 1. Consider a problem Prob, a collection of instances F , a sequence of algorithms
(Ai)i∈N defined on F , and a pruning algorithm P for Prob and F . Consider the alternating
algorithm π = π((Ai)i∈N, P) for (Ai)i∈N and P. If π terminates on an instance (G, x) ∈ F
then it produces a correct output y, that is, (G, x, y) ∈ Prob.

Proof. Let (G, x) ∈ F be a configuration, and consider the execution of Algorithm π over (G, x).
Let k be the smallest integer such that V (Gk) = ∅, and consider the partition (Ws)16s6k−1 of
V (G) defined above. Recall that the final output vector y is given by y(u) = ys(u) for every
u ∈ Ws and every s ∈ [1 , k − 1].

For a ∈ [1 , k − 1], let za be the restriction of y to the nodes in V (Ga), i.e., za(u) := ys(u) for
every u ∈ Ws with s ∈ [a , k − 1]. Note that z1 = y and zk−1 = yk−1. We prove by a descending
induction on a ∈ [1 , k − 1] that (Ga, xa, za) ∈ Prob. For the basis of the induction, i.e., the case
a = k − 1, observe that Algorithm P applied to (Gk−1, xk−1, yk−1) outputs Wk−1 = V (Gk−1)
by the definition of k. Consequently, the gluing property of P implies that (Gk−1, xk−1, zk−1) =
(Gk−1, xk−1, yk−1) ∈ Prob. Now, assume that (Ga+1, xa+1, za+1) ∈ Prob for some integer a ∈
[1 , k − 2]. Consider the operation of Ba. The pruning algorithm of that algorithm operates on
(Ga, xa, ya) and outputs the configuration (Ga+1, xa+1). Notice that za is the combined output
vector for this operation of the pruning algorithm. Therefore, the gluing property implies that
(Ga, xa, za) ∈ Prob. This concludes the induction proof. The desired fact that (G, x, y) ∈ Prob
now follows from the fact that (G, x, y) = (G1, x1, z1).

In what follows, we often produce a sequence of algorithms (Ai)i∈N from an algorithm AΓ

requiring a collection Γ of parameters. The general idea is to design a sequence of guesses Γ̃i and
let Ai be algorithm AΓ provided with guesses Γ̃i. Given a pruning algorithm P, we then obtain
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a uniform alternating algorithm π = π((Ai)i∈N, P). The sequence of guesses is designed such
that for any configuration (G, x) ∈ F , there exists some i for which Γ̃i is a collection of good
guesses for (G, x). The crux is to obtain an execution time for A1; P; A2; P; · · · ; Ai; P of the
same order as the execution time of AΓ provided with the collection Γ∗(G, x) of correct guesses.

4 A General Method

We now turn to the main application of pruning algorithms discussed in this paper, that is, the
construction of a transformer taking a non-uniform algorithm AΓ as a black box and producing
a uniform one that enjoys the same (asymptotic) time complexity as the original non-uniform
algorithm. In Subsection 4.1 we consider the deterministic setting. We begin with a few illustra-
tive examples and conclude the subsection with a somewhat restrictive, yet useful, transformer
(Theorem 8). This transformer considers a single set of parameters Γ = {p1, p2, · · · , pℓ}, and
assumes that (1) the given non-uniform algorithm AΓ depends on Γ and (2) the running time of
AΓ is evaluated with respect to the parameters in Γ. Such a situation is customary, and occurs
for instance for the best currently known MIS Algorithms [4, 22, 34] as well as for the maximal
matching algorithm of Hanckowiak et al. [19]. As a result, the transformer given by Theorem 8
can be used to transform each of these algorithms into a uniform one with asymptotically the
same time complexity.

This transformer is then extended in Subsection 4.2 to the randomized setting (Theorem 9).
In Subsection 4.3, we establish Theorem 10, which generalizes both Theorem 8 and Theorem 9.
Finally, we conclude the section with Theorem 11 in Subsection 4.4, which shows how to manip-
ulate several uniform algorithms that run in unknown times to obtain a uniform algorithm that
runs as fast as the fastest algorithm among those given algorithms.

4.1 The Deterministic Case

The basic idea is very simple. Consider a problem for which we have a pruning algorithm P, and
a non uniform algorithm A that requires the knowledge of upper bounds on some parameters.
To obtain a uniform algorithm, we execute the pair of algorithms (A; P) in iterations, where each
iteration executes A using a specific set of guesses for the parameters. Typically, as iterations
proceed, the guesses for the parameters grow larger and larger until we reach an iteration i
where all the guesses are larger than the actual value of the corresponding parameters. In this
iteration, the operation of A on Gi using such guesses guarantees a correct solution on Gi. The
solution detection property of the pruning algorithm guarantees that the execution terminates in
this iteration and hence, Lemma 1 guarantees that the output of all nodes combines to a global
solution on G. To bound the running time, we shall make sure that the total running time is
dominated by the running time of the last iteration, and that this last iteration is relatively fast.

There are various delicate points when using this general strategy. For example, in iterations
where incorrect guesses are used, we have no control over the behavior of the non-uniform
algorithm A and, in particular, it may run for too many rounds, perhaps even indefinitely. To
overcome this obstacle, we allocate a prescribed number of rounds for each iteration; if Algorithm
A reaches this time bound without outputting at some node u, then we force it to terminate
with an arbitrary output. Subsequently, we run the pruning algorithm and proceed to the next
iteration.

Obviously, this simple approach of running in iterations and increasing the guesses from
iteration to iteration is hardly new. It was used, for example, in the context of wireless networks
to compute estimates of parameters (cf., e.g., [8, 31]), or to estimate the number of faults [25].
One of the main contributions of the current paper is the formalization and generalization of this
technique, allowing it to be used for a wide varieties of problems and applications. Interestingly,
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note that we are only concerned with getting rid of the knowledge of some parameters, and not
with obtaining estimates for them (in particular, when our algorithms terminate, the vertices
have no way of knowing whether they have upper bounds on these parameters).

To illustrate the method, let us consider the non-uniform MIS algorithm of Panconesi and
Srinivasan [34]. This algorithm A assumes the knowledge of an upper bound ñ on the number
of nodes n, and runs in time at most f(ñ) = 2O(

√
log ñ). Consider a pruning algorithm PMIS

for MIS (such an algorithm is given by Observation 3.2). The following sketches our technique
for obtaining a uniform MIS algorithm. For each integer i, set ni := max

{

a ∈ N
∣

∣ f(a) 6 2i
}

.
In Iteration i, for i = 1, 2, · · · , we first execute Algorithm A using the guess ni (as an input
serving as an upper bound for the number of nodes) for precisely 2i rounds. Subsequently, we
run the pruning algorithm PMIS. When the pruning algorithm terminates, we execute the next
iteration on the non-pruned nodes. Let s be the integer such that 2s−1 < f(n) 6 2s, where n is
the number of nodes of the input graph. By the definition, n 6 ns. Therefore, the application
of A in Iteration s uses a guess ns that is indeed good, i.e., larger than the number of nodes.
Moreover, this execution of A is completed before the prescribed deadline of 2s rounds expires
because its running time is at most f(ns) 6 2s. Hence, we are guaranteed to have a correct
solution by the end of Iteration s. The running time is thus at most

∑s
i=1 2i = O(f(n)).

This method can sometimes be extended to simultaneously remove prior knowledge concern-
ing several parameters. For example, consider the MIS algorithm of Barenboim and Elkin [4]
(or that of Kuhn [22]), which requires the knowledge of upper bounds ñ and ∆̃ on n and ∆,
respectively, and runs in time f(ñ, ∆̃) = f1(ñ) + f2(∆̃), where f1(∆̃) = O(∆̃) and f2(ñ) =
O(log∗ ñ). The following sketches our method for obtaining a corresponding uniform MIS algo-
rithm that runs in time O(f(n, ∆)). For each integer i, set ni := max

{

a ∈ N
∣

∣ f1(a) 6 2i
}

and
∆i := max

{

a ∈ N
∣

∣ f2(a) 6 2i
}

. In Iteration i, for i = 1, 2, · · · , we first execute Algorithm A
using the guesses ni and ∆i, but this time the execution lasts for precisely 2 · 2i rounds. (The
factor 2 in the running time of an iteration follows from the fact that we consider two parameters
here, namely n and ∆.) Subsequently, we run the pruning algorithm PMIS, and as before, when
the pruning algorithm terminates, we execute the next iteration on the non-pruned nodes. Now,
let s be the integer such that 2s−1 < f(n, ∆) 6 2s. By the definition, n 6 ns and ∆ 6 ∆s.
Hence, the application of A in Iteration s uses guesses that are indeed good. This execution of
A is completed before the prescribed deadline of 2s+1 rounds expires because its running time
is at most f1(ns) + f2(∆s) 6 2s+1. Thus, the algorithm consists of at most s iterations. Since
the running time of the whole execution is dominated by the running time of the last iteration,
the total running time is O(2s+1) = O(f(n, ∆)).

The following theorem formalizes the above discussion. It considers a single set of parameters
Γ = {p1, p2, · · · , pℓ}, and assumes that (1) the given non-uniform algorithm AΓ depends on Γ
and (2) the running time of AΓ is evaluated according to the parameters in Γ. Recall that in
such a case, we say that a function f : Nℓ → R+ upper bounds the running time of AΓ with
respect to Γ if the running time TAΓ(G, x) of AΓ for every (G, x) ∈ F using a collection of good
guesses Γ̃ = {p̃1, p̃2, · · · , p̃ℓ} for (G, x) is at most f(p̃1, p̃2, · · · , p̃ℓ).

Theorem 8. Consider a problem Prob and a family of instances F . Let AΓ be a deterministic
algorithm for Prob and F depending on Γ := {p1, p2, · · · , pℓ}. Suppose that the running time of
AΓ is upper bounded by some function f : Nℓ → R+. Assume there exists a sequence-number
function sf for f , and a Γ-monotone pruning algorithm P for Prob and F . Then there exists
a uniform deterministic algorithm for Prob and F whose running time is O(f∗ · sf (f∗)), where
f∗ = f(Γ∗).

Proof. Let c be the bounding constant as described in the definition of the sequence-number
function sf (see the definition in Section 2). Fix a positive integer i. We describe a uniform
algorithm Bi defined for the configurations in F and running in time O(sf (2i) · 2i). Let Si =
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Sf (2i) = {x1, x2, · · · , xJi} be a set of size Ji 6 sf (2i) as described in the definition of the
sequence-number function sf . For every j ∈ [1 , Ji], consider the uniform algorithm Aj,i that
consists of running AΓ with the collection of guesses xj of Si. More precisely, the sequence
xj = {xj

1, xj
2, · · · , xj

ℓ} ∈ Si can be seen as a collection Γ̃j,i = {p1(j, i), p2(j, i), · · · , pℓ(j, i)},
where pr(j, i) := xj

r, for every r ∈ [1 , ℓ]. Now, we define A′
j,i to be the algorithm Aj,i restricted

to c · 2i rounds where c is the bounding constant in the definition of sf .
Next, we let Bi be the uniform alternating algorithm for the sequence of uniform algorithms

{A′
j,i}j∈[1,Ji] and the pruning algorithm P. That is, Bi = Â1,i; Â2,i; · · · ; ÂJi,i where Âj,i :=

A′
j,i; P for each j ∈ [1 , Ji]. Finally, the desired uniform algorithm π is simply B1; B2; B3; · · · .

Thus, π runs in iterations and, for each i ∈ N, Iteration i of π consists in running Bi over the
configuration (Gi, xi). Now, Bi is an alternating algorithm itself, and thus also runs in iterations,
called sub-iterations: each such sub-iteration consists in running Âj,i, that is, an algorithm of
the form AΓ and subsequently the pruning algorithm P. Let (Gj,s, xj,s) denote the configuration
over which π operates during Sub-iteration j of Iteration s, for j ∈ [1, Js]. See Figure 2 for a
schematic view of an iteration of π.

(Gi, xi) = (G1,i, x1,i) (Gi+1, xi+1)

(G1,i, x1,i, y1,i) (GJi,i, xJi,i, yJi,i)

(G2,i, x2,i) (GJi,i, xJi,i)

(G2,i, x2,i, y2,i) (GJi−1,i, xJi−1,i, yJi−1,i)

(Gj,i, xj,i)

Bi

A′
1,i

P

A′
2,i

P
A′

Ji−1,i

P

A′
Ji,i

P

Sub-iteration 1
of Iteration i

Sub-iteration Ji

of Iteration i

Figure 2: Schematic view of an iteration of π: the iteration i is composed of Ji sub-iterations.

Let us prove that Algorithm π is correct and that its running time over any configuration
(G, x) is O(sf (f∗) · f∗). Fix a configuration (G, x) and consider the operation of Algorithm π
on (G, x). Let p∗

r = pr(G, x), for r ∈ [1 , ℓ]. We know that f∗ = f(p∗
1, p∗

2, · · · , p∗
ℓ) is an upper

bound on the running time of AΓ over (G, x), assuming AΓ uses the collection of correct guesses
Γ∗ := (p∗

1, p∗
2, · · · , p∗

ℓ ). Consider the smallest integer s such that f∗ 6 2s. By the definition, there

exists j∗ ∈ [1 , Js], such that xj∗
= (xj∗

1 , xj∗

2 , · · · , xj∗

ℓ ) ∈ Ss and p∗
r 6 xj∗

r , for every r ∈ [1 , ℓ].
(Recall that Js = |Ss| 6 sf (2s).)

Observe that the input of a node stays the same until the node is pruned, since a sub-iteration
consists of running an algorithm of the form AΓ and subsequently the pruning algorithm P.
Consequently, for each i ∈ N, the vectors xj+1,i and xj,i coincide on V (Gj+1,i) for j ∈ [1 , Ji −1],
and hence xi+1 and xi coincide on V (Gi+1). Therefore, the monotonicity property of P implies
that pr(Gj−1,i, xj−1,i) > pr(Gj,i, xj,i) for every r ∈ [1 , ℓ]. Thus, we infer by induction on k that
p∗

r = pr(G, x) > pr(Gj,i, xj,i) for every i ∈ N, j ∈ [1 , Ji] and r ∈ [1 , ℓ].
Now, let us consider Iteration s of π (which is composed of executing Algorithm Bs). Assume

that some nodes are still active during Iteration s of π, that is, Gs is not empty. Iteration s of π
is composed of Js 6 sf (2s) sub-iterations. During Sub-iteration j, Algorithm Âj,s = A′

j,s; P is

executed over (Gj
s, xj

s). We know that p∗
r > pr(Gj,s, xj,s) for every j ∈ [1, Js], and every r ∈ [1 , ℓ].

So, in Sub-iteration j∗ of Iteration s, we have xj∗,r > p∗
r > pr(Gj∗,s, xj∗,s) for every r ∈ [1 , ℓ].
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Now, Sub-iteration j∗ consists of first running Algorithm A′
j∗,s, which amounts to running AΓ

for c · 2s rounds using the collection of guesses xj∗
= (xj∗

1 , xj∗

2 , · · · , xj∗

ℓ ). By definition of Sf (2s),

it follows that f(xj∗

1 , xj∗

2 , · · · , xj∗

ℓ ) 6 c · 2s, hence, this execution of Algorithm AΓ is actually
completed by time c · 2s. Furthermore, since xj∗

r > pr(Gj∗,s, xj∗,s) for every r ∈ [1 , ℓ], the
collection of guesses used by Algorithm AΓ is good, and hence the algorithm outputs a vector
yj∗

s satisfying (Gj∗,s, xj∗,s, yj∗,s) ∈ Prob. By the solution detection property, the subsequent
pruning algorithm (still in Sub-iteration j∗ of Iteration s) selects Wj∗,s = V (Gj∗,s). By Lemma 1,
it follows that π is correct.

Finally, we bound the running time of π. Let T0 be the (constant) running time of P. Observe
that the running time of Bi is at most Ji(c · 2i + T0) = O(sf (2i) · 2i). In other words, Iteration
i of π also takes O(sf (2i) · 2i) rounds. Since π consists of at most s iterations, the running time
of π is bounded by

∑s
i=1 sf (2i) · 2i = O(sf (2s) · 2s) because sf is non-decreasing. Moreover,

O(sf (2s) · 2s) = O(sf (2 · f∗) · 2s) = O(sf (f∗) · f∗)

since 2s−1 < f∗ and sf is non-decreasing and moderately-slow. Therefore, the running time of
π is bounded by O(sf (f∗) · f∗).

Recall from Observation 2.1 that the constant function sf = 1 is a sequence number function
for any additive function f . Hence, Theorem 6 follows directly by applying Theorem 8 to the
maximal matching algorithm of Hanckowiak et al. [19], and using Observation 3.3.

In addition, using Observation 3.2, Theorem 8 allows us to transform each of the MIS
algorithms in [4, 22, 34] into a uniform one with asymptotically the same time complexity. That
is, we obtain the following.

Corollary 1. Consider the family F of general graphs.

• There exists a uniform deterministic MIS algorithm for F running in time O(∆ + log∗n).

• There exists a uniform deterministic MIS algorithm for F running in time 2O(
√

log n).

4.2 The Randomized Case

We now show how to extend Theorem 8 to the randomized setting. More specifically, we replace
the given non-uniform deterministic Algorithm AΓ in Theorem 8 by a non-uniform weak Monte-
Carlo algorithm AΓ and produce a uniform Las Vegas one running in the same asymptotic
running time as AΓ. This transformer is more sophisticated than the one given in Theorem 8,
and requires the use of sub-iterations for bounding the expected running time and probability
of success of the resulting Las-Vegas algorithm.

Theorem 9. Consider a problem Prob and a family of instances F . Let AΓ be a weak Monte-
Carlo algorithm for Prob and F depending on Γ := {p1, p2, · · · , pℓ}. Suppose that the running
time of AΓ is upper bounded by some function f : Nℓ → R+. Assume there exists a sequence-
number function sf for f , and a Γ-monotone pruning algorithm P for Prob and F . Then
there exists a uniform Las Vegas algorithm for Prob and F whose expected running time is
O(f∗ · sf (f∗)), where f∗ = f(Γ∗).

Proof. Let T0 be the (constant) running time of the pruning algorithm P, and let AΓ be the given
weak Monte-Carlo algorithm. To simplify the notations, we assume that the success guarantee
ρ of AΓ is 1/2.

For each i ∈ N, let Bi be the uniform alternating algorithm as defined in the proof of
Theorem 8, and let Ci := B1; B2; B3; · · · ; Bi. Finally, let π := C1; C2; · · · .

Let us note some simple facts to ease the analysis of Algorithm π = C1; C2; · · · . First, π can
be seen as running in iterations: the iteration i consists in executing Ci. Further, Algorithm Ci
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itself also runs in iterations, which are called sub-iterations of π: each sub-iteration of π consists
in running the alternating algorithm of the form Bj. Recall (from the proof of Theorem 8) that
for each positive integer i, the number of rounds used by Bi is O(sf (2i) · 2i).

Let βi be the number of rounds used in Iteration i of π (that is, during the execution of
algorithm Ci). We have βi = O(sf (2i) · 2i). Consequently, the total number of rounds used
during the first i’th iterations of π (that is, running C1; C2; · · · ; Ci) is

αi :=
i
∑

k=1

βk = O(sf (2i) · 2i).

For integers j 6 i, let (Gi,j , xi,j) be the configuration given as input to algorithm Bj in Iter-
ation i. In particular, (Gi, xi) := (Gi,1, xi,1) is the configuration given as input to algorithm Ci.

First, it follows using similar arguments as the ones given in the proof of Theorem 8, that
if π outputs, then the outputted vector y is a solution, i.e. (G, x, y) ∈ Prob.

It remains to bound the running time of π. We consider the random variable Tπ(G, x) that
stands for “the running time of π on (G, x)”. For every integer i, let ρi be the probability that
Gi 6= ∅ and Gi+1 = ∅, that is, ρi is the probability that the last active node becomes inactive
precisely during Iteration i of π. In other words,

ρi := Pr (Tπ(G, x) ∈ [αi−1 + 1 , αi]) .

We know that f∗ = f(p∗
1, p∗

2, · · · , p∗
ℓ ) is an upper bound on the running time of AΓ over

(G, x), assuming AΓ uses the collection of correct guesses Γ∗ := (p∗
1, p∗

2, · · · , p∗
ℓ ). Consider the

smallest integer s such that f∗ 6 2s.
Note that αi+1 6 2 · αi for every positive integer i. In particular, αs+i 6 2i · αs, and hence:

E(Tπ(G, x)) 6 αs · Pr (Tπ(G, x) 6 αs) +
∞
∑

i=1

αs+i · ρs+i 6 αs + αs

∞
∑

i=1

2i · ρs+i.

Our next goal is to bound ρs+i from above. For a positive integer r, let χr denote the event that
V (Gr+1) 6= ∅, that is, none of C1, C2, · · · , Cr did output the empty configuration and thus, there
is still an active node at the beginning Iteration r + 1 of π. Thus, ρs+i 6 Pr(χs+i−1).

Recall that we assume that the success guarantee of AΓ is 1/2. Therefore, using similar
analysis as in the proof of Theorem 8, it follows that for every integer 1 6 k, the probability
that an application of Bs+k−1 (in particular, during iteration s + i − 1) does not output the
empty configuration is at most 1/2. As a result, we have

ρs+i 6 Pr(χs+i−1) 6
i
∏

j=1

2−j = 2−(i2+i)/2.

Therefore,

E(Tπ(G, x)) 6 αs

(

1 +
∞
∑

i=1

2i−(i2+i)/2

)

= O(αs) = O(f∗ · sf (f∗)).

Theorem 7 follows by applying Theorem 9 to the ruling-set algorithm of Schneider and
Wattenhofer [36], and using the pruning algorithm given by Observation 3.2.
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4.3 The General Theorem

Some complications arise when the correctness of the given non-uniform problem depends on
the knowledge of one set of parameters Γ, while its running time is evaluated by another set
of parameters Λ. For example, it may be the case that an upper bound on a parameter p is
required for the correct operation of an algorithm, yet the running time of the algorithm does
not depend on p. In this case, it may not be clear how to choose the guesses for p. (This
occurs, for example, in the MIS algorithms of Barenboim and Elkin [6], where the knowledge
of n and the arboricity a are required, yet the running time f is a function of n only.) Such
complications can be solved when there is some relation between the parameters in Γ and those
in Λ; specifically, when Γ is weakly-dominated by Λ. (Recall the definition of weakly-dominated
in Section 2.) This issue is handled in the following theorem, which extends both Theorem 8
and Theorem 9.

Theorem 10. Consider a problem Prob, a family of instances F and two sets of parameters
Γ and Λ = {q1, q2, · · · , qℓ}, where Γ is weakly-dominated by Λ. Let AΓ be a deterministic
(respectively, weak Monte-Carlo) algorithm depending on Γ whose running time is upper bounded
by some function f : Nℓ → R+. Assume there exists a sequence-number function sf for f , and a
Λ∪Γ-monotone pruning algorithm P for Prob and F . Then there exists a uniform deterministic
(resp., Las Vegas) algorithm for Prob and F whose running time on every configuration (G, x) ∈
F is is O(f∗ · sf (f∗)), where f∗ = f(Λ∗(G, x)).

Proof. We first show that we can reduce the problem to the (seemingly) more restrictive case in
which we have also Γ ⊆ Λ. Assume that the theorem holds for this restrictive case, and consider
the more general case, stated in the theorem. Let Γ = {p1, p2, · · · , pr} be weakly-dominated
by Λ = {q1, q2, · · · , qℓ}. Recall that r′ ∈ [0 , min{r, ℓ}] is such that {pr′+1, pr′+2, · · · , pr} ∩
{qr′+1, qr′+2, · · · , qℓ} = ∅ and pi = qi for every i ∈ [1 , r′]. In particular, Γ \ (Γ ∩ Λ) =
{pr′+1, pr′+2, · · · , pr}. Set t := r − r′. By the definition, the fact that Γ is weakly-dominated
by Λ implies that there exists a function h : [1 , t] → [1 , ℓ] and, for each j ∈ [1 , t], an ascending
function gj such that gj(pr′+j(G, x)) 6 qh(j)(G, x) for every configuration (G, x) ∈ F .

Let Λ′ := Λ ∪ Γ = {q1, q2, · · · , qℓ, pr′+1, pr′+2, · · · , pr}, and recall that f : Nℓ → R+ is the
function bounding the running time of AΓ. We define a new function f ′ : Nℓ+t → R by

f ′(x1, x2, · · · , xℓ, y1, y2, · · · , yt) := f(z1, z2, · · · , zℓ)

where for each i ∈ [1 , ℓ],

zi := max
(

{xi} ∪
{

gk(yk)
∣

∣

∣ k ∈ h−1({i})
})

.

Let sf be a sequence-number function for f and let c be a bounding constant as promised
by the definition of sf . We assert that sf is also a sequence-number function of f ′ (with the
same bounding constant c). Indeed, let i ∈ N and let Sf (i) be a set of sequences promised
in the definition of sf . We construct a set of sequences Sf ′(i) satisfying

∣

∣Sf ′(i)
∣

∣ = |Sf (i)| as

follows. For each (xj
1, xj

2, · · · , xj
ℓ) ∈ Sf (i) we let Sf ′(i) contain (xj

1, xj
2, · · · , xj

ℓ , w1, w2, · · · , wt)

where wk ∈ g−1
k ({xj

h(k)}) for k ∈ [1 , t].

We now check that the set Sf ′(i) satisfies the two conditions required by the definition of
a sequence-number function. Let x′ = (x1, · · · , xℓ, y1, · · · , yt) ∈ Nℓ+t. First, if x′ ∈ Sf ′(i),
then x := (x1, · · · , xℓ) ∈ Sf (i), so f(x) 6 c · i. Furthermore, the definition of f ′ together with
the fact that x′ ∈ Sf ′(i) imply that f ′(x′) = f(x), hence f ′(x′) 6 c · i. Second, assume that
f ′(x′) 6 i. Since f ′(x′) = f(z1, · · · , zℓ) with zj being defined as above for j ∈ [1 , ℓ], there exists
z := (z̃1, · · · , z̃ℓ) ∈ Sf (i) such that zj 6 z̃j for each j ∈ [1 , ℓ]. Moreover,

z′ := (z̃1, · · · , z̃ℓ, g−1
1 (z̃h(1)), · · · , g−1

t (z̃h(t))) ∈ Sf ′(i).
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The definition of z ensures that if j ∈ [1 , ℓ] then (z′)j = z̃j > xj, and if j ∈ [1 , t] then
(z′)ℓ+j = g−1

j (z̃h(j)) > g−1
j (zh(j)) > yj, as desired. This proves that sf is also a sequence-number

function of f ′.
Since Γ ⊆ Λ′, we conclude (by our assumption) that there exists a uniform local deterministic

(respectively, randomized Las Vegas) algorithm A for Prob and F such that the (respectively,
expected) running time of A over any configuration (G, x) ∈ F is O(f ′∗ · sf ′(f ′∗)) = O(f ′∗ ·
sf (f ′∗)), where f ′∗ = f(q∗

1, q∗
2 · · · , q∗

ℓ , p∗
r′+1, p∗

r′+2, · · · , p∗
r}). The fact that f ′ is non-decreasing

implies that

f ′∗
6 f ′(q∗

1, q∗
2 · · · , q∗

ℓ , g−1
1 (q∗

h(1)), g−1
2 (q∗

h(2)), · · · , g−1
t (q∗

h(t)})) = f∗.

The fact that sf is non-decreasing implies that the (respectively, expected) running time of
A is in fact bounded by O(f∗ · sf (f∗)), as desired.

The above discussion shows that it is sufficient to prove the theorem assuming that Γ ⊆ Λ.
Consider therefore the case where Γ ⊆ Λ. For convenience, let Γ = {p1, p2, · · · , pr} and Λ =
{p1, p2, · · · , pℓ}, where ℓ > r. We now observe that without loss of generality, we can actually
assume that Γ = Λ. Indeed, if ℓ > r, we simply impose that AΓ also requires estimates for the
parameters pr+1, pr+2, · · · , pℓ, that is, the operation of AΓ requires such estimates but actually
ignores them after obtaining them. This way, we obtain an algorithm AΛ depending on Λ. Since
f is non-decreasing, f(p∗

1, p∗
2, · · · , p∗

r, p∗
r+1, p∗

r+2, · · · , p∗
ℓ ) 6 f(p∗

1, p∗
2, · · · , p∗

r , p̃r+1, p̃r+2, · · · , p̃ℓ),
where p̃i is a good guess for every i ∈ [r + 1 , ℓ]. Hence, the running time of Algorithm AΛ is
also bounded by f .

The following corollary follows by applying the theorem above to the work of Barenboim
and Elkin [6], by setting Γ = {a, n} and Λ = {n} since a 6 n.

Corollary 2. There exists a uniform deterministic algorithm solving MIS on general graphs
in time O(f(a)), where f(a) = o(log n) for graphs with arboricity a = o(

√
log n), and f(a) =

O(log n/ log log n) for graphs with arboricity a = O(log1/2−δ n), for some constant δ ∈ (0 , 1/2)
(otherwise, f(a) = n).

4.4 Running as Fast as the Fastest Algorithm

To illustrate the topic of the next theorem, consider the best known non-uniform algorithms
for MIS, namely the algorithms of Barenboim and Elkin [4] and that of Kuhn [22], which run
in time O(∆ + log∗ n) and require the knowledge of n and ∆, and the algorithm of Panconesi
and Srinivasan [34], which runs in time 2O(

√
log n) and requires the knowledge of n. Furthermore,

consider the MIS algorithm of Barenboim and Elkin [6], which is very efficient for graphs with
bounded arboricity a (let f ′(a) be the running time of their algorithm). If n, ∆ and a are known
to all nodes, then one can compare the running times of these algorithms and use the fastest
one. That is, there exists a non-uniform algorithm A{n,∆,a} that runs in time T ′(n, ∆, a) :=
min{2O(

√
log n), O(∆ + log∗ n), f ′(a)}.

Unfortunately, Theorem 10 does not allow us to transform A{n,∆,a} into a uniform one—
the reason being that the function T (n, ∆, a) bounding running time does not have a sequence
number as specified in Theorem 10. On the other hand, as mentioned in Corollaries 1 and 2,
Theorem 8 does allow us to transform each of the aforementioned algorithms into a uniform
MIS algorithm, with time complexity 2O(

√
log n), O(∆ + log∗ n), and O(f(a)), respectively. Nev-

ertheless, since n, ∆ and a are unknown to the nodes, it is not clear how to obtain from these
transformed algorithms a uniform algorithm running in time T (n, ∆, a) := min{2O(

√
log n), O(∆+

log∗ n), O(f(a))}. The following theorem solves this problem.

Theorem 11. Consider a problem Prob, a family of instances F . Let Λ1 and Λ2 be two sets of
parameters. Suppose that there exists a Λ1 ∪ Λ2-monotone pruning algorithm P for Prob and F .
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Consider two uniform algorithms U1 and U2 whose running times are bounded by non-decreasing
functions f1(Λ∗

1) and f2(Λ∗
2), respectively. Then there is a uniform algorithm with running time

O(fmin), where fmin := min{f1(Λ∗
1), f2(Λ∗

2)}.

Proof. The basic idea behind the proof of theorem above is to run in iterations, such that each
iteration i consists of running the quadruple (U1; P; U2; P), where U1 and U2 are executed for
precisely 2i rounds each. Hence, a correct solution will be produced in Iteration s := ⌈log fmin⌉
or before. Since each iteration i lasts for roughly 2i+1 rounds (recall that the running time of P
is constant), the running time is O(fmin).

Formally, we define a sequence of uniform algorithms (Ai)i∈N as follows. For i ∈ N, set
A2i+1 := Û1 and A2i+2 := Û2, where Ûj is Uj restricted to 2i rounds for j ∈ {1, 2}. Let π be the
uniform alternating algorithm with respect to (Ai)i∈N and P, that is π := B1; B2; B3; · · · where
B2i+j := Ûj; P for every i ∈ N and every j ∈ {1, 2}. Letting T0 be the (constant) running time
of P, the running time of Bi is at most 2i + T0, for every i ∈ N.

Consider an instance (G, x) ∈ F . For each (p, q) ∈ Λ1 × Λ2, let p∗ := p(G, x) and q∗ :=
q(G, x). Algorithm Bi operates on the configuration (Gi, xi). Let p ∈ Λ1 ∪ Λ2. Because P is
monotone with respect to Λ1 ∪ Λ2, it follows by induction on i that p∗ > p(Gi, xi). Hence, the
running time of Uj over (Gi, xi) is upper bounded by fj(Λ

∗
j ) for every i ∈ N and each j ∈ {1, 2}.

Thus, it follows that V (G2k+2) = ∅ for the smallest k such that 2k > fmin. Consequently, by
Lemma 1, Algorithm π correctly solves Prob on F . Hence, the tail of the alternating algorithm
π is trivial, that is π = B1; B2; · · · ; B2k+1. Since Algorithm Bi runs in at most 2⌈i/2⌉ + T0 rounds,
it follows that the running time of π is O(2k) = O(fmin), as asserted.

Theorem 1 follows as a direct corollary of Theorem 11, using Corollaries 1 and 2.

5 Uniform Coloring Algorithms

In general, we could not find a way to directly apply our transformers (e.g., the one given by
Theorem 10) for the coloring problem. The main reason is that we could not find an efficient
pruning algorithm for the coloring problem. Indeed, consider for example the O(∆)-coloring
problem. The checking property of a pruning algorithm requires that, in particular, the nodes can
locally decide whether they belong to a legal configuration. Locally checking that neighboring
nodes have distinct colors is easy, however, to know whether a color is in the required range,
namely, in [1, O(∆)], seems difficult as the nodes do not know ∆. Moreover, the gluing property
seems difficult to tackle also: after pruning a node with color c, none of its unpruned neighbors
can be colored in color c. In other words, a correct solution on the non-pruned subgraph may
not glue well with the pruned subgraph.

Nevertheless, we show in this section that several relatively general transformers can be used
to obtain uniform coloring algorithms from non-uniform one. We focus on standard coloring
problems in which the required number of colors is given as a function of ∆.

5.1 Uniform (∆ + 1)-coloring algorithms

A standard trick (cf., [28, 30]) allows us to transform an efficient (with respect to n and ∆) MIS
algorithm for general graphs into one for (∆ + 1)-coloring. This is based on the observation
that (∆ + 1)-colorings of G and maximal independent sets of G′ := G × K∆+1 are in one-to-one
correspondence. This known transformation, however, uses the knowledge of ∆. Nevertheless, it
is straightforward to check that a similar correspondence holds when G′ is defined as follows. For
each node u ∈ V (G), take a clique of size degG(u) + 1 with vertices u1, u2, · · · , udegG(u)+1. Now,
for each (u, v) ∈ E(G) and each i ∈ [1 , 1 + min{degG(u), degG(v)}], let (ui, vi) ∈ E(G′). The
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graph G′ can be constructed locally without any global knowledge, hence we obtain Theorem 2
as a corollary of Theorem 1.

5.2 Uniform coloring with more than ∆ + 1 colors

We now aim to provide a general transformer taking as input an efficient non-uniform coloring
algorithm that uses g(∆) colors (where g(∆) > ∆) and produces an efficient uniform coloring
algorithm that uses O(g(∆)) colors. We begin with the following definitions.

An instance for the coloring problem is a pair (G, x) where G is a graph and x(v) contains a
color c(v) such that the collection {c(v) | v ∈ V (G)} forms a coloring of G. (The color c(v) can
be the identity Id(v).) For a given family of graphs G, we define F(G) to be the collection of
instances (G, x) for the coloring problem, where G ∈ G.

Recall that many coloring algorithms consider the identities as colors, and relax the assump-
tion that the identities are unique by replacing it with the weaker requirement that the set of
initial colors forms a coloring. Given an instance (G, x), let m = m(G, x) be the largest integer
i such that all identities (initial colors) are taken from [1 , i], in other words, m is the maximal
identity. Note that m is a graph-parameter.

Recall the λ(∆̃ + 1)-coloring algorithms designed by Barenboim and Elkin [4] and Kuhn [22]
(which generalize the O(∆̃2)-coloring algorithm of Linial [28]). We would like to point out
that, in fact, everything works similarly in these algorithms if one replaces n with m. That is,
these λ(∆̃ + 1)-coloring algorithms can be viewed as requiring m and ∆ and running in time
O(∆̃/λ + log∗ m̃). The same is true for the edge-coloring algorithms of Barenboim and Elkin [7].

The following theorem implies that these algorithms can be transformed into uniform ones.
In the theorem, we consider two sets of graph-parameters Γ and Λ such that (1) Γ is weakly-
dominated by Λ, and (2) Γ ⊆ {∆, m}. Such a pair of sets of parameters is said to be related.
We also need the following definition, which will be used for the function governing the number
of colors used by the coloring algorithms. A function g is moderately-fast if and only if (1) g is
moderately-increasing, and (2) there exists a polynomial P such that x < g(x) < P (x) for every
x ∈ R+.

Theorem 12. Let Γ and Λ be two related collections of graph parameters, and let AΓ be a
g(∆̃)-coloring algorithm with running time bounded by some function f(Λ). If

1. there exists a sequence-number function sf for f ;

2. g is moderately-fast;

3. the dependence of f on m is bounded by a polylog; and

4. the dependence of f on ∆ is moderately-slow;

then there exists a uniform O(g(∆))-coloring algorithm running in time O(f(Λ∗) · sf (f(Λ∗))).

Proof. Our first goal is to obtain a coloring algorithm that does not require m (and thus requires
only ∆). For this purpose we first define the following problem.
The strong list-coloring (SLC) problem: a configuration for the SLC problem is a pair (G, x) ∈
F(G) such that

1. there exists an integer ∆̂ > ∆ that is contained in ∩v∈V (G)x(v); and

2. the input x(v) of every vertex v ∈ V (G) contains a list L(v) ⊆ [1 , g(∆̂)] × [1 , ∆̂ + 1] of
colors such that

∀k ∈ [1 , g(∆̂)], |{j | (k, j) ∈ L(v)}| > degG(v) + 1.
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Given a configuration (G, x) ∈ F(G), an output vector y is a solution for SLC if it forms a
coloring and if y(v) ∈ L(v) for every node v ∈ V (G). Observe that Condition (1) above implies
that an instance to SLC already contains an upper bound ∆̃ on ∆ at the input of each node
(this upper bound being the same at all nodes), therefore, in a sense, an algorithm for SLC can
be designed assuming that each node knows ∆̃. Condition (2) above informally implies that the
list of colors L(v) available at each node v contains degG(v) + 1 copies of each color in the range
[1 , g(∆̂)].

We now design a pruning algorithm for SLC. Consider a triplet (G, x, ŷ), where (G, x) is
a configuration for SLC and ŷ is some tentative assignment of colors. The set W of nodes to
be pruned is the set of nodes u satisfying ŷ(u) ∈ L(u) and ŷ(u) 6= ŷ(v) for all v ∈ NG(u).
Algorithm P modifies the input for the nodes outside W as follows: for u ∈ V \ W , set

x′(u) := (x(u) \ L(u)) ∪ L′(u) where L′(u) := L(u) \ {ŷ(v) | v ∈ NG(u) ∩ W } .

In other words, the input at a node u ∈ V \ W is changed so that the new list of available colors
L′(u) contains precisely L(u) minus the colors assigned to those neighbors of u in G that belong
to W .

Observe that if we start with a configuration (G, x) for SLC then the output (G′, x′) of the
pruning algorithm P is also a configuration for SLC. This is because, for every node v and every
k, at most degW (v) pairs (k, j) were removed from the list L(v) of v, where degW (v) is the
number of neighbors of v that belong to W . On the other hand, the degree of v in G′ is reduced
by degW (v).

From AΓ, it is straightforward to design a local algorithm BΓ′
for SLC that depends on

Γ′ := Γ \ {∆}. Specifically, let BΓ′
consist of executing AΓ using the good guess ∆̃ := ∆̂ for the

parameter ∆. Furthermore, if AΓ outputs at v a color c, then BΓ′
outputs the color (c, j) where

j := min {s | (c, s) ∈ L(v)}.
Given an instance for SLC, we view ∆̂ as a (graph) parameter, and convert Λ to a new set

of parameters Λ′ by replacing ∆ with ∆′. Formally, if ∆ ∈ Λ then set Λ′ := Λ \ ∆ ∪ ∆̂, and
otherwise, set Λ′ := Λ. Since Γ and Λ contain only graph parameters—and since ∆̂ is contained
in all the inputs—we deduce that the pruning algorithm P is Γ′ ∪ Λ′-monotone.

Now, having the sets of parameters Γ′ and Λ′ in mind, Algorithm BΓ′
, and the aforementioned

pruning algorithm P for SLC, we apply Theorem 10 and obtain a uniform algorithm B for SLC
and F(G) whose running time is O(f(Λ′∗) · sf (f(Λ′∗))).

We are now ready to specify the desired uniform O(g(∆))-coloring algorithm. We inductively
define integers Di for i ∈ N by setting

D1 := 1 and Di+1 := min {ℓ | g(ℓ) > 2g(Di)} , for i > 1.

Given an initial configuration (G, x), we partition it according to the node degrees. For i ∈ N,
let Gi be the subgraph of G induced by the set of nodes v ∈ G with degG(v) ∈ [Di , Di+1 − 1].
Let xi be the input x restricted to the nodes in Gi. The configuration (Gi, xi) ∈ F(G) is referred
to as layer i. Note that nodes can figure out locally which layer they belong to. Observe also
that Di+1 − 1 is an upper bound on node degrees in layer i.

The algorithm proceeds in two phases. In the first phase, each node in layer i is assigned the
list of colors L′′

i := [1 , g(Di+1)]× [1 , Di+1 +1], and the degree estimation ∆̂i := Di+1. Each layer
is now an instance of SLC and we execute Algorithm B in parallel on all layers. If Algorithm B
assigns a color (c, j) to a node v in layer i then we change this color to (g(Di+1) + c, j). Hence,
each layer i is colored with colors taken from L′

i := [g(Di+1) + 1 , 2g(Di+1)] × [1 , Di+1 + 1].
Note that nodes in different layers have disjoint colors, and hence we obtain a coloring of

the whole graph G. The number of colors in L′
i is at most λDi+1g(Di+1), for some constant

integer λ. From the definition of the integers Di and the fact that g is moderately-increasing, it
follows that the total number of colors used in this phase is O(∆g(∆)). Furthermore, the running
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time of this first phase of the algorithm is dominated by the running time of the algorithm on
layer imax, where imax is the maximal i such that layer i is non-empty. That is, the running
time is at most O(f(Λ′∗) · sf (f(Λ′∗))), where Λ′∗ is the collection of correct parameters in Λ′

for layer imax. Since Dimax+1 = O(∆) and since the dependence of f on ∆ is moderately-slow,
we infer that f(Λ′∗) = O(f(Λ∗)). Recalling that sf is moderately-slow (by the definition), we
deduce that the running time is O(f(Λ∗) · sf (f(Λ∗))).

The second phase consists of running a second algorithm to change the set of possible colors
of nodes in layer i from L′

i to Li := [g(Di+1) + 1 , 2g(Di+1)]. Specifically, on layer i, we execute
AΓ using the guess ∆̃ = Di+1 for the parameter ∆ and the guess m̃ = λDi+1g(Di+1) for the
parameter m (recall that Γ ⊆ {∆, m}). This procedure colors each layer with colors taken from
the range [1 , g(Di+1)]. Let v be in layer i and let c(v) be the color assigned to v by AΓ. The
final color of v given by our desired algorithm A is g(Di+1) + c(v). Thus, the colors assigned
to the nodes in layer i belong to [g(Di+1) + 1 , 2g(Di+1)], and are therefore disjoint on different
layers. The algorithm is executed on each layer independently, all in parallel, and hence, we
obtain a coloring. Moreover, since g is moderately-increasing, the total number of colors used
is O(g(∆)).

Recall that Di+1 = O(∆) and g(Di+1) = O(g(∆)) for all i such that Gi is not empty. Hence,
we deduce that the running time of the second phase of the algorithm is bounded from above by
the running time of AΓ on (G, x) using the guesses ∆̃ = O(∆) and m̃ = O(∆g(∆)). Moreover,
the fact that g(x) is bounded by a polynomial in x implies that m̃ is at most polynomial in ∆,
and hence in m.

Now, because the dependence of f on ∆ is moderately-slow and the dependence of f on m
is polylogarithmic, the running time of the second phase of A is O(f(Λ)). Combining this with
the running time of the first phase concludes the proof.

Recall from Observation 2.1 that the constant function sf = 1 is a sequence-function for ev-
ery additive function f . Hence, Theorem 3 now follows as a direct corollary of the Theorem 12.
Regarding edge-coloring, observe that Barenboim and Elkin [7] obtain their edge-coloring algo-
rithm on general graphs by running a vertex-coloring algorithm on the line-graph of the given
graph. This vertex-coloring algorithm assumes the knowledge of m and ∆ and uses the same
number of color and time complexity as the resulted edge-coloring algorithm. Using Theorem 12,
one can transform that vertex-coloring algorithm [7] designed for the family of line graphs into a
uniform one, having the same asymptotic number of colors and running time. Hence, Theorem
5 follows.

Let f : N2 → R be a function given by f(x1, x2) := f1(x1) · f2(x2), where f1 and f2 are non-
negative ascending functions. Recall from Observation 2.1 that the function sf (i) := ⌈log i⌉ + 1
is a sequence-number function for f . Therefore, Theorem 4 now follows by applying Theorem 12
to the coloring algorithms of Barenboim and Elkin [5].

6 Conclusion and further research

6.1 Pruning algorithms

This paper focuses on removing assumptions concerning global knowledge in the context of local
algorithms. We provide rather general transformers taking a non-uniform local algorithm as a
black box and producing a uniform algorithm running in asymptotically the same number of
rounds. This is established via the notion of pruning algorithms. We believe that this novel
notion is of independent interest and can be used for other purposes too, e.g., in the context of
fault tolerance or dynamic settings.

We would like to remind the reader that we restrict the running time of a pruning algorithm
to be constant. This is because in all our applications we use constant time pruning algorithms.
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In fact, our results extend to the case where the given uniform pruning algorithm P runs in time
bounded by h(S), where h is non-decreasing, S is a set of parameters, and P is S-monotone.
We note, however, that this generalization may incur an additive overhead in the running time
of our transformations, as these repeatedly use P. Specifically, the overhead will be h(S∗) times
the number of iterations used by the transformer (which is typically logarithmic in the running
time of the non-uniform algorithm). It would be interesting to have an example of a problem
that admits a fast non-trivial uniform pruning algorithm but does not admit a constant time
one.

6.2 Bounded message size

This paper focuses on the LOCAL model which does not restrict the number of bits used in
messages. Ideally, messages should be short, i.e., using O(log n) bits. We found it difficult to
obtain a general transformer that takes an arbitrary non-uniform algorithm which uses short
messages and produces a uniform one having the same asymptotic running time and message size.
The reason is that using similar techniques to the ones we use, one would need to use guesses
that fit to both the function bounding the running time as well as to the function bounding the
message size. Nevertheless, we note that maintaining the same message size may still be possible
given particular non-uniform algorithms that use messages whose content does not depend on
the guessed upper bounds, for example, algorithms that encode in the messages only identifiers,
colors, or degrees.

6.3 Coloring

Recall that one of the difficulties in obtaining a pruning algorithm for coloring problems lies
in the fact that a pruned node v with color c may have a non-pruned neighbor u which is also
colored c in some correct coloring of the non-pruned subgraph, that is, the gluing property may
not hold. In the context of running in iterations, in which one invokes a pruning algorithm
and subsequently, an algorithm A on the non-pruned subgraph (similarly to Theorem 10), the
aforementioned undesired phenomena could be prevented if the algorithm A would avoid coloring
node u with color c. With this respect, we believe that it would be interesting to investigate
connections between g-coloring problems and strong g-coloring problems, in which each node v
is given as an input a list of (forbidden) colors F (v). In a correct solution, each node v must
color itself with a color not in L(v) such that the final configuration is a coloring and such that
the total number of colors used does not exceed g.

Finally, recall that our transformer for coloring applies to deterministic algorithms only. It
would be interesting to design a general transformer that takes non-uniform randomized coloring
algorithms (e.g., the ones by Schneider and Wattenhofer [36]) and transforms them to uniform
ones with asymptotically the same running time.
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